1
|
Abdullah, Jamil T, Atif M, Khalid S, Metwally K, Yahya G, Moisa M, Cavalu DS. Recent Advances in the Development of Metal/Metal Oxide Nanoparticle and Antibiotic Conjugates (MNP-Antibiotics) to Address Antibiotic Resistance: Review and Perspective. Int J Mol Sci 2024; 25:8915. [PMID: 39201601 PMCID: PMC11354832 DOI: 10.3390/ijms25168915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
As per the World Health Organization (WHO), antimicrobial resistance (AMR) is a natural phenomenon whereby microbes develop or acquire genes that render them resistant. The rapid emergence and spread of this phenomenon can be attributed to human activity specifically, the improper and excessive use of antimicrobials for the treatment, prevention, or control of infections in humans, animals, and plants. As a result of this factor, many antibiotics have reduced effectiveness against microbes or may not work fully. Thus, there is a pressing need for the development of new antimicrobial agents in order to counteract antimicrobial resistance. Metallic nanoparticles (MNPs) are well known for their broad antimicrobial properties. Consequently, the use of MNPs with current antibiotics holds significant implications. MNPs, including silver nanoparticles (AgNPS), zinc oxide nanoparticles (ZnONPs), copper nanoparticles (CuNPs), and gold nanoparticles (AuNPs), have been extensively studied in conjunction with antibiotics. However, their mechanism of action is still not completely understood. The interaction between these MNPs and antibiotics can be either synergistic, additive, or antagonistic. The synergistic effect is crucial as it represents the desired outcome that researchers aim for and can be advantageous for the advancement of new antimicrobial agents. This article provides a concise and academic description of the recent advancements in MNP and antibiotic conjugates, including their mechanism of action. It also highlights their possible use in the biomedical field and major challenges associated with the use of MNP-antibiotic conjugates in clinical practice.
Collapse
Affiliation(s)
- Abdullah
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Tayyaba Jamil
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland;
- Department of Management Sciences, Silesian University of Technology, 41-800 Zabrze, Poland
| | - Muhammad Atif
- Department of Microbiology, Abdul Wali Khan University, Mardan 23000, Pakistan;
| | - Shumaila Khalid
- Department of Physics, Government Postgraduate, Charsadda 24460, Pakistan;
| | - Kamel Metwally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt;
| | - Mihaela Moisa
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410073 Oradea, Romania;
| | - Daniela Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410073 Oradea, Romania;
| |
Collapse
|
2
|
Irede EL, Awoyemi RF, Owolabi B, Aworinde OR, Kajola RO, Hazeez A, Raji AA, Ganiyu LO, Onukwuli CO, Onivefu AP, Ifijen IH. Cutting-edge developments in zinc oxide nanoparticles: synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions. RSC Adv 2024; 14:20992-21034. [PMID: 38962092 PMCID: PMC11220610 DOI: 10.1039/d4ra02452d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
This paper presents a comprehensive review of recent advancements in utilizing zinc oxide nanoparticles (ZnO NPs) to enhance antimicrobial and UV protective properties in healthcare solutions. It delves into the synthesis techniques of ZnO NPs and elucidates their antimicrobial efficacy, exploring the underlying mechanisms governing their action against a spectrum of pathogens. Factors impacting the antimicrobial performance of ZnO NPs, including size, surface characteristics, and environmental variables, are extensively analyzed. Moreover, recent studies showcasing the effectiveness of ZnO NPs against diverse pathogens are critically examined, underscoring their potential utility in combatting microbial infections. The study further investigates the UV protective capabilities of ZnO NPs, elucidating the mechanisms by which they offer UV protection and reviewing recent innovations in leveraging them for UV-blocking applications in healthcare. It also dissects the factors influencing the UV shielding performance of ZnO NPs, such as particle size, dispersion quality, and surface coatings. Additionally, the paper addresses challenges associated with integrating ZnO NPs into healthcare products and presents future perspectives for overcoming these hurdles. It emphasizes the imperative for continued research efforts and collaborative initiatives to fully harness the potential of ZnO NPs in developing advanced healthcare solutions with augmented antimicrobial and UV protective attributes. By advancing our understanding and leveraging innovative approaches, ZnO NPs hold promise for addressing pressing healthcare needs and enhancing patient care outcomes.
Collapse
Affiliation(s)
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University Starkville Mississippi MS 39762 USA
| | - Babatunde Owolabi
- Department of Civil Engineering, University of Alabama Tuscaloosa Alabama AL 35487 USA
| | | | - Rofiat Odunayo Kajola
- Department of Biomedical Engineering, University of Rochester 500 Joseph C. Wilson Blvd. Rochester NY 14627 USA
| | - Ajibola Hazeez
- Department of Urban and Regional Planning, University of Lagos Lagos Nigeria
| | - Ayuba Adawale Raji
- Department of Surveying and Geo-Informatics, Bells University of Technology Ota Ogun State Nigeria
| | | | - Chimezie O Onukwuli
- Department of Chemistry, Eastern New Mexico University Portales New Mexico USA
| | - Asishana Paul Onivefu
- Department of Chemistry and Biochemistry, University of Delaware Newark DE 19716 USA
| | - Ikhazuagbe Hilary Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| |
Collapse
|
3
|
Masoudi M, Mashreghi M, Zenhari A, Mashreghi A. Combinational antimicrobial activity of biogenic TiO 2 NP/ZnO NPs nanoantibiotics and amoxicillin-clavulanic acid against MDR-pathogens. Int J Pharm 2024; 652:123821. [PMID: 38242259 DOI: 10.1016/j.ijpharm.2024.123821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The development of effective strategies against multidrug-resistant (MDR) pathogens is an urgent need in modern medicine. Nanoantibiotics (nABs) offer a new hope in countering the surge of MDR-pathogens. The aim of the current study was to evaluate the antibacterial activity of two attractive nABs, TiO2 NPs and ZnO NPs, and their performance in improving the antimicrobial activity of defined antibiotics (amoxicillin-clavulanic acid, amox-clav) against MDR-pathogens. The nABs were synthesized using a green method. The physicochemical characteristics of the synthesized nanoparticles were determined using standard methods. The results showed the formation of pure anatase TiO2 NPs and hexagonal ZnO NPs with an average particle size of 38.65 nm and 57.87 nm, respectively. The values of zeta potential indicated the high stability of the samples. At 8 mg/mL, both nABs exhibited 100 % antioxidant activity, while ZnO showed significantly higher activity at lower concentrations. The antibiofilm assay showed that both nABs could inhibit the formation of biofilms of Acinetobacter baumannii 80 and Escherichia coli 27G (MDR-isolates). However, ZnO NPs showed superior antibiofilm activity (100 %) against E. coli 27G. The MIC values were determined to be 8 (1), 2 (2), and 4 (4) mg/mL for amox-clav, TiO2 NPs, and ZnO NPs against A. baumannii 80 (E. coli 27G), respectively. The results showed that both nABs had synergistically enhanced antibacterial performance in combination with amox-clav. Specifically, an 8-fold reduction in MIC values of antibiotics was observed when they were combined with nABs. These findings highlight the potential of TiO2 NPs and ZnO NPs as effective nanoantibiotics against MDR-pathogens. The synergistic effect observed when combining nABs with antibiotics suggests a promising approach for combating antibiotic resistance. Further research and development in this area could lead to the development of more effective treatment strategies against MDR infections.
Collapse
Affiliation(s)
- Mina Masoudi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Alireza Zenhari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirala Mashreghi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Xu M, Yao Z, Kong J, Tang M, Liu Q, Zhang X, Shi S, Zheng X, Cao J, Zhou T, Wang Z. Antiparasitic nitazoxanide potentiates colistin against colistin-resistant Acinetobacter baumannii and Escherichia coli in vitro and in vivo. Microbiol Spectr 2024; 12:e0229523. [PMID: 38032179 PMCID: PMC10783142 DOI: 10.1128/spectrum.02295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Colistin is used as a last resort in many infections caused by multidrug-resistant Gram-negative bacteria; however, colistin-resistant (COL-R) is on the rise. Hence, it is critical to develop new antimicrobial strategies to overcome COL-R. We found that nitazoxanide (NTZ) combined with colistin showed notable synergetic antibacterial activity. These findings suggest that the NTZ/colistin combination may provide an effective alternative route to combat COL-R A. baumannii and COL-R Escherichia coli infections.
Collapse
Affiliation(s)
- Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Miran Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Qi Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Shiyi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| |
Collapse
|
5
|
Ferreira MRA, Lima LB, Santos ECF, Machado JCB, Silva WAV, Paiva PMG, Napoleão TH, Soares LAL. Eugenia uniflora: a promising natural alternative against multidrug-resistant bacteria. BRAZ J BIOL 2023; 83:e274084. [PMID: 37585932 DOI: 10.1590/1519-6984.274084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/03/2023] [Indexed: 08/18/2023] Open
Abstract
This work aimed to evaluate the chemical composition, antioxidant and antimicrobial activities from crude extract and fractions from leaves of Eugenia uniflora Linn. The crude extract was obtained by turbo extraction and their fractions by partitioning. Chromatographic analysis were performed, and the antioxidant capacity was verified by two methods (DPPH• and ABTS•+). The Minimal Inhibitory/Bactericidal Concentration were conducted against twenty-two bacteria, selecting five strains susceptible to extract/fractions and resistant to the antibiotics tested. Ampicillin, azithromycin, ciprofloxacin, and gentamicin were associated with Ethyl Acetate Fraction (EAF) against multidrug-resistant strains in modulatory and checkerboard tests. The chromatographic data showed gallic acid, ellagic acid, and myricitrin in crude extract, with enrichment in the EAF. The electron transfer activity demonstrated in the antioxidant tests is related to the presence of flavonoids. The Gram-positive strains were more susceptible to EAF, and their action spectra were improved by association, comprising Gram-negative bacilli. Synergisms were observed to ciprofloxacin and gentamicin against Pseudomonas aeruginosa colistin-resistant. The results demonstrate that the extract and enriched fraction obtained from the leaves of E. uniflora act as a promising natural alternative against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- M R A Ferreira
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - L B Lima
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - E C F Santos
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - J C B Machado
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| | - W A V Silva
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| | - P M G Paiva
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Laboratório de Bioquímica de Proteínas, Recife, PE, Brasil
| | - T H Napoleão
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Laboratório de Bioquímica de Proteínas, Recife, PE, Brasil
| | - L A L Soares
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| |
Collapse
|
6
|
Stability and Antibiotic Potency Improvement of Levofloxacin by Producing New Salts with 2,6- and 3,5-Dihydroxybenzoic Acid and Their Comprehensive Structural Study. Pharmaceutics 2022; 15:pharmaceutics15010124. [PMID: 36678753 PMCID: PMC9861140 DOI: 10.3390/pharmaceutics15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Recently, solid-state engineering has become a promising approach to improving the stability and potency of antibiotics. Levofloxacin (LF) is a broad-spectrum fluoroquinolone antibiotic marketed in solid and solution dosage forms. However, this substance forms solid hydrates under ambient conditions and degrades due to lighting, which may change its solid properties and dose. In addition, resistance cases have been reported due to long-time antibiotic usage. This research aims to allow LF to react with antioxidant dihydroxybenzoic acid (DHBA), which has low antimicrobial activity, to produce a more stable compound under water and lighting conditions and improve LF's potency. The experiment begins with a screening to select potential DHBA isomers that can react with LF and predict the stoichiometric ratio using phase diagrams, which show that 2,6-DHBA and 3,5-DHBA are prospective antioxidants that can react with LF in a (1:1) molar ratio. Multicomponent systems are prepared by dissolving the LF-DHBA mixture in (1:1) ethanol-methanol (95% grade) and evaporating it. Then, the new solid phase formation is confirmed by thermal analysis and powder X-ray diffractometry. Next, infrared spectrophotometry and neutron magnetic resonance analyses are used to identify the LF-DHBA's interactions. Finally, single-crystal X-ray diffractometry is used to solve the three-dimensional structure of the multicomponent system. We then conduct a hygroscopicity and stability test followed by a lighting and potency test using the microdilution method. Our data reveal that both reactions produce salts, which are named LF-26 and LF-35, respectively. Structurally, LF-26 is found in an anhydrous form with a triclinic crystal packing, while LF-35 is a hemihydrate in a monoclinic system. Afterward, both salts are proven more stable regarding water adsorption and UV lighting than LF. Finally, both multicomponent systems have an approximately two-fold higher antibiotic potency than LF. LF-26 and LF-35 are suitable for further development in solid and liquid dosage formulations, especially LF-35, which has superior stability compared with LF-26.
Collapse
|
7
|
Vigbedor BY, Osei Akoto C, Kwakye R, Osei-Owusu J, Neglo D, Kwashie P. Antioxidant, antibacterial, antifungal activities and gas chromatographic fingerprint of fractions from the root bark of Afzelia africana. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 13:60-76. [PMID: 36721842 PMCID: PMC9884338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/05/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Afzelia africana is a tropical plant with numerous ethno-medicinal benefits. The plant has been used for the treatment of pain, hernia, fever, malaria, inflammation and microbial infections. OBJECTIVES To perform bioassay-guided fractionation, antioxidant and antimicrobial activities of the bark of Afzelia africana. METHODS Column chromatography fractionation, antioxidant activity (% (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl picrylhydrazyl (DPPH) scavenging activity))), antimicrobial activity (microbroth dilution: Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), MBC/MIC ratio), and synergistic activities (Checkerboard assay: Fraction Inhibitory Concentration Index (FICI)). RESULTS Bioassay-guided fractionation of A. africana produced four fractions that displayed promising free radical scavenging activities in the ABTS (54-93)% and the DPPH (35-76)% assays in the ranking order of F1(93-54)>F4(81-58)>F2(74-58)>F3(72-55) and F3(77-42)>F1(64-46)>F4(55-44)>F2(47-35) respectively at a concentration range of 1.0-0.01 mg/mL. The fraction F1 (MBC: 2.5-5.0 mg/mL) and F4 (MBC: 1.25-10.0 mg/mL) exhibited broad spectrum of superior bactericidal effects than F2 (MBC≥100.0 mg/mL) and F3 (MBC: 12.5-100.0 mg/mL) against Staphylococcus mutans, Staphylococcus aureus, Escherichia coli, fluconazole-resistant Candida albicans, methicillin-resistant S. aureus, Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella typhi, and Candida albicans (standard strain). The two most active fractions (F1 and F4) reported synergistic effects (FICI≤0.5) against S. typhi whilst the F4 reported additional synergism against E. coli, K. pneumonia, and S. typhi when combined with ciprofloxacin. Furthermore, the two fractions reported synergistic effects against Escherichia coli, Klebsiella pneumonia, Salmonella typhi, and Pseudomonas aeruginosa when combined with tetracycline whilst F1 reported antifungal synergism against fluconazole resistant Candida albicans when combined with fluconazole and ketoconazole. CONCLUSION The study has confirmed the antioxidant, antimicrobial and synergistic uses of A. africana for the treatment of both infectious and non-infectious disease.
Collapse
Affiliation(s)
- Bright Yaw Vigbedor
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied SciencesPMB 31, Ho, Ghana
| | - Clement Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and TechnologyKumasi, Ghana
| | - Ralph Kwakye
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied SciencesPMB 31, Ho, Ghana
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable DevelopmentPMB, Somanya, Ghana
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied SciencesPMB 31, Ho, Ghana
| | - Pius Kwashie
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied SciencesPMB 31, Ho, Ghana
| |
Collapse
|
8
|
Shabatina T, Vernaya O, Shumilkin A, Semenov A, Melnikov M. Nanoparticles of Bioactive Metals/Metal Oxides and Their Nanocomposites with Antibacterial Drugs for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3602. [PMID: 35629629 PMCID: PMC9147160 DOI: 10.3390/ma15103602] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
The increasing appearance of new strains of microorganisms resistant to the action of existing antibiotics is a modern problem that requires urgent decision. A promising potential solution is the use of nanoparticles of bioactive metals and their oxides as new antibacterial agents, since they are capable of affecting pathogenic microorganisms by mechanisms different from the mechanisms of action of antibiotics. Inorganic nanoparticles possess a wide spectrum of antibacterial activity. These particles can be easily conjugated with drug molecules and become carriers in targeted drug-delivery systems. This paper discusses the benefits and prospects of the application of nanoparticles from metals and metal oxides and their nanocomposites with antibacterial drugs.
Collapse
Affiliation(s)
- Tatyana Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Natural Sciences, N.E. Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Olga Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Aleksei Shumilkin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Alexander Semenov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| |
Collapse
|
9
|
Therapeutic potentials of Aivlosin and/or Zinc Oxide nanoparticles against Mycoplasma gallisepticum and/or Ornithobacterium rhinotracheale with a special reference to the effect of Zinc Oxide nanoparticles on Aivlosin tissue residues: an in vivo approach. Poult Sci 2022; 101:101884. [PMID: 35490499 PMCID: PMC9065732 DOI: 10.1016/j.psj.2022.101884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Respiratory diseases inflicted by Mycoplasma gallisepticum (MG) and Ornithobacterium rhinotracheale (ORT) cause severe economic losses and great burden to the poultry industry worldwide. Therefore, the current study was planned to assess the efficacy of aivlosin alone or in combination with zinc oxide nanoparticles (ZnO-NPs) in the treatment of experimental MG and/or ORT infections in broilers. Moreover, we also aimed to evaluate the role of ZnO-NPs on aivlosin residues in broiler tissues. A total of 1,440 Cobb chicks were allocated into 6 groups. At 14 d of age, chickens of groups 1 and 3 were experimentally infected with MG intratracheally and 6 d later, chickens of groups 2 and 3 were infected occulonasaly with ORT. Groups 1, 2, and 3 were divided into 4 subgroups; birds in subgroups 1, 2, and 3 were treated with aivlosin (A), ZnO-NPs (Z), and A/Z, respectively, while those in subgroups 4 was left without treatments. Moreover, groups 4 and 5 were kept noninfected and treated with aivlosin alone or in combination with ZnO-NPs, respectively. Finally, group 6 was kept as a negative control. The current results showed that the recovery from respiratory diseases caused by MG and/or ORT infections was most successful after treatment with A/Z in combination. Consequently, clinical signs, mortality rates, postmortem lesions of the respiratory organs, histopathological lesions of liver, trachea and lung and tracheal MG and ORT counts were significantly (P < 0.05) reduced following A/Z treatment. Taken together, high performance liquid chromatography analysis revealed that ZnO-NPs decreased the aivlosin residues in liver, muscle and skin of healthy and infected chickens. Based on these results, it could be concluded that aivlosin/ZnO-NPs therapy is a valuable approach for controlling MG and/or ORT infections in boilers.
Collapse
|
10
|
Afridi M, Khan SA, Afridi R, Ullah F, Majid A, Khan AA, Ali N. Combining antibiotics with silver nanoparticles: A potential treatment strategy against antimicrobial resistance. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Growing resistance to currently approved antibiotics is posing serious concern worldwide. The multidrug-resistant organisms are a major cause of mortality and morbidity around the globe. The limited options to treat infections caused by resistant organism requires alternative strategies to increase the effectiveness of antibiotic for better clinical outcomes. Recent advances in nanotechnology have enabled the drugs to be used in nanoscale to increase the effectiveness of antibiotics. The use of nanoparticles to treat infectious diseases has a long history in the pharmaceutical market, and the versatility of these particles to incorporate various materials as carriers make it an attractive option to combat the current crisis of emerging antibacterial resistance. Silver, a metal with many medical applications, has inherent antimicrobial properties. Therefore, silver NPs are appearing as one of the best options to be used in combination with antibiotics to increase effectiveness against resistant bacteria. Here, we discuss the applications and mechanisms of silver NPs to treat microbial resistance in light of recent research.
Collapse
Affiliation(s)
- Maryam Afridi
- Department of Pharmacy, Institute of Chemical and Pharmaceutical Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, Institute of Chemical and Pharmaceutical Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ruqayya Afridi
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Farman Ullah
- Department of Pharmacy, Institute of Chemical and Pharmaceutical Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Majid
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa
| | - Aziz Ahmad Khan
- Department of Pharmacy, Institute of Chemical and Pharmaceutical Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Nawab Ali
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
11
|
Hasaballah AI, El-Naggar HA, Abdelbary S, Bashar MAE, Selim TA. Eco-friendly Synthesis of Zinc Oxide Nanoparticles by Marine Sponge, Spongia officinalis: Antimicrobial and Insecticidal Activities Against the Mosquito Vectors, Culex pipiens and Anopheles pharoensis. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00926-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|