1
|
Ahmad I, Alam W, Pirzada AS, Darwish HW, Zafar R, Daglia M, Khan H. Oxindole derivatives alleviate paracetamol-induced nephrotoxicity and hepatotoxicity: biochemical, histological, and computational expressions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03568-9. [PMID: 39545986 DOI: 10.1007/s00210-024-03568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Oxindole is a nature-derived heteroaromatic nucleus with a history of preclinical uses in various conditions. In this study, oxindole derivatives, 6-chloro-3-(3-hydroxybenzylidene) indolin-2-one (3OH) and 6-chloro-3-(4-hydroxybenzylidene) indolin-2-one (4OH) were evaluated for nephroprotective and hepatoprotective effects. Paracetamol-induced nephrotoxicity and hepatotoxicity model was used in mice. Tissue histology and serum biochemistry were carried out to further support in vivo activity. Compound 3OH reduced serum urea and creatinine levels by 51.8% and 64.6%, respectively (p < 0.0001). Excretion of creatinine by 3OH 10 mg was 52.8% as compared to silymarin. In case of urinary excretion of urea, the significant rise in excretion was observed in 4OH 15 mg (30.4%; p < 0.05) and 3OH 10 mg group (29.24%; p < 0.05). The compound 3OH exhibited restorative pattern of the renal tissues with slight inflammatory infiltrations. In case of hepatoprotective activity, 3OH reduced (59.9%; p < 0.0001) serum ALT at 5 mg even more than silymarin and all other doses of oxindole derivatives. In case of serum AST, all treatment groups produced significant (p < 0.0001) reduction except 3OH 15 mg. Computational studies supported the results as both derivatives were found to have promising interactions with enzymes at lower binding energies. Compound 3OH which possesses a hydroxyl group based on aromatic ring at meta position was the most successful drug candidate throughout this study. In a nutshell, the selected compounds elicited significant nephroprotective and hepatoprotective-like effects in mice.
Collapse
Affiliation(s)
- Imad Ahmad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Abdul Saboor Pirzada
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International Unversity, Islamabad, 44000, Pakistan
- School of Pharmacy, Iqra Institute of Health Sciences, Islamabad, 44000, Pakistan
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Campania, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
2
|
Zhao L, Zhang Y, Yin Q, Chen G, Li W, Li N. Research progress on the toxicity of toxic Traditional Herbals from Thymelaeaceae. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117594. [PMID: 38110134 DOI: 10.1016/j.jep.2023.117594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants from the Thymelaeaceae family are widely distributed in tropical and temperate regions, with approximately 113 species used as Traditional Herbals. There are numerous applications for them, such as treating leukemia, AIDS, and liver cancer. It should be noted that around 20% of these plants have shown harmful side effects when used in clinical applications, including solid irritations to the skin and mucous membranes, carcinogenic effects, organ damage, vomiting, and diarrhea. AIM OF THE STUDY This paper aims to review the toxic side effects, toxic compounds, toxic mechanisms, and detoxification methods of Traditional Herbals in Thymelaeaceae, guiding their safe clinical uses. MATERIALS AND METHODS This review employed the keywords "Thymelaeaceae," 48 different "genus," 966 "species," and the combination of "toxicity" to identify the medicinal value and toxicity of plants from Thymelaeaceae in scientific databases (Pubmed, SciFinder Scholar, Elsevier, Web of Science, and CNKI). Information relevant to the toxicity of Traditional Herbals from Thymelaeaceae up to June 2023 has been summarized. The plant names have been checked with "World Flora Online" (www.worldfloraonline.org). RESULTS 28 toxic Traditional Herbals from 13 genera within the Thymelaeaceae family were categorized. Toxicities were summarized at the cellular, animal, and clinical levels. The toxic substances are primarily concentrated in the Daphne L. and Wikstroemia Endl. genera, with terpenes being the main toxic components. The toxicity mechanism is primarily associated with the mitochondrial pathways. Detoxification and enhanced efficacy can be achieved through processing methods such as vinegar-processing and sweat-soaking. CONCLUSIONS Medicinal plants in the Thymelaeaceae exhibit significant pharmacological activities, such as anti-HIV and anti-tumor effects, indicating a broad potential for application. However, their clinical uses are hindered by their inherent toxicity. Researching the toxic components and mechanisms of these Traditional Herbals and exploring more effective detoxification methods can contribute to unveiling the latent value of these medicinal plants from Thymelaeaceae.
Collapse
Affiliation(s)
- Lingnan Zhao
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanping Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qianqian Yin
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, Japan
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
3
|
Babu S, Ranajit SK, Pattnaik G, Ghosh G, Rath G, Kar B. An Insight into Different Experimental Models used for Hepatoprotective Studies: A Review. Curr Drug Discov Technol 2024; 21:e191223224660. [PMID: 39206705 DOI: 10.2174/0115701638278844231214115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 09/04/2024]
Abstract
Numerous factors, including exposure to harmful substances, drinking too much alcohol, contracting certain hepatitis serotypes, and using specific medicines, contribute to the development of liver illnesses. Lipid peroxidation and other forms of oxidative stress are the main mechanisms by which hepatotoxic substances harm liver cells. Pathological changes in the liver include a rise in the levels of blood serum, a decrease in antioxidant enzymes, as well as the formation of free radical radicals. It is necessary to find pharmaceutical alternatives to treat liver diseases to increase their efficacy and decrease their toxicity. For the development of new therapeutic medications, a greater knowledge of primary mechanisms is required. In order to mimic human liver diseases, animal models are developed. Animal models have been used for several decades to study the pathogenesis of liver disorders and related toxicities. For many years, animal models have been utilized to investigate the pathophysiology of liver illness and associated toxicity. The animal models are created to imitate human hepatic disorders. This review enlisted numerous hepatic damage in vitro and in vivo models using various toxicants, their probable biochemical pathways and numerous metabolic pathways via oxidative stressors, different serum biomarkers enzymes are discussed, which will help to identify the most accurate and suitable model to test any plant preparations to check and evaluate their hepatoprotective properties.
Collapse
Affiliation(s)
- Sucharita Babu
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Santosh K Ranajit
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| |
Collapse
|
4
|
Muzammil K, Kzar MH, Mohammed F, Mohammed ZI, Hamood SA, Hussein TK, Hanoon SJ, Qasim MT, Hussien Alawadi A, Alsalamy A. Methanol extract of Iraqi Kurdistan Region Daphne mucronata as a potent source of antioxidant, antimicrobial, and anticancer agents for the synthesis of novel and bioactive polyvinylpyrrolidone nanofibers. Front Chem 2023; 11:1287870. [PMID: 37954957 PMCID: PMC10634434 DOI: 10.3389/fchem.2023.1287870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
In this study, aqueous, ethanol, methanol, and hexane extracts from Iraqi Kurdistan Region Daphne mucronata were prepared due to the numerous applications and development of nanofibers in biological and medical fields, including food packaging, enzyme stabilization, and wound dressing. In the initial evaluation of the extracts, the antioxidant properties against DPPH, antimicrobial properties against 3-gram-positive bacterial species, 3-gram negative bacterial species, 3-common bacterial species between aquatic and human, and 3-fungal species, and anticancer properties against breast cancer cells were performed. The results proved that the methanol extract has the highest antimicrobial, antifungal, antioxidant, and anticancer properties. After identifying the compounds of prepared methanol extract using GC/MS, polyvinylpyrrolidone nanofibers containing methanol extract of Daphne mucronata were prepared. The structure and characteristics of prepared nanofibers were confirmed and determined using FTIR, TGA, BET, SEM, flexural strength, compressive strength, and hydrophilicity. Synthesized polyvinylpyrrolidone nanofibers containing methanol extract of D. mucronata were subjected to antimicrobial properties on the strains studied in methanol extract of D. mucronata. The antimicrobial properties of synthesized polyvinylpyrrolidone nanofibers containing methanol extract of D. mucronata were compared. The results showed that synthesized polyvinylpyrrolidone nanofibers containing methanol extract of D. mucronata have the potential to introduction bioactive natural synthesis nanoparticles.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Mazin Hadi Kzar
- College of Physical Education and Sport Sciences, Al-Mustaqbal University, Hillah, Iraq
| | - Faraj Mohammed
- Department of Medical Laboratories, Al-Manara College For Medical Sciences, Maysan, Iraq
| | | | - Sarah A. Hamood
- Department of Medical Engineering, Al-Esraa University College, Baghdad, Iraq
| | - Talib Kh. Hussein
- Department of Medical Laboratories, Al-Hadi University College, Baghdad, Iraq
| | - Saheb Jubeir Hanoon
- Department of Medical Laboratories, College of Health and Medical Technology, Sawa University, Almuthana, Iraq
| | - Maytham T. Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
5
|
Danaei N, Sadeghi H, Asfarm A, Rostamzadeh D, Panahi kokhdan E, Sadeghi H, Rahimi N. Betulin-rich hydroalcoholic extract of Daphne oleoides attenuates bleomycin-induced pulmonary fibrosis in rat. Heliyon 2023; 9:e19236. [PMID: 37664747 PMCID: PMC10469556 DOI: 10.1016/j.heliyon.2023.e19236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Background and objective Pulmonary fibrosis (PF) is a chronic and progressive respiratory disease representing the final stage of lung inflammatory disorders. Reactive oxygen species (ROS), an essential factor in the formation and progression of pulmonary fibrosis, are a significant adverse effect of Bleomycin (BLM). Antioxidant activities have been found in Daphne oleoides. In this study, we attempted to explore the function of hydroalcoholic extract of Daphne oleoides (D. oleoides) and Betulin in inhibiting bleomycin (BLM)-induced pulmonary fibrosis in rat". Materials and methods The current experimental study used 36 male Wistar rats (180-220). Following a random process, the animals were divided into six groups six (n = 6). Group, I (the control group) received normal saline, while Group II (the hazardous group) received intratracheal BLM (7.5 units per kg). Following the administration of BLM, Groups V and VI received daily doses of vitamin E (500 mg/kg/d, p.o.) and Betulin (10 mg kg/d, p.o.), whereas Groups III and IV received daily doses of Daphne oleoides extract (300 and 600 mg/kg/d, p.o.). Then, blood samples from the hearts of the animals were taken to assess the plasma concentrations of nitric oxide (NO) and malondialdehyde (MDA). Finally, the rats were euthanized, and the lung tissues were taken out for histological analysis and assessments of the levels of lung hydroxyproline (HP), ferric-reducing ability (FRAP), NO, Glutathione Concentration (GSH), thiol content (tSH) and MDA. Findings Elevated lung index, lung hydroxyproline, NO, and MDA plasma levels, and a reduction in total body thiol content (tSH) in the group receiving BLM were evidence of pulmonary toxicity. Treatment with D. oleoides extracts, Betulin, and Vit E, especially at 600 mg/kg, led to a marked reduction in the above parameters compared with the BLM-received group (p < 0.01). Histological Analysis of the BLM-treated group showed a considerable Lung injury with interstitial infiltration, collapsed alveolar spaces, and alveolar septal thickening. These changes were mitigated with D. oleoides 600, Betulin-, and vitamin E. These changes were mitigated with D. oleoides 600, Betulin-, and vitamin E. Conclusion These findings suggest that D. oleoides and Betulin prevent bleomycin-induced lung fibrosis in rats by decreasing inflammatory and antioxidant markers. Daphne oleoides, therefore, have the potential to be used therapeutically to treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Nazanin Danaei
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Heibatollah Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Arash Asfarm
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Davoud Rostamzadeh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Negin Rahimi
- Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Naz D, Zeb A, Nazir N, Ullah R, Rahman AU, Muhammad A. Hepatoprotective and nephroprotective effects of Sedum adenotrichum in paracetamol-induced hepatotoxicity in rabbits. 3 Biotech 2023; 13:217. [PMID: 37260579 PMCID: PMC10226966 DOI: 10.1007/s13205-023-03641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Sedum adenotrichum (SA) has been traditionally used against various ailments due to the presence of several important phenolic compounds. This study provides a scientific basis for the hepatoprotective and nephroprotective potentials of Sedum adenotrichum in paracetamol-induced toxicity in rabbits. Methanolic extract of Sedum adenotrichum along with paracetamol was administered orally to rabbits alone or in combination with paracetamol for 2 weeks. Results showed that paracetamol-induced toxicity was correlated with a significant change in biochemical, hematological parameters, and loss in body weight of rabbits, and the curative effect of SA methanolic extract was found. Liver and kidney histological studies showed significant induced toxicity of paracetamol and correspondence restoration power of SA methanolic extract. The levels of reduced glutathione, radical scavenging activity, and lipid peroxidation in the liver were restored to normal by the methanolic extract of SA. This study confirmed the protective effect of SA methanolic extract against hepatotoxicity and nephrotoxicity caused by paracetamol. Biochemical analysis of the methanolic extract of SA confirmed the presence of bioactive phenolic compounds which have hepatic and nephroprotective potentials.
Collapse
Affiliation(s)
- Dil Naz
- Department of Zoology, Islamia College University, Peshawar, Khyber Pakhtunkhwa 25000 Pakistan
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800 Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800 Pakistan
| | - Nausheen Nazir
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa 18800 Pakistan
| | - Rehan Ullah
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Aziz ur Rahman
- Department of Zoology, Islamia College University, Peshawar, Khyber Pakhtunkhwa 25000 Pakistan
| | - Ali Muhammad
- Department of Zoology, Islamia College University, Peshawar, Khyber Pakhtunkhwa 25000 Pakistan
| |
Collapse
|
7
|
Li J, Liao R, Zhang S, Weng H, Liu Y, Tao T, Yu F, Li G, Wu J. Promising remedies for cardiovascular disease: Natural polyphenol ellagic acid and its metabolite urolithins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154867. [PMID: 37257327 DOI: 10.1016/j.phymed.2023.154867] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a significant worldwide factor contributing to human fatality and morbidity. With the increase of incidence rates, it is of concern that there is a lack of current therapeutic alternatives because of multiple side effects. Ellagic acid (EA), the natural polyphenol (C14H6O8), is abundant in pomegranates, berries, and nuts. EA and its intestinal microflora metabolite, urolithins, have recently attracted much attention as a potential novel "medicine" because of their wide pharmacological properties. PURPOSE This study aimed to critically analyze available literature to summarize the beneficial effects of EA and urolithins, and highlights their druggability and therapeutic potential in various CVDs. METHODS We systematically studied research and review articles between 1984 and 2022 available on various databases to obtain the data on EA and urolithins with no language restriction. Their cardiovascular protective activities, underlying mechanism, and druggability were highlighted and discussed comprehensively. RESULTS We found that EA and urolithins may exert preventive and curative effects on CVD with negligible side effects and possibly regulate lipid metabolism imbalance, pro-inflammatory factor production, vascular smooth muscle cell proliferation, cardiomyocyte apoptosis, endothelial cell dysfunction, and Ca2+ intake and release. Potentially, this may lead to the prevention and amelioration of atherosclerosis, hypertension, myocardial infarction, cardiac fibrosis, cardiomyopathy, cardiac arrhythmias, and cardiotoxicities in vivo. Several molecules and signaling pathways are associated with their therapeutic actions, including phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, NF-κB, nuclear factor erythroid-2 related factor 2, sirtuin1, miRNA, and extracellular signal-regulated kinase 1/2. CONCLUSION In vitro and in vivo studies shows that EA and urolithins could be used as valid candidates for early prevention and effective therapeutic strategies for various CVDs.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shijia Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuanzhi Liu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyi Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
Fadil HAE, Behairy A, Ebraheim LLM, Abd-Elhakim YM, Fathy HH. The palliative effect of mulberry leaf and olive leaf ethanolic extracts on hepatic CYP2E1 and caspase-3 immunoexpression and oxidative damage induced by paracetamol in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41682-41699. [PMID: 36637651 PMCID: PMC10067661 DOI: 10.1007/s11356-023-25152-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the possible protective role of mulberry leaf (MLE) and olive leaf (OLE) ethanolic extracts against paracetamol (PTL)-induced liver injury in rats compared to silymarin as a reference drug. Initially, MLE and OLE were characterized using gas chromatography-mass spectrometry (GC/MS). Then, forty male Sprague Dawley rats were divided into five groups: the negative control group orally received distilled water for 35 days, the PTL-treated group (PTG) received 500 mg PTL/kg b. wt. for 7 days, the MLE-treated group (MLTG) received 400 mg MLE/kg b. wt., the OLE-treated group (OLTG) received 400 mg OLE/kg b. wt., and the silymarin-treated group (STG) received 100 mg silymarin/kg b. wt. The last three groups received the treatment for 28 days, then PTL for 7 days. The GC-MS characterization revealed that MLE comprised 19 constituents dominated by ethyl linoleate, phytol, hexadecanoic acid, ethyl ester, and squalene. Moreover, OLE comprised 30 components, and the major components were 11-eicosenoic acid, oleic acid, phytol, and à-tetralone. MLE and OLE significantly corrected the PTL-induced normocytic normochromic anemia, leukocytosis, hypercholesterolemia, and hypoproteinemia. Moreover, the MLE and OLE pretreatment considerably suppressed the PTL-induced increment in serum levels of hepatic enzymes, including alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase. Furthermore, the PTL-induced depletion in antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, and the rise in hepatic malondialdehyde content were significantly reversed by the MLE and OLE pretreatment. Besides, MLE and OLE pretreatment significantly protected the hepatic tissue against PTL-induced DNA damage, pathological perturbations, and increased caspase 3 and CYP2E1 immunoexpression. Of note, OLTG showed better enhancement of most indices rather than MLTG. Conclusively, these findings imply that OLE, with its antioxidant and antiapoptotic capabilities, is superior to MLE in protecting against PTL-induced liver injury.
Collapse
Affiliation(s)
- Hosny Abd El Fadil
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lamiaa L M Ebraheim
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Heba Hussein Fathy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Rashmi P, Urmila A, Likhit A, Subhash B, Shailendra G. Rodent models for diabetes. 3 Biotech 2023; 13:80. [PMID: 36778766 PMCID: PMC9908807 DOI: 10.1007/s13205-023-03488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Diabetes mellitus (DM) is associated with many health complications and is potentially a morbid condition. As prevalence increases at an alarming rate around the world, research into new antidiabetic compounds with different mechanisms is the top priority. Therefore, the preclinical experimental induction of DM is imperative for advancing knowledge, understanding pathogenesis, and developing new drugs. Efforts have been made to examine recent literature on the various induction methods of Type I and Type II DM. The review summarizes the different in vivo models of DM induced by chemical, surgical, and genetic (immunological) manipulations and the use of pathogens such as viruses. For good preclinical assessment, the animal model must exhibit face, predictive, and construct validity. Among all reported models, chemically induced DM with streptozotocin was found to be the most preferred model. However, the purpose of the research and the outcomes to be achieved should be taken into account. This review was aimed at bringing together models, benefits, limitations, species, and strains. It will help the researcher to understand the pathophysiology of DM and to choose appropriate animal models.
Collapse
Affiliation(s)
- Patil Rashmi
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Aswar Urmila
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Akotkar Likhit
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Bodhankar Subhash
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Gurav Shailendra
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa India
| |
Collapse
|
10
|
Renoprotective and Cardioprotective Potential of Moricandia sinaica (Boiss.) against Carbon Tetrachloride-Induced Toxicity in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8545695. [PMID: 35815261 PMCID: PMC9259224 DOI: 10.1155/2022/8545695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
The goal of the current study was to assess the nephroprotective and cardioprotective potential of Moricandia sinaica methanol extract (MOR-1), as well as its butanol (MOR-2) and aqueous (MOR-3) fractions against carbon tetrachloride (CCl4)-induced nephro and cardio-toxicity. Cardiac function was assessed using the biochemical parameters lactate dehydrogenase (LDH) and creatinine kinase (CK). Renal function was examined using the biochemical parameters creatinine and uric acid. The levels of nonprotein sulfhydryls (NPSH) and malondialdehyde (MDA) were used as markers of oxidative strain. A dose of 100 and 200 mg/kg of butanol fraction given prior to CCl4 treatment significantly (p < 0.05 − 0.001) protected against elevated LDH and CK levels. Similarly, treatment with silymarin (10 mg/kg) and butanol fraction (100 and 200 mg/kg) significantly (p < 0.05 − 0.001) boosted total protein levels compared to CCl4 treatment alone. The silymarin (10 mg/kg) and butanol fraction (100 and 200 mg/kg) also provided a significant (p < 0.05 − 0.001) protective effect for MDA levels. Methanol extract (MOR-1) and butanol (MOR-2) showed significant results and were recommended for further pharmacological and screening for active constituents.
Collapse
|
11
|
Dietary phytochemical consumption is inversely associated with liver alkaline phosphatase in Middle Eastern adults. World J Hepatol 2022. [DOI: 10.4254/wjh.v14.i5.1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
12
|
Darabi Z, Webb RJ, Mozaffari-Khosravi H, Mirzaei M, Davies IG, Khayyatzadeh SS, Mazidi M. Dietary phytochemical consumption is inversely associated with liver alkaline phosphatase in Middle Eastern adults. World J Hepatol 2022; 14:1006-1015. [PMID: 35721289 PMCID: PMC9157700 DOI: 10.4254/wjh.v14.i5.1006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/28/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The hepatoprotective effects of phytochemicals are controversial. A dietary phytochemical index (DPI) has been suggested as an alternative method for quantifying the phytochemical content of foods.
AIM To assess the DPI in relation to liver function tests among a representative sample of Iranian adults.
METHODS A total of 5111 participants aged 35-70 years old were included in this cross-sectional study by a multistage cluster random sampling method. Dietary intakes were collected by a validated and reliable food frequency questionnaire with 121 items. DPI was calculated by the percent of daily energy intake taken from phytochemical-rich foods. Fasting serum concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma glutamyl transferase (GGT) were determined. Linear regression was used to investigate the association between DPI and levels of liver enzymes using crude and adjusted models.
RESULTS There was an inverse association between DPI score and serum ALP in the crude model (β = -0.05; P < 0.001). This association remained significant after adjustment for body mass index, age, smoking, energy intake, history of diabetes, and education (β = -0.03; P = 0.01). No significant associations were found between DPI score and serum levels of AST, ALT, and GGT. The individuals with the highest DPI scores consumed significantly higher amounts of fruits, vegetables, legumes, nuts, and cereals, yet were shown to have significantly higher serum total cholesterol and low-density lipoprotein cholesterol, as well as several other metabolic abnormalities.
CONCLUSION Higher adherence to phytochemical-rich foods was associated with lower levels of ALP, but no change in other liver enzymes. Those with higher DPI scores also consumed food items associated with a healthier overall dietary pattern; however, they also presented several unexpected metabolic derangements. Additional randomised trials are needed to better determine the effects of phytochemical-rich foods on liver function.
Collapse
Affiliation(s)
- Zahra Darabi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Richard James Webb
- School of Health Sciences, Liverpool Hope University, Liverpool L16 9JD, United Kingdom
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
| | - Masoud Mirzaei
- Yazd Cardiovascular Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ian Glynn Davies
- School of Sports and Exercise Sciences, Faculty of Science, Liverpool John Moores University, IM Marsh Campus, Barkhill Road, Liverpool L17 6AF, United Kingdom
| | - Sayyed Saeid Khayyatzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Mazidi
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, United Kingdom
- Department of Twin Research & Genetic Epidemiology, King’s college London, South Wing St Thomas', London SE1 7EH, United Kingdom
| |
Collapse
|