1
|
Arshad F, Naikoo GA, Hassan IU, Chava SR, El-Tanani M, Aljabali AA, Tambuwala MM. Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective. Appl Biochem Biotechnol 2024; 196:3636-3669. [PMID: 37668757 PMCID: PMC11166857 DOI: 10.1007/s12010-023-04719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Silver nanoparticles (AgNPs) possess unmatched chemical, biological, and physical properties that make them unique compounds as antimicrobial, antifungal, antiviral, and anticancer agents. With the increasing drug resistance, AgNPs serve as promising entities for targeted drug therapy against several bacterial, fungal, and viral components. In addition, AgNPs also serve as successful anticancer agents against several cancers, including breast, prostate, and lung cancers. Several works in recent years have been done towards the development of AgNPs by using plant extracts like flowers, leaves, bark, root, stem, and whole plant parts. The green method of AgNP synthesis thus has several advantages over chemical and physical methods, especially the low cost of synthesis, no toxic byproducts, eco-friendly production pathways, can be easily regenerated, and the bio-reducing potential of plant derived nanoparticles. Furthermore, AgNPs are biocompatible and do not harm normally functioning human or host cells. This review provides an exhaustive overview and potential of green synthesized AgNPs that can be used as antimicrobial, antifungal, antiviral, and anticancer agents. After a brief introduction, we discussed the recent studies on the development of AgNPs from different plant extracts, including leaf parts, seeds, flowers, stems, bark, root, and whole plants. In the following section, we highlighted the different therapeutic actions of AgNPs against various bacteria, fungi, viruses, and cancers, including breast, prostate, and lung cancers. We then highlighted the general mechanism of action of AgNPs. The advantages of the green synthesis method over chemical and physical methods were then discussed in the article. Finally, we concluded the review by providing future perspectives on this promising field in nanotechnology.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman.
| | - Israr U Hassan
- College of Engineering, Dhofar University, Salalah, PC 211, Oman
| | | | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
2
|
Daniel AI, Smith E, Al-Hashimi A, Gokul A, Keyster M, Klein A. Mechanistic insight into the anti-alternaria activity of bimetallic zinc oxide and silver/zinc oxide nanoparticles. Heliyon 2024; 10:e31330. [PMID: 38803897 PMCID: PMC11129099 DOI: 10.1016/j.heliyon.2024.e31330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Alternaria alternata is an opportunistic phytopathogen that negatively impact the growth and production of a wide variety of host plants. In this study, we evaluated the antifungal potential of biogenic ZnO, and bimetallic silver and zinc oxide (Ag/ZnO) nanoparticles synthesized using seed extract of Abrus precatorious and characterized using different analytical tools. In vitro antifungal potentials of ZnO and Ag/ZnO nanoparticles were carried out using the food poison technique. Morphological and ultrastructure of the A. alternata treated with the nanoparticles were carried out using high resolution scanning and transmission electron microscopy (HRSEM and HRTEM). In addition, changes in polysaccharide production, chitin content and enzymatic (cellulase and lipase) activities of A. alternata were assayed. Double peak signifying a UVmax of 353.88 and 417.25 nm representing Ag and ZnO respectively was formed in the bimetallic nanoparticles. HRSEM and HRTEM results shows agglomerated nanoparticles with particle and crystallite size of 23.94 and 16.84 nm for ZnO nanoparticles, 35.12 and 28.99 nm for Ag/ZnO nanoparticles respectively. In vitro antifungal assay shows a significant concentration-dependent inhibition (p < 0.05) of A. alternata mycelia with highest percentage inhibition of 73.93 % (ZnO nanoparticles) and 68.26 % (Ag/ZnO nanoparticles) at 200 ppm. HRSEM and HRTEM micrographs of the treated A. alternata mycelia shows alteration of the cellular structure, clearance of the cytoplasmic organelles and localization of the nanoparticles within the cell. A. alternata treated with 200 ppm nanoparticles show a significant decrease (p < 0.05) in the polysaccharides and chitin contents, cellulase and lipase activities. The results suggests that ZnO and Ag/ZnO nanoparticles mode of action may be via alteration of the fungal cell wall through the inhibition of polysaccharides, chitin, cellulases and lipases synthesis. ZnO and Ag/ZnO nanoparticles may be a promising tool for the management and control of disease causing fungal phytopathogens.
Collapse
Affiliation(s)
- Augustine Innalegwu Daniel
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, South Africa
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria
| | - Enriquay Smith
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, South Africa
| | - Ali Al-Hashimi
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, South Africa
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba, 9866, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, South Africa
| |
Collapse
|
3
|
Ahmad S, Ahmad N, Islam MS, Ahmad MA, Ercisli S, Ullah R, Bari A, Munir I. Rice seeds biofortification using biogenic ıron oxide nanoparticles synthesized by using Glycyrrhiza glabra: a study on growth and yield ımprovement. Sci Rep 2024; 14:12368. [PMID: 38811671 PMCID: PMC11137158 DOI: 10.1038/s41598-024-62907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Iron, a crucial micronutrient, is an integral element of biotic vitality. The scarcity of iron in the soil creates agronomic challenges and has a detrimental impact on crop vigour and chlorophyll formation. Utilizing iron oxide nanoparticles (IONPs) via nanopriming emerges as an innovative method to enhance agricultural efficiency and crop health. The objective of this study was to synthesize biogenic IONPs from Glycyrrhiza glabra (G. glabra) plant extract using green chemistry and to evaluate their nanopriming effects on rice seed iron levels and growth. The synthesized IONPs were analyzed using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDX) techniques. The UV-Vis peak at 280 nm revealed the formation of IONPs. SEM and TEM showed that the nanoparticles were spherical and had an average diameter of 23.8 nm. Nanopriming resulted in a substantial enhancement in growth, as seen by a 9.25% and 22.8% increase in shoot lengths for the 50 ppm and 100 ppm treatments, respectively. The yield metrics showed a positive correlation with the concentrations of IONPs. The 1000-grain weight and spike length observed a maximum increase of 193.75% and 97.73%, respectively, at the highest concentration of IONPs. The study indicates that G. glabra synthesized IONPs as a nanopriming agent significantly increased rice seeds' growth and iron content. This suggests that there is a relationship between the dosage of IONPs and their potential for improving agricultural biofortification.
Collapse
Affiliation(s)
- Sidra Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Nayab Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Textile Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Mian Afaq Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
4
|
Shireen Akhter Jahan Q, Sultana Z, Ud-Daula MA, Md. Ashikuzzaman, Md. Shamim Reja, Rahman MM, Khaton A, Tang MAK, Rahman MS, Hossain Md. Faruquee, Lee SJ, Rahman AM. Optimization of green silver nanoparticles as nanofungicides for management of rice bakanae disease. Heliyon 2024; 10:e27579. [PMID: 38533066 PMCID: PMC10963222 DOI: 10.1016/j.heliyon.2024.e27579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Rice bakanae, a devastating seed-borne disease caused by Fusarium species requires a more attractive and eco-friendly management strategy. The optimization of plant-mediated silver nanoparticles (AgNPs) as nanofungicides by targeting Fusarium species may be a rational approach. In this study, Azadirachta indica leaf aqueous extract-based AgNPs (AiLAE-AgNPs) were synthesized through the optimization of three reaction parameters: A. indica leaf amount, plant extract-to-AgNO3 ratio (reactant ratio), and incubation time. The optimized green AgNPs were characterized using ultraviolet-visible light (UV-Vis) spectroscopy, field emission scanning electron microscopy (FESEM) with energy dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and powder X-ray diffraction (XRD) techniques. The optimal conditions for producing spherical, unique, and diminutive-sized AgNPs ranging from 4 to 27 nm, with an average size of 15 nm, were 2 g AiLAE at a 1:19 ratio (extract-to-AgNO3) and incubated for 4 h. Fusarium isolates collected from infected soils and identified as F. fujikuroi (40) and F. proliferatum (58 and 65) by PCR were used for seed infestation. The AgNPs exhibited concentration-dependent mycelial growth inhibition with EC50 values ranging from 2.95 to 5.50 μg/mL. The AgNPs displayed exposure time-dependent seed disinfectant potential (complete CFU reduction in F. fujikuroi (40) and F. proliferatum (58) was observed at a concentration of 17.24 μg/mL). The optimized green AgNPs were non-toxic to germinating seeds, and completely cured bakanae under net-house conditions, suggesting their great nano-fungicidal potency for food security and sustainable agriculture.
Collapse
Affiliation(s)
| | - Ziniya Sultana
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - Md. Asad Ud-Daula
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - Md. Ashikuzzaman
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - Md. Shamim Reja
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - Md. Mahfuzur Rahman
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - Amina Khaton
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - Md. Abul Kashem Tang
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| | - M. Safiur Rahman
- Chemistry Division, Atomic Energy Centre (AECD), Bangladesh Atomic Energy Commission, Bangladesh
| | - Hossain Md. Faruquee
- Department of Biotechnology and Genetical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Seung Ju Lee
- Department of Food Science and Biotechnology, Dongguk University, Seoul, South Korea
| | - A.T.M. Mijanur Rahman
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
5
|
Legmairi S, Meneceur S, Hasan GG, Eddine LS, Mohammed HA, Alharthi F, Abdullah JAA. Enhanced photocatalytic activity and antiviral evaluation of CuO@Fe 2O 3NC for amoxicillin degradation and SARS-CoV-2 treatment. NANOTECHNOLOGY 2023; 34:445101. [PMID: 37524077 DOI: 10.1088/1361-6528/acebfa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) and CuO NPs decorated with hematite (Fe2O3) nanocomposites (CuO@Fe2O3NC) were biosynthesized by a green method usingPortulaca oleracealeaves extract. The NC were characterized using various techniques, including x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and UV-vis spectroscopy. The results showed that the synthesized CuO and CuO@Fe2O3NC were crystalline with a monoclinic crystal structure and contained functional groups responsible for catalytic activity. The size of the nanocomposites ranged from 39.5 to 45.9 nm, and they exhibited a variety of agglomerated or aggregated shapes. The CuO@Fe2O3NC showed improved photocatalytic activity for the degradation of antibiotics in water and wastewater and promising antiviral activity against SARS-CoV-2, indicating its potential for use in disinfection applications. The study investigated the impact of irradiation time on the photocatalytic degradation of Amoxicillin and found that increasing the irradiation time led to a higher degradation rate. The band gap energy (Eg) for pure CuO NPs was around 2.4 eV and dropped to 1.6 eV with CuO@Fe2O3NC. In summary, the CuO@Fe2O3NC has the potential to be an efficient photocatalyst and promising antiviral agent for environmental remediation. The CuO@Fe2O3nanocomposites have been found to possess a high degree of efficacy in inactivating SARS-CoV-2 infectivity. The results of the study indicate that the nanocomposites exhibit potent anti-viral properties and hold significant potential for use in mitigating the spread of the virus.
Collapse
Affiliation(s)
- Souheila Legmairi
- Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria
| | - Souhaila Meneceur
- Department of Process Engineering, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria
| | - Gamil Gamal Hasan
- Department of Process Engineering, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria
| | - Laouini Salah Eddine
- Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria
| | - Hamdi Ali Mohammed
- Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria
| | - Fahad Alharthi
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | | |
Collapse
|
6
|
Ortega F, Minnaard J, Arce V, García M. Nanocomposite starch films: Cytotoxicity studies and their application as cheese packaging. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. J Funct Biomater 2022; 13:jfb13040242. [PMID: 36412883 PMCID: PMC9680418 DOI: 10.3390/jfb13040242] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, nanoparticles and nanomaterials are widely used for biomedical applications. In the present study, silver nanoparticles (AgNPs) were successfully biosynthesized using a cell-free extract (CFE) of Bacillus thuringiensis MAE 6 through a green and ecofriendly method. The size of the biosynthesized AgNPs was 32.7 nm, and their crystalline nature was confirmed by XRD, according to characterization results. A surface plasmon resonance spectrum of AgNPs was obtained at 420 nm. Nanoparticles were further characterized using DLS and FTIR analyses, which provided information on their size, stability, and functional groups. AgNPs revealed less cytotoxicity against normal Vero cell line [IC50 = 155 μg/mL]. Moreover, the biosynthesized AgNPs exhibited promising antifungal activity against four most common Aspergillus, including Aspergillus niger, A. terreus, A. flavus, and A. fumigatus at concentrations of 500 μg/mL where inhibition zones were 16, 20, 26, and 19 mm, respectively. In addition, MICs of AgNPs against A. niger, A. terreus, A. flavus, and A. fumigatus were 125, 62.5, 15.62, and 62.5 μg/mL, respectively. Furthermore, the ultrastructural study confirmed the antifungal effect of AgNPs, where the cell wall's integrity and homogeneity were lost; the cell membrane had separated from the cell wall and had intruded into the cytoplasm. In conclusion, the biosynthesized AgNPs using a CFE of B. thuringiensis can be used as a promising antifungal agent against Aspergillus species causing Aspergillosis.
Collapse
|
8
|
Biosynthesis of silver nanoparticles for biomedical applications: A mini review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Aravind M, Kumarisubitha T, Ahmed N, Velusamy P. DFT, Molecular docking, Photocatalytic and Antimicrobial activity of coumarin enriched Cinnamon barkextract mediated silver nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Elsilk SE, Khalil MA, Aboshady TA, Alsalmi FA, Ali SS. Streptomyces rochei MS-37 as a Novel Marine Actinobacterium for Green Biosynthesis of Silver Nanoparticles and Their Biomedical Applications. Molecules 2022; 27:7296. [PMID: 36364123 PMCID: PMC9654146 DOI: 10.3390/molecules27217296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/25/2022] [Indexed: 02/13/2024] Open
Abstract
Periodontitis, as one of the most common diseases on a global scale, is a public health concern. Microbial resistance to currently available antimicrobial agents is becoming a growing issue in periodontal treatment. As a result, it is critical to develop effective and environmentally friendly biomedical approaches to overcome such challenges. The investigation of Streptomyces rochei MS-37's performance may be the first of its kind as a novel marine actinobacterium for the green biosynthesis of silver nanoparticles (SNPs) and potentials as antibacterial, anti-inflammatory, antibiofilm, and antioxidant candidates suppressing membrane-associated dental infections. Streptomyces rochei MS-37, a new marine actinobacterial strain, was used in this study for the biosynthesis of silver nanoparticles for various biomedical applications. Surface plasmon resonance spectroscopy showed a peak at 429 nm for the SNPs. The SNPs were spherical, tiny (average 23.2 nm by TEM, 59.4 nm by DLS), very stable (-26 mV), and contained capping agents. The minimum inhibitory concentrations of the SNPs that showed potential antibacterial action ranged from 8 to 128 µg/mL. Periodontal pathogens were used to perform qualitative evaluations of microbial adhesion and bacterial penetration through guided tissue regeneration membranes. The findings suggested that the presence of the SNPs could aid in the suppression of membrane-associated infection. Furthermore, when the anti-inflammatory action of the SNPs was tested using nitric oxide radical scavenging capacity and protein denaturation inhibition, it was discovered that the SNPs were extremely efficient at scavenging nitric oxide free radicals and had a strong anti-denaturation impact. The SNPs were found to be more cytotoxic to CAL27 than to human peripheral blood mononuclear cells (PBMCs), with IC50 values of 81.16 µg/mL in PBMCs and 34.03 µg/mL in CAL27. This study's findings open a new avenue for using marine actinobacteria for silver nanoparticle biosynthesis, which holds great promise for a variety of biomedical applications, in particular periodontal treatment.
Collapse
Affiliation(s)
- Sobhy E. Elsilk
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Maha A. Khalil
- Biology Department, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tamer A. Aboshady
- Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif 21944, Saudi Arabia
| | - Fatin A. Alsalmi
- Biology Department, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sameh S. Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
11
|
Li L, Pan H, Deng L, Qian G, Wang Z, Li W, Zhong C. The antifungal activity and mechanism of silver nanoparticles against four pathogens causing kiwifruit post-harvest rot. Front Microbiol 2022; 13:988633. [PMID: 36118196 PMCID: PMC9471003 DOI: 10.3389/fmicb.2022.988633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Post-harvest rot causes enormous economic loss to the global kiwifruit industry. Currently, there are no effective fungicides to combat the disease. It is unclear whether silver nanoparticles (AgNPs) are effective in controlling post-harvest rot and, if so, what the underlying antifungal mechanism is. Our results indicated that 75 ppm AgNPs effectively inhibited the mycelial growth and spore germination of four kiwifruit rot pathogens: Alternaria alternata, Pestalotiopsis microspora, Diaporthe actinidiae, and Botryosphaeria dothidea. Additionally, AgNPs increased the permeability of mycelium’s cell membrane, indicating the leakage of intracellular substance. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations revealed that AgNPs induced pathogen hypha shrinkage and distortion, as well as vacuolation in hypha cells, implying that AgNPs caused cellular and organelle structural degradation. The transcriptome sequencing of mycelium treated with AgNPs (24 h / 48 h) was performed on the Illumina Hiseq 4000 sequencing (RNA-Seq) platform. For the time points of 24 h and 48 h, AgNPs treatment resulted in 1,178 and 1,461 differentially expressed genes (DEGs) of A. alternata, 517 and 91 DEGs of P. microspora, 1,287 and 65 DEGs of D. actinidiae, 239 and 55 DEGs of B. dothidea, respectively. The DEGs were found to be involved in “catalytic activity,” “small molecule binding,” “metal ion binding,” “transporter activity,” “cellular component organization,” “protein metabolic process,” “carbohydrate metabolic process,” and “establishment of localization.” Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis also revealed that “carbohydrate metabolism,” “amino acid metabolism,” “energy metabolism,” and “xenobiotics biodegradation and metabolism” of “metabolism processes” were the most highly enriched pathways for these DEGs in four pathogens, with “cellular processes” being particularly enriched for B. dothidea. Furthermore, quantitative polymerase chain reactions (qPCRs) were used to validate the RNA-seq results. It was also confirmed that AgNPs could significantly reduce the symptoms of kiwifruit rot without leaving any Ag+ residue on the peel and flesh of kiwifruit. Our findings contributed to a better understanding of the antifungal effect and molecular mechanisms of AgNPs against pathogens causing kiwifruit post-harvest rot, as well as a new perspective on the application of this novel antifungal alternative to fruit disease control.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Hui Pan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lei Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zupeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenyi Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Engineering Laboratory for Kiwifruit Industrial Technology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Caihong Zhong,
| |
Collapse
|
12
|
Miškovská A, Rabochová M, Michailidu J, Masák J, Čejková A, Lorinčík J, Maťátková O. Antibiofilm activity of silver nanoparticles biosynthesized using viticultural waste. PLoS One 2022; 17:e0272844. [PMID: 35947573 PMCID: PMC9365141 DOI: 10.1371/journal.pone.0272844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Green methods have become vital for sustainable development of the scientific and commercial sphere; however, they can bring new challenges, including the need for detailed characterization and elucidation of efficacy of their products. In this study, green method of silver nanoparticles (AgNPs) production was employed using an extract from grapevine canes. The aim of the study was to contribute to the knowledge about biosynthesized AgNPs by focusing on elucidation of their antifungal efficiency based on their size and/or hypothesized synergy with bioactive substances from Vitis vinifera cane extract. The antifungal activity of AgNPs capped and stabilized with bioactive compounds was tested against the opportunistic pathogenic yeast Candida albicans. Two dispersions of nanoparticles with different morphology (characterized by SEM-in-STEM, DLS, UV-Vis, XRD, and AAS) were prepared by modification of reaction conditions suitable for economical production and their long-term stability monitored for six months was confirmed. The aims of the study included the comparison of the antifungal effect against suspension cells and biofilm of small monodisperse AgNPs with narrow size distribution and large polydisperse AgNPs. The hypothesis of synergistic interaction of biologically active molecules from V. vinifera extracts and AgNPs against both cell forms were tested. The interactions of all AgNPs dispersions with the cell surface and changes in cell morphology were imaged using SEM. All variants of AgNPs dispersions were found to be active against suspension and biofilm cells of C. albicans; nevertheless, surprisingly, larger polydisperse AgNPs were found to be more effective. Synergistic action of nanoparticles with biologically active extract compounds was proven for biofilm cells (MBIC80 20 mg/L of polydisperse AgNPs in extract), while isolated nanoparticles suspended in water were more active against suspension cells (MIC 20 mg/L of polydisperse AgNPs dispersed in water). Our results bring new insight into the economical production of AgNPs with defined characteristics, which were proven to target a specific mode of growth of significant pathogen C. albicans.
Collapse
Affiliation(s)
- Anna Miškovská
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
- * E-mail:
| | - Michaela Rabochová
- Research Centre Řež, Husinec, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Jana Michailidu
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Alena Čejková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | | | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
13
|
Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman MM, Islam F, Emran TB, Cavalu S. Green Metallic Nanoparticles: Biosynthesis to Applications. Front Bioeng Biotechnol 2022; 10:874742. [PMID: 35464722 PMCID: PMC9019488 DOI: 10.3389/fbioe.2022.874742] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|