1
|
Abd-Elmawla MA, Elsamanoudie NM, Ismail MF, Hammam OA, El Magdoub HM. The interplay of TapSAKI and NEAT-1 as potential modulators in gentamicin-induced acute kidney injury via orchestrating miR-22-3p/TLR4/MyD88/NF-қB/IL-1 β milieu: Novel therapeutic approach of Betanin. Int Immunopharmacol 2024; 143:113577. [PMID: 39541843 DOI: 10.1016/j.intimp.2024.113577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Gentamicin (GNT) is a broad-spectrum antibiotic that is widely prescribed in critically ill patients. However, GNT exerts deleterious effects on renal proximal tubules which could predispose to acute kidney injury (AKI). AIM The study aimed to investigate the interplay of TapSAKI, NEAT-1, and miR-22-3p in GNT-induced AKI via modulating the TLR4/MyD88/NF-қB/IL-1β trajectory. The study was extended to show the role of betanin (BET) in alleviating GNT-induced AKI. METHODS BET (25 mg/kg/day) was administered via oral route for 28 consecutive days in addition to GNT (100 mg/kg/day) i.p. during the last 8 days. TapSAKI, NEAT-1, and miR-22-3p gene expressions were measured using RT-PCR. The levels of SCr, urea were measured using colorimetric assay, whereas KIM-1, TLR4, and IL-1β were measured using ELISA technique. Additionally, histopathological examinations were done. RESULTS The present study revealed that the expression of TapSAKI and NEAT-1 were significantly upregulated in GNT-induced AKI group, whereas miR-22-3p was significantly downregulated. There were significant associations between the expression of these non-coding RNAs and TLR4/NF-қB/MyD88/IL-1β axis as well as malondialdehyde and glutathione levels. Favorably, BET pretreated group normalized the levels of SCr, urea, and KIM-1 and showed a significant downregulation of TapSAKI and NEAT-1 and upregulation of miR-22-3p compared with GNT-induced AKI group. Furthermore, BET showed a marked inhibition of TLR4/MyD88/NF-қB/IL-1β cascade compared with non-treated AKI rats. Moreover, BET normalized oxidative stress markers. CONCLUSION BET reduced GNT's toxic effects on kidneys through modulating TLR4/MyD88/NF-қB/IL-1β signaling pathway under the influence of lncRNAs TapSAKI, NEAT-1, and miRNA-22-3p, which consequently suppress oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Nourhan M Elsamanoudie
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Manal Fouad Ismail
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Olfat Ali Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hekmat M El Magdoub
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
2
|
Mansour DF, Hashad IM, Rady M, Abd-El Razik AN, Saleh DO. Diosmin and Coenzyme q10: Synergistic histopathological and functional protection against doxorubicin-induced hepatorenal injury in rats. Toxicol Rep 2024; 13:101848. [PMID: 39703765 PMCID: PMC11655815 DOI: 10.1016/j.toxrep.2024.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Doxorubicin (DOX) is a cytotoxic anthracycline used to treat a variety of cancers. Cardiotoxicity, hepatotoxicity, and nephrotoxicity are adverse effects of DOX, that limit prognosis. The study aims to determine if diosmin (DIOS) and coenzyme Q10 (CoQ10) alone or in combination protect rats against DOX-induced liver and kidney damage. Adult male rats were assigned randomly in five groups. An intraperitoneal injection of DOX (2.5 mg/kg) was given to the DOX group every other day for three weeks, whereas a normal control group received the vehicle. Diosmin group received oral DIOS (100 mg/kg), Co-Q10 group received oral CoQ10 (10 mg/kg) and combination group received oral DIOS and CoQ10 daily for three weeks concomitantly with DOX. Sera and tissues were obtained 24 hours after last DOX injection. Serum aspartate transaminase (AST), alanine transaminase (ALT), creatinine, urea, total bilirubin and direct bilirubin were detected with hepatic and renal reduced glutathione (GSH), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa-B (NF-κB). Histopathology and morphometry of liver and kidney were assessed. DOX exerted significant hepatorenal toxicity via elevation of liver and kidney functions, inducing oxidative stress by reducing GSH and elevating MDA, triggering renal and hepatic TNF-α and NF-kB. DIOS and CoQ10 modulated hepatic and renal functions, oxidative stress and inflammatory biomarkers. DIOS-CoQ10 combination treatment showed significant improvement in histopathology of liver and kidney along with morphometry compared to DOX group. In conclusion, combining DIOS and CoQ10 exhibited synergistic protective activity against DOX-induced hepatic and renal insult via their antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Dina F. Mansour
- Pharmacology Department, Medical Research and Clinical Studies Institute - National Research Centre, Dokki, Giza 12622, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Galala University, Mount Ataka, Suez, Egypt
| | - Ingy M. Hashad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, Egypt
- Faculty of Biotechnology, German International University, New Administrative Capital, Cairo, Egypt
| | - Amira N. Abd-El Razik
- Pathology Department, Medical Research and Clinical Studies Institute - National Research Centre, Dokki, Giza 12622, Egypt
| | - Dalia O. Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute - National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
3
|
Malayeri A, Birgani SM, Basir Z, Kalantar H. Protective effects of diosmin on doxorubicin-induced testicular toxicity in rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7881-7890. [PMID: 38748230 DOI: 10.1007/s00210-024-03134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/29/2024] [Indexed: 10/04/2024]
Abstract
Doxorubicin (DOX) can be applied to treat several cancers. DOX-induced oxidative stress causes testicular damage. Diosmin (DIO), as a potent antioxidant, reduces many drugs' side effects. We determined DIO therapeutic effects on DOX-related testicular toxicity. Forty rats were assigned to five groups as control, DOX (2.5 mg/kg six i.p. injections at equal intervals over two weeks), DOX + DIO (25, 50, 100 mg/kg, orally, daily, for two weeks) groups. Oxidative and antioxidant markers, fertility parameters levels, sperm parameters, and a histopathological examination were analyzed. DOX group showed a significant decrease in the number of spermatogonia, primary spermatocytes, and sertoli cells, seminiferous tubular diameter, seminiferous luminal diameter, and seminiferous epithelial height. Moreover, testosterone levels, glutathione (GSH) levels, catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) activities showed a significant decrease. Furthermore, nitric oxide (NO) and malondialdehyde (MDA) contents and also follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels showed a significant increase in the DOX group compared to the control group. DIO improved DOX-related alterations in levels of hormones, spermatogonia, spermatocytes, and sertoli cell number, and seminiferous diameters (tubular, luminal, and epithelial height). Furthermore, GSH level, SOD, GPx, and CAT activities showed a significant increase, and MDA and NO contents showed a significant decrease in the DOX + DIO group than the DOX group. The results indicate that DIO mitigate DOX-induced testicular toxicity by its anti-oxidant activity.
Collapse
Affiliation(s)
- Alireza Malayeri
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahin Moradi Birgani
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Basir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Department of Toxicology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran.
| |
Collapse
|
4
|
Fan Y, Kang S, Shao T, Xu L, Chen J. Activation of SIRT3 by Tanshinone IIA ameliorates renal fibrosis by suppressing the TGF-β/TSP-1 pathway and attenuating oxidative stress. Cell Signal 2024; 122:111348. [PMID: 39153586 DOI: 10.1016/j.cellsig.2024.111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Although doxorubicin (DOX) is a common chemotherapeutic drug, the serious nephrotoxicity caused by DOX-induced renal fibrosis remains a considerable clinical problem. Tanshinone IIA (Tan IIA), a compound extracted from Salvia miltiorrhiza, has been reported to have an anti-fibrotic effect. Therefore, this study investigated the molecular pathway whereby Tan IIA protects the kidneys from DOX administration. DOX (3 mg/kg body weight) was intraperitoneally administered every 3 d for a total of 7 injections (cumulative dose of 21 mg/kg) to induce nephrotoxicity. Then, Tan IIA (5 or 10 mg/kg/d) was administered by intraperitoneal injection for 28 d. In an in vitro study, 293 T cells were cultured and treated with DOX and Tan IIA for 24 h. Tan IIA reduced the blood urea nitrogen levels elevated by DOX while increasing superoxide dismutase activity, down-regulating reactive oxygen species, ameliorating renal-tubule thickening, and rescuing mitochondrial morphology. Additionally, Tan IIA reduced the renal collagen deposition, increased ATP production and complex-I activity, down-regulated transforming growth factor-β1 (TGF-β1) and thrombospondin-1 (TSP-1), and up-regulated sirtuin 3 (SIRT3). Tan IIA significantly increased cell viability. Additionally, RNA interference was employed to silence the expression of SIRT3, which eliminated the effect of Tan IIA in suppressing the expression of TGF-β1 and TSP-1. In conclusion, Tan IIA ameliorated DOX-induced nephrotoxicity by attenuating oxidative injury and fibrosis. The Tan IIA-induced rescue of mitochondrial morphology and function while alleviating renal fibrosis may be associated with the activation of SIRT3 to suppress the TGF-β/TSP-1 pathway.
Collapse
Affiliation(s)
- Yifeng Fan
- School of Medical Imaging, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Shengyu Kang
- School of Medical Imaging, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Tong Shao
- School of Medical Imaging, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Linhao Xu
- Department of Cardiology, Hangzhou, First People's Hospital, Hangzhou, 310006, China; Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Jian Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
5
|
Qaed E, Almaamari A, Almoiliqy M, Alyafeai E, Sultan M, Aldahmash W, Mahyoub MA, Tang Z. Phosphocreatine attenuates doxorubicin-induced nephrotoxicity through inhibition of apoptosis, and restore mitochondrial function via activation of Nrf2 and PGC-1α pathways. Chem Biol Interact 2024; 400:111147. [PMID: 39043266 DOI: 10.1016/j.cbi.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Doxorubicin (DOX), a chemotherapy drug widely recognized for its efficacy in cancer treatment, unfortunately, has significant nephrotoxic effects leading to kidney damage. This study explores the nephroprotective potential of Phosphocreatine (PCr) in rats, specifically examining its influence on Nrf2 (Nuclear factor erythroid 2-related factor 2) and PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) pathways, its role in apoptosis inhibition, and effectiveness in preserving mitochondrial function. The research employed in vivo experiments in rats, focusing on PCr's capacity to protect renal function against doxorubicin-induced damage. The study entailed evaluating Nrf2 and PGC-1α pathway activation, apoptosis rates, and mitochondrial health in renal tissues. A significant aspect of this research was the use of high-resolution respirometry (HRR) to assess the function of isolated kidney mitochondria, providing in-depth insights into mitochondrial bioenergetics and respiratory efficiency under the influence of PCr and doxorubicin. Results demonstrated that PCr treatment significantly enhanced the activation of Nrf2 and PGC-1α pathways, reduced apoptosis, and preserved mitochondrial structure in doxorubicin-affected kidneys. Observations included upregulated expression of Nrf2 and PGC-1α target genes, stabilization of mitochondrial membranes, and a notable improvement in cellular antioxidant defense, evidenced by the activities of enzymes like superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) This study positions phosphocreatine as a promising agent in mitigating doxorubicin-induced kidney damage in rats. The findings, particularly the insights from HRR on isolated kidney mitochondria, highlight PCr's potential in enhancing mitochondrial function and reducing nephrotoxic side effects of chemotherapy. These encouraging results pave the way for further research into PCr's applications in cancer treatment, aiming to improve patient outcomes by managing chemotherapy-related renal injuries.
Collapse
Affiliation(s)
- Eskandar Qaed
- Collage of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ahmed Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Marwan Almoiliqy
- Collage of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China
| | - Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Marwa Sultan
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Waleed Aldahmash
- Zoology Department, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mueataz A Mahyoub
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeyao Tang
- Collage of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044, Dalian, China.
| |
Collapse
|
6
|
Sedky A, Famurewa AC. Anti-ischemic drug trimetazidine blocks mercury nephrotoxicity by suppressing renal redox imbalance, inflammatory stress and caspase-dependent apoptosis in rats. Drug Chem Toxicol 2024; 47:674-681. [PMID: 37528808 DOI: 10.1080/01480545.2023.2242007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Trimetazidine (TMZ) is a promising emerging therapeutic piperazine derivative for renal pathologies. However, the nephroprotective mechanism of TMZ against heavy metal-induced toxicity is unknown. This study, therefore, aimed to explore whether TMZ could mitigate mercury-induced nephrotoxicity in rats. Rats were injected TMZ (3 mg/kg bw) and/or mercury chloride (HgCl2) (4 mg/kg bw) for 4 days (n = 6 rats per group). The blood analysis revealed marked increases in creatinine, urea and uric acid levels in HgCl2 group compared to the control. HgCl2 induced prominent decreases in renal superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPx) activities compared to the control followed by marked increases in the levels of malondialdehyde (MDA), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), caspase-3 and caspase-9. Whereas the renal levels of anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) reduced considerably compared to the control. Contrarily, it was found that in the rats administered TMZ + HgCl2, levels of renal markers, MDA, TNF-α, IL-6 and caspases-3/-9 were prominently reduced compared to the HgCl2 group. The renal SOD, CAT, GPx, IL-4, and IL-10 were markedly elevated along with ameliorated histopathological lesions. On the whole, therefore, TMZ could be repurposed for blocking HgCl2 nephrotoxicity via inhibition of oxidative inflammation and apoptosis in rats.
Collapse
Affiliation(s)
- Azza Sedky
- Department of Biological Sciences, College of Science, King Faisal University, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Rahman L, Talha Khalil A, Ahsan Shahid S, Shinwari ZK, Almarhoon ZM, Alalmaie A, Sharifi‐Rad J, Calina D. Diosmin: A promising phytochemical for functional foods, nutraceuticals and cancer therapy. Food Sci Nutr 2024; 12:6070-6092. [PMID: 39554345 PMCID: PMC11561841 DOI: 10.1002/fsn3.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 11/19/2024] Open
Abstract
Diosmin, a potent bioflavonoid derived from citrus fruits, has gained significant attention for its anticancer potential, reflecting a critical need in the ongoing battle against cancer. Amidst increasing cancer incidence, the quest for safer and more effective treatments has brought diosmin to the forefront, given its unique pharmacological profile distinct from other flavonoids. Diosmin's anticancer mechanisms are multifaceted, involving apoptosis induction, angiogenesis inhibition, and metastasis prevention. Extensive research encompassing cellular studies, animal models, and limited clinical trials underscores its efficacy not only against cancer but also in managing chronic venous insufficiency and hemorrhoids, attributing to its anti-inflammatory properties. Furthermore, diosmin exhibits low toxicity and complements conventional chemotherapy, proposing its utility as an adjunct therapy in cancer treatment protocols. The review delves into the specific anticancer advantages of diosmin, distinguishing it from the broader flavonoid category. It provides a detailed analysis of its implications in preclinical and clinical settings, advocating for its consideration in the oncological therapeutic arsenal. By juxtaposing diosmin with other herbal medicines, the review offers a nuanced perspective on its role within the wider context of natural anticancer agents, emphasizing the need for further clinical research to substantiate its efficacy and safety in oncology.
Collapse
Affiliation(s)
- Lubna Rahman
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Ali Talha Khalil
- Department of PathologyLady Reading Hospital Medical Teaching InstitutionPeshawarPakistan
| | | | | | - Zainab M. Almarhoon
- Department of ChemistryCollege of Science, King Saud UniversityRiyadhSaudi Arabia
| | - Amnah Alalmaie
- Department of PharmaceuticsCollege of Pharmacy, King Khalid UniversityAbhaSaudi Arabia
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
8
|
Abohashem RS, Ahmed HH, Sayed AH, Effat H. Primary Protection of Diosmin Against Doxorubicin Cardiotoxicity via Inhibiting Oxido-Inflammatory Stress and Apoptosis in Rats. Cell Biochem Biophys 2024; 82:1353-1366. [PMID: 38743136 DOI: 10.1007/s12013-024-01289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Doxorubicin (DOX) is the cornerstone of chemotherapy. However, it has dose-dependent cardiotoxic events that limit its clinical use. This study was intended to investigate the efficiency of DOX as an anti-cancer against the MCF-7 cell line in the presence of diosmin (DIO) and to appraise the protective impact of DIO against DOX cardiotoxicity in vivo. In vitro study was carried out to establish the conservation of DOX cytotoxicity in the presence of DIO. In vivo study was conducted on 42 adult female Wistar rats that were equally allocated into 6 groups; control, DIO (100 mg/kg), DIO (200 mg/kg), DOX (20 mg/kg, single dose i.p.), DIO (100 mg/kg) + DOX, received DIO orally (100 mg/kg) for 30 days, then administrated with a single dose of DOX and DIO (200 mg/kg) + DOX, received DIO orally (200 mg/kg) for 30 days, then administrated with DOX. In vitro study showed preservation of cytotoxic activity of DOX on MCF-7 in the presence of DIO. In vivo study indicated that DOX altered electrocardiograph (ECG) parameters. Also, it yielded a significant rise in CK-MB, cTnT and LDH serum levels and cardiac contents of MDA, IL-1β; paralleled by a significant drop in cardiac IL-10 and SOD. Moreover, significant upregulation of Bax, TNF-α, and HIF-1α, in concomitant with significant downregulation of Bcl-2 mRNA in cardiac tissue have been recorded in the DOX group. Furthermore, histopathological description of cardiac tissues showed that DOX alters normal cardiac histoarchitecture. On the opposite side, DIO pretreatment could ameliorate ECG parameters, suppress IL-1β and enhanceIL-10, promote activity of SOD and repress MDA. Additionally, downregulation of Bax, TNF-α, HIF-1α and upregulation of Bcl-2 have been demonstrated in DIO-pretreated rats. Furthermore, the histopathological examination of cardiac tissues illustrated that DIO had a favorable impact on the protection of heart histoarchitecture. DIO is suggested for protection against acute cardiotoxicity caused by DOX without affecting antitumor activity.
Collapse
Affiliation(s)
- Rehab S Abohashem
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
- Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt.
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Alaa H Sayed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
AlAsmari AF, Al-Shehri MM, Algarini N, Alasmari NA, Alhazmi A, AlSwayyed M, Alharbi M, Alasmari F, Ali N. Role of diosmin in preventing doxorubicin-induced cardiac oxidative stress, inflammation, and hypertrophy: A mechanistic approach. Saudi Pharm J 2024; 32:102103. [PMID: 38799001 PMCID: PMC11127263 DOI: 10.1016/j.jsps.2024.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Chemotherapeutic drugs, such as doxorubicin (Dox), are commonly used to treat a variety of malignancies. However, Dox-induced cardiotoxicity limits the drug's clinical applications. Hence, this study intended to investigate whether diosmin could prevent or limit Dox-induced cardiotoxicity in an animal setting. Thirty-two rats were separated into four distinct groups of controls, those treated with Dox (20 mg/kg, intraperitoneal, i.p.), those treated with diosmin 100 mg plus Dox, and those treated with diosmin 200 mg plus Dox. At the end of the experiment, rats were anesthetized and sacrificed and their blood and hearts were collected. Cardiac toxicity markers were analyzed in the blood, and the heart tissue was analyzed by the biochemical assays MDA, GSH, and CAT, western blot analysis (NF-kB, IL-6, TLR-4, TNF-α, iNOS, and COX-2), and gene expression analysis (β-MHC, BNP). Formalin-fixed tissue was used for histopathological studies. We demonstrated that a Dox insult resulted in increased oxidative stress, inflammation, and hypertrophy as shown by increased MDA levels and reduced GSH content and CAT activity. Furthermore, Dox treatment induced cardiac hypertrophy and damage, as evidenced by the biochemical analysis, ELISA, western blot analysis, and gene expression analysis. However, co-administration of diosmin at both doses, 100 mg and 200 mg, mitigated these alterations. Data derived from the current research revealed that the cardioprotective effect of diosmin was likely due to its ability to mitigate oxidative stress and inflammation. However, further study is required to investigate the protective effects of diosmin against Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Al-Shehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasser Algarini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nada A. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alabid Alhazmi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed AlSwayyed
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Soliman NA, Dahmy SIE, Shalaby AA, Mohammed KA. Prospective affirmative therapeutics of cannabidiol oil mitigates doxorubicin-induced abnormalities in kidney function, inflammation, and renal tissue changes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3897-3906. [PMID: 37971510 PMCID: PMC11111484 DOI: 10.1007/s00210-023-02836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Nephropathy is the decline in kidney function. A promising treatment for numerous types of illness is using natural materials as natural chemical compounds. The inquiry was conducted to investigate cannabidiol (CBD) potential for renal syndrome protection. The five equal groups of fifty male Sprague-Dawley rats weighing 150 ± 25 g each were designed; group I received distilled water orally, while group II got an intraperitoneal injection of doxorubicin (18 mg/kg bwt). Group III received CBD (26 mg/kg bwt) orally, while group IV received 1 ml of CBD (26 mg/kg bwt) and group V received trimetazidine (10 mg/kg bwt), in addition to a single intraperitoneal dose of doxorubicin (18 mg/kg bwt) on the 11th day for both groups (IV, V). The administration of CBD (26 mg/kg bwt) led to a noticeable improvement in oxidative stress parameters (SOD and GSH) in rats by significantly lowering enzyme activity (ALT and AST), as well as serum creatinine and urea, IL-6, and MDA, confirming the anti-inflammatory accuracy of CBD linked to significant lowering to IL6R DNA frequency concentration in line with histopathology results. As a result of its anti-inflammatory and antioxidant capabilities, cannabidiol may have protective quality, and CBD medication could be related to controlling renal problems.
Collapse
Affiliation(s)
- Nabil A Soliman
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Sharkia, Egypt.
| | - Samih I El Dahmy
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia, Egypt
| | - Amr A Shalaby
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Sharkia, Egypt
| | - Khadija A Mohammed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Sharkia, Egypt
| |
Collapse
|
11
|
Oyovwi MO, Ben-Azu B, Tesi EP, Ojetola AA, Olowe TG, Joseph UG, Emojevwe V, Oghenetega OB, Rotu RA, Rotu RA, Falajiki FY. Diosmin protects the testicles from doxorubicin-induced damage by increasing steroidogenesis and suppressing oxido-inflammation and apoptotic mediators. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:34-50. [PMID: 38765875 PMCID: PMC11101964 DOI: 10.62347/orpk5021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Cancer chemotherapy with doxorubicin (DOX) has been linked to serious testicular damage and spermatotoxicity due to the induction of oxidative stress, inflammation, and apoptosis. Thus, the current study was carried out to assess the potential ameliorative impact of diosmin, an antioxidant drug, against DOX-mediated spermatoxicity and testicular injury in rats. MATERIAL AND METHODS In the experimental protocol, rats were grouped into 4: Group 1 received vehicle and saline for 8 weeks while group 2 received diosmin and saline concomitantly for 8 weeks. Group 3 was given 3 mg/kg intraperitoneal DOX once every 7 days for 8 weeks. Group 4 was given 40 mg/kg of diosmin orally for 56 days followed by DOX diosmin administration after one hour. After 56 days of treatment, sperm quality, hormonal testing, biochemical parameters, and histological alterations in the testes were evaluated. RESULTS DOX-induced reduce spermatogenic function, testicular 3- and 17β-Hydroxysteroid dehydrogenases, and serum follicle stimulating hormone, luteinizing hormone, and testosterone. It also enhanced inflammation, testicular oxidative damage, and apoptosis. The histopathologic examinations corroborated the biochemical results obtained. Significantly, diosmin treatment reduced DOX-induced injury, as evidenced by restored testicular architecture, increased steroidogenesis, preservation of spermatogenesis, suppression of oxide-inflammatory response, and apoptosis. CONCLUSION It was found that through diosmin antioxidant, anti-apoptotic, and anti-oxido-inflammatory it presents a possible therapeutic alternative for protecting testicular tissue against DOX's harmful effects.
Collapse
Affiliation(s)
- Mega O Oyovwi
- Department of Physiology, Adeleke UniversityEde, Osun State, Nigeria
- Department of Hunan Physiology, Achievers UniversityOwo, Ondo State, Nigeria
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State UniversityAbraka, Delta State, Nigeria
| | - Edesiri P Tesi
- Department of Science Laboratory Technology, Delta State PolytechnicOgwashi-Uku, Delta State, Nigeria
| | | | - Temitope G Olowe
- Department of Physiology, University of Medical SciencesOndo, Ondo State, Nigeria
| | - Uchechukwu G Joseph
- Department of Medical Laboratory Science, Adeleke UniversityEde, Osun State, Nigeria
| | - Victor Emojevwe
- Department of Physiology, University of Medical SciencesOndo, Ondo State, Nigeria
| | - Onome B Oghenetega
- Department of Physiology, School of Basic Medical Science, Babcock UniversityIllisan, Ogun State, Nigeria
| | - Rume A Rotu
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, University of IbadanIbadan, Oyo State, Nigeria
| | - Rotu A Rotu
- Department of Industrial Safety and Environmental Management, School of Maritime TechnologyBurutu, Delta State, Nigeria
| | - Faith Y Falajiki
- Department of Physiology, Adeleke UniversityEde, Osun State, Nigeria
| |
Collapse
|
12
|
Chandrasekaran R, Krishnan M, Chacko S, Gawade O, Hasan S, Joseph J, George E, Ali N, AlAsmari AF, Patil S, Jiang H. Assessment of anticancer properties of cumin seed ( Cuminum cyminum) against bone cancer. Front Oncol 2023; 13:1322875. [PMID: 38125945 PMCID: PMC10730939 DOI: 10.3389/fonc.2023.1322875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Early-life osteosarcoma is associated with severe morbidity and mortality, particularly affecting young children and adults. The present cancer treatment regimen is exceedingly costly, and medications like ifosfamide, doxorubicin, and cisplatin have unneeded negative effects on the body. With the introduction of hyphenated technology to create medications based on plant molecules, the application of ayurvedic medicine as a new dimension (formulation, active ingredients, and nanoparticles) in the modern period is rapidly growing. The primary source of lead compounds for the development of medications for avariety of ailments is plants and their products. Traditionally, Cuminum cyminum (cumin) has been used as medication to treat a variety of illnesses and conditions. Methods The cumin seed was successfully extracted with solvents Hexane, Chloroform, Methanol, Ethanol and Acetone. Following the solvent extraction, the extract residue was assayed in MG63 cells for their anti-proliferative properties. Results First, we used the [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] (MTT) assay to test the extracted residue's cytotoxicity. The results show that hexane extract Half-maximal inhibitory concentration (IC50 86 µG/mL) effciently inhibits cells by causing programmed cell death. Furthermore, using the Acridine orange/ethidium bromide (AO/EB) staining method, the lactate dehydrogenase assay, and the reactive oxygen species assay using the Dichloro-dihydro-fluorescein diacetate (DCHFDA) staining method, we have demonstrated that the hexane extract causes apoptosis in MG63 cells. Furthermore, flow cytometry research revealed that the hexane extract stops the cell cycle in the S phase. In addition, the hexane extract limits colony formation and the migration potential as shown by the scratch wound healing assay. Furthermore, the extract from cumin seeds exhibits remarkable bactericidal properties against infections that are resistant to drugs. Gas chromatography analysis was used to quantitatively determine the hexane and methanolic extract based on the experimental data. The primary chemical components of the extract are revealed by the study, and these help the malignant cells heal. The present study finds that there is scientific validity in using cumin seeds as a novel method of anticancer therapy after undergoing both intrinsic and extrinsic research.
Collapse
Affiliation(s)
| | - Muthukumar Krishnan
- Department of Petrochemical Technology, Anna University, Tiruchirappalli, India
| | - Sonu Chacko
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Omkar Gawade
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Sheik Hasan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - John Joseph
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Evelin George
- Department of Biochemistry, JSS Academy of Higher Education, Mysuru, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Haoli Jiang
- Department of Orthopedics, the Third People’s Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
13
|
Yufang W, Mingfang L, Nan H, Tingting W. Quercetin-targeted AKT1 regulates the Raf/MEK/ERK signaling pathway to protect against doxorubicin-induced nephropathy in mice. Tissue Cell 2023; 85:102229. [PMID: 37812949 DOI: 10.1016/j.tice.2023.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Doxorubicin is an anthracycline antitumor agent commonly used in clinical practice, which has some nephrotoxicity and is often used to establish mouse models of kidney injury for basic medical research. This study will investigate the protective effect of quercetin on renal function in doxorubicin-induced nephropathy mice. METHODS C57BL/6 mice were divided into control, model, and quercetin low-, and high-dose groups. Serum and urine were collected to analyze markers of kidney function. H&E staining was used to detect pathological changes in renal tissues. Transmission electron microscopy was performed to observe the ultrastructural changes in renal tissues. Immunohistochemistry was performed to detect the changes of Ang II. RT-qPCR was performed to detect the changes of cytokines. ELISA was used to detect changes in serum inflammatory factors. Molecular docking was performed to verify the targeting relationship between quercetin and AKT1. Western blot was performed to detect Bax, Bcl-2, Cyt-c, AKT1, Raf, MEK, and ERK proteins. RESULTS Quercetin could induce the recovery of kidney function in kidney-injured mice; H&E results showed that kidney tissue damage and tissue fibrosis were reduced in kidney-injured mice under quercetin. The mitochondrial swollen structure was destroyed by doxorubicin, while the mitochondrial structure was restored under quercetin. The levels of abnormal apoptotic proteins Bax and Bcl-2 were regulated to normal by quercetin. The high expression of Ang II caused by doxorubicin was down-regulated by quercetin. Abnormal inflammatory factors caused by doxorubicin were reversed by quercetin. Western blot experiments showed that quercetin regulated the protein levels of AKT1 and Raf/MEK/ERK and inhibited the detrimental effects of doxorubicin. CONCLUSION Quercetin may mitigate doxorubicin-induced kidney injury in mice by regulating renal cell inflammatory factors and Raf/MEK/ERK signaling pathway through AKT1 to promote recovery of renal function.
Collapse
Affiliation(s)
- Wang Yufang
- Department of Medical Laboratory Diagnosis Lecturer, Quanzhou Medical College, Quanzhou, Fujian Province, China.
| | - Liu Mingfang
- The Second Attached Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Huang Nan
- Department of Medical Laboratory Diagnosis Lecturer, Quanzhou Medical College, Quanzhou, Fujian Province, China
| | - Wang Tingting
- Department of Medical Laboratory Diagnosis Lecturer, Quanzhou Medical College, Quanzhou, Fujian Province, China
| |
Collapse
|
14
|
Mohtadi S, Shariati S, Mansouri E, Khodayar MJ. Nephroprotective effect of diosmin against sodium arsenite-induced renal toxicity is mediated via attenuation of oxidative stress and inflammation in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105652. [PMID: 38072527 DOI: 10.1016/j.pestbp.2023.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023]
Abstract
Arsenic compounds, which are used in different industries like pesticide manufacturing, cause severe toxic effects in almost all organs, including the kidneys. Since the primary route of exposure to arsenic is through drinking water, and millions of people worldwide are exposed to unsafe levels of arsenic that can pose a threat to their health, this research was performed to investigate the nephroprotective effects of Diosmin (Dios), a flavonoid found in citrus fruits, against nephrotoxicity induced by sodium arsenite (SA). To induce nephrotoxicity, SA (10 mg/kg, oral gavage) was administered to mice for 30 days. Dios (25, 50, and 100 mg/kg, oral gavage) was given to mice for 30 days prior to SA administration. After the study was completed, animals were euthanized and blood and kidney samples were taken for biochemical and histopathological assessments. Results showed that SA-treated mice significantly increased the blood urea nitrogen and creatinine levels in the serum. This increase was associated with significant kidney tissue damage in SA-treated mice, which was confirmed by histopathological studies. Furthermore, SA enhanced the amounts of renal thiobarbituric acid reactive substances and decreased total thiol reserves, as well as the activity of antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase. Also, in the SA-exposed group, an increase in the levels of kidney inflammatory biomarkers, including nitric oxide and tumor necrosis factor-alpha was observed. The western blot analysis indicated an elevation in the protein expression of kidney injury molecule-1 and nuclear factor-kappa B in SA-treated mice. However, pretreatment with Dios ameliorated the SA-related renal damage in mice. Our findings suggest that Dios can protect the kidneys against the nephrotoxic effects of SA by its antioxidant and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Shokooh Mohtadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Xing M, Ma X, Wang X, Wang H, Xie M, Zhang Z, Zhou J. Emodin disrupts the Notch1/Nrf2/GPX4 antioxidant system and promotes renal cell ferroptosis. J Appl Toxicol 2023; 43:1702-1718. [PMID: 37393915 DOI: 10.1002/jat.4509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Emodin has been demonstrated to possess multiple pharmacological activities. However, emodin has also been reported to induce nephrotoxicity at high doses and with long-term use, and the underlying mechanism has not been fully disclosed. The current study aimed to investigate the roles of oxidative stress and ferroptosis in emodin-induced kidney toxicity. Mice were intraperitoneally treated with emodin, and NRK-52E cells were exposed to emodin in the presence or absence of treatment with Jagged1, SC79, or t-BHQ. Emodin significantly upregulated the levels of blood urea nitrogen, serum creatinine, malondialdehyde, and Fe2+ , reduced the levels of superoxide dismutase and glutathione, and induced pathological changes in the kidneys in vivo. Moreover, the viability of NRK-52E cells treated with emodin was reduced, and emodin induced iron accumulation, excessive reactive oxygen species production, and lipid peroxidation and depolarized the mitochondrial membrane potential (ΔΨm). In addition, emodin treatment downregulated the activity of neurogenic locus notch homolog protein 1 (Notch1), reduced the nuclear translocation of nuclear factor erythroid-2 related factor 2 (Nrf2), and decreased glutathione peroxidase 4 protein levels. However, Notch1 activation by Jagged1 pretreatment, Akt activation by SC79 pretreatment, or Nrf2 activation by t-BHQ pretreatment attenuated the toxic effects of emodin in NRK-52E cells. Taken together, these results revealed that emodin-induced ferroptosis triggered kidney toxicity through inhibition of the Notch1/Nrf2/glutathione peroxidase 4 axis.
Collapse
Affiliation(s)
- Miao Xing
- School of Medicine, Yichun University, Yichun, China
| | - Xiaoyu Ma
- School of Medicine, Yichun University, Yichun, China
| | - Xi Wang
- School of Medicine, Yichun University, Yichun, China
| | - Haoze Wang
- School of Medicine, Yichun University, Yichun, China
| | - Minjuan Xie
- School of Medicine, Yichun University, Yichun, China
| | - Ziwen Zhang
- School of Medicine, Yichun University, Yichun, China
| | - Jie Zhou
- School of Medicine, Yichun University, Yichun, China
| |
Collapse
|
16
|
Li M, Wang L, Du J. Clinical observation of liposomal doxorubicin on liver and renal function in patients with breast cancer. Toxicol Res (Camb) 2023; 12:807-813. [PMID: 37915489 PMCID: PMC10615824 DOI: 10.1093/toxres/tfad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 11/03/2023] Open
Abstract
Background Doxorubicin has become the first-line antitumor drug clinically, but severely limited by multiple side effects, especially cardiotoxicity. Liposomal doxorubicin therefore replaced traditional doxorubicin for low toxicity and high efficiency. Previous studies have suggested liver and kidney may be the main organs affected by liposomal doxorubicin. Due to insufficient clinical evidence, we set out to analyze the effect of liposomal doxorubicin on liver and renal function in breast cancer patients. Materials and Methods Our retrospective analysis included breast cancer patients aged 30-70 years old who were assigned to two groups based on liposomal doxorubicin intake. We evaluated changes in liver and renal function. Multivariate logistic regression model was used to assess the risk factors of liver function damage. Results Ultimately, 631 patients for liver function analysis cohort and 611 cases for renal function analysis cohort. Patients receiving liposomal doxorubicin had significantly higher liver function damage rate compared to control group (52.20% vs 9.82%, p < 0.001), but there was no difference in the incidence of renal damage events between the two groups. Multivariate analysis shows total doses divided by body surface area is a significant, independent risk factor for liver function damage (odds ratio 1.005 [1.002-1.018], p < 0.001). Conclusion Liposomal doxorubicin treatment is associated with higher liver function damage in breast cancer patients, but has no effect on renal function. Together with risk factor analysis, our study underlines the importance to pay attention for patient's age before taking liposomal doxorubicin, alongside liver function after the first and long-term treatments.
Collapse
Affiliation(s)
- Mingliang Li
- Department of Urology, The Third Hospital of Changsha, No. 176, Labor West Road, Tianxin District, Changsha, Hunan 410035, China
| | - Ling Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan 410008, China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan 410008, China
| |
Collapse
|
17
|
Demir M, Altinoz E, Koca O, Elbe H, Onal MO, Bicer Y, Karayakali M. Antioxidant and anti-inflammatory potential of crocin on the doxorubicin mediated hepatotoxicity in Wistar rats. Tissue Cell 2023; 84:102182. [PMID: 37523948 DOI: 10.1016/j.tice.2023.102182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Doxorubicin (DXR) is widely used in cancer treatment. However, it has not yet been possible to prevent the side effects of DXR. The aim of this study was to investigate the hepatoprotective effect of crocin against DXR used in cancer treatment. For this reason; forty Wistar rats (male-250-300 g) were allocated into four groups (n = 10/group): Control, Crocin, DXR and DXR+Crocin. Control and Crocin groups were administered saline and crocin (40 mg/kg, i.p) for 15 days, respectively. DXR group, cumulative dose 12 mg/kg DXR, was administered for 12 days via 48 h intervals in six injections (2 mg/kg each, i.p). DXR+Crocin group, crocin (40 mg/kg-i.p) was administered for 15 days, and DXR was given as in the DXR group. The results revealed that serum liver markers (alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) increased significantly after DXR administration but recovered after crocin therapy. In addition, lipid peroxidation (MDA), and inflammatory cytokine (TNF-α) increased after DXR application and the antioxidative defense system (GSH, SOD, CAT) significantly decreased and re-achieved by crocin treatment. Our results conclude that crocin treatment was related to ameliorated hepatocellular architecture and reduced hepatic oxidative stress and inflammation in rats with DXR-induced hepatotoxicity.
Collapse
Affiliation(s)
- M Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - E Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - O Koca
- Department of Biochemistry, Karabuk University Education and Research Hospital, Karabuk, Turkey
| | - H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - M O Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Y Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - M Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| |
Collapse
|
18
|
Amarasiri SS, Attanayake AP, Arawwawala LD, Mudduwa LK, Jayatilaka KA. Barleria prionitis L. extracts ameliorate doxorubicin-induced acute kidney injury via modulation of oxidative stress, inflammation, and apoptosis. J Tradit Complement Med 2023; 13:500-510. [PMID: 37693098 PMCID: PMC10491988 DOI: 10.1016/j.jtcme.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 09/12/2023] Open
Abstract
Background and aim Doxorubicin (DOX) is a chemotherapeutic drug with potential nephrotoxic effects on patients who are on cancer chemotherapy. An interest has been observed in using natural products to ameliorate the potential side effects of DOX. The present study is to investigate the cellular mechanisms underlying the protective effects of Barleria prionitis L. (BP) (Acanthaceae) extracts, DOX-induced acute kidney injury (AKI). Experimental procedure Hexane (25 mg/kg/day), ethyl acetate (80 mg/kg/day), n-butanol (70 mg/kg/day), and water (120 mg/kg/day) extracts of BP, were administered to DOX-induced (5 mg/kg (2500 μL/kg), ip) Wistar rats for four consecutive weeks. At the end of the study, investigations were carried out for the assessment of biomarkers of nephrotoxicity, oxidative stress, inflammation, and apoptosis. Results Treatments with BP extracts significantly reversed DOX-induced elevations in serum and urine biochemical markers of nephrotoxicity (serum creatinine; 21-33%, blood urea nitrogen; 26-58%, β2-microglobulin; 19-22% and urine total protein; 47-67%). There was a reduction in the levels of tumor necrosis factor-α, interleukin-1β, and malondialdehyde in kidney homogenates of rats treated with the n-butanol extract (by 43, 62, and 24%) and water extract (by 57%, 85%, and 26%) (p < 0.05). Immunohistochemical expression of the pro-apoptotic B-cell associated X protein was reduced while the anti-apoptotic B-cell lymphoma gene product 2 protein was increased in kidney tissues after the treatments with BP extracts. Conclusions The selected BP extracts significantly ameliorated DOX-induced AKI. The findings would open new vistas for the development of a drug using the BP extracts to minimize DOX-induced AKI in cancer patients.
Collapse
Affiliation(s)
- Sachinthi S. Amarasiri
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | - Anoja P. Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | | - Lakmini K.B. Mudduwa
- Department of Pathology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | |
Collapse
|
19
|
Uzunhisarcikli M, Apaydin FG, Bas H, Kalender Y. The ameliorative effects of quercetin and curcumin against subacute nephrotoxicity of fipronil induced in Wistar rats. Toxicol Res (Camb) 2023; 12:493-502. [PMID: 37397921 PMCID: PMC10311137 DOI: 10.1093/toxres/tfad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 07/04/2023] Open
Abstract
Fipronil is a phenylpyrazole insecticide that is widely used in agricultural, veterinary, and public health fields for controlling a wide variety of insect species and it is an environmentally potent toxic substance. Curcumin and quercetin, which are well-known natural antioxidants, are widely used to prevent the harmful effects of free radicals on biological systems. The present study aimed to determine the potential ameliorative effects of quercetin and/or curcumin on fipronil-induced nephrotoxicity in rats. Curcumin (100 mg/kg of body weight), quercetin (50 mg/kg of body weight), and fipronil (3.88 mg/kg of body weight) were administered to male rats by intragastric gavage for 28 consecutive days. In the present study, body weight, kidney weight, the renal function markers (blood urea nitrogen, creatinine, and uric acid levels) in the blood, antioxidant enzyme activities, and malondialdehyde level as markers of oxidative stress, and histological changes of the renal tissue were evaluated. The levels of serum blood urea nitrogen, creatinine, and uric acid were significantly increased in fipronil-treated animals. Additionally, while superoxide dismutase, catalase, glutathione-S-transferase, and glutathione peroxidase activities were decreased in the kidney tissue of rats treated with fipronil, malondialdehyde level was significantly increased. Histopathological analyses showed that the glomerular and tubular injury occurred in the renal tissue of fipronil-treated animals. Also, the supplementation of quercetin and/or curcumin with fipronil significantly improved fipronil-induced alterations in renal function markers, antioxidant enzyme activities, malondialdehyde levels, and histological features of renal tissue.
Collapse
Affiliation(s)
- Meltem Uzunhisarcikli
- Corresponding author: Vocational High School of Health Services, Gazi University, Gölbaşı, Ankara 06830, Türkiye.
| | - Fatma Gokce Apaydin
- Faculty of Science, Department of Biology, Gazi University, Ankara 06500, Türkiye
| | - Hatice Bas
- Faculty of Arts and Science, Department of Biology, Bozok University, Yozgat 66100, Türkiye
| | - Yusuf Kalender
- Faculty of Science, Department of Biology, Gazi University, Ankara 06500, Türkiye
| |
Collapse
|
20
|
Bahar O, Eraslan G. Investigation of the efficacy of diosmin against organ damage caused by bendiocarb in male Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55826-55845. [PMID: 36905537 DOI: 10.1007/s11356-023-26105-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bendiocarb is a carbamate insecticide, which is used more in indoor areas, especially against scorpions, spiders, flies, mosquitoes and cockroaches. Diosmin is an antioxidant flavonoid found mostly in citrus fruits. In this study, the efficacy of diosmin against the adverse effects of bendiocarb was investigated in rats. For this purpose, 60, 2-3 month-old male Wistar albino rats, weighing 150-200 g, were used. The animals were assigned to six groups, one of which was maintained for control purposes and five of which were trial groups. The control rats received only corn oil, which was used as a vehicle for diosmin administration in the trial groups. Groups 2, 3, 4, 5 and 6 were administered with 10 mg/kg.bw bendiocarb, 10 mg/kg.bw diosmin, 20 mg/kg.bw diosmin, 2 mg/kg.bw bendiocarb plus 10 mg/kg.bw diosmin, and 2 mg/kg.bw bendiocarb plus 20 mg/kg.bw diosmin, respectively, using an oral catheter, for 28 days. At the end of the study period, blood and organ (liver, kidneys, brain, testes, heart and lungs) samples were collected. Body weight and organ weights were determined. Compared to the control group, in the group given bendiocarb alone, firstly, body weight and liver, lung and testicular weights decreased. Secondly, tissue/plasma malondialdehyde (MDA) and nitric oxide (NO) levels increased, and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) (except for lung tissue), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PD) activities decreased in all tissues and erythrocytes. Thirdly, catalase (CAT) activity decreased in erythrocytes and the kidney, brain, heart and lung tissues and increased in the liver and testes. Fourthly, while GST activity decreased in the kidneys, testes, lung and erythrocytes, an increase was observed in the liver and heart tissues. Fifthly, while serum triglyceride levels and lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and pseudo-cholinesterase (PchE) activities decreased, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and blood urea nitrogen (BUN), creatinine and uric acid levels increased. Lastly, liver caspase 3, caspase 9 and p53 expression levels significantly increased. When compared to the control group, the groups treated with diosmin alone showed no significant difference for the parameters investigated. On the other hand, it was observed that the values of the groups treated with a combination of bendiocarb and diosmin were closer to the values of the control group. In conclusion, while exposure to bendiocarb at a dose of 2 mg/kg.bw for 28 days caused oxidative stress/organ damage, diosmin administration at doses of 10 and 20 mg/kg.bw reduced this damage. This demonstrated that diosmin has pharmaceutical benefits, when used for supportive treatment as well as radical treatment, against the potential adverse effects of bendiocarb.
Collapse
Affiliation(s)
- Orhan Bahar
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
21
|
Mirzaei M, Moosavi M, Mansouri E, Mohtadi S, Khodayar MJ. Diosmin exerts hepatoprotective and antihyperglycemic effects against sodium arsenite-induced toxicity through the modulation of oxidative stress and inflammation in mice. J Trace Elem Med Biol 2023; 78:127154. [PMID: 36934613 DOI: 10.1016/j.jtemb.2023.127154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Chronic exposure to high concentrations of inorganic arsenic (NaAsO2) in drinking water is related to an increase in the risk of liver toxicity and diabetes. Diosmin has various pharmacological properties, including antioxidant and anti-inflammatory properties. This study was designed to investigate the protective effects of diosmin on diabetes and hepatotoxicity caused by NaAsO2. METHODS Sixty male 8-week-old NMRI mice, weighing 25 ± 2 g, were randomly selected and put into six groups. The control (Group 1) was treated orally with distilled water, group 2 was treated with diosmin (100 mg/kg, p.o), group 3 received NaAsO2 (10 mg/kg, p.o), and groups 4, 5, 6 received diosmin (25, 50, 100 mg/kg, p.o), respectively and NaAsO2 (10 mg/kg, p.o). After 29 days, fasting blood sugar (FBS) measurement and glucose tolerance test were done. The mice were sacrificed on day 31, and blood and tissue (liver and pancreas) samples were taken. Then, serum and tissue samples were studied for biochemical and histological evaluations. RESULTS The results demonstrated that diosmin ameliorated glucose intolerance and decreased FBS compared to the NaAsO2 group. Diosmin (50 and 100 mg/kg) improved the serum factors of liver function (alanine aminotransferase, aspartate transaminase, and alkaline phosphatase) in the groups receiving NaAsO2. Moreover, increased levels of nitric oxide, tumor necrosis factor-alpha, and thiobarbituric acid reactive substances in liver tissue induced by NaAsO2 were diminished by diosmin treatment. Administration of diosmin increased total thiol and enzymatic activities of catalase, superoxide dismutase, and glutathione peroxidase in liver tissue. Furthermore, treatment with diosmin reduced the increase in protein amount of Sirtuin 3 and nuclear factor kappa B in the groups receiving NaAsO2. Also, the liver and pancreas histological lesions induced by NaAsO2 were attenuated by diosmin treatment. CONCLUSION Diosmin has a preventive effect against hepatotoxicity and diabetes induced by NaAsO2 in mice through its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Melika Mirzaei
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoosh Moosavi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokooh Mohtadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
22
|
Anwar MM, Laila IMI. Protective and restorative potency of diosmin natural flavonoid compound against tramadol-induced testicular damage and infertility in male rats. Nat Prod Res 2023; 37:847-851. [PMID: 35730634 DOI: 10.1080/14786419.2022.2090937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Flavonoids are polyphenolic natural compounds with various biological actions and limited toxicity including diosmin (DM) which is considered a safe flavonoid natural type with anti-inflammatory and antioxidant activities. Tramadol (TM) is a centrally long-acting analgesic class of opioids extensively being used among the population. It was reported that long-term exposure to TM triggers the releases of oxidative stress, inflammatory factors, and nitric oxides resulting in organs damage. This study aimed to investigate the possible ameliorative and restorative actions of DM against tramadol-induced testicular damage. Rats were divided into: GI: control; GII: Rats received TM, GIII: Rats received DM, GIV: Rats received TM + DM; GV: Rats received DM + TM. Rat's testicular tissue and blood samples were collected. A relevant improvement in all examined parameters was observed among GIV and GV groups. Thereby, it was highlighted that diosmin has beneficial natural actions against tramadol-induced testicular injury via suppressing triggered oxidative stress, and inflammatory factors.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Ibrahim M Ibrahim Laila
- Department of Biotechnology & Molecular Drug Evaluation, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
23
|
Nephroprotective Effect of Diosmin against Cisplatin-Induced Kidney Damage by Modulating IL-1β, IL-6, TNFα and Renal Oxidative Damage. Molecules 2023; 28:molecules28031302. [PMID: 36770968 PMCID: PMC9920922 DOI: 10.3390/molecules28031302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a platinum compound of the alkylating agent class that is used for the treatment of various types of cancer. However, CP treatments in cancer patients are accountable for nephrotoxicity, as it is a major adverse effect. Hence, this research study was proposed to investigate the nephroprotective effect of diosmin, a flavonoid glycoside of hesperidin derivatives against cisplatin-induced kidney damage. Wistar rats received a single intraperitoneal (i.p) injection of CP (7.5 mg/kg, i.p) to induce nephrotoxicity. The administration of CP significantly (p < 0.001) increased the markers of kidney function test (creatinine, blood urea nitrogen, and uric acid) and demonstrated histopathological changes in the kidney of the CP-treated nephrotoxic group. In addition, the CP-treated nephrotoxic group demonstrated a significant (p < 0.001) increase in lipid peroxidation (LPO) levels and depleted activities of reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT).However, diosmin (100 and 200 mg/kg) treatments significantly reduced the elevated levels of kidney function test parameters and restored structural changes in the kidney (p < 0.001). The administration of diosmin (100 and 200 mg/kg) significantly (p < 0.001) reduced LPO levels, increased GSH content and showed improvements in the activities of GPx, GR, SOD and CAT. The markers of inflammatory cytokines such as IL-1β, IL-6 and TNFα significantly (p < 0.001) increased in the CP-treated nephrotoxic group, whereas diosmin (100 and 200 mg/kg) treatments significantly (p < 0.001) reduced the elevated levels of these cytokines. The findings of this research demonstrate the nephroprotective effect of diosmin against CP-induced kidney damage. Therefore, we conclude that diosmin may be used as a supplement in the management of nephrotoxicity associated with CP treatments in cancer patients.
Collapse
|
24
|
Cheng Y, Wu C, Liu Z, Song P, Xu B, Chao Z. Evaluation and Optimization of Quality Based on the Physicochemical Characteristics and Metabolites Changes of Qingpi during Storage. Foods 2023; 12:foods12030463. [PMID: 36765992 PMCID: PMC9914837 DOI: 10.3390/foods12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Qingpi, the dried immature pericarp of Citrus reticulata Blanco, is a commonly used medicinal food with some health-promoting benefits. In general, it is essential that Qingpi be stored for a period of time, but there are no reports about the number of storage years needed to obtain the best quality of Qingpi. Our aim was to determine the best storage time of Qingpi by studying the physicochemical properties and metabolite changes in product stored from 1 to 5 years. As a result, the color of Qingpi became darker during storage. Both the levels of three flavonoids (hesperidin, nobiletin, and tangeretin) and total flavonoids (TFs) and the antioxidant activity decreased during storage and the total phenolics (TPs) content fluctuated during storage. Cluster analysis was performed on the color parameters measured using a color difference meter, revealing that the color of Qingpi differed before and after 3 years of storage. A total of 9 special differential metabolites were identified that could be used to distinguish the storage years of Qingpi. This is the first study to report the quality changes of Qingpi during storage. The optimized results of the quality evaluation indicated that Qingpi should be stored for no more than 3 years.
Collapse
|
25
|
Lipopolysaccharide Exacerbates Ketamine-Induced Psychotic-Like Behavior, Oxidative Stress, and Neuroinflammation in Mice: Ameliorative Effect of Diosmin. J Mol Neurosci 2023; 73:129-142. [PMID: 36652038 DOI: 10.1007/s12031-022-02077-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 01/19/2023]
Abstract
Schizophrenia, a neuropsychiatric disorder has been associated with aberrant neurotransmission affecting behaviors, social preference, and cognition. Limitations in understanding its pathogenesis via the dopamine hypothesis have engendered other hypotheses such as the glutamate hypothesis. That antagonism of the N-methyl-D-aspartate receptor (NMDAR) elicits schizophrenia-like behaviors indistinguishable from the disorder in animal and human models. There are growing concerns that redox imbalance and neuro-immuno dysfunction may play role in aggravating the symptomologies of this disorder. This 14-day treatment study was designed to investigate the effect of diosmin on lipopolysaccharide (LPS) plus ketamine (NMDAR antagonist). Mice were divided into 4 groups (n = 6). Group 1 was administered 5% DMSO (10 mL/kg, i.p) while group 2-4 received LPS (0.1 mg/kg, i.p) daily for 14 days. Diosmin (50 mg/kg, i.p) and risperidone (0.5 mg/kg, i.p) were given to groups 3 and 4 respectively. Groups 2-4 were given KET (20 mg/kg, i.p.) daily from days 8-14. Behavioral tests were done 30 min after the last dose, and oxidative stress and neuroinflammatory maker were assayed. LPS plus ketamine-induced hyperlocomotion, stereotypy, decreased social preference, and memory impairment. Furthermore, LPS plus-ketamine-induced oxidative stress (reduced GSH, CAT, SOD, and increased MDA and nitrite levels) and marked pro-inflammatory cytokines TNF-α and IL-6 suggesting neuroinflammation. However, diosmin attenuated behavioral deficits and improved memory. Additionally, diosmin potentiated antioxidant level via increased GSH, CAT, and SOD while reducing MDA and nitrite levels. Finally, diosmin reduced TNF-α and IL-6 suggesting anti-neuro-immuno activity. Conclusively, diosmin attenuated LPS plus ketamine-induced behavioral deficits, oxidative stress, neuroinflammation, and improved memory.
Collapse
|
26
|
Nadeem RI, Aboutaleb AS, Younis NS, Ahmed HI. Diosmin Mitigates Gentamicin-Induced Nephrotoxicity in Rats: Insights on miR-21 and -155 Expression, Nrf2/HO-1 and p38-MAPK/NF-κB Pathways. TOXICS 2023; 11:48. [PMID: 36668774 PMCID: PMC9865818 DOI: 10.3390/toxics11010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Gentamicin (GNT) is the most frequently used aminoglycoside. However, its therapeutic efficacy is limited due to nephrotoxicity. Thus, the potential anticipatory effect of Diosmin (DIOS) against GNT-prompted kidney damage in rats together with the putative nephroprotective pathways were scrutinized. Four groups of rats were used: (1) control; (2) GNT only; (3) GNT plus DIOS; and (4) DIOS only. Nephrotoxicity was elucidated, and the microRNA-21 (miR-21) and microRNA-155 (miR-155) expression and Nrf2/HO-1 and p38-MAPK/NF-κB pathways were assessed. GNT provoked an upsurge in the relative kidney weight and serum level of urea, creatinine, and KIM-1. The MDA level was markedly boosted, with a decline in the level of TAC, SOD, HO-1, and Nrf2 expression in the renal tissue. Additionally, GNT exhibited a notable amplification in TNF-α, IL-1β, NF-κB p65, and p38-MAPK kidney levels. Moreover, caspase-3 and BAX expression were elevated, whereas the Bcl-2 level was reduced. Furthermore, GNT resulted in the down-regulation of miR-21 expression along with an up-regulation of the miR-155 expression. Histological examination revealed inflammation, degradation, and necrosis. GNT-provoked pathological abnormalities were reversed by DIOS treatment, which restored normal kidney architecture. Hence, regulating miR-21 and -155 expression and modulating Nrf2/HO-1 and p38-MAPK/NF-κB pathways could take a vital part in mediating the reno-protective effect of DIOS.
Collapse
Affiliation(s)
- Rania I. Nadeem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Amany S. Aboutaleb
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Nancy S. Younis
- Pharmaceutical Sciences Department, Faculty of Clinical Pharmacy, King Faisal University, Al-Ahsa, Al-Hofuf 31982, Saudi Arabia
| | - Hebatalla I. Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| |
Collapse
|
27
|
EFFECTS OF DIOSMIN ADMINISTRATION ON CISPLATIN-INDUCED PREMATURE OVARIAN FAILURE IN A RAT MODEL. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1166435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
m
We aimed to examine the potential beneficial effects of diosmin administration on cisplatin - induced premature ovarian failure (POF) in a rat model
Material and Methods
Twenty-eight rats were divided into four groups. Group A rats (n:7) were determined as the sham group. The remaining rats received an intraperitoneal injection of 1.5 mg/kg/day cisplatin for 10 days to create a POF model. Then, they were randomly divided into 3 subgroups.
Group B was determined as POF group. Group C rats were given 100mg/kg/day diosmin for 10 days simultaneously while creating POF model. Group D rats were given 100mg/kg/day diosmin for 10 days after POF model was created. Twentieth day blood samples were taken and left ovaries were resected for examination.
Results
CIS-induced rats showed reduced levels of SOD, AMH and E2 compared to sham group rats (p0.05) between the sham group, group C and D. No significant (p>0.05) difference in FSH value was observed between group C, D and sham groups.
There was no significant (p>0.05) difference in the number of secondary and antral follicles between group C and D compared to the sham group. Primordial follicle count was significantly higher in group C than group B (p
Collapse
|
28
|
Shaaban HH, Hozayen WG, Khaliefa AK, El-Kenawy AE, Ali TM, Ahmed OM. Diosmin and Trolox Have Anti-Arthritic, Anti-Inflammatory and Antioxidant Potencies in Complete Freund’s Adjuvant-Induced Arthritic Male Wistar Rats: Roles of NF-κB, iNOS, Nrf2 and MMPs. Antioxidants (Basel) 2022; 11:antiox11091721. [PMID: 36139795 PMCID: PMC9495550 DOI: 10.3390/antiox11091721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, autoimmune disease caused by a malfunction of the immune system. The aim of this study was to examine the anti-arthritic effects and suggest the mechanisms of actions of diosmin and trolox in male Wistar rats. Complete Freund’s adjuvant (CFA) was used to establish RA in the animals by subcutaneous injection of 100 µL CFA/rat into plantar region of right hind leg in two consecutive days. Diosmin and/or trolox were administered orally at a dosage of 20 mg/kg/day to CFA-induced arthritic rats for 2 weeks. The normal and arthritic control groups were orally given the same equivalent volume of a vehicle (1% carboxymethyl cellulose) in which treatment agents were dissolved. At the end of the experiment, blood samples were collected from the jugular vein for the detection of the total leukocyte count (TLC) and differential leukocyte count (DLC) in blood and the detection of rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), tumor necrosis factor-α (TNF-α), interleukin-13 (IL-13), and interleukin-17 (IL-17) levels by enzyme-linked immunosorbent assay (ELISA), as well as markers of oxidative stress and the antioxidant defense system in serum. The right hind ankle regions of three rats from each group were dissected out and fixed in 10% neutral-buffered formalin for histological examination and the other three were kept at −30 °C for Western blot analysis of nuclear factor-kappa B (NF-κB) protein 50 (NF-κB p50), NF-κB p65, inducible nitric oxide synthase (iNOS), nuclear factor erythroid-2-related factor 2 (Nrf2), and matrix metalloproteinase (MMP)-1 (MMP-1), MMP-3, and MMP-9. The CFA injection was deleterious to the ankle joint’s histological architecture, manifesting as infiltration of inflammatory cells into the articular cartilage, hyperplasia of the synovium, and erosion of the cartilage. All these effects were ameliorated by diosmin and/or trolox, with the combined dose being the most effective. The two compounds significantly lowered the elevated serum levels of RF, ACPA, TNF-α, and IL-17, as well as other pro-inflammatory mediators, such as NF-κB p50, NF-κB p65, iNOS, MMP-1, MMP-3 and MMP-9. They also increased the levels of the anti-inflammatory cytokine, IL-13, and the cytoprotective transcription factor Nrf2. The compounds stimulated higher activities of antioxidants, such as glutathione, glutathione-S-transferase, catalase, and superoxide dismutase, and reduced lipid peroxidation in the serum of arthritic rats. In conclusion, diosmin, trolox, and their combination, which was the most potent, exerted anti-arthritic, anti-inflammatory and antioxidant effects by suppressing NF-κB signaling, inhibiting matrix metalloproteinases, and activating Nrf2.
Collapse
Affiliation(s)
- Huda H. Shaaban
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Walaa G. Hozayen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Amal K. Khaliefa
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Ayman E. El-Kenawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
- Correspondence: or
| |
Collapse
|
29
|
Huwait E, Mobashir M. Potential and Therapeutic Roles of Diosmin in Human Diseases. Biomedicines 2022; 10:1076. [PMID: 35625813 PMCID: PMC9138579 DOI: 10.3390/biomedicines10051076] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022] Open
Abstract
Because of their medicinal characteristics, effectiveness, and importance, plant-derived flavonoids have been a possible subject of research for many years, particularly in the last decade. Plants contain a huge number of flavonoids, and Diosmin, a flavone glycoside, is one of them. Numerous in-vitro and in-vivo studies have validated Diosmin's extensive range of biological capabilities which present antioxidative, antihyperglycemic, anti-inflammatory, antimutagenic, and antiulcer properties. We have presented this review work because of the greater biological properties and influences of Diosmin. We have provided a brief overview of Diosmin, its pharmacology, major biological properties, such as anti-cancer, anti-diabetic, antibacterial, anticardiovascular, liver protection, and neuroprotection, therapeutic approach, potential Diosmin targets, and pathways that are known to be associated with it.
Collapse
Affiliation(s)
- Etimad Huwait
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Cell Culture Lab, Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mohammad Mobashir
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, P.O. Box 1031, 17121 Stockholm, Sweden
- Genome Biology Lab, Department of Biosciences, Faculty of Natural Science, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
30
|
AlAsmari AF, Ali N, Alharbi M, Alqahtani F, Alasmari F, Almoqbel D, AlSwayyed M, Alshammari A, Alanazi MM, Alhoshani A, Al-Harbi NO. Geraniol Ameliorates Doxorubicin-Mediated Kidney Injury through Alteration of Antioxidant Status, Inflammation, and Apoptosis: Potential Roles of NF-κB and Nrf2/Ho-1. Nutrients 2022; 14:nu14081620. [PMID: 35458182 PMCID: PMC9031157 DOI: 10.3390/nu14081620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
Doxorubicin-mediated kidney impairment is a serious problem in cancer treatment. Accordingly, this work investigated the ability of geraniol to modulate doxorubicin-induced kidney damage using a rat model. Rats were randomly assigned to four groups: control, doxorubicin (20 mg/kg, intraperitoneal, i.p.), doxorubicin plus 100 mg/kg of geraniol, and doxorubicin plus 200 mg/kg of geraniol. A single doxorubicin injection triggered kidney impairment, as evidenced by the altered serum creatinine, blood urea nitrogen, and albumin values; it also caused histological changes in the kidney architecture. Additionally, doxorubicin enhanced lipid peroxidation while lowering reduced glutathione, catalase activity, and the expression of glutathione peroxidase and superoxide dismutase. Interestingly, pre-treatment with geraniol rescued doxorubicin-induced alterations in kidney antioxidant parameters, enzymatic activity, and the expression of inflammatory and apoptosis-mediating gene and proteins. Moreover, prophylactic treatment with geraniol preserved most kidney histological characteristics in a dose-dependent manner. These findings support that geraniol could protect against doxorubicin-mediated kidney dysfunction. However, further research is needed to clarify the mechanisms of geraniol’s protective effects against doxorubicin-mediated kidney dysfunction.
Collapse
Affiliation(s)
- Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
- Correspondence: ; Tel.: +966-114677180
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Daad Almoqbel
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Mohammed AlSwayyed
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Mohammed M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (M.A.); (F.A.); (F.A.); (D.A.); (A.A.); (M.M.A.); (A.A.); (N.O.A.-H.)
| |
Collapse
|
31
|
Diosmin Alleviates Doxorubicin-Induced Liver Injury via Modulation of Oxidative Stress-Mediated Hepatic Inflammation and Apoptosis via NfkB and MAPK Pathway: A Preclinical Study. Antioxidants (Basel) 2021; 10:antiox10121998. [PMID: 34943101 PMCID: PMC8698866 DOI: 10.3390/antiox10121998] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatotoxicity caused by chemotherapeutic drugs (e.g., doxorubicin) is of critical concern in cancer therapy. This study focused on investigating the modulatory effects of diosmin against doxorubicin-induced hepatotoxicity in Male Wistar rats. Male Wistar rats were randomly divided into four groups: Group I was served as control, Group II was treated with doxorubicin (20 mg/kg, intraperitoneal, i.p.), Group III was treated with a combination of doxorubicin and low-dose diosmin (100 mg/kg orally), and Group IV was treated with a combination of doxorubicin and high-dose diosmin (200 mg/kg orally) supplementation. A single dose of doxorubicin (i.p.) caused hepatic impairment, as shown by increases in the concentrations of serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. Doxorubicin produced histological abnormalities in the liver. In addition, a single injection of doxorubicin increased lipid peroxidation and reduced glutathione, catalase, and superoxide dismutase (SOD) levels. Importantly, pre-treatment with diosmin restored hepatic antioxidant factors and serum enzymatic activities and reduced the inflammatory and apoptotic-mediated proteins and genes. These findings demonstrate that diosmin has a protective effect against doxorubicin-induced hepatotoxicity.
Collapse
|
32
|
Pharmacology of Diosmin, a Citrus Flavone Glycoside: An Updated Review. Eur J Drug Metab Pharmacokinet 2021; 47:1-18. [PMID: 34687440 DOI: 10.1007/s13318-021-00731-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/16/2022]
Abstract
Flavonoids are phytochemicals that are well known for their beneficial pharmacological properties. Diosmin is a flavone glycoside derived from hesperidin, a flavanone abundantly found in citrus fruits. Daflon is an oral phlebotonic flavonoid combination containing diosmin and hesperidin (9:1) that is commonly used for the management of blood vessel disorders. After oral administration, diosmin is converted to diosmetin, which is subsequently absorbed and esterified into glucuronide conjugates that are excreted in the urine. Pharmacological effects of diosmin have been investigated in several in vitro and in vivo studies, and it was found to possess anti-inflammatory, antioxidant, antidiabetic, antihyperlipidemic, and antifibrotic effects in different disease models. Diosmin also demonstrated multiple desirable properties in several clinical studies. Moreover, toxicological studies showed that diosmin has a favorable safety profile. Accordingly, diosmin is a potential effective and safe treatment for many diseases. However, diosmin exhibits inhibitory effects on different metabolic enzymes. This encourages the investigation of its potential therapeutic effect and safety in different diseases in clinical trials, while taking potential interactions into consideration.
Collapse
|