1
|
Dunn ZS, Mac J, Wang P. T cell immunotherapy enhanced by designer biomaterials. Biomaterials 2019; 217:119265. [PMID: 31271861 PMCID: PMC6689323 DOI: 10.1016/j.biomaterials.2019.119265] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/21/2022]
Abstract
Cancer immunotherapy has recently burst onto the center stage of cancer treatment and research. T lymphocyte adoptive cellular transfer (ACT), a form of cancer immunotherapy, has spawned unprecedented complete remissions for terminal patients with certain leukemias and lymphomas. Unfortunately, the successes have been overshadowed by the disappointing clinical results of ACT administered to treat solid tumors, in addition to the toxicities associated with the treatment, a lack of efficacy in a significant proportion of the patient population, and cancer relapse following the treatment. Biomaterials hold the promise of addressing these shortcomings. ACT consists of two main stages - T lymphocyte ex vivo expansion followed by reinfusion into the patient - and biomaterials can improve the efficacy of ACT at both stages. In this review, we highlight recent advances in the use of biomaterials for T lymphocyte adoptive cellular cancer immunotherapy and discuss the challenges at each stage.
Collapse
Affiliation(s)
- Zachary S Dunn
- Mork Family Department of of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States
| | - John Mac
- Mork Family Department of of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States
| | - Pin Wang
- Mork Family Department of of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Witzel II, Nasser R, Garcia-Sabaté A, Sapudom J, Ma C, Chen W, Teo JCM. Deconstructing Immune Microenvironments of Lymphoid Tissues for Reverse Engineering. Adv Healthc Mater 2019; 8:e1801126. [PMID: 30516005 DOI: 10.1002/adhm.201801126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/25/2018] [Indexed: 01/01/2023]
Abstract
The immune microenvironment presents a diverse panel of cues that impacts immune cell migration, organization, differentiation, and the immune response. Uniquely, both the liquid and solid phases of every specific immune niche within the body play an important role in defining cellular functions in immunity at that particular location. The in vivo immune microenvironment consists of biomechanical and biochemical signals including their gradients, surface topography, dimensionality, modes of ligand presentation, and cell-cell interactions, and the ability to recreate these immune biointerfaces in vitro can provide valuable insights into the immune system. This manuscript reviews the critical roles played by different immune cells and surveys the current progress of model systems for reverse engineering of immune microenvironments with a focus on lymphoid tissues.
Collapse
Affiliation(s)
- Ini-Isabée Witzel
- Core Technology Platforms; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
| | - Rasha Nasser
- Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
- Department of Biomedical Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
- Department of Mechanical and Aerospace Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| |
Collapse
|
3
|
Smith MR, Tolbert SV, Wen F. Protein-Scaffold Directed Nanoscale Assembly of T Cell Ligands: Artificial Antigen Presentation with Defined Valency, Density, and Ratio. ACS Synth Biol 2018; 7:1629-1639. [PMID: 29733631 DOI: 10.1021/acssynbio.8b00119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuning antigen presentation to T cells is a critical step in investigating key aspects of T cell activation. However, existing technologies have a limited ability to control the spatial and stoichiometric organization of T cell ligands on 3D surfaces. Here, we developed an artificial antigen presentation platform based on protein scaffold-directed assembly that allows fine control over the spatial and stoichiometric organization of T cell ligands on a 3D yeast cell surface. Using this system, we observed that the T cell activation threshold on a 3D surface is independent of peptide-major histocompatibility complex (pMHC) valency but instead is determined by the overall pMHC surface density. When intercellular adhesion molecule 1 (ICAM-1) was coassembled with pMHC, it enhanced antigen recognition sensitivity by 6-fold. Further, T cells responded with different magnitudes to varying ratios of pMHC and ICAM-1 and exhibited a maximum response at a ratio of 15% pMHC and 85% ICAM-1, introducing an additional parameter for tuning T cell activation. This protein scaffold-directed assembly technology is readily transferrable to acellular surfaces for translational research as well as large-scale T-cell manufacturing.
Collapse
Affiliation(s)
- Mason R. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephanie V. Tolbert
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
|
5
|
Delcassian D, Sattler S, Dunlop IE. T cell immunoengineering with advanced biomaterials. Integr Biol (Camb) 2017; 9:211-222. [PMID: 28252135 PMCID: PMC6034443 DOI: 10.1039/c6ib00233a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/15/2017] [Indexed: 12/25/2022]
Abstract
Recent advances in biomaterials design offer the potential to actively control immune cell activation and behaviour. Many human diseases, such as infections, cancer, and autoimmune disorders, are partly mediated by inappropriate or insufficient activation of the immune system. T cells play a central role in the host immune response to these diseases, and so constitute a promising cell type for manipulation. In vivo, T cells are stimulated by antigen presenting cells (APC), therefore to design immunoengineering biomaterials that control T cell behaviour, artificial interfaces that mimic the natural APC-T cell interaction are required. This review draws together research in the design and fabrication of such biomaterial interfaces, and highlights efforts to elucidate key parameters in T cell activation, such as substrate mechanical properties and spatial organization of receptors, illustrating how they can be manipulated by bioengineering approaches to alter T cell function.
Collapse
Affiliation(s)
- Derfogail Delcassian
- School of Pharmacy, University of Nottingham, NG7 2RD, UK. and Koch Institute for Integrative Cancer Research, MIT, Massachusetts, 02139, USA
| | - Susanne Sattler
- Imperial College London National Heart and Lung Institute, Du Cane Road, W12 0NN, London, UK
| | - Iain E Dunlop
- Department of Materials, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Lee JH, Dustin ML, Kam LC. A microfluidic platform reveals differential response of regulatory T cells to micropatterned costimulation arrays. Integr Biol (Camb) 2015; 7:1442-53. [PMID: 26400012 PMCID: PMC4630128 DOI: 10.1039/c5ib00215j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/10/2015] [Indexed: 12/28/2022]
Abstract
T cells are key mediators of adaptive immunity. However, the overall immune response is often directed by minor subpopulations of this heterogeneous family of cells, owing to specificity of activation and amplification of functional response. Knowledge of differences in signaling and function between T cell subtypes is far from complete, but is clearly needed for understanding and ultimately leveraging this branch of the adaptive immune response. This report investigates differences in cell response to micropatterned surfaces by conventional and regulatory T cells. Specifically, the ability of cells to respond to the microscale geometry of TCR/CD3 and CD28 engagement is made possible using a magnetic-microfluidic device that overcomes limitations in imaging efficiency associated with conventional microscopy equipment. This device can be readily assembled onto micropatterned surfaces while maintaining the activity of proteins and other biomolecules necessary for such studies. In operation, a target population of cells is tagged using paramagnetic beads, and then trapped in a divergent magnetic field within the chamber. Following washing, the target cells are released to interact with a designated surface. Characterization of this system with mouse CD4(+) T cells demonstrated a 50-fold increase in target-to-background cell purity, with an 80% collection efficiency. Applying this approach to CD4(+)CD25(+) regulatory T cells, it is then demonstrated that these rare cells respond less selectively to micro-scale features of anti-CD3 antibodies than CD4(+)CD25(-) conventional T cells, revealing a difference in balance between TCR/CD3 and LFA-1-based adhesion. PKC-θ localized to the distal pole of regulatory T cells, away from the cell-substrate interface, suggests a mechanism for differential regulation of TCR/LFA-1-based adhesion. Moreover, specificity of cell adhesion to anti-CD3 features was dependent on the relative position of anti-CD28 signaling within the cell-substrate interface, revealing an important role for coincidence of TCR and costimulatory pathway in triggering regulatory T cell function.
Collapse
Affiliation(s)
- Joung-Hyun Lee
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, USA.
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, USA.
| |
Collapse
|
7
|
Enhancement of the antigen-specific cytotoxic T lymphocyte-inducing ability in the PMDC11 leukemic plasmacytoid dendritic cell line via lentiviral vector-mediated transduction of the caTLR4 gene. Mol Med Rep 2015; 12:2443-50. [PMID: 25936433 PMCID: PMC4464268 DOI: 10.3892/mmr.2015.3685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to enhance the efficiency of leukemia immunotherapy by increasing the antigen-specific cytotoxic T lymphocyte-inducing ability of leukemia cells. The leukemic plasmacytoid dendritic cell line PMDC05 containing the HLA-A02/24 antigen, which was previously established in our laboratory (Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan), was used in the present study. It exhibited higher expression levels of CD80 following transduction with lentiviruses encoding the CD80 gene. This CD80-expressing PMDC05 was named PMDC11. In order to establish a more potent antigen-presenting cell for cellular immunotherapy of tumors or severe infections, PMDC11 cells were transduced with a constitutively active (ca) toll-like receptor 4 (TLR4) gene using the Tet-On system (caTLR4-PMDC11). CD8+ T cells from healthy donors with HLA-A02 were co-cultured with mutant WT1 peptide-pulsed PMDC11, lipopolysaccharide (LPS)-stimulated PMDC11 or caTLR4-PMDC11 cells. Interleukin (IL)-2 (50 IU/ml) and IL-7 (10 ng/ml) were added on day three of culture. Priming with mutant WT1 peptide-pulsed PMDC11, LPS-stimulated PMDC11 or caTLR4-PMDC11 cells was conducted once per week and two thirds of the IL-2/IL-7 containing medium was replenished every 3–4 days. Immediately prior to the priming with these various PMDC11 cells, the cultured cells were analyzed for the secretion of interferon (IFN)-γ in addition to the percentage and number of CD8+/WT1 tetramer+ T cells using flow cytometry. caTLR4-PMDC11 cells were observed to possess greater antigen-presenting abilities compared with those of PMDC11 or LPS-stimulated PMDC11 cells in a mixed leukocyte culture. CD8 T cells positive for the WT1 tetramer were generated following 3–4 weeks of culture and CD8+/WT1 tetramer+ T cells were markedly increased in caTLR4-PMDC11-primed CD8+ T cell culture compared with PMDC11 or LPS-stimulated PMDC11-primed CD8+ T cell culture. These CD8+ T cells co-cultured with caTLR4-PMDC11 cells were demonstrated to secrete IFN-γ and to be cytotoxic to WT1-expressing target cells. These data suggested that the antigen-specific cytotoxic T lymphocyte (CTL)-inducing ability of PMDC11 was potentiated via transduction of the caTLR4 gene. The present study also suggested that caTLR4-PMDC11 cells may be applied as potent antigen-presenting cells for generating antigen-specific CTLs in adoptive cellular immunotherapy against tumors and severe viral infections.
Collapse
|
8
|
Perica K, Kosmides AK, Schneck JP. Linking form to function: Biophysical aspects of artificial antigen presenting cell design. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:781-90. [PMID: 25200637 PMCID: PMC4344884 DOI: 10.1016/j.bbamcr.2014.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 09/01/2014] [Indexed: 12/22/2022]
Abstract
Artificial antigen presenting cells (aAPCs) are engineered platforms for T cell activation and expansion, synthesized by coupling T cell activating proteins to the surface of cell lines or biocompatible particles. They can serve both as model systems to study the basic aspects of T cell signaling and translationally as novel approaches for either active or adoptive immunotherapy. Historically, these reductionist systems have not been designed to mimic the temporally and spatially complex interactions observed during endogenous T cell-APC contact, which include receptor organization at both micro- and nanoscales and dynamic changes in cell and membrane morphologies. Here, we review how particle size and shape, as well as heterogenous distribution of T cell activating proteins on the particle surface, are critical aspects of aAPC design. In doing so, we demonstrate how insights derived from endogenous T cell activation can be applied to optimize aAPC, and in turn how aAPC platforms can be used to better understand endogenous T cell stimulation. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Karlo Perica
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan P Schneck
- Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Eggermont LJ, Paulis LE, Tel J, Figdor CG. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol 2014; 32:456-65. [PMID: 24998519 PMCID: PMC4154451 DOI: 10.1016/j.tibtech.2014.06.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/07/2023]
Abstract
Active anti-cancer immune responses depend on efficient presentation of tumor antigens and co-stimulatory signals by antigen-presenting cells (APCs). Therapy with autologous natural APCs is costly and time-consuming and results in variable outcomes in clinical trials. Therefore, development of artificial APCs (aAPCs) has attracted significant interest as an alternative. We discuss the characteristics of various types of acellular aAPCs, and their clinical potential in cancer immunotherapy. The size, shape, and ligand mobility of aAPCs and their presentation of different immunological signals can all have significant effects on cytotoxic T cell activation. Novel optimized aAPCs, combining carefully tuned properties, may lead to efficient immunomodulation and improved clinical responses in cancer immunotherapy.
Collapse
Affiliation(s)
- Loek J Eggermont
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Leonie E Paulis
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jurjen Tel
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
van der Weijden J, Paulis LE, Verdoes M, van Hest JCM, Figdor CG. The right touch: design of artificial antigen-presenting cells to stimulate the immune system. Chem Sci 2014. [DOI: 10.1039/c4sc01112k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
11
|
Jung HR, Song KH, Chang JT, Doh J. Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays. PLoS One 2014; 9:e91926. [PMID: 24632942 PMCID: PMC3954838 DOI: 10.1371/journal.pone.0091926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/18/2014] [Indexed: 12/24/2022] Open
Abstract
Similar to stem cells, naïve T cells undergo asymmetric division following activation. While asymmetric division of T cells has been shown to be an important mechanism for the generation of lymphocyte fate diversity during immune responses, key factors that influence whether T cells will undergo symmetric or asymmetric divisions are not completely understood. Here, we utilized immunological synapse arrays (ISAs) to begin to dissect mechanisms of asymmetric T lymphocyte division. ISAs are protein micropatterned surfaces composed of two segregated regions, activation sites and adhesion fields. Activation sites are small spots presenting activation signals such as anti-CD3 and anti-CD28, and adhesion fields are the remaining regions surrounding activation sites immobilized with interintercel adhesion molecule 1 (ICAM-1). By varying the size and the distance between the activation sites and measuring the incidence of asymmetric cell divisions, we found that the distance between activation sites is an important regulator of asymmetric division. Further analysis revealed that more symmetric divisions occurred when two nascent daughter cells stably interacted with two distinct activation sites throughout and following cytokinesis. In contrast, more asymmetric divisions occurred when only one daughter cell remained anchored on an activation site while the other daughter became motile and moved away following cytokinesis. Together, these results indicate that TCR signaling events during cytokinesis may repolarize key molecules for asymmetric partitioning, suggesting the possibility that the density of antigen presenting cells that interact with T cells as they undergo cytokinesis may be a critical factor regulating asymmetric division in T cells.
Collapse
Affiliation(s)
- Hong-Ryul Jung
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Kwang Hoon Song
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - John T. Chang
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (JTC); (JD)
| | - Junsang Doh
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
- * E-mail: (JTC); (JD)
| |
Collapse
|
12
|
Matic J, Deeg J, Scheffold A, Goldstein I, Spatz JP. Fine tuning and efficient T cell activation with stimulatory aCD3 nanoarrays. NANO LETTERS 2013; 13:5090-7. [PMID: 24111628 PMCID: PMC3834297 DOI: 10.1021/nl4022623] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/03/2013] [Indexed: 05/20/2023]
Abstract
Anti-CD3 (aCD3) nanoarrays fabricated by self-assembled nanopatterning combined with site-directed protein immobilization techniques represent a novel T cell stimulatory platform that allows tight control over ligand orientation and surface density. Here, we show that activation of primary human CD4+ T cells, defined by CD69 upregulation, IL-2 production and cell proliferation, correlates with aCD3 density on nanoarrays. Immobilization of aCD3 through nanopatterning had two effects: cell activation was significantly higher on these surfaces than on aCD3-coated plastics and allowed unprecedented fine-tuning of T cell response.
Collapse
Affiliation(s)
- Jovana Matic
- Department
of New Materials and Biosystems, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, INF 253, Germany
| | - Janosch Deeg
- Department
of New Materials and Biosystems, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, INF 253, Germany
| | - Alexander Scheffold
- Department
of Cellular Immunology, Clinics for Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
- German
Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Itamar Goldstein
- Immunology
Core Laboratory, Sheba Cancer Research Center, Chaim Sheba Medical Center, Tel
Hashomer 52621, Israel
- Sackler
Faculty of Medicine, Tel Aviv University, Israel
| | - Joachim P. Spatz
- Department
of New Materials and Biosystems, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, INF 253, Germany
| |
Collapse
|
13
|
Deeg J, Axmann M, Matic J, Liapis A, Depoil D, Afrose J, Curado S, Dustin M, Spatz JP. T cell activation is determined by the number of presented antigens. NANO LETTERS 2013; 13:5619-26. [PMID: 24117051 PMCID: PMC3828117 DOI: 10.1021/nl403266t] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/05/2013] [Indexed: 05/18/2023]
Abstract
Antigen recognition is a key event during T cell activation. Here, we introduce nanopatterned antigen arrays that mimic the antigen presenting cell surface during T cell activation. The assessment of activation related events revealed the requirement of a minimal density of 90-140 stimulating major histocompatibility complex class II proteins (pMHC) molecules per μm(2). We demonstrate that these substrates induce T cell responses in a pMHC dose-dependent manner and that the number of presented pMHCs dominates over local pMHC density.
Collapse
Affiliation(s)
- Janosch Deeg
- Department
of New Materials and Biosystems, Max Planck
Institute for Intelligent Systems, Heisenbergstraße 3, D-70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, INF 253, D-69120 Heidelberg, Germany
| | - Markus Axmann
- Department
of New Materials and Biosystems, Max Planck
Institute for Intelligent Systems, Heisenbergstraße 3, D-70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, INF 253, D-69120 Heidelberg, Germany
| | - Jovana Matic
- Department
of New Materials and Biosystems, Max Planck
Institute for Intelligent Systems, Heisenbergstraße 3, D-70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, INF 253, D-69120 Heidelberg, Germany
| | - Anastasia Liapis
- Skirball
Institute of Biomolecular Medicine and Department of Pathology, New York University School of Medicine, New York, New York 10016, United States
| | - David Depoil
- Skirball
Institute of Biomolecular Medicine and Department of Pathology, New York University School of Medicine, New York, New York 10016, United States
| | - Jehan Afrose
- Skirball
Institute of Biomolecular Medicine and Department of Pathology, New York University School of Medicine, New York, New York 10016, United States
| | - Silvia Curado
- Skirball
Institute of Biomolecular Medicine and Department of Pathology, New York University School of Medicine, New York, New York 10016, United States
| | - Michael
L. Dustin
- Skirball
Institute of Biomolecular Medicine and Department of Pathology, New York University School of Medicine, New York, New York 10016, United States
- Kennedy
Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology
and Musculoskeletal Sciences, University
of Oxford, Oxford, OX37FY, United Kingdom
| | - Joachim P. Spatz
- Department
of New Materials and Biosystems, Max Planck
Institute for Intelligent Systems, Heisenbergstraße 3, D-70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, INF 253, D-69120 Heidelberg, Germany
| |
Collapse
|
14
|
Kuras Z, Yun YH, Chimote AA, Neumeier L, Conforti L. KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells. PLoS One 2012; 7:e43859. [PMID: 22952790 PMCID: PMC3428288 DOI: 10.1371/journal.pone.0043859] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
The migration of T lymphocytes is an essential part of the adaptive immune response as T cells circulate around the body to carry out immune surveillance. During the migration process T cells polarize, forming a leading edge at the cell front and a uropod at the cell rear. Our interest was in studying the involvement of ion channels in the migration of activated human T lymphocytes as they modulate intracellular Ca(2+) levels. Ca(2+) is a key regulator of cellular motility. To this purpose, we created protein surfaces made of the bio-polymer PNMP and coated with ICAM-1, ligand of LFA-1. The LFA-1 and ICAM-1 interaction facilitates T cell movement from blood into tissues and it is critical in immune surveillance and inflammation. Activated human T lymphocytes polarized and migrated on ICAM-1 surfaces by random walk with a mean velocity of ∼6 µm/min. Confocal microscopy indicated that Kv1.3, CRAC, and TRPM4 channels positioned in the leading-edge, whereas KCa3.1 and TRPM7 channels accumulated in the uropod. The localization of KCa3.1 and TRPM7 at the uropod was associated with oscillations in intracellular Ca(2+) levels that we measured in this cell compartment. Further studies with blockers against Kv1.3 (ShK), KCa3.1 (TRAM-34), CRAC (SKF-96365), TRPM7 (2-APB), and TRPM4 (glibenclamide) indicated that blockade of KCa3.1 and TRPM7, and not Kv1.3, CRAC or TRPM4, inhibits the T cell migration. The involvement of TRPM7 in cell migration was confirmed with siRNAs against TRPM7. Downregulation of TRPM7 significantly reduced the number of migrating T cells and the mean velocity of the migrating T cells. These results indicate that KCa3.1 and TRPM7 selectively localize at the uropod of migrating T lymphocytes and are key components of the T cell migration machinery.
Collapse
Affiliation(s)
- Zerrin Kuras
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yeo-Heung Yun
- Department of Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
| | - Ameet A. Chimote
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Lisa Neumeier
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Laura Conforti
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
15
|
Jung HR, Choi JC, Cho W, Doh J. Microfabricated platforms to modulate and monitor T cell synapse assembly. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 5:67-74. [DOI: 10.1002/wnan.1182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Yamahira A, Narita M, Nakamura T, Watanabe N, Kaji M, Taniguchi T, Hashimoto S, Furukawa T, Toba K, Aizawa Y, Kuzushima K, Takahashi M. Generation of antigen-specific cytotoxic T lymphocytes using a leukemic plasmacytoid dendritic cell line as antigen presenting cells. Leuk Res 2011; 35:793-9. [DOI: 10.1016/j.leukres.2010.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/04/2010] [Accepted: 12/06/2010] [Indexed: 11/15/2022]
|
17
|
Kim M, Choi JC, Jung HR, Katz JS, Kim MG, Doh J. Addressable micropatterning of multiple proteins and cells by microscope projection photolithography based on a protein friendly photoresist. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:12112-12118. [PMID: 20565061 DOI: 10.1021/la1014253] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report a new method for the micropatterning of multiple proteins and cells with micrometer-scale precision. Microscope projection photolithography based on a new protein-friendly photoresist, poly(2,2-dimethoxy nitrobenzyl methacrylate-r-methyl methacrylate-r-poly(ethylene glycol) methacrylate) (PDMP), was used for the fabrication of multicomponent protein/cell arrays. Microscope projection lithography allows precise registration between multiple patterns as well as facile fabrication of microscale features. Thin films of PDMP became soluble in near-neutral physiological buffer solutions upon UV exposure and exhibited excellent resistance to protein adsorption and cell adhesion. By harnessing advantages in microscope projection photolithography and properties of PDMP thin films, we could successfully fabricate protein arrays composed of multiple proteins. Furthermore, we could extend this method for the patterning of two different types of immune cells for the potential study of immune cell interactions. This technique will in general be useful for protein chip fabrication and high-throughput cell-cell communication study.
Collapse
Affiliation(s)
- Miju Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, San31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk, 790-784, Korea
| | | | | | | | | | | |
Collapse
|
18
|
Tang SC, Xie JY, Huang ZH, Xu FJ, Yang W. UV-induced grafting processes with in situ formed photomask for micropatterning of two-component biomolecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9905-9910. [PMID: 20486681 DOI: 10.1021/la100344f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report a photolithographic process for micropatterning of two-component biomolecules on a transparent organic film via lateral functional polymer brushes of poly(sodium acrylate) (P(AA)) and poly(glycidyl methacrylate) (P(GMA)). The pattern of binary polymer brushes were prepared via consecutive UV-initiated grafting processes, under the assistance of the in situ formed poly (4,4'-bi[N-(4-vinylbenzyl) pyridinium]) (P(BVV)) photomask. The epoxy groups of the P(GMA) microdomains can be aminated for covalently coupling biotin, while the P(AA) microdomains were used for immobilizing immunoglobulin (IgG). The resulting biotin- and IgG-coupled microdomains interact specifically with their corresponding target proteins, avidin and anti-IgG, respectively.
Collapse
Affiliation(s)
- S C Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing, 100029, China
| | | | | | | | | |
Collapse
|
19
|
Carpentier B, Pierobon P, Hivroz C, Henry N. T-cell artificial focal triggering tools: linking surface interactions with cell response. PLoS One 2009; 4:e4784. [PMID: 19274104 PMCID: PMC2653282 DOI: 10.1371/journal.pone.0004784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/12/2009] [Indexed: 12/22/2022] Open
Abstract
T-cell activation is a key event in the immune system, involving the interaction of several receptor ligand pairs in a complex intercellular contact that forms between T-cell and antigen-presenting cells. Molecular components implicated in contact formation have been identified, but the mechanism of activation and the link between molecular interactions and cell response remain poorly understood due to the complexity and dynamics exhibited by whole cell-cell conjugates. Here we demonstrate that simplified model colloids grafted so as to target appropriate cell receptors can be efficiently used to explore the relationship of receptor engagement to the T-cell response. Using immortalized Jurkat T cells, we monitored both binding and activation events, as seen by changes in the intracellular calcium concentration. Our experimental strategy used flow cytometry analysis to follow the short time scale cell response in populations of thousands of cells. We targeted both T-cell receptor CD3 (TCR/CD3) and leukocyte-function-associated antigen (LFA-1) alone or in combination. We showed that specific engagement of TCR/CD3 with a single particle induced a transient calcium signal, confirming previous results and validating our approach. By decreasing anti-CD3 particle density, we showed that contact nucleation was the most crucial and determining step in the cell-particle interaction under dynamic conditions, due to shear stress produced by hydrodynamic flow. Introduction of LFA-1 adhesion molecule ligands at the surface of the particle overcame this limitation and elucidated the low TCR/CD3 ligand density regime. Despite their simplicity, model colloids induced relevant biological responses which consistently echoed whole cell behavior. We thus concluded that this biophysical approach provides useful tools for investigating initial events in T-cell activation, and should enable the design of intelligent artificial systems for adoptive immunotherapy.
Collapse
Affiliation(s)
- Benoît Carpentier
- Institut Curie, Laboratoire Physico-Chimie Curie, CNRS UMR 168, Université Paris VI, Paris, France
| | - Paolo Pierobon
- Institut Curie, Laboratoire Physico-Chimie Curie, CNRS UMR 168, Université Paris VI, Paris, France
| | - Claire Hivroz
- Institut Curie, Laboratoire Immunité et Cancer, INSERM U 653, Pavillon Pasteur, Paris, France
| | - Nelly Henry
- Institut Curie, Laboratoire Physico-Chimie Curie, CNRS UMR 168, Université Paris VI, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Swartz MA, Hubbell JA, Reddy ST. Lymphatic drainage function and its immunological implications: from dendritic cell homing to vaccine design. Semin Immunol 2008; 20:147-56. [PMID: 18201895 DOI: 10.1016/j.smim.2007.11.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 11/19/2007] [Accepted: 11/26/2007] [Indexed: 01/12/2023]
Abstract
The slow interstitial flow that drains fluid from the blood capillaries into the lymphatic capillaries provides transport of macromolecular nutrients to cells in the interstitium. We discuss herein how this flow also provides continuous access to immune cells residing in the lymph nodes of antigens from self or from pathogens residing in the interstitium. We also address mechanisms by which dendritic cells in the periphery sense interstitial flow to home efficiently into the lymphatics after activation, and how lymphatic endothelium can be activated by this flow, including how it can act as a lymphatic morphoregulator. Further, we present concepts on how interstitial flow can be exploited with biomaterial systems to deliver antigen and adjuvant molecules directly into the lymphatics, to target dendritic cells residing in the lymph nodes rather than in the peripheral tissues, using particles that are small enough to be carried along by flow through the network structure of the interstitium. Finally, we present recent work on lymphatic and lymphoid tissue engineering, including how interstitial flow can be used as a design principle. Thus, an understanding of the physiological processes that govern transport in the interstitium guides new understanding of both immune cell interactions with the lymphatics as well as therapeutic interventions exploiting the lymphatics as a target.
Collapse
Affiliation(s)
- Melody A Swartz
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | | | |
Collapse
|