1
|
Shmagel K, Saidakova E, Korolevskaya L, Vlasova V, Younes SA. Activated/Cycling Treg Deficiency and Mitochondrial Alterations in Immunological Non-Responders to Antiretroviral Therapy. FRONT BIOSCI-LANDMRK 2024; 29:429. [PMID: 39735996 DOI: 10.31083/j.fbl2912429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, but their dynamics are altered in a subset of people living with Human Immunodeficiency Virus (HIV) known as immunological non-responders (INRs). INRs fail to reconstitute CD4+ T-cell counts despite viral suppression. This study aimed to examine Treg dysregulation in INRs, comparing them to immunological responders (IRs) and healthy controls (HCs). METHODS The study included 40 INRs, 42 IRs, and 23 HCs. Peripheral blood mononuclear cells were isolated and analyzed by flow cytometry. Conventional CD4+ T-cells (Tconvs) were identified as CD25-/loFOXP3- cells, while Tregs were identified as CD25+CD127loFOXP3+ CD4+ T-cells. Cells were further divided into naive, central memory, effector memory, and effector memory cells re-expressing CD45RA (TEMRA) subsets. Activated/cycling cells were identified as CD71+ and quiescent cells were CD71-. Mitochondrial mass and transmembrane potential were measured using MitoTracker Green and MitoTracker Orange dyes, respectively. Statistical comparisons were made using the Kruskal-Wallis test with Dunn's post-hoc analysis and Mann-Whitney U-test. RESULTS INRs exhibited the highest frequencies of activated/cycling CD4+ T-cells. The proportion of activated/cycling cells was higher in Tregs compared to Tconvs in all groups. Cycling rates of Tregs and Tconvs were correlated, suggesting Tregs help control Tconv proliferation. Despite high overall Treg frequencies in INRs, they showed a Treg deficiency in activated/cycling CD4+ T-cells, specifically in naive and central memory subsets, causing an imbalance in the Tconv/Treg ratio. This deficiency was hidden by increased Treg frequencies in quiescent effector memory CD4+ T-cells. Activated/cycling naive and memory Tregs from INRs had normal forkhead box P3 (FOXP3) and CD25 expression, but activated/cycling memory Tregs showed decreased ability to regulate mitochondrial transmembrane potential, indicating impaired mitochondrial fitness. These mitochondrial abnormalities were similar to those observed in memory conventional T-cells. CONCLUSIONS The complex Treg dysregulation in immunological non-responders involves quantitative and functional alterations, including a Treg deficiency within activated/cycling naive and central memory CD4+ T-cells, impaired mitochondrial fitness of activated/cycling memory Tregs, and functional disorders of the parent conventional T-lymphocytes. These findings underscore the need for a nuanced understanding of Treg dynamics in suboptimal CD4+ T-cell reconstitution during HIV-infection.
Collapse
Affiliation(s)
- Konstantin Shmagel
- Institute of Ecology and Genetics of Microorganisms UB RAS, Perm Federal Research Center UB RAS, 614081 Perm, Russian Federation
| | - Evgeniya Saidakova
- Institute of Ecology and Genetics of Microorganisms UB RAS, Perm Federal Research Center UB RAS, 614081 Perm, Russian Federation
- Biological Faculty, Perm State University, 614000 Perm, Russian Federation
| | - Larisa Korolevskaya
- Institute of Ecology and Genetics of Microorganisms UB RAS, Perm Federal Research Center UB RAS, 614081 Perm, Russian Federation
| | - Violetta Vlasova
- Institute of Ecology and Genetics of Microorganisms UB RAS, Perm Federal Research Center UB RAS, 614081 Perm, Russian Federation
| | - Souheil-Antoine Younes
- Pathology Advanced Translational Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Bullock ME, Hogan T, Williams C, Morris S, Nowicka M, Sharjeel M, van Dorp C, Yates AJ, Seddon B. The dynamics and longevity of circulating CD4+ memory T cells depend on cell age and not the chronological age of the host. PLoS Biol 2024; 22:e3002380. [PMID: 39137219 PMCID: PMC11321570 DOI: 10.1371/journal.pbio.3002380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Quantifying the kinetics with which memory T cell populations are generated and maintained is essential for identifying the determinants of the duration of immunity. The quality and persistence of circulating CD4 effector memory (TEM) and central memory (TCM) T cells in mice appear to shift with age, but it is unclear whether these changes are driven by the aging host environment, by cell age effects, or both. Here, we address these issues by combining DNA labelling methods, established fate-mapping systems, a novel reporter mouse strain, and mathematical models. Together, these allow us to quantify the dynamics of both young and established circulating memory CD4 T cell subsets, within both young and old mice. We show that that these cells and their descendents become more persistent the longer they reside within the TCM and TEM pools. This behaviour may limit memory CD4 T cell diversity by skewing TCR repertoires towards clones generated early in life, but may also compensate for functional defects in new memory cells generated in old age.
Collapse
Affiliation(s)
- M. Elise Bullock
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| | - Cayman Williams
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| | - Sinead Morris
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Maria Nowicka
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Minahil Sharjeel
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| | - Christiaan van Dorp
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Andrew J. Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
3
|
Bullock ME, Hogan T, Williams C, Morris S, Nowicka M, Sharjeel M, van Dorp C, Yates AJ, Seddon B. The dynamics and longevity of circulating CD4 + memory T cells depend on cell age and not the chronological age of the host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562650. [PMID: 38948729 PMCID: PMC11212895 DOI: 10.1101/2023.10.16.562650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Quantifying the kinetics with which memory T cell populations are generated and maintained is essential for identifying the determinants of the duration of immunity. The quality and persistence of circulating CD4+ effector memory (TEM) and central memory (TCM) T cells in mice appear to shift with age, but it is unclear whether these changes are driven by the aging host environment, by cell age effects, or both. Here we address these issues by combining DNA labelling methods, established fate-mapping systems, a novel reporter mouse strain, and mathematical models. Together, these allow us to quantify the dynamics of both young and established circulating memory CD4+ T cell subsets, within both young and old mice. We show that that these cells and their descendents become more persistent the longer they reside within the TCM and TEM pools. This behaviour may limit memory CD4 T cell diversity by skewing TCR repertoires towards clones generated early in life, but may also compensate for functional defects in new memory cells generated in old age.
Collapse
Affiliation(s)
- M. Elise Bullock
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Cayman Williams
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Sinead Morris
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Maria Nowicka
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Minahil Sharjeel
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Christiaan van Dorp
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Andrew J. Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
4
|
Bharadwaj NS, Zumwalde NA, Kapur A, Patankar M, Gumperz JE. Human CD4 + memory phenotype T cells use mitochondrial metabolism to generate sensitive IFN-γ responses. iScience 2024; 27:109775. [PMID: 38726371 PMCID: PMC11079467 DOI: 10.1016/j.isci.2024.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
The transition of naive T lymphocytes into antigenically activated effector cells is associated with a metabolic shift from oxidative phosphorylation to aerobic glycolysis. This shift facilitates production of the key anti-tumor cytokine interferon (IFN)-γ; however, an associated loss of mitochondrial efficiency in effector T cells ultimately limits anti-tumor immunity. Memory phenotype (MP) T cells are a newly recognized subset that arises through homeostatic activation signals following hematopoietic transplantation. We show here that human CD4+ MP cell differentiation is associated with increased glycolytic and oxidative metabolic activity, but MP cells retain less compromised mitochondria compared to effector CD4+ T cells, and their IFN-γ response is less dependent on glucose and more reliant on glutamine. MP cells also produced IFN-γ more efficiently in response to weak T cell receptor (TCR) agonism than effectors and mediated stronger responses to transformed B cells. MP cells may thus be particularly well suited to carry out sustained immunosurveillance against neoplastic cells.
Collapse
Affiliation(s)
- Nikhila S. Bharadwaj
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health; Madison, WI 53706, USA
| | - Nicholas A. Zumwalde
- Department of Genetics, University of Wisconsin School of Medicine and Public Health; Madison, WI 53706, USA
| | - Arvinder Kapur
- QIAGEN Sciences Inc., 19300 Germantown Road, Germantown, MD 20874, USA
| | - Manish Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health; Madison, WI 53706, USA
| | - Jenny E. Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health; Madison, WI 53706, USA
| |
Collapse
|
5
|
Parra-Ortega I, Nájera-Martínez N, Gaytán-Morales F, Castorena-Villa I, López-Martínez B, Ortiz-Navarrete V, Olvera-Gómez I. Enrichment of effector memory T cells in the CD4 and CD8 T cell compartment during chronic graft versus host disease in children. Transpl Immunol 2023; 81:101951. [PMID: 37939887 DOI: 10.1016/j.trim.2023.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND During allogeneic Hematopoietic stem cell transplantation (HSCT), frequent pathological scenarios include graft versus host disease (GVHD) and viral infections. We hypothesized if exogenous stimulus as alloantigen and viral antigens might impact on central and effector memory T cells in pediatric recipients. PATIENTS AND METHODS Subjects included 21 pediatric recipients and 20 healthy children (control group). Peripheral blood samples of patients were collected along the first 712 days post-HSCT. T cell phenotyping of naïve, central, and effector memory T cells (TCMs and TEMs, respectively) was conducted using flow cytometry. Viral nucleic acids were detected using real-time PCR. RESULTS T cell reconstitution was not reached after 1 year post-HSCT. Chronic GVHD was associated with increased numbers of naïve CD4 T cells (p < 0.05) as well as an increase in TEM and TCM cells of the CD4 (p < 0.0001 and p < 0.05, respectively) and CD8 T cell TEM (p < 0.0001). and TCM (p < 0.001) populations too. Moreover, BK and Epstein-Barr viruses were the main viral pathogens detected (<104 copies), which were associated with a decrease in all T cell compartments. CONCLUSION During chronic GVHD, alloantigen persistence generates TEM cell enrichment among CD4 and CD8 T cells, and viral infections are associated with deficient recovery of T cells after HSCT.
Collapse
Affiliation(s)
- Israel Parra-Ortega
- Hospital Infantil de México Federico Gómez, Clinical Laboratory Department, Mexico City, Mexico
| | - Noemí Nájera-Martínez
- Hospital Infantil de México Federico Gómez, Clinical Laboratory Department, Mexico City, Mexico
| | - Félix Gaytán-Morales
- Hospital Infantil de México Federico Gómez, Hematopoietic Stem Cell Transplantation Unit, Mexico City, Mexico
| | - Iván Castorena-Villa
- Hospital Infantil de México Federico Gómez, Hematopoietic Stem Cell Transplantation Unit, Mexico City, Mexico
| | - Briceida López-Martínez
- Hospital Infantil de México Federico Gómez, Sub-directorate of Auxilliary Services and Diagnosis, Mexico City, Mexico
| | | | - Irlanda Olvera-Gómez
- CICSA, Universidad Anáhuac, State of Mexico, Mexico; Immunology Laboratory, Hospital Nacional Homeopático, Mexico City, Mexico.
| |
Collapse
|
6
|
Rane S, Hogan T, Lee E, Seddon B, Yates AJ. Towards a unified model of naive T cell dynamics across the lifespan. eLife 2022; 11:78168. [PMID: 35678373 PMCID: PMC9348855 DOI: 10.7554/elife.78168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
Naive CD4 and CD8 T cells are cornerstones of adaptive immunity, but the dynamics of their establishment early in life and how their kinetics change as they mature following release from the thymus are poorly understood. Further, due to the diverse signals implicated in naive T cell survival, it has been a long-held and conceptually attractive view that they are sustained by active homeostatic control as thymic activity wanes. Here we use multiple modelling and experimental approaches to identify a unified model of naive CD4 and CD8 T cell population dynamics in mice, across their lifespan. We infer that both subsets divide rarely, and progressively increase their survival capacity with cell age. Strikingly, this simple model is able to describe naive CD4 T cell dynamics throughout life. In contrast, we find that newly generated naive CD8 T cells are lost more rapidly during the first 3-4 weeks of life, likely due to increased recruitment into memory. We find no evidence for elevated division rates in neonates, or for feedback regulation of naive T cell numbers at any age. We show how confronting mathematical models with diverse datasets can reveal a quantitative and remarkably simple picture of naive T cell dynamics in mice from birth into old age.
Collapse
Affiliation(s)
- Sanket Rane
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States.,Irving Institute for Cancer Dynamics, Columbia University, New York, United States
| | - Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| | - Edward Lee
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, United States
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Hospital, London, United Kingdom
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
7
|
Hogan T, Nowicka M, Cownden D, Pearson CF, Yates AJ, Seddon B. Differential impact of self and environmental antigens on the ontogeny and maintenance of CD4 + T cell memory. eLife 2019; 8:e48901. [PMID: 31742553 PMCID: PMC6905650 DOI: 10.7554/elife.48901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/17/2019] [Indexed: 11/13/2022] Open
Abstract
Laboratory mice develop populations of circulating memory CD4+ T cells in the absence of overt infection. We have previously shown that these populations are replenished from naive precursors at high levels throughout life (Gossel et al., 2017). However, the nature, relative importance and timing of the forces generating these cells remain unclear. Here, we tracked the generation of memory CD4+ T cell subsets in mice housed in facilities differing in their 'dirtiness'. We found evidence for sequential naive to central memory to effector memory development, and confirmed that both memory subsets are heterogeneous in their rates of turnover. We also inferred that early exposure to self and environmental antigens establishes persistent memory populations at levels determined largely, although not exclusively, by the dirtiness of the environment. After the first few weeks of life, however, these populations are continuously supplemented by new memory cells at rates that are independent of environment.
Collapse
Affiliation(s)
- Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and ImmunityUniversity College LondonLondonUnited Kingdom
| | - Maria Nowicka
- Department of Pathology and Cell BiologyColumbia University Medical CenterNew YorkUnited States
| | - Daniel Cownden
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Claire F Pearson
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUnited Kingdom
| | - Andrew J Yates
- Department of Pathology and Cell BiologyColumbia University Medical CenterNew YorkUnited States
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and ImmunityUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
8
|
Younes SA, Talla A, Pereira Ribeiro S, Saidakova EV, Korolevskaya LB, Shmagel KV, Shive CL, Freeman ML, Panigrahi S, Zweig S, Balderas R, Margolis L, Douek DC, Anthony DD, Pandiyan P, Cameron M, Sieg SF, Calabrese LH, Rodriguez B, Lederman MM. Cycling CD4+ T cells in HIV-infected immune nonresponders have mitochondrial dysfunction. J Clin Invest 2018; 128:5083-5094. [PMID: 30320604 DOI: 10.1172/jci120245] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023] Open
Abstract
Immune nonresponder (INR) HIV-1-infected subjects are characterized by their inability to reconstitute the CD4+ T cell pool after antiretroviral therapy. This is linked to poor clinical outcome. Mechanisms underlying immune reconstitution failure are poorly understood, although, counterintuitively, INRs often have increased frequencies of circulating CD4+ T cells in the cell cycle. While cycling CD4+ T cells from healthy controls and HIV+ patients with restored CD4+ T cell numbers complete cell division in vitro, cycling CD4+ T cells from INRs do not. Here, we show that cells with the phenotype and transcriptional profile of Tregs were enriched among cycling cells in health and in HIV infection. Yet there were diminished frequencies and numbers of Tregs among cycling CD4+ T cells in INRs, and cycling CD4+ T cells from INR subjects displayed transcriptional profiles associated with the impaired development and maintenance of functional Tregs. Flow cytometric assessment of TGF-β activity confirmed the dysfunction of Tregs in INR subjects. Transcriptional profiling and flow cytometry revealed diminished mitochondrial fitness in Tregs among INRs, and cycling Tregs from INRs had low expression of the mitochondrial biogenesis regulators peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α) and transcription factor A for mitochondria (TFAM). In vitro exposure to IL-15 allowed cells to complete division, restored the expression of PGC1α and TFAM, and regenerated mitochondrial fitness in the cycling Tregs of INRs. Our data suggest that rescuing mitochondrial function could correct the immune dysfunction characteristic of Tregs in HIV-1-infected subjects who fail to restore CD4+ T cells during antiretroviral therapy.
Collapse
Affiliation(s)
| | - Aarthi Talla
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | - Carey L Shive
- Division of Infectious Disease and.,Divisions of Infectious and Rheumatic Diseases, University Hospitals Case Medical Center, The Cleveland VA Medical Center, and the Center for AIDS Research, Cleveland, Ohio, USA
| | | | | | | | | | - Leonid Margolis
- National Institute of Child Health and Human Development and
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Donald D Anthony
- Division of Infectious Disease and.,Divisions of Infectious and Rheumatic Diseases, University Hospitals Case Medical Center, The Cleveland VA Medical Center, and the Center for AIDS Research, Cleveland, Ohio, USA
| | - Pushpa Pandiyan
- School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark Cameron
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Leonard H Calabrese
- Rheumatologic and Immunologic Disease, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
9
|
Min B. Spontaneous T Cell Proliferation: A Physiologic Process to Create and Maintain Homeostatic Balance and Diversity of the Immune System. Front Immunol 2018; 9:547. [PMID: 29616038 PMCID: PMC5868360 DOI: 10.3389/fimmu.2018.00547] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/05/2018] [Indexed: 11/14/2022] Open
Abstract
Naive T lymphocytes undergo heterogeneous proliferative responses when introduced into lymphopenic hosts, referred to as “homeostatic proliferation” and “spontaneous proliferation.” Spontaneous proliferation is a unique process through which the immune system generates memory phenotype cells with increasing T cell receptors repertoire complexity. Here, the mechanisms that initiate and control spontaneous proliferation are discussed.
Collapse
Affiliation(s)
- Booki Min
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
10
|
Clark SM, Vaughn CN, Soroka JA, Li X, Tonelli LH. Neonatal adoptive transfer of lymphocytes rescues social behaviour during adolescence in immune-deficient mice. Eur J Neurosci 2018; 47:968-978. [PMID: 29430738 DOI: 10.1111/ejn.13860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
Accumulating evidence has shown that lymphocytes modulate behaviour and cognition by direct interactions with the central nervous system. Studies have shown that reconstitution by adoptive transfer of lymphocytes from wild type into immune-deficient mice restores a number of neurobehavioural deficits observed in these models. Moreover, it has been shown that these effects are mostly mediated by T lymphocytes. Studies of adoptive transfer thus far have employed adult mice, but whether lymphocytes may also modulate behaviour during development remains unknown. In this study, neonate lymphocyte-deficient Rag2-/- mice were reconstituted within 48 hours after birth with lymphoid cells from transgenic donors expressing green fluorescent protein, allowing for their identification in various tissues in recipient mice while retaining all functional aspects. Adolescent Rag2-/- and reconstituted Rag2-/- along with C57BL/6J wild-type mice underwent a series of behavioural tests, including open field, social interaction and sucrose preference tests. At 12 weeks, they were evaluated in the Morris water maze (MWM). Reconstituted mice showed changes in almost all aspects of behaviour that were assessed, with a remarkable complete rescue of impaired social behaviour displayed by adolescent Rag2-/- mice. Consistent with previous reports in adult mice, neonatal reconstitution in Rag2-/- mice restored spatial memory in the MWM. The presence of donor lymphocytes in the brain of neonatally reconstituted Rag2-/- mice was confirmed at various developmental points. These findings provide evidence that lymphocytes colonize the brain during post-natal development and modulate behaviour across the lifespan supporting a role for adaptive immunity during brain maturation.
Collapse
Affiliation(s)
- Sarah M Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA.,Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Chloe N Vaughn
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA
| | - Jennifer A Soroka
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA
| | - Xin Li
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA
| | - Leonardo H Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA.,Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| |
Collapse
|
11
|
Song C, Nicholson JD, Clark SM, Li X, Keegan AD, Tonelli LH. Expansion of brain T cells in homeostatic conditions in lymphopenic Rag2(-/-) mice. Brain Behav Immun 2016; 57:161-172. [PMID: 27013354 PMCID: PMC5010944 DOI: 10.1016/j.bbi.2016.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022] Open
Abstract
The concept of the brain as an immune privileged organ is rapidly evolving in light of new findings outlining the sophisticated relationship between the central nervous and the immune systems. The role of T cells in brain development and function, as well as modulation of behavior has been demonstrated by an increasing number of studies. Moreover, recent studies have redefined the existence of a brain lymphatic system and the presence of T cells in specific brain structures, such as the meninges and choroid plexus. Nevertheless, much information is needed to further the understanding of brain T cells and their relationship with the central nervous system under non-inflammatory conditions. In the present study we employed the Rag2(-/-) mouse model of lymphocyte deficiency and reconstitution by adoptive transfer to study the temporal and anatomical expansion of T cells in the brain under homeostatic conditions. Lymphopenic Rag2(-/-) mice were reconstituted with 10 million lymphoid cells and studied at one, two and four weeks after transfer. Moreover, lymphoid cells and purified CD4(+) and CD8(+) T cells from transgenic GFP expressing mice were used to define the neuroanatomical localization of transferred cells. T cell numbers were very low in the brain of reconstituted mice up to one week after transfer and significantly increased by 2weeks, reaching wild type values at 4weeks after transfer. CD4(+) T cells were the most abundant lymphocyte subtype found in the brain followed by CD8(+) T cells and lastly B cells. Furthermore, proliferation studies showed that CD4(+) T cells expand more rapidly than CD8(+) T cells. Lymphoid cells localize abundantly in meningeal structures, choroid plexus, and circumventricular organs. Lymphocytes were also found in vascular and perivascular spaces and in the brain parenchyma across several regions of the brain, in particular in structures rich in white matter content. These results provide proof of concept that the brain meningeal system, as well as vascular and perivascular spaces, are homing sites of lymphocytes and suggest the possibility of a brain specific T cell subtype.
Collapse
Affiliation(s)
- Chang Song
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - James D. Nicholson
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Sarah M. Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD,Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD
| | - Xin Li
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Achsah D Keegan
- Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
| | - Leonardo H. Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD,Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD,Corresponding author: Leonardo H. Tonelli, PhD, 685 West Baltimore Street, MSTF Building Room 934 C, Baltimore, Maryland 21201, , Telephone: 410-706-2325
| |
Collapse
|
12
|
Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M, Coppola A, Bertera S, Rudert WA, Banerjee I, Bottino R, Trucco M. Bioengineering Thymus Organoids to Restore Thymic Function and Induce Donor-Specific Immune Tolerance to Allografts. Mol Ther 2015; 23:1262-1277. [PMID: 25903472 DOI: 10.1038/mt.2015.77] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/05/2015] [Indexed: 02/07/2023] Open
Abstract
One of the major obstacles in organ transplantation is to establish immune tolerance of allografts. Although immunosuppressive drugs can prevent graft rejection to a certain degree, their efficacies are limited, transient, and associated with severe side effects. Induction of thymic central tolerance to allografts remains challenging, largely because of the difficulty of maintaining donor thymic epithelial cells in vitro to allow successful bioengineering. Here, the authors show that three-dimensional scaffolds generated from decellularized mouse thymus can support thymic epithelial cell survival in culture and maintain their unique molecular properties. When transplanted into athymic nude mice, the bioengineered thymus organoids effectively promoted homing of lymphocyte progenitors and supported thymopoiesis. Nude mice transplanted with thymus organoids promptly rejected skin allografts and were able to mount antigen-specific humoral responses against ovalbumin on immunization. Notably, tolerance to skin allografts was achieved by transplanting thymus organoids constructed with either thymic epithelial cells coexpressing both syngeneic and allogenic major histocompatibility complexes, or mixtures of donor and recipient thymic epithelial cells. Our results demonstrate the technical feasibility of restoring thymic function with bioengineered thymus organoids and highlight the clinical implications of this thymus reconstruction technique in organ transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Asako Tajima
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Saik Kia Goh
- Department of Chemical and Petroleum Engineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Xuehui Geng
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Giulio Gualtierotti
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Maria Grupillo
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Antonina Coppola
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Current address: Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - William A Rudert
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
13
|
Abstract
Memory T cells are usually considered to be a feature of a successful immune response against a foreign antigen, and such cells can mediate potent immunity. However, in mice, alternative pathways have been described, through which naïve T cells can acquire the characteristics and functions of memory T cells without encountering specific foreign antigen or the typical signals required for conventional T cell differentiation. Such cells reflect a response to the internal rather the external environment, and hence such cells are called innate memory T cells. In this review, we describe how innate memory subsets were identified, the signals that induce their generation and their functional properties and potential role in the normal immune response. The existence of innate memory T cells in mice raises questions about whether parallel populations exist in humans, and we discuss the evidence for such populations during human T cell development and differentiation.
Collapse
Affiliation(s)
- Stephen C Jameson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| | - You Jeong Lee
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kristin A Hogquist
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| |
Collapse
|
14
|
Self-peptides in TCR repertoire selection and peripheral T cell function. Curr Top Microbiol Immunol 2013; 373:49-67. [PMID: 23612987 DOI: 10.1007/82_2013_319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The vertebrate antigen receptors are anticipatory in their antigen recognition and display a vast diversity. Antigen receptors are assembled through V(D)J recombination, in which one of each Variable, (Diverse), and Joining gene segment are randomly utilized and recombined. Both gene rearrangement and mutational insertion are generated through randomness; therefore, the process of antigen receptors generation requires a rigorous testing system to select every receptor which is useful to recognize foreign antigens, but which would cause no harm to self cells. In the case of T cell receptors (TCR), such a quality control responsibility rests in thymic positive and negative selection. In this review, we focus on the critical involvement of self-peptides in the generation of a T cell repertoire, discuss the role of T cell thymic development in shaping the specificity of TCR repertoire, and directing function fitness of mature T cells in periphery. Here, we consider thymic positive selection to be not merely a one-time maturing experience for an individual T cell, but a life-long imprinting which influences the function of each individual T cell in periphery.
Collapse
|
15
|
Unexpected role for MHC II-peptide complexes in shaping CD8 T-cell expansion and differentiation in vivo. Proc Natl Acad Sci U S A 2012; 109:12698-703. [PMID: 22802622 DOI: 10.1073/pnas.1207219109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here we report a unique role for MHC II-peptide complexes in controlling immune responses of naïve CD8 T cells. Compared with CD8 T cells from WT mice, CD8 T cells isolated from MHC II(-/-) mice hyperproliferated under lymphopenic conditions, differentiated into effector cells producing proinflammatory cytokines, and mediated more severe tissue inflammation. The elevated responses of MHC II(-/-) CD8 T cells were due to the absence of MHC II, but not CD4, T cells. The hyperreactivity appeared to be a feature of mature T cells, given its absence in CD8 single positive thymocytes derived from MHC II(-/-) mice. Expression of the MHC II ligand LAG3 was markedly enhanced during in vivo activation of MHC II(-/-) CD8 T cells, and blockade of MHC II-LAG3 interactions further enhanced T-cell expansion. Importantly, CD8 T cells isolated from H-2M(-/-) mice expressing WT levels of MHC II also displayed hyperresponsiveness similar to that of MHC II(-/-) CD8 T cells, suggesting that peptides presented on MHC II are involved in the control of CD8 T-cell responses. Our results uncover a previously undefined MHC II-dependent regulation that tunes CD8 T-cell reactivity and may have implications for an improved understanding of CD8 T-cell homeostasis and functions.
Collapse
|
16
|
Newrzela S, Al-Ghaili N, Heinrich T, Petkova M, Hartmann S, Rengstl B, Kumar A, Jäck HM, Gerdes S, Roeder I, Hansmann ML, von Laer D. T-cell receptor diversity prevents T-cell lymphoma development. Leukemia 2012; 26:2499-507. [PMID: 22643706 DOI: 10.1038/leu.2012.142] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mature T-cell lymphomas (MTCLs) have an extremely poor prognosis and are much less frequent than immature T-cell leukemias. This suggests that malignant outgrowth of mature T lymphocytes is well controlled. Indeed, in a previous study we found that mature T cells are resistant to transformation with known T-cell oncogenes. Here, however, we observed that T-cell receptor (TCR) mono-/oligoclonal mature T cells from TCR transgenic (tg) mice (OT-I, P14) expressing the oncogenes NPM/ALK or ΔTrkA readily developed MTCLs in T-cell-deficient recipients. Analysis of cell surface markers largely ruled out that TCR tg lymphomas were derived from T-cell precursors. Furthermore, cotransplanted non-modified TCR polyclonal T cells suppressed malignant outgrowth of oncogene expressing TCR tg T lymphocytes. A dominant role of an anti-leukemic immune response or Tregs in the control of MTCLs seems unlikely as naïve T cells derived from oncogene expressing stem cells, which should be tolerant to leukemic antigens, as well as purified CD4 and CD8 were resistant to transformation. However, our results are in line with a model in which homeostatic mechanisms that stabilize the diversity of the normal T-cell repertoire, for example, clonal competition, also control the outgrowth of potentially malignant T-cell clones. This study introduces a new innate mechanism of lymphoma control.
Collapse
Affiliation(s)
- S Newrzela
- Senckenberg Institute of Pathology, Goethe-University Hospital, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Do JS, Visperas A, Oh K, Stohlman SA, Min B. Memory CD4 T cells induce selective expression of IL-27 in CD8+ dendritic cells and regulate homeostatic naive T cell proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:230-7. [PMID: 22116827 PMCID: PMC3244513 DOI: 10.4049/jimmunol.1101908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Naive T cells undergo robust proliferation in lymphopenic conditions, whereas they remain quiescent in steady-state conditions. However, a mechanism by which naive T cells are kept from proliferating under steady-state conditions remains unclear. In this study, we report that memory CD4 T cells are able to limit naive T cell proliferation within lymphopenic hosts by modulating stimulatory functions of dendritic cells (DC). The inhibition was mediated by IL-27, which was primarily expressed in CD8(+) DC subsets as the result of memory CD4 T cell-DC interaction. IL-27 appeared to be the major mediator of inhibition, as naive T cells deficient in IL-27R were resistant to memory CD4 T cell-mediated inhibition. Finally, IL-27-mediated regulation of T cell proliferation was also observed in steady-state conditions as well as during Ag-mediated immune responses. We propose a new model for maintaining peripheral T cell homeostasis via memory CD4 T cells and CD8(+) DC-derived IL-27 in vivo.
Collapse
Affiliation(s)
- Jeong-su Do
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Anabelle Visperas
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Molecular Medicine, Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| | - Keunhee Oh
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Stephen. A. Stohlman
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Booki Min
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Molecular Medicine, Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| |
Collapse
|
18
|
Do JS, Foucras G, Kamada N, Schenk AF, Shaw M, Nuñez G, Paul WE, Min B. Both exogenous commensal and endogenous self antigens stimulate T cell proliferation under lymphopenic conditions. Cell Immunol 2011; 272:117-23. [PMID: 22169530 DOI: 10.1016/j.cellimm.2011.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/18/2011] [Accepted: 11/10/2011] [Indexed: 11/30/2022]
Abstract
Within lymphopenic recipients, naïve T cells undergo proliferation that is induced by homeostatic mechanisms. Earlier studies have demonstrated that commensal antigens play a key role in inducing the proliferation. However, a relative contribution of endogenous self antigens in this process has not been formally investigated. In this study, we utilized a pharmacologic inhibitor that blocks T cell egress from the lymphoid tissues, antibiotics, and germ-free animals to examine the role of commensal and self antigens. The results suggest that T cell proliferation under lymphopenic conditions is a heterogeneous process triggered by both exogenous commensal and endogenous self antigens.
Collapse
Affiliation(s)
- Jeong-su Do
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, United States
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Younes SA, Punkosdy G, Caucheteux S, Chen T, Grossman Z, Paul WE. Memory phenotype CD4 T cells undergoing rapid, nonburst-like, cytokine-driven proliferation can be distinguished from antigen-experienced memory cells. PLoS Biol 2011; 9:e1001171. [PMID: 22022231 PMCID: PMC3191130 DOI: 10.1371/journal.pbio.1001171] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/30/2011] [Indexed: 11/24/2022] Open
Abstract
Contrary to the current paradigm that nearly all memory T cells proliferate in response to antigenic stimulation, this paper shows that an important population of CD4 T lymphocytes achieves memory/effector status independent of antigenic stimulation. Memory phenotype (CD44bright, CD25negative) CD4 spleen and lymph node T cells (MP cells) proliferate rapidly in normal or germ-free donors, with BrdU uptake rates of 6% to 10% per day and Ki-67 positivity of 18% to 35%. The rapid proliferation of MP cells stands in contrast to the much slower proliferation of lymphocytic choriomeningitis virus (LCMV)-specific memory cells that divide at rates ranging from <1% to 2% per day over the period from 15 to 60 days after LCMV infection. Anti-MHC class II antibodies fail to inhibit the in situ proliferation of MP cells, implying a non–T-cell receptor (TCR)-driven proliferation. Such proliferation is partially inhibited by anti–IL-7Rα antibody. The sequence diversity of TCRβ CDR3 gene segments is comparable among the proliferating and quiescent MP cells from conventional and germ-free mice, implying that the majority of proliferating MP cells have not recently derived from a small cohort of cells that expand through multiple continuous rounds of cell division. We propose that MP cells constitute a diverse cell population, containing a subpopulation of slowly dividing authentic antigen-primed memory cells and a majority population of rapidly proliferating cells that did not arise from naïve cells through conventional antigen-driven clonal expansion. The class of immune cells called CD4 T lymphocytes consists of two major cell types: naïve cells that have not yet participated in an immune response and memory cells, which are cells that have responded to antigen, expanded in number, and acquired new characteristics. These two cell types can be distinguished from one another because they display different cell surface marker proteins. In this paper, we argue that many—probably most—of the cells researchers generally characterize as memory cells on the basis of their surface markers are not authentic memory cells. True memory cells—the ones produced, for example, when we immunize a child against a disease—divide very slowly, whereas the bulk of the cells we generally characterize as memory cells divide very rapidly. Mice that have never been exposed to antigens have as many of these “memory-like” cells as normal mice have, implying that these cells arise by a process that does not require foreign antigen. Analysis of the sequence of the antigen recognition receptors on these “memory-like” cells indicates that their replication does not derive from a few cells or clones undergoing multiple rounds of proliferation, thus their division cannot be explained by conventional, antigen-driven clonal expansion. We conclude that this large population of “memory-like” cells has arisen by a mechanism independent of a response to foreign antigen, and that these cells may have a crucial biological function.
Collapse
Affiliation(s)
- Souheil-Antoine Younes
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - George Punkosdy
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephane Caucheteux
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tao Chen
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zvi Grossman
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William E. Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
In vivo T-cell dynamics during immune reconstitution after hematopoietic stem cell gene therapy in adenosine deaminase severe combined immune deficiency. J Allergy Clin Immunol 2011; 127:1368-75.e8. [DOI: 10.1016/j.jaci.2011.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 12/24/2022]
|
21
|
Swaim AF, Field DJ, Fox-Talbot K, Baldwin WM, Morrell CN. Platelets contribute to allograft rejection through glutamate receptor signaling. THE JOURNAL OF IMMUNOLOGY 2010; 185:6999-7006. [PMID: 20962257 DOI: 10.4049/jimmunol.1000929] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Platelets recruit leukocytes and mediate interactions between leukocytes and endothelial cells. Platelets have been long described as markers of transplant rejection, but the contribution of platelets to transplant rejection has not been critically examined. We demonstrate in this study that following T cell initiation of allograft rejection, platelets contribute to T cell recruitment and increased plasma inflammatory mediators and accelerate T cell-meditated skin graft rejection. Prior work from our laboratory has shown that platelets secrete glutamate when activated, which then induces platelet thromboxane production by signaling through platelet-expressed ionotropic glutamate receptors. Glutamate receptor antagonists therefore represent, to our knowledge, novel inhibitors of platelet-accelerated inflammation. We have found that plasma glutamate is increased in mice that receive skin grafts and that mice treated with glutamate receptor antagonists have improved graft survival and decreased plasma thromboxane, platelet factor 4 (CXCL4), and IFN-γ. Taken together, our work now demonstrates that subsequent to T cell initiation of skin graft rejection, platelets contribute to further T cell recruitment and that by blunting glutamate-mediated platelet activation, graft survival is improved.
Collapse
Affiliation(s)
- AnneMarie F Swaim
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
22
|
Winstead CJ, Reilly CS, Moon JJ, Jenkins MK, Hamilton SE, Jameson SC, Way SS, Khoruts A. CD4+CD25+Foxp3+ regulatory T cells optimize diversity of the conventional T cell repertoire during reconstitution from lymphopenia. THE JOURNAL OF IMMUNOLOGY 2010; 184:4749-60. [PMID: 20357265 DOI: 10.4049/jimmunol.0904076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The functional capacity of the adaptive immune system is dependent on the size and the diversity of the T cell population. In states of lymphopenia, T cells are driven to proliferate to restore the T cell population size. However, different T cell clones proliferate at different rates, and some T cells experience burst-like expansion called spontaneous lymphopenia-induced proliferation (LIP). These T cells are likely receiving stimulation from cognate Ags and are most responsible for inflammatory pathology that can emerge in lymphopenic states. Foxp3(+) regulatory T cells (Tregs) selectively inhibit spontaneous LIP, which may contribute to their ability to prevent lymphopenia-associated autoimmunity. We hypothesized that another potential negative consequence of unrestrained spontaneous LIP is constriction of the total T cell repertoire. We demonstrate that the absence of Foxp3(+) Tregs during the period of immune reconstitution results in the development of TCR repertoire "holes" and the loss of Ag-specific responsiveness to infectious microorganisms. In contrast, the presence of Tregs during the period of immune reconstitution preserves optimal TCR diversity and foreign Ag responsiveness. This finding contrasts with the generally accepted immunosuppressive role of Tregs and provides another example of Treg activity that actually enhances immune function.
Collapse
Affiliation(s)
- Colleen J Winstead
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55414, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Schuster K, Gadiot J, Andreesen R, Mackensen A, Gajewski TF, Blank C. Homeostatic proliferation of naïve CD8+ T cells depends on CD62L/L-selectin-mediated homing to peripheral LN. Eur J Immunol 2010; 39:2981-90. [PMID: 19658092 DOI: 10.1002/eji.200939330] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adoptive transfer of naïve CD8(+) T cells into lymphopenic recipients results both in spontaneous proliferation and in partial activation of T cells, a phenomenon termed homeostatic proliferation (HP). HP of CD8(+) T cells is dependent on host IL-7, IL-15, and MHC-class I and has been shown to prevent T-cell tolerance, reverse T-cell anergy and support T-cell-mediated tumor control in vivo. However, the initial anatomic site of HP is still under debate. Since we observed that the earliest detectable HP occurs within LN and that T cells undergoing HP retain a CD62L(bright) phenotype, we investigated the functional role of CD62L for this process. We found that CD62L-expression on T cells is required for optimal HP and HP was impaired in lymphotoxin-alphabeta(-/-) mice, indicating the necessity for intact host secondary lymphoid organ structures. Use of the LN egression inhibitor FTY720 indicated that LN structures were pivotal to yield homeostatically proliferated T cells detected in other compartments. Consistent with these results, HP-supported control of MC57-SIY tumors depended on CD62L. Our data indicate a critical role for CD62L and LN homing for the process of HP, which has implications for adoptive immunotherapy approaches of cancer.
Collapse
Affiliation(s)
- Kerstin Schuster
- Department of Hematology and Oncology, University Medical Center, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Enhancement of antitumor immunity by low-dose total body irradiationis associated with selectively decreasing the proportion and number of T regulatory cells. Cell Mol Immunol 2010; 7:157-62. [PMID: 20140010 DOI: 10.1038/cmi.2009.117] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Low-dose total body irradiation (LTBI) is used in the treatment of some cancers mainly for immune enhancement rather than cell killing. However, the mechanism underlying LTBI remains unknown. In this study, by analyzing the immune patterns of lymphocytes, we found that the percentage and absolute number of CD4(+)CD25(+)Foxp3(+) regulatory T cells are markedly decreased in naive mice following treatment with LTBI. On the contrary, the CD4(+)CD44(+)/CD8(+)CD44(+) effect or-memory T cells are greatly increased. Importantly, naive mice treated with dendritic cell-gp 100 tumor vaccines under LTBI induced an enhancement of antigen-specific proliferation and cytotoxicity as well as interferon-gamma (IFN-gamma) secretion against F10 melanoma tumor challenge, compared to treatment with either the tumor vaccine or LTBI alone. Consequently, the treatment resulted in a reduced tumor burden and prolonged mouse survival. Our data demonstrate that LTBI's enhancement of antitumor immunity was mainly associated with selectively decreasing the proportion and number of T regulatory cells,implying the potential application of the combination of LTBI and a tumor vaccine in antitumor therapy.
Collapse
|
25
|
Immune reconstitution and implications for immunotherapy following haematopoietic stem cell transplantation. Best Pract Res Clin Haematol 2008; 21:579-96. [PMID: 18790456 DOI: 10.1016/j.beha.2008.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recovery of a fully functional immune system is a slow and often incomplete process following allogeneic stem cell transplantation. While innate immunity reconstitutes quickly, adaptive B- and especially T-cell lymphopoeisis may be compromised for years following transplantation. In large part, these immune system deficits are due to the decrease, or even absence, of thymopoiesis following transplantation. Thereby, T-cell reconstitution initially relies upon expansion of mature donor T cells; a proliferation driven by high cytokine levels and the presence of allo-reactive antigens. This peripheral mechanism of T-cell generation may have important clinical consequences. By expanding tumouricidal T cells, it may provide a venue to enhance T-cellular immunotherapy following transplantation. Alternatively, decreased thymic function may impair long-term anti-tumour immunity and increase the likelihood of graft-versus-host disease.
Collapse
|
26
|
Winstead CJ, Fraser JM, Khoruts A. Regulatory CD4+CD25+Foxp3+ T cells selectively inhibit the spontaneous form of lymphopenia-induced proliferation of naive T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:7305-17. [PMID: 18490730 DOI: 10.4049/jimmunol.180.11.7305] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regulatory CD4(+)CD25(+)Foxp3(+) T cells play a critical role in controlling autoimmunity and T cell homeostasis. However, their role in regulation of lymphopenia-induced proliferation (LIP), a potential mechanism for generation of autoaggressive T cells, has been poorly defined. Currently, two forms of LIP are recognized: spontaneous and homeostatic. Spontaneous LIP is characterized by fast, burst-like cell-cycle activity, and may allow effector T cell differentiation. Homeostatic LIP is characterized by slow and steady cell cycle activity and is not associated with the acquisition of an effector phenotype. In this study, we demonstrate that CD4(+)CD25(+)Foxp3(+) T cells suppress the spontaneous, but not homeostatic, LIP of naive CD8 and CD4 T cells. However, selective inhibition of spontaneous LIP does not fully explain the tolerogenic role of Tregs in lymphopenia-associated autoimmunity. We show here that suppression of LIP in the lymphoid tissues is independent of Treg-derived IL-10. However, IL-10-deficient Tregs are partially defective in their ability to prevent colitis caused by adoptive transfer of CD4 T cells into RAG(-/-) mice. We propose that Tregs may inhibit emergence of effector T cells during the inductive phase of the immune response in the secondary lymphoid tissues by IL-10-independent mechanisms. In contrast, Treg-mediated inhibition of established effector T cells does require IL-10. Both Treg functions appear to be important in control of lymphopenia-associated autoimmunity.
Collapse
Affiliation(s)
- Colleen J Winstead
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
27
|
Abstract
Leukemia caused by retroviral insertional mutagenesis after stem cell gene transfer has been reported in several experimental animals and in patients treated for X-linked severe combined immunodeficiency. Here, we analyzed whether gene transfer into mature T cells bears the same genotoxic risk. To address this issue in an experimental "worst case scenario," we transduced mature T cells and hematopoietic progenitor cells from C57BL/6 (Ly5.1) donor mice with high copy numbers of gamma retroviral vectors encoding the potent T-cell oncogenes LMO2, TCL1, or DeltaTrkA, a constitutively active mutant of TrkA. After transplantation into RAG-1-deficient recipients (Ly5.2), animals that received stem cell transplants developed T-cell lymphoma/leukemia for all investigated oncogenes with a characteristic phenotype and after characteristic latency periods. Ligation-mediated polymerase chain reaction analysis revealed monoclonality or oligoclonality of the malignancies. In striking contrast, none of the mice that received T-cell transplants transduced with the same vectors developed leukemia/lymphoma despite persistence of gene-modified cells. Thus, our data provide direct evidence that mature T cells are less prone to transformation than hematopoietic progenitor cells.
Collapse
|
28
|
Abstract
The small number of antigen-specific memory CD4 T cells surviving long-term after antigen or pathogen challenge are often characterized by a surprising degree of phenotypic and functional heterogeneity. We here propose that the immune system has evolved to express this diversity in memory T-cell populations, in order to provide flexibility in recall responses, via a rapid transition from heterogeneous effector cells into correspondingly heterogeneous memory cells. Little attention has been paid to another important transition-from resting memory cell to re-activated effector. We would suggest that superior functional attributes of secondary effectors arising from memory CD4 T cells, as compared to primary effectors arising from naïve precursors, play an important and underappreciated role in protective secondary immune responses.
Collapse
Affiliation(s)
- K Kai McKinstry
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY 12983, USA.
| | | | | |
Collapse
|
29
|
do Canto FB, Lima Junior C, Teixeira IA, Bellio M, Nóbrega A, Fucs R. Susceptibility of neonatal T cells and adult thymocytes to peripheral tolerance to allogeneic stimuli. Immunology 2008; 125:387-96. [PMID: 18462348 DOI: 10.1111/j.1365-2567.2008.02855.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We studied the tolerization of neonatal thymocytes (NT), neonatal splenocytes (NS) and adult thymocytes (AT), transferred to syngeneic nude (nu/nu) hosts previously injected with semi-allogeneic splenocytes, without any supportive immunosuppressive treatment. This protocol allows the study of peripheral tolerance in the absence of the thymus. BALB/c neonatal T cells and ATs were able to expand in syngeneic BALB/c nu/nu mice and functionally reconstituted an allogeneic response, rejecting (BALB/c x B6.Ba) F1 splenocytes transferred 3-4 weeks after injection of BALB/c cells. However, if (BALB/c x B6.Ba) F1 cells were injected into BALB/c nude hosts 30 days before transfer of NT, NS or AT cells, the F1 population was preserved and specific tolerance to B6 allografts was established. Furthermore, transfer to lymphopenic F1 nu/nu showed that tolerance could be established only for neonatal populations, showing that unique properties of neonatal T cells allow their tolerization in both lymphopenic and non-lymphopenic conditions, in the absence of suppressive immunotherapy. These results bring empirical support to the possibility of T-cell engraftment in immunodeficient patients showing partial identity with donor major histocompatibility complex (MHC) genes; the manipulation of immunological maturity of donor T cells may be the key for successful reconstitution of immunocompetence without induction of graft-versus-host disease.
Collapse
Affiliation(s)
- Fábio B do Canto
- Departamento de Imunobiologia Instituto de Biologia, Universidade Federal Fluminense-UFF, Niterói, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Thomas-Vaslin V, Altes HK, de Boer RJ, Klatzmann D. Comprehensive assessment and mathematical modeling of T cell population dynamics and homeostasis. THE JOURNAL OF IMMUNOLOGY 2008; 180:2240-50. [PMID: 18250431 DOI: 10.4049/jimmunol.180.4.2240] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our current view of T cell differentiation and population dynamics is assembled from pieces of data obtained from separate experimental systems and is thus patchy. We reassessed homeostasis and dynamics of T cells 1) by generating a mathematical model describing the spatiotemporal features of T cell differentiation, and 2) by fitting this model to experimental data generated by disturbing T cell differentiation through transient depletion of dividing T cells in mice. This specific depletion was obtained by administration of ganciclovir to mice expressing the conditional thymidine kinase suicide gene in T cells. With this experimental approach, we could derive quantitative parameters describing the cell fluxes, residence times, and rates of import, export, proliferation, and death across cell compartments for thymocytes and recent thymic emigrants (RTEs). Among other parameters, we show that 93% of thymocytes produced before single-positive stages are eliminated through the selection process. Then, a postselection peripheral expansion of naive T cells contributes three times more to naive T cell production than the thymus, with half of the naive T cells consisting of dividing RTEs. Altogether, this work provides a quantitative population dynamical framework of thymocyte development, RTEs, and naive T cells.
Collapse
Affiliation(s)
- Véronique Thomas-Vaslin
- Unité Mixte de Recherche 7087, Biologie et Thérapeutique des Pathologies Immunitaires, Université Pierre et Marie Curie-Paris 06, 83 Boulevard de l'Hôpital, Paris, France.
| | | | | | | |
Collapse
|
31
|
Li CR, Santoso S, Lo DD. Quantitative analysis of T cell homeostatic proliferation. Cell Immunol 2008; 250:40-54. [PMID: 18313651 DOI: 10.1016/j.cellimm.2008.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/02/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
T cell homeostatic proliferation occurs on transfer of T cells into lymphopenic recipients; transferred cells undergo several rounds of division in the absence of specific antigen stimulation. For a quantitative analysis of this phenomenon, we applied a mathematical method to describe proliferating T cells to match peak distributions from actual CFSE dilution data. For in vitro stimulation of T cells with anti-CD3/anti-CD28, our simulation confirmed a high proportion of cells entering cell cycle with a low proportion undergoing apoptosis. When applied to homeostatic proliferation, it described striking differences in CD4 and CD8 T cell proliferation rates, and accurately predicted that successive divisions were accompanied by higher rates of apoptosis, limiting the accumulation of proliferating cells. Thus, the presence of multiple CFSE dilution peaks cannot be considered equivalent to lymphocyte expansion. Finally, genetic effects were identified that may help explain links between homeostatic proliferation and autoimmunity.
Collapse
Affiliation(s)
- Cheng-Rui Li
- Division of Biomedical Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | |
Collapse
|
32
|
Rivera-Munoz P, Malivert L, Derdouch S, Azerrad C, Abramowski V, Revy P, Villartay JPD. DNA repair and the immune system: From V(D)J recombination to aging lymphocytes. Eur J Immunol 2008; 37 Suppl 1:S71-82. [PMID: 17972348 DOI: 10.1002/eji.200737396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
B and T lymphocytes are exposed to various genotoxic stresses during their life, which originate from programmed molecular mechanisms during their development and maturation or are secondary to cellular metabolism during acute phases of cell proliferation and activation during immune responses. How lymphocytes handle these multiple genomic assault has become a focus of interest over the years, perhaps beginning with the identification of the murine scid model in the early 80s when it was recognized that DNA repair deficiencies had profound consequences on the immune system. In this respect, the immune system represents an ideal model to study DNA damage responses (DDR) and the survey of immune deficiency conditions in humans or the development of specific animal models provided many major contributions in our understanding of the various biochemical pathways at play during DDR in general. Although the role of DNA repair in the early phases of B and T cell development has been analyzed thoroughly, the role of these functions in various aspects of the mature immune system (homeostasis, immunological memory, ageing) is less well understood. Lastly, the analysis of DNA repair in the immune system has provided many insights in the more general understanding of cancer.
Collapse
|
33
|
Williams KM, Hakim FT, Gress RE. T cell immune reconstitution following lymphodepletion. Semin Immunol 2007; 19:318-30. [PMID: 18023361 DOI: 10.1016/j.smim.2007.10.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 10/02/2007] [Indexed: 12/14/2022]
Abstract
T cell reconstitution following lymphopenia from chemotherapy or stem cell transplant is often slow and incompetent, contributing to the development of infectious diseases, relapse, and graft-versus-host disease. This is due to the fact that de novo T cell production is impaired following cytoreductive regimens. T cells can be generated from two pathways: (1) thymus derived through active thymopoiesis and (2) peripherally expanded clones through homeostatic proliferation. During recovery from lymphopenia, the thymic pathway is commonly compromised in adults and T cells rely upon peripheral expansion to restore T cell numbers. This homeostatic proliferation exploits the high cytokine levels following lymphopenia to rapidly generate T cells in the periphery. Moreover, this early peripheral expansion of T cells can also be driven by exogenous antigen. This results in loss of T cell repertoire diversity and may predispose to auto- or allo-immunity. Alternatively, the high homeostatic proliferation following lymphopenia may facilitate expansion of anti-tumor immunity. Murine and human studies have provided insight into the cytokine and cellular regulators of these two pathways of T cell generation and the disparate portraits of T cell immunity created through robust thymopoiesis or peripheral expansion following lymphopenia. This insight has permitted the manipulation of the immune system to maximize anti-tumor immunity through lymphopenia and led to an appreciation of mechanisms that underlie graft versus host disease.
Collapse
Affiliation(s)
- Kirsten M Williams
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
34
|
Adkins B. Heterogeneity in the CD4 T Cell Compartment and the Variability of Neonatal Immune Responsiveness. ACTA ACUST UNITED AC 2007; 3:151-159. [PMID: 19122799 DOI: 10.2174/157339507781483496] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the past decade, it has become clear that T cell immune responses in both murine and human neonates are very heterogeneous, running the gamut from poor or deviant responsiveness to mature, adult-like inflammatory function. How this variability arises is not well understood but there is now a great deal of information suggesting that differences in the T cell compartments in neonates vs adults play important roles. A number of cell types or processes are qualitatively or quantitatively different in the neonate. These include (a) alternate epigenetic programs at the Th2 cytokine locus, (b) enhanced homeostatic proliferation, (c) a relative abundance of fetal-origin cells, (d) a greater representation of recent thymic emigrants, (e) high proportions of potentially self-reactive cells, (f) a developmental delay in the production of regulatory T cells, and (g) cells bearing TCR with limited N region diversity. Different conditions of antigen exposure may lead to different environmental signals that promote the selective responsiveness of one or more of these populations. Therefore, the variability of neonatal responses may be a function of the heterogeneous nature of the responding T cell population. In this review, we will describe these various subpopulations in detail and speculate as to the manner in which they could contribute to the heterogeneity of neonatal immune responses.
Collapse
Affiliation(s)
- Becky Adkins
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
35
|
Koenen PGF, Hofhuis FM, Oosterwegel MA, Tesselaar K. T cell activation and proliferation characteristic for HIV-Nef transgenic mice is lymphopenia induced. THE JOURNAL OF IMMUNOLOGY 2007; 178:5762-8. [PMID: 17442960 DOI: 10.4049/jimmunol.178.9.5762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The HIV-Nef protein has been implicated in generating high viral loads and T cell activation. Transgenic (tg) mice with constitutive T cell-specific Nef expression show a dramatic reduction in T cell number and highly increased T cell turnover. Previous studies in Nef tg mice attributed this T cell activation to a direct effect of Nef at the cellular level. Given the strongly reduced peripheral T cell numbers, we examined whether this enhanced T cell division might instead be lymphopenia induced. Adoptively transferred naive wild-type T cells into lymphopenic Nef tg mice showed high T cell turnover and obtained the same effector/memory phenotype as the autologous Nef tg T cells, supporting the idea that the microenvironment determines the phenotype of the T cells present. Moreover, in bone marrow chimeras from mixtures of wild-type and Nef tg bone marrow, with a full T cell compartment containing a small proportion of Nef tg T cells, Nef tg T cells kept a naive phenotype. These results demonstrate that T cell activation in the Nef tg mice is lymphopenia induced rather than due to a direct T cell-activating effect of Nef.
Collapse
Affiliation(s)
- Paul G F Koenen
- Department of Immunology, University Medical Center, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
36
|
Totsuka T, Kanai T, Nemoto Y, Makita S, Okamoto R, Tsuchiya K, Watanabe M. IL-7 Is Essential for the Development and the Persistence of Chronic Colitis. THE JOURNAL OF IMMUNOLOGY 2007; 178:4737-48. [PMID: 17404253 DOI: 10.4049/jimmunol.178.8.4737] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although IL-7 has recently emerged as a key cytokine involved in controlling the homeostatic turnover and the survival of peripheral resting memory CD4(+) T cells, its potential to be sustained pathogenic CD4(+) T cells in chronic immune diseases, such as inflammatory bowel diseases, still remains unclear. In this study, we demonstrate that IL-7 is essential for the development and the persistence of chronic colitis induced by adoptive transfer of normal CD4(+)CD45RB(high) T cells or colitogenic lamina propria (LP) CD4(+) memory T cells into immunodeficient IL-7(+/+) x RAG-1(-/-) and IL-7(-/-) x RAG-1(-/-) mice. Although IL-7(+/+) x RAG-1(-/-) recipients transferred with CD4(+)CD45RB(high) splenocytes developed massive inflammation of the large intestinal mucosa concurrent with massive expansion of Th1 cells, IL-7(-/-) x RAG-1(-/-) recipients did not. Furthermore, IL-7(-/-) x RAG-1(-/-), but not IL-7(+/+) x RAG-1(-/-), mice transferred with LP CD4(+)CD44(high)CD62L(-)IL-7Ralpha(high) effector-memory T cells (T(EM)) isolated from colitic CD4(+)CD45RB(high)-transferred mice did not develop colitis. Although rapid proliferation of transferred colitogenic LP CD4(+) T(EM) cells was observed in the in IL-7(-/-) x RAG-1(-/-) mice to a similar extent of those in IL-7(+/+) x RAG-1(-/-) mice, Bcl-2 expression was significantly down-modulated in the transferred CD4(+) T cells in IL-7(-/-) x RAG-1(-/-) mice compared with those in IL-7(+/+) x RAG-1(-/-) mice. Taken together, IL-7 is essential for the development and the persistence of chronic colitis as a critical survival factor for colitogenic CD4(+) T(EM) cells, suggesting that therapeutic approaches targeting IL-7/IL-7R signaling pathway may be feasible in the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Teruji Totsuka
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Maeda Y, Tawara I, Teshima T, Liu C, Hashimoto D, Matsuoka KI, Tanimoto M, Reddy P. Lymphopenia-induced proliferation of donor T cells reduces their capacity for causing acute graft-versus-host disease. Exp Hematol 2007; 35:274-86. [PMID: 17258076 DOI: 10.1016/j.exphem.2006.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 01/04/2023]
Abstract
OBJECTIVE T cells that undergo lymphopenia-induced proliferation (LIP) are characterized by greater effector and anti-tumor function than naïve T cells. But the ability of these T cells in causing graft-versus-host disease (GVHD) is not known. METHODS We tested the hypothesis that donor T cells that had undergone LIP would cause more severe GVHD than naïve T cells by utilizing well-characterized murine experimental models of allogeneic bone marrow transplantation (BMT). RESULTS Contrary to our hypothesis, LIP of donor T cells under either noninflammatory or irradiated conditions caused significantly reduced GVHD as determined by survival, clinical, pathologic, and biochemical parameters than naïve T cells. Compared to naïve donor T cells, LIP T cells demonstrated reduced expansion in vivo and in vitro after allogeneic BMT. The reduction in GVHD mortality and severity was observed across multiple strains after allogeneic BMT. In vivo mechanistic studies by cell depletion demonstrated an increase in the CD44(hi) "memory" phenotype T cells and not the CD4(+)CD25(+) T cell subset to be critical for the reduction in GVHD. CONCLUSIONS These data demonstrate that LIP of T cells regulates acute GVHD severity in contrast to their ability to cause increased allograft rejection, autoimmunity, or anti-tumor immunity.
Collapse
|
38
|
Martin B, Bécourt C, Bienvenu B, Lucas B. Self-recognition is crucial for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment. Blood 2006; 108:270-7. [PMID: 16527889 DOI: 10.1182/blood-2006-01-0017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The role of self-recognition in the maintenance of the peripheral CD4+ T-cell pool has been extensively studied, but no clear answer has so far emerged. Indeed, in studies of the role of self-major histocompatibility complex (MHC) molecules in CD4+ T-cell survival, several parameters must be taken into account when interpreting the results: (1) in a lymphopenic environment, observations are biased by concomitant proliferation of T cells arising in MHC-expressing mice; (2) the peripheral T-cell compartment is qualitatively and quantitatively different in nonlymphopenic, normal, and MHC class II-deficient mice; and (3) in C57BL/6 Aβ-/- mice (traditionally considered MHC class II-deficient), the Aα chain and the Eβ chain associate to form a hybrid AαEβ MHC class II molecule. In light of these considerations, we revisited the role of interactions with MHC class II molecules in the survival of peripheral CD4+ T cells. We found that the answer to the question “is self-recognition required for CD4+ T cells to survive?” is not a simple yes or no. Indeed, although long-term survival of CD4+ T cells does not depend on self-recognition in lymphopenic mice, interactions with MHC class II molecules are required for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment. (Blood. 2006;108:270-277)
Collapse
Affiliation(s)
- Bruno Martin
- Institut National de la Santé et de la Recherche Médicale (INSERM) U561, Saint-Vincent-de-Paul Hospital, Paris, France
| | | | | | | |
Collapse
|
39
|
Hakim FT, Gress RE. Reconstitution of the lymphocyte compartment after lymphocyte depletion: A key issue in clinical immunology. Eur J Immunol 2005; 35:3099-102. [PMID: 16231288 DOI: 10.1002/eji.200535385] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Loss of existing T cell populations is a significant clinical problem following cytoreductive therapies or in disease states such as HIV. Characterization of the pathways of T cell regeneration, their limitations and regulation, is central to the development of new approaches for the correction of T cell lymphopenia. Recently, there has been an increasing appreciation that subsets of T cells differ not only in requirements for homeostasis, but in the mechanisms of initial generation and later reconstitution of lost populations. In this issue, Cox et al. determine that variations in cytokine/chemokine levels may affect the biology of T cell recovery which impacts on the development of treatment strategies for lymphopenia.
Collapse
Affiliation(s)
- Frances T Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892-1203, USA.
| | | |
Collapse
|