1
|
Tao Y, Rauk A, Gao J, De Felippis MR. Leveraging prior knowledge for process parameter classification in mAb Protein A chromatography. J Chromatogr A 2024; 1742:465647. [PMID: 39787682 DOI: 10.1016/j.chroma.2024.465647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Protein A (ProA) affinity chromatography plays an essential role in purifying monoclonal antibodies (mAbs) and their analogues by reducing impurities like residual host cell proteins (HCPs), residual DNA, process additives, and potential viral contaminants. Decades of mAb process development and commercialization efforts have built extensive prior knowledge in the Protein A process. The prior knowledge facilities streamlined process development and minimized the need for extensive process characterization studies to inform manufacturing control strategies. This manuscript presents a comprehensive prior knowledge package, consolidating process parameter characterization data from ten molecules developed by Eli Lilly and Company using the Protein A chromatography process. Results from multiple Design of Experiment (DOE) studies on these molecules demonstrated that no process parameters significantly impacted critical quality attributes when operated within platform ranges. Additionally, a Bayesian hierarchical model was applied to analyze historical data and predict the effects of process parameters, further confirming that parameter effects were insignificant across the platform ranges for the Protein A process. By leveraging this historical data package, we directly supported the classification of ProA process parameters for new therapeutic antibodies, effectively replacing the need for product-specific process characterization evaluations. This approach has been positively received by global regulatory agencies during the market authorization filings for two Lilly's products.
Collapse
Affiliation(s)
- Yinying Tao
- Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | - Adam Rauk
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Jinxin Gao
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | |
Collapse
|
2
|
Datta S, Rahman MA, Koka S, Boini KM. High Mobility Group Box 1 (HMGB1): Molecular Signaling and Potential Therapeutic Strategies. Cells 2024; 13:1946. [PMID: 39682695 DOI: 10.3390/cells13231946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
High Mobility Group Box 1 (HMGB1) is a highly conserved non-histone chromatin-associated protein across species, primarily recognized for its regulatory impact on vital cellular processes, like autophagy, cell survival, and apoptosis. HMGB1 exhibits dual functionality based on its localization: both as a non-histone protein in the nucleus and as an inducer of inflammatory cytokines upon extracellular release. Pathophysiological insights reveal that HMGB1 plays a significant role in the onset and progression of a vast array of diseases, viz., atherosclerosis, kidney damage, cancer, and neurodegeneration. However, a clear mechanistic understanding of HMGB1 release, translocation, and associated signaling cascades in mediating such physiological dysfunctions remains obscure. This review presents a detailed outline of HMGB1 structure-function relationship and its regulatory role in disease onset and progression from a signaling perspective. This review also presents an insight into the status of HMGB1 druggability, potential limitations in understanding HMGB1 pathophysiology, and future perspective of studies that can be undertaken to address the existing scientific gap. Based on existing paradigm of various studies, HMGB1 is a critical regulator of inflammatory cascades and drives the onset and progression of a broad spectrum of dysfunctions. Studies focusing on HMGB1 druggability have enabled the development of biologics with potential clinical benefits. However, deeper understanding of post-translational modifications, redox states, translocation mechanisms, and mitochondrial interactions can potentially enable the development of better courses of therapy against HMGB1-mediated physiological dysfunctions.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Doroudian M, Ardalan MA, Beheshti M, Soezi M. Novel approaches for bacterial toxin neutralization; current advances and future perspectives. QJM 2024; 117:763-767. [PMID: 38851872 DOI: 10.1093/qjmed/hcae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
This review outlines diverse strategies for neutralizing bacterial toxins which are a significant threat to human health. Effective toxin neutralization is crucial in preventing and treating bacterial infections, especially those caused by antibiotic-resistant strains. Promising approaches include using monoclonal antibodies that target toxins and combining them with agents that directly target bacteria. Aptamers, synthetic molecules that bind to specific targets, provide a rapid and tailored method for inhibiting toxin activity and detecting pathogens. Cell-membrane-coated nanoparticles mimic host cells and effectively neutralize toxins by diverting them and stimulating immune responses. These advancements have the potential to combat bacterial infections and alleviate the associated public health burden.
Collapse
Affiliation(s)
- M Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - M A Ardalan
- Internal Medicine Department, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - M Beheshti
- Department of Microbiology, Faculty of Veterinari Medicine, University of Tehran, Iran, Tehran, Iran
| | - M Soezi
- Infection Disease Research Center, AJA University of Medical Sciences, Tehran, Iran
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Casadevall A, Paneth N. Monoclonal Antibody Therapies for Infectious Diseases. Curr Top Microbiol Immunol 2024. [PMID: 38869844 DOI: 10.1007/82_2024_265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In contrast to therapy in oncology and immune-related diseases, where dozens of monoclonal antibodies (mAbs) have been introduced, often in transformative fashion, the use of mAbs for infectious diseases is generally underdeveloped, with fewer than a dozen mAbs currently licensed for the treatment of microbial diseases. This situation is paradoxical given that antibodies are major products of the immune system for protecting against infectious diseases. The underdevelopment of mAbs for infectious diseases has several causes including the availability of effective therapy against many microbial diseases, the fact that many pathogenic microbes are antigenically diverse and thus all strains are not covered by a single mAb, and the high expense of mAb therapies. Despite these hurdles the number of mAbs licensed for infectious disease indications is slowly increasing and there are numerous opportunities for the development of mAbs in the prevention and treatment of microbial diseases.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Nigel Paneth
- Departments of Epidemiology & Biostatistics and Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Schmitz F, Knöchelmann E, Kruse T, Minceva M, Kampmann M. Continuous multi-column capture of monoclonal antibodies with convective diffusive membrane adsorbers. Biotechnol Bioeng 2024; 121:1859-1875. [PMID: 38470343 DOI: 10.1002/bit.28695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Downstream processing is the bottleneck in the continuous manufacturing of monoclonal antibodies (mAbs). To overcome throughput limitations, two different continuous processes with a novel convective diffusive protein A membrane adsorber (MA) were investigated: the rapid cycling parallel multi-column chromatography (RC-PMCC) process and the rapid cycling simulated moving bed (RC-BioSMB) process. First, breakthrough curve experiments were performed to investigate the influence of the flow rate on the mAb dynamic binding capacity and to calculate the duration of the loading steps. In addition, customized control software was developed for an automated MA exchange in case of pressure increase due to membrane fouling to enable robust, uninterrupted, and continuous processing. Both processes were performed for 4 days with 0.61 g L-1 mAb-containing filtrate and process performance, product purity, productivity, and buffer consumption were compared. The mAb was recovered with a yield of approximately 90% and productivities of 1010 g L-1 d-1 (RC-PMCC) and 574 g L-1 d-1 (RC-BioSMB). At the same time, high removal of process-related impurities was achieved with both processes, whereas the buffer consumption was lower for the RC-BioSMB process. Finally, the attainable productivity for perfusion bioreactors of different sizes with suitable MA sizes was calculated to demonstrate the potential to operate both processes on a manufacturing scale with bioreactor volumes of up to 2000 L.
Collapse
Affiliation(s)
- Fabian Schmitz
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Corporate Research, Sartorius Stedim Biotech GmbH, Göttingen, Germany
| | - Elias Knöchelmann
- Corporate Research, Sartorius Stedim Biotech GmbH, Göttingen, Germany
| | - Thomas Kruse
- Corporate Research, Sartorius Stedim Biotech GmbH, Göttingen, Germany
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Markus Kampmann
- Corporate Research, Sartorius Stedim Biotech GmbH, Göttingen, Germany
| |
Collapse
|
6
|
de Jong HK, Grobusch MP. Monoclonal antibody applications in travel medicine. Trop Dis Travel Med Vaccines 2024; 10:2. [PMID: 38221606 PMCID: PMC10789029 DOI: 10.1186/s40794-023-00212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024] Open
Abstract
For decades, immunoglobulin preparations have been used to prevent or treat infectious diseases. Since only a few years, monoclonal antibody applications (mAbs) are taking flight and are increasingly dominating this field. In 2014, only two mAbs were registered; end of October 2023, more than ten mAbs are registered or have been granted emergency use authorization, and many more are in (pre)clinical phases. Especially the COVID-19 pandemic has generated this surge in licensed monoclonal antibodies, although multiple phase 1 studies were already underway in 2019 for other infectious diseases such as malaria and yellow fever. Monoclonal antibodies could function as prophylaxis (i.e., for the prevention of malaria), or could be used to treat (tropical) infections (i.e., rabies, dengue fever, yellow fever). This review focuses on the discussion of the prospects of, and obstacles for, using mAbs in the prevention and treatment of (tropical) infectious diseases seen in the returning traveler; and provides an update on the mAbs currently being developed for infectious diseases, which could potentially be of interest for travelers.
Collapse
Affiliation(s)
- Hanna K de Jong
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Martin P Grobusch
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Institute of Tropical Medicine & Deutsches Zentrum Für Infektionsforschung, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales, (CERMEL), Lambaréné, Gabon
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Zhang M, Wang X, Li J, Peng F, Liu Z, Chen ZS. Ligands and receptors in human cytomegalovirus entry: Current therapies and new directions. Drug Discov Today 2024; 29:103833. [PMID: 37992888 DOI: 10.1016/j.drudis.2023.103833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
The demand for human cytomegalovirus (HCMV) vaccines was first raised by a committee convened during the 1990s. A comprehensive investigation into the mechanism of viral infection supports the prioritization of developing drugs or vaccines that specifically target receptors and ligands involved in the infection process. As primary targets for neutralizing antibodies to combat HCMV, viral ligands (trimer, pentamer, and glycoprotein B) have crucial roles and exhibit substantial antiviral potential, which could be exploited for breakthroughs in antiviral research.
Collapse
Affiliation(s)
- Min Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Xiaochen Wang
- Department of Medical Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, China
| | - Jianshe Li
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China.
| | - Zhijun Liu
- Department of Medical Microbiology, Basic Medical College, Weifang Medical University, Weifang 261053, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| |
Collapse
|
8
|
Qiu T, Zhang L, Chen Z, Wang Y, Mao T, Wang C, Cun Y, Zheng G, Yan D, Zhou M, Tang K, Cao Z. SEPPA-mAb: spatial epitope prediction of protein antigens for mAbs. Nucleic Acids Res 2023:7175357. [PMID: 37216611 DOI: 10.1093/nar/gkad427] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Identifying the exact epitope positions for a monoclonal antibody (mAb) is of critical importance yet highly challenging to the Ab design of biomedical research. Based on previous versions of SEPPA 3.0, we present SEPPA-mAb for the above purpose with high accuracy and low false positive rate (FPR), suitable for both experimental and modelled structures. In practice, SEPPA-mAb appended a fingerprints-based patch model to SEPPA 3.0, considering the structural and physic-chemical complementarity between a possible epitope patch and the complementarity-determining region of mAb and trained on 860 representative antigen-antibody complexes. On independent testing of 193 antigen-antibody pairs, SEPPA-mAb achieved an accuracy of 0.873 with an FPR of 0.097 in classifying epitope and non-epitope residues under the default threshold, while docking-based methods gave the best AUC of 0.691, and the top epitope prediction tool gave AUC of 0.730 with balanced accuracy of 0.635. A study on 36 independent HIV glycoproteins displayed a high accuracy of 0.918 and a low FPR of 0.058. Further testing illustrated outstanding robustness on new antigens and modelled antibodies. Being the first online tool predicting mAb-specific epitopes, SEPPA-mAb may help to discover new epitopes and design better mAbs for therapeutic and diagnostic purposes. SEPPA-mAb can be accessed at http://www.badd-cao.net/seppa-mab/.
Collapse
Affiliation(s)
- Tianyi Qiu
- School of Life Sciences, Fudan University, Shanghai 200092, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lu Zhang
- Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zikun Chen
- Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuan Wang
- Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Tiantian Mao
- Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Caicui Wang
- Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yewei Cun
- School of Life Sciences, Fudan University, Shanghai 200092, China
| | - Genhui Zheng
- Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Deyu Yan
- Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mengdi Zhou
- Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kailin Tang
- Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiwei Cao
- School of Life Sciences, Fudan University, Shanghai 200092, China
- Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Torreele E, Kazatchkine M, Liu J, Dybul M, Cárdenas M, Singh S, Quigley HL, McNab C, Sirleaf EJ, Mazzucato M, Clark H. Stopping epidemics when and where they occur. Lancet 2023; 401:324-328. [PMID: 36642089 PMCID: PMC9836401 DOI: 10.1016/s0140-6736(23)00015-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Affiliation(s)
- Els Torreele
- Institute for Innovation and Public Purpose, University College London, London WC1B 5BP, UK; Independent Consultant, Geneva, Switzerland.
| | - Michel Kazatchkine
- Global Health Centre, The Graduate Institute for International Affairs and Development, Geneva, Switzerland
| | - Joanne Liu
- School of Population and Global Health and Pandemics and Health Emergencies Readiness Lab, McGill University, Montreal, QC, Canada
| | - Mark Dybul
- Georgetown University Medical Center, Washington, DC, USA
| | - Mauricio Cárdenas
- School of International and Public Affairs, Columbia University, New York, NY, USA
| | - Sudhvir Singh
- Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| | - Helena Legido Quigley
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | | | - Ellen Johnson Sirleaf
- Ellen Johnson Sirleaf Presidential Centre for Women and Development, Montserrado, Monrovia, Liberia
| | - Mariana Mazzucato
- Institute for Innovation and Public Purpose, University College London, London WC1B 5BP, UK
| | - Helen Clark
- The Helen Clark Foundation, Auckland, New Zealand
| |
Collapse
|
10
|
Handlogten MW, Bosley S, Dunn S, Zhu J, Lee-O'Brien A, Li L, Therres J, Chakrabarti L, Khanal B, Mowery R, Arumugam S, Klover J, Taleb M, Reier J, Hatton D, Schmelzer A. Accelerated cell culture process development and characterization for cilgavimab/tixagevimab (AZD7442) for the prevention and treatment of COVID-19. Biotechnol Bioeng 2023. [PMID: 36722717 DOI: 10.1002/bit.28336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 02/02/2023]
Abstract
The global COVID-19 pandemic ignited an unprecedented race to develop vaccines and antibody therapeutics. AstraZeneca's pursuit to provide AZD7442 (EVUSHELD), two long-acting, SARS-CoV-2 spike receptor binding domain-specific neutralizing monoclonal antibodies, to individuals at risk on highly accelerated timelines challenged our traditional ways of process development and spurred the rapid adoption of novel approaches. Conventional upstream development processes were replaced by agile strategies that combined technological advances and highly accelerated workflows. With calculated business risks and close cross-functional collaborations, this process paved the way for hyper accelerated antibody development from discovery through manufacturing, process validation, emergency use authorization filing, and global regulatory approvals. The result was initiation of commercial manufacturing at a contract manufacturing organization less than 6 months from the selection of cilgavimab and tixagevimab-a process that historically has taken close to 10 years.
Collapse
Affiliation(s)
- Michael W Handlogten
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Stefanie Bosley
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Sarah Dunn
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jie Zhu
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Allison Lee-O'Brien
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Lina Li
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Jamy Therres
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Lina Chakrabarti
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Bijay Khanal
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Rachel Mowery
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Subhashini Arumugam
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Judith Klover
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Mohammed Taleb
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Jason Reier
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Diane Hatton
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Albert Schmelzer
- Cell Culture and Fermentation Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| |
Collapse
|
11
|
Kelley B, De Moor P, Douglas K, Renshaw T, Traviglia S. Monoclonal antibody therapies for COVID-19: lessons learned and implications for the development of future products. Curr Opin Biotechnol 2022; 78:102798. [PMID: 36179406 PMCID: PMC9436891 DOI: 10.1016/j.copbio.2022.102798] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Several companies were authorized to treat COVID-19 patients with monoclonal antibodies within 1-2 years of the start of the pandemic. These products were discovered, developed, manufactured, clinically tested, and approved under emergency-use authorization at unprecedented speed. Pandemic urgency led to novel development approaches that reduced the time to clinical trials by 75% or more without creating unacceptable patient or product-safety risks. Hundreds of thousands of patients now benefit from these therapeutics that have reduced the rates of hospitalization and death. The chemistry, manufacturing, and control development strategies set a new precedent of speed, safety, and demonstrated clinical benefit and will likely have a lasting impact on the development of future monoclonal antibody therapies for not only infectious diseases but also for oncology, inflammation, and rare diseases.
Collapse
Affiliation(s)
- Brian Kelley
- Vir Biotechnology, Inc., San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
12
|
Zambrano N, Froechlich G, Lazarevic D, Passariello M, Nicosia A, De Lorenzo C, Morelli MJ, Sasso E. High-Throughput Monoclonal Antibody Discovery from Phage Libraries: Challenging the Current Preclinical Pipeline to Keep the Pace with the Increasing mAb Demand. Cancers (Basel) 2022; 14:cancers14051325. [PMID: 35267633 PMCID: PMC8909429 DOI: 10.3390/cancers14051325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Monoclonal antibodies are increasingly used for a broad range of diseases. Rising demand must face with time time-consuming and laborious processes to isolate novel monoclonal antibodies. Next-generation sequencing coupled to phage display provides timely and sustainable high throughput selection strategy to rapidly access novel target. Here, we describe the current NGS-guided strategies to identify potential binders from enriched sub-libraires by applying a user-friendly informatic pipeline to identify and discard false positive clones. Rescue step and strategies to boost mAb yield are also discussed to improve the limiting selection and screening steps. Abstract Monoclonal antibodies are among the most powerful therapeutics in modern medicine. Since the approval of the first therapeutic antibody in 1986, monoclonal antibodies keep holding great expectations for application in a range of clinical indications, highlighting the need to provide timely and sustainable access to powerful screening options. However, their application in the past has been limited by time-consuming and expensive steps of discovery and production. The screening of antibody repertoires is a laborious step; however, the implementation of next-generation sequencing-guided screening of single-chain antibody fragments has now largely overcome this issue. This review provides a detailed overview of the current strategies for the identification of monoclonal antibodies from phage display-based libraries. We also discuss the challenges and the possible solutions to improve the limiting selection and screening steps, in order to keep pace with the increasing demand for monoclonal antibodies.
Collapse
Affiliation(s)
- Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
- Correspondence: (N.Z.); (E.S.)
| | - Guendalina Froechlich
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (D.L.); (M.J.M.)
| | - Margherita Passariello
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alfredo Nicosia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Claudia De Lorenzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Marco J. Morelli
- Center for Omics Sciences Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (D.L.); (M.J.M.)
| | - Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
- Correspondence: (N.Z.); (E.S.)
| |
Collapse
|
13
|
Xu J, Ou J, McHugh KP, Borys MC, Khetan A. Upstream cell culture process characterization and in-process control strategy development at pandemic speed. MAbs 2022; 14:2060724. [PMID: 35380922 PMCID: PMC8986202 DOI: 10.1080/19420862.2022.2060724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As of early 2022, the coronavirus disease 2019 (COVID-19) pandemic remains a substantial global health concern. Different treatments for COVID-19, such as anti-COVID-19 neutralizing monoclonal antibodies (mAbs), have been developed under tight timelines. Not only mAb product and clinical development but also chemistry, manufacturing, and controls (CMC) process development at pandemic speed are required to address this highly unmet patient need. CMC development consists of early- and late-stage process development to ensure sufficient mAb manufacturing yield and consistent product quality for patient safety and efficacy. Here, we report a case study of late-stage cell culture process development at pandemic speed for mAb1 and mAb2 production as a combination therapy for a highly unmet patient treatment. We completed late-stage cell culture process characterization (PC) within approximately 4 months from the cell culture process definition to the initiation of the manufacturing process performance qualification (PPQ) campaign for mAb1 and mAb2, in comparison to a standard one-year PC timeline. Different strategies were presented in detail at different PC steps, i.e., pre-PC risk assessment, scale-down model development and qualification, formal PC experiments, and in-process control strategy development for a successful PPQ campaign that did not sacrifice quality. The strategies we present may be applied to accelerate late-stage process development for other biologics to reduce timelines.
Collapse
Affiliation(s)
- Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, MA, USA
| | - Jianfa Ou
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, MA, USA
| | - Kyle P McHugh
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, MA, USA
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, MA, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, MA, USA
| |
Collapse
|
14
|
Inner Workings: Using vaccines to harness the immune system and fight drugs of abuse. Proc Natl Acad Sci U S A 2021; 118:2121094118. [PMID: 34937749 DOI: 10.1073/pnas.2121094118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
15
|
Reis G, Silva EADSM, Silva DCM, Thorlund K, Thabane L, Guyatt GH, Forrest JI, Glushchenko AV, Chernecki C, McKay P, Sprague S, Harari O, Ruton H, Rayner CR, Mills EJ. A multi-center, adaptive, randomized, platform trial to evaluate the effect of repurposed medicines in outpatients with early coronavirus disease 2019 (COVID-19) and high-risk for complications: the TOGETHER master trial protocol. Gates Open Res 2021. [DOI: 10.12688/gatesopenres.13304.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: There remains a need for an effective and affordable outpatient treatment for early COVID-19. Multiple repurposed drugs have shown promise in treating COVID-19. We describe a master protocol that will assess the efficacy of different repurposed drugs as treatments for early COVID-19 among outpatients at a high risk for severe complications. Methods: The TOGETHER Trial is a multi-center platform adaptive randomized, placebo-controlled, clinical trial. Patients are included if they are at least 18 years of age, have a positive antigen test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and have an indication for high risk of disease severity, including co-morbidities, older age, or high body mass index. Eligible patients are randomized with equal chance to an investigational product (IP) or to placebo.The primary endpoint is hospitalization defined as either retention in a COVID-19 emergency setting for greater than 6 hours or transfer to tertiary hospital due to COVID-19. Secondary outcomes include mortality, adverse events, adherence, and viral clearance. Scheduled interim analyses are conducted and reviewed by the Data and Safety Monitoring Committee (DSMC), who make recommendations on continuing or stopping each IP. The platform adaptive design go-no-go decision rules are extended to dynamically incorporate external evidence on COVID-19 interventions from ongoing independent randomized clinical trials. Discussion: Results from this trial will assist in the identification of therapeutics for the treatment of early diagnosed COVID-19. The novel methodological extension of the platform adaptive design to dynamically incorporate external evidence is one of the first of its kind and may provide highly valuable information for all COVID-19 trials going forward. Clinicaltrials.gov registration: NCT04727424 (27/01/2021)
Collapse
|
16
|
A Patent Review on the Therapeutic Application of Monoclonal Antibodies in COVID-19. Int J Mol Sci 2021; 22:ijms222111953. [PMID: 34769383 PMCID: PMC8584575 DOI: 10.3390/ijms222111953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains spike proteins that assist the virus in entering host cells. In the absence of a specific intervention, efforts are afoot throughout the world to find an effective treatment for SARS-CoV-2. Through innovative techniques, monoclonal antibodies (MAbs) are being designed and developed to block a particular pathway of SARS-CoV-2 infection. More than 100 patent applications describing the development of MAbs and their application against SARS-CoV-2 have been registered. Most of them target the receptor binding protein so that the interaction between virus and host cell can be prevented. A few monoclonal antibodies are also being patented for the diagnosis of SARS-CoV-2. Some of them, like Regeneron® have already received emergency use authorization. These protein molecules are currently preferred for high-risk patients such as those over 65 years old with compromised immunity and those with metabolic disorders such as obesity. Being highly specific in action, monoclonal antibodies offer one of the most appropriate interventions for both the prevention and treatment of SARS-CoV-2. Technological advancement has helped in producing highly efficacious MAbs. However, these agents are known to induce immunogenic and non-immunogenic reactions. More research and testing are required to establish the suitability of administering MAbs to all patients at risk of developing a severe illness. This patent study is focused on MAbs as a therapeutic option for treating COVID-19, as well as their invention, patenting information, and key characteristics.
Collapse
|
17
|
Rosario-Acevedo R, Biryukov SS, Bozue JA, Cote CK. Plague Prevention and Therapy: Perspectives on Current and Future Strategies. Biomedicines 2021; 9:1421. [PMID: 34680537 PMCID: PMC8533540 DOI: 10.3390/biomedicines9101421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Plague, caused by the bacterial pathogen Yersinia pestis, is a vector-borne disease that has caused millions of human deaths over several centuries. Presently, human plague infections continue throughout the world. Transmission from one host to another relies mainly on infected flea bites, which can cause enlarged lymph nodes called buboes, followed by septicemic dissemination of the pathogen. Additionally, droplet inhalation after close contact with infected mammals can result in primary pneumonic plague. Here, we review research advances in the areas of vaccines and therapeutics for plague in context of Y. pestis virulence factors and disease pathogenesis. Plague continues to be both a public health threat and a biodefense concern and we highlight research that is important for infection mitigation and disease treatment.
Collapse
Affiliation(s)
| | | | | | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA; (R.R.-A.); (S.S.B.); (J.A.B.)
| |
Collapse
|
18
|
Das TK, Sreedhara A, Colandene JD, Chou DK, Filipe V, Grapentin C, Searles J, Christian TR, Narhi LO, Jiskoot W. Stress Factors in Protein Drug Product Manufacturing and Their Impact on Product Quality. J Pharm Sci 2021; 111:868-886. [PMID: 34563537 DOI: 10.1016/j.xphs.2021.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
Injectable protein-based medicinal products (drug products, or DPs) must be produced by using sterile manufacturing processes to ensure product safety. In DP manufacturing the protein drug substance, in a suitable final formulation, is combined with the desired primary packaging (e.g., syringe, cartridge, or vial) that guarantees product integrity and enables transportation, storage, handling and clinical administration. The protein DP is exposed to several stress conditions during each of the unit operations in DP manufacturing, some of which can be detrimental to product quality. For example, particles, aggregates and chemically-modified proteins can form during manufacturing, and excessive amounts of these undesired variants might cause an impact on potency or immunogenicity. Therefore, DP manufacturing process development should include identification of critical quality attributes (CQAs) and comprehensive risk assessment of potential protein modifications in process steps, and the relevant steps must be characterized and controlled. In this commentary article we focus on the major unit operations in protein DP manufacturing, and critically evaluate each process step for stress factors involved and their potential effects on DP CQAs. Moreover, we discuss the current industry trends for risk mitigation, process control including analytical monitoring, and recommendations for formulation and process development studies, including scaled-down runs.
Collapse
Affiliation(s)
- Tapan K Das
- Bristol Myers Squibb, Biologics Development, New Brunswick, New Jersey 08903, USA.
| | | | - James D Colandene
- GlaxoSmithKline, Biopharmaceutical Product Sciences, 1250 S Collegeville Road, Collegeville, PA 19425, USA
| | - Danny K Chou
- Compassion BioSolution, LLC, Lomita, CA 90717, USA
| | | | - Christoph Grapentin
- Lonza AG, Drug Product Services, Hochbergerstrasse 60G, 4057 Basel, Switzerland
| | - Jim Searles
- Pfizer Inc., Biotherapeutics Pharmaceutical Sciences Research and Development, 875 Chesterfield Pkwy W, Chesterfield, MO 63017 USA
| | | | | | - Wim Jiskoot
- Leiden University, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, the Netherlands; Coriolis Pharma, Martinsried, Germany
| |
Collapse
|
19
|
Immune Prophylaxis and Therapy for Human Cytomegalovirus Infection. Int J Mol Sci 2021; 22:ijms22168728. [PMID: 34445434 PMCID: PMC8395925 DOI: 10.3390/ijms22168728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Human Cytomegalovirus (HCMV) infection is widespread and can result in severe sequelae in susceptible populations. Primary HCMV infection of naïve individuals results in life-long latency characterized by frequent and sporadic reactivations. HCMV infection elicits a robust antibody response, including neutralizing antibodies that can block the infection of susceptible cells in vitro and in vivo. Thus, antibody products and vaccines hold great promise for the prevention and treatment of HCMV, but to date, most attempts to demonstrate their safety and efficacy in clinical trials have been unsuccessful. In this review we summarize publicly available data on these products and highlight new developments and approaches that could assist in successful translation of HCMV immunotherapies.
Collapse
|
20
|
Zígolo MA, Goytia MR, Poma HR, Rajal VB, Irazusta VP. Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146400. [PMID: 33794459 PMCID: PMC7967396 DOI: 10.1016/j.scitotenv.2021.146400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 05/08/2023]
Abstract
The new SARS-CoV-2, responsible for the COVID-19 pandemic, has been threatening public health worldwide for more than a year. The aim of this work was to evaluate compounds of natural origin, mainly from medicinal plants, as potential SARS-CoV-2 inhibitors through docking studies. The viral spike (S) glycoprotein and the main protease Mpro, involved in the recognition of virus by host cells and in viral replication, respectively, were the main molecular targets in this study. Molecular docking was performed using AutoDock, which allowed us to select the plant actives with the highest affinity towards the viral targets and to identify the interaction molecular sites with the SARS-CoV2 proteins. The best energy binding values for S protein were, in kcal/mol: -19.22 for glycyrrhizin, -17.84 for gitoxin, -12.05 for dicumarol, -10.75 for diosgenin, and -8.12 for delphinidin. For Mpro were, in kcal/mol: -9.36 for spirostan, -8.75 for N-(3-acetylglycyrrhetinoyl)-2-amino-propanol, -8.41 for α-amyrin, -8.35 for oleanane, -8.11 for taraxasterol, and -8.03 for glycyrrhetinic acid. In addition, the synthetic drugs umifenovir, chloroquine, and hydroxychloroquine were used as controls for S protein, while atazanavir and nelfinavir were used for Mpro. Key hydrogen bonds and hydrophobic interactions between natural compounds and the respective viral proteins were identified, allowing us to explain the great affinity obtained in those compounds with the lowest binding energies. These results suggest that these natural compounds could potentially be useful as drugs to be experimentally evaluated against COVID-19.
Collapse
Affiliation(s)
- María Antonela Zígolo
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - Matías Rivero Goytia
- Silentium Apps, Salta, Argentina; Facultad de Economía y Administración, Universidad Católica de Salta (UCASAL), Salta, Argentina
| | - Hugo Ramiro Poma
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ingeniería, UNSa, Salta, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| |
Collapse
|
21
|
Reis G, Silva EADSM, Silva DCM, Thorlund K, Thabane L, Guyatt GH, Forrest JI, Glushchenko AV, Chernecki C, McKay P, Sprague S, Harari O, Ruton H, Rayner CR, Mills EJ. A multi-center, adaptive, randomized, platform trial to evaluate the effect of repurposed medicines in outpatients with early coronavirus disease 2019 (COVID-19) and high-risk for complications: the TOGETHER master trial protocol. Gates Open Res 2021. [DOI: 10.12688/gatesopenres.13304.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Although vaccines are currently available for coronavirus disease 2019 (COVID-19), there remains a need for an effective and affordable outpatient treatment for early COVID-19. Multiple repurposed drugs have shown promise in treating COVID-19. We describe a master protocol that will assess the efficacy of different repurposed drugs as treatments for early COVID-19 among outpatients at a high risk for severe complications. Methods: The TOGETHER Trial is an international (currently in Brazil and Africa), multi-center platform adaptive randomized, placebo-controlled, clinical trial. Patients are included if they are at least 18 years of age, have a positive antigen test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and have an indication for high risk of disease severity, including co-morbidities, older age, or high body mass index. Eligible patients are randomized with equal chance to an investigational product (IP) or to placebo. The primary endpoint is hospitalization due to clinical worsening of COVID-19 or emergency room required observation for more than 6 hours up to 28 days after randomization. Key secondary endpoints include viral clearance, clinical improvement, hospitalization for any cause, mortality for any cause, and safety and tolerability of each IP. Scheduled interim analyses are conducted and reviewed by the Data and Safety Monitoring Committee (DSMC), who make recommendations on continuing or stopping each IP. The platform adaptive design go-no-go decision rules are extended to dynamically incorporate external evidence on COVID-19 interventions from ongoing independent randomized clinical trials. Discussion: Results from this trial will assist in the identification of therapeutics for COVID-19 that can easily be scaled in low- and middle-income settings. The novel methodological extension of the platform adaptive design to dynamically incorporate external evidence is one of the first of its kind and may provide highly valuable information for all COVID-19 trials going forward. Clinicaltrials.gov registration: NCT04727424 (27/01/2021)
Collapse
|
22
|
Jeske AM, Boucher P, Curiel DT, Voss JE. Vector Strategies to Actualize B Cell-Based Gene Therapies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:755-764. [PMID: 34321286 PMCID: PMC8744967 DOI: 10.4049/jimmunol.2100340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022]
Abstract
Recent developments in genome editing and delivery systems have opened new possibilities for B cell gene therapy. CRISPR-Cas9 nucleases have been used to introduce transgenes into B cell genomes for subsequent secretion of exogenous therapeutic proteins from plasma cells and to program novel B cell Ag receptor specificities, allowing for the generation of desirable Ab responses that cannot normally be elicited in animal models. Genome modification of B cells or their progenitor, hematopoietic stem cells, could potentially substitute Ab or protein replacement therapies that require multiple injections over the long term. To date, B cell editing using CRISPR-Cas9 has been solely employed in preclinical studies, in which cells are edited ex vivo. In this review, we discuss current B cell engineering efforts and strategies for the eventual safe and economical adoption of modified B cells into the clinic, including in vivo viral delivery of editing reagents to B cells.
Collapse
Affiliation(s)
- Amanda M Jeske
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO
| | - Paul Boucher
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO
| | - David T Curiel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO
- Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO; and
| | - James E Voss
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
23
|
Valgardsdottir R, Cattaneo I, Napolitano G, Raglio A, Spinelli O, Salmoiraghi S, Castilletti C, Lapa D, Capobianchi MR, Farina C, Golay J. Identification of Human SARS-CoV-2 Monoclonal Antibodies from Convalescent Patients Using EBV Immortalization. Antibodies (Basel) 2021; 10:26. [PMID: 34287229 PMCID: PMC8293222 DOI: 10.3390/antib10030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/27/2022] Open
Abstract
We report the isolation of two human IgG1k monoclonal antibodies (mAbs) directed against the SARS-CoV-2 spike protein. These mAbs were isolated from two donors who had recovered from COVID-19 infection during the first pandemic peak in the Lombardy region of Italy, the first European and initially most affected region in March 2020. We used the method of EBV immortalization of purified memory B cells and supernatant screening with a spike S1/2 assay for mAb isolation. This method allowed rapid isolation of clones, with one donor showing about 7% of clones positive against spike protein, whereas the other donor did not produce positive clones out of 91 tested. RNA was extracted from positive clones 39-47 days post-EBV infection, allowing VH and VL sequencing. The same clones were sequenced again after a further 100 days in culture, showing that no mutation had taken place during in vitro expansion. The B cell clones could be expanded in culture for more than 4 months after EBV immortalization and secreted the antibodies stably during that time, allowing to purify mg quantities of each mAb for functional assays without generating recombinant proteins. Unfortunately, neither mAb had significant neutralizing activity in a virus infection assay with several different SARS-CoV-2 isolates. The antibody sequences are made freely available.
Collapse
Affiliation(s)
- Rut Valgardsdottir
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (R.V.); (I.C.); (O.S.); (S.S.)
| | - Irene Cattaneo
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (R.V.); (I.C.); (O.S.); (S.S.)
| | - Gavino Napolitano
- Division of Microbiology and Virology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (G.N.); (A.R.); (C.F.)
| | - Annibale Raglio
- Division of Microbiology and Virology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (G.N.); (A.R.); (C.F.)
| | - Orietta Spinelli
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (R.V.); (I.C.); (O.S.); (S.S.)
| | - Silvia Salmoiraghi
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (R.V.); (I.C.); (O.S.); (S.S.)
- Fondazione per la Ricerca Ospedale Maggiore, 24127 Bergamo, Italy
| | - Concetta Castilletti
- Virology Laboratory, INMI-IRCCS “L. Spallanzani”, 00149 Roma, Italy; (C.C.); (D.L.); (M.R.C.)
| | - Daniele Lapa
- Virology Laboratory, INMI-IRCCS “L. Spallanzani”, 00149 Roma, Italy; (C.C.); (D.L.); (M.R.C.)
| | | | - Claudio Farina
- Division of Microbiology and Virology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (G.N.); (A.R.); (C.F.)
| | - Josee Golay
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (R.V.); (I.C.); (O.S.); (S.S.)
- Fondazione per la Ricerca Ospedale Maggiore, 24127 Bergamo, Italy
| |
Collapse
|
24
|
Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol 2021; 21:382-393. [PMID: 33875867 PMCID: PMC8054133 DOI: 10.1038/s41577-021-00542-x] [Citation(s) in RCA: 497] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
Several neutralizing monoclonal antibodies (mAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed and are now under evaluation in clinical trials. With the US Food and Drug Administration recently granting emergency use authorizations for neutralizing mAbs in non-hospitalized patients with mild-to-moderate COVID-19, there is an urgent need to discuss the broader potential of these novel therapies and to develop strategies to deploy them effectively in clinical practice, given limited initial availability. Here, we review the precedent for passive immunization and lessons learned from using antibody therapies for viral infections such as respiratory syncytial virus, Ebola virus and SARS-CoV infections. We then focus on the deployment of convalescent plasma and neutralizing mAbs for treatment of SARS-CoV-2. We review specific clinical questions, including the rationale for stratification of patients, potential biomarkers, known risk factors and temporal considerations for optimal clinical use. To answer these questions, there is a need to understand factors such as the kinetics of viral load and its correlation with clinical outcomes, endogenous antibody responses, pharmacokinetic properties of neutralizing mAbs and the potential benefit of combining antibodies to defend against emerging viral variants.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/therapeutic use
- Antibody-Dependent Enhancement
- COVID-19/immunology
- COVID-19/therapy
- COVID-19/virology
- Drug Development
- Drug Resistance, Viral/genetics
- Drug Resistance, Viral/immunology
- Humans
- Immunization, Passive/adverse effects
- Immunization, Passive/methods
- Models, Immunological
- Pandemics
- SARS-CoV-2/drug effects
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Peter C Taylor
- Botnar Research Centre, University of Oxford, Oxford, UK.
| | | | | | | | | | - Robert L Gottlieb
- Baylor University Medical Center, Dallas, TX, USA
- Baylor Scott & White Research Institute, Dallas, TX, USA
| |
Collapse
|
25
|
Singh N, Villoutreix BO. Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Comput Struct Biotechnol J 2021; 19:2537-2548. [PMID: 33936562 PMCID: PMC8074526 DOI: 10.1016/j.csbj.2021.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to identify new therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. This pandemic has thus spurred intensive research in most scientific areas and in a short period of time, several vaccines have been developed. But, while the race to find vaccines for COVID-19 has dominated the headlines, other types of therapeutic agents are being developed. In this mini-review, we report several databases and online tools that could assist the discovery of anti-SARS-CoV-2 small chemical compounds and peptides. We then give examples of studies that combined in silico and in vitro screening, either for drug repositioning purposes or to search for novel bioactive compounds. Finally, we question the overall lack of discussion and plan observed in academic research in many countries during this crisis and suggest that there is room for improvement.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Bruno O. Villoutreix
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| |
Collapse
|
26
|
Emergency Use Authorization for Bamlanivimab in Mild to Moderate COVID-19: Implications for Clinical Nurse Specialist Practice. CLIN NURSE SPEC 2021; 35:112-115. [PMID: 33793172 DOI: 10.1097/nur.0000000000000591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Evans JF, Obraztsova K, Lin SM, Krymskaya VP. CrossTORC and WNTegration in Disease: Focus on Lymphangioleiomyomatosis. Int J Mol Sci 2021; 22:ijms22052233. [PMID: 33668092 PMCID: PMC7956553 DOI: 10.3390/ijms22052233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) and wingless-related integration site (Wnt) signal transduction networks are evolutionarily conserved mammalian growth and cellular development networks. Most cells express many of the proteins in both pathways, and this review will briefly describe only the key proteins and their intra- and extracellular crosstalk. These complex interactions will be discussed in relation to cancer development, drug resistance, and stem cell exhaustion. This review will also highlight the tumor-suppressive tuberous sclerosis complex (TSC) mutated, mTOR-hyperactive lung disease of women, lymphangioleiomyomatosis (LAM). We will summarize recent advances in the targeting of these pathways by monotherapy or combination therapy, as well as future potential treatments.
Collapse
|
28
|
Chin J, Zhou Y, Chen CL, Lomiguen CM, McClelland S, Lee-Wong M. Influenza Vaccination Quality Improvement as a Model for COVID-19 Prophylaxis. Cureus 2021; 13:e12549. [PMID: 33437559 PMCID: PMC7793539 DOI: 10.7759/cureus.12549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction: Many comparisons have been made on the effect and impact of COVID-19 on influenza pandemics of history. Therefore, it is reasonable to infer that the strategies utilized by healthcare providers to improve influenza vaccination rates can similarly be applied to the administration of a COVID-19 vaccine. The purpose of this study was to determine the rationale of low influenza vaccination rates in an urban allergy clinic and how to improve patient education and knowledge regarding the importance of influenza vaccination. A three-year comparison of interventions is presented as well as its application to future COVID-19 vaccinations. Methods: This study was performed at an outpatient allergy and clinical immunology practice (MSBI) with hospital affiliation in New York City, New York. A quality improvement medical committee was formed to optimize influenza vaccination rates to greater than 71% and established standardized protocols regarding patient intake workflows, vaccine counseling, and documentation. Patient records from four providers were used for this study to compare pre-and post-intervention rates. Results: 984 patients met inclusion criteria, with a normal distribution of ages (18-80), race, and sex. Average vaccination rates prior to the intervention were 9.25-13.60%. The average vaccination rate after the intervention was 91.34%. Discussion: The MSBI quality improvement study identified key areas to address in improving influenza vaccination rates. Vaccine hesitancy, public misinformation, and ambivalence surrounding vaccination with egg allergies or during a subcutaneous immunotherapy injection were all topics addressed during the 2018-2019 intervention year. Additional attention was also put toward provider education and standardization of documentation. Shared decision making and intensive education/outreach efforts are needed by physicians and patients alike to overcome vaccine hesitancy. In comparing this to upcoming COVID-19 vaccine challenges, similar barriers will likely also need to be addressed. Greater research is needed to understand patient motivations regarding hesitancy specific to the COVID-19 vaccine. Conclusion: As evidenced in the yearly battle with influenza and now the COVID-19 pandemic, it has become essential to identify and implement multi-level strategies to maximize vaccination rates, especially amid a global pandemic. With COVID-19 vaccines reaching emergency approval stages, it is important for healthcare providers to start creating workflows and strategies to address patient inquiries. The influenza vaccination quality improvement project presented here can be used as a guideline for future evaluations of COVID-19 vaccination efforts.
Collapse
Affiliation(s)
- Justin Chin
- Medicine, Lake Erie College of Osteopathic Medicine, Erie, USA.,Family Medicine, LifeLong Medical Care, Richmond, USA
| | - YaQun Zhou
- Primary Care, Touro College of Osteopathic Medicine, New York, USA
| | - Chijen L Chen
- Internal Medicine, Zhongshan School of Medicine at Sun Yat-sen University, Guangzhou, CHN
| | | | - Suzanne McClelland
- Allergy and Immunology, Mount Sinai Beth Israel Medical Center, New York, USA
| | - Mary Lee-Wong
- Allergy and Immunology, Mount Sinai Beth Israel Medical Center, New York, USA
| |
Collapse
|