1
|
Peh HY, Chen J. Pro-resolving lipid mediators and therapeutic innovations in resolution of inflammation. Pharmacol Ther 2025; 265:108753. [PMID: 39566561 DOI: 10.1016/j.pharmthera.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
This review summarizes findings presented at the 19th World Congress of Basic & Clinical Pharmacology 2023 (Glasgow, Scotland, July 3rd to 7th, 2023) from 8 speakers in the field of resolution of inflammation, resolution pharmacology and resolution biology. It is now accepted that the acute inflammatory response is protective to defend the host against infection or tissue injury. Acute inflammation is self-limited and programmed to be limited in space and time: this is achieved through endogenous resolution processes that ensure return to homeostasis. Resolution is brought about by agonist mediators that include specialized pro-resolving lipid mediators (SPMs) and pro-resolving proteins and peptides such as annexin A1 and angiotensin-(1-7), all acting to initiate anti-inflammatory and pro-resolving processes. If the inflammatory reaction remains unchecked through dysfunctional resolution mechanism, it can become chronic and contribute to a plethora of human diseases, including respiratory, cardiovascular, metabolic, allergic diseases, and arthritis. Herein, we discuss how non-resolving inflammation plays a role in the pathogenesis of these diseases. In addition to SPMs, we highlight the discovery, biosynthesis, biofunctions, and latest research updates on innovative therapeutics (including annexin-A1 peptide-mimetic RTP-026, small molecule FPR2 agonist BM-986235/LAR-1219, biased agonist for FPR1/FPR2 Cmpd17b, lipoxin mimetics AT-01-KG and AT-02-CT, melanocortin receptor agonist AP1189, gold nanoparticles, angiotensin-(1-7), and CD300a) that can promote resolution of inflammation directly or through modulation of SPMs production. Drug development strategies based on the biology of the resolution of inflammation can offer novel therapeutic means and/or add-on therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Hong Yong Peh
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore; Immunology Programme and Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Huang Y, Dong S, Zhang Y, Zhang Y, Guo Y, Shi J, Li X, Liu S, Chen Y, Yu J. Electroacupuncture promotes resolution of inflammation by modulating SPMs via vagus nerve activation in LPS-induced ALI. Int Immunopharmacol 2025; 147:113941. [PMID: 39746272 DOI: 10.1016/j.intimp.2024.113941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
During the process of acute lung injury (ALI) associated with sepsis, the α7nAChR in the cholinergic anti-inflammatory pathway (CAP) plays a crucial role. However, the roles of electroacupuncture (EA) and specialized pro-resolving mediators (SPMs) in this context remain unclear. In this study, we demonstrated that EA activates CAP via α7nAChR, reducing lung permeability and inflammatory cytokine release. Our results highlighted lipoxin A4 (LXA4) as a crucial SPM in this process. EA was shown to enhance LXA4 synthesis and alleviate symptoms in patients with sepsis-related acute respiratory distress syndrome (ARDS). Studies using α7nAChR-deficient mice confirmed its essential role in LXA4 regulation. Macrophages in bronchoalveolar lavage fluid (BALF) were identified as key contributors to the protective effects of LXA4, further supported by experiments involving pulmonary macrophage depletion. In summary, we discovered a novel anti-inflammatory pathway where EA activates α7nAChR, leading to increased LXA4 production and lung protection.
Collapse
Affiliation(s)
- Yan Huang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Ye Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Yan Guo
- Department of Anesthesiology, The Heji Affiliated Hospital of Changzhi Medical College, Changzhi Medical College, Shanxi, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Shasha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Yong Chen
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China.
| |
Collapse
|
3
|
Lee J, Park HA, Shin KC, Oh DK. Bioconversion of eicosapentaenoic acid into 5S,15S- and 5R,15R-dihydroxyeicosapentaenoic acids by double-dioxygenating 15S- and 15R-lipoxygenases. J Biosci Bioeng 2025; 139:1-6. [PMID: 39406552 DOI: 10.1016/j.jbiosc.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024]
Abstract
Resolvin E series (Rvs), such as RvE4 (5S,15S-dihydroxyeicosapentaenoic acid) and its stereoselective enantiomer (5R,15R-dihydroxyeicosapentaenoic acid), play an important role in promoting the resolution of inflammation and are derived from eicosapentaenoic acid (EPA) by M2 macrophage in human. However, they have been synthesized using expensive and inefficient chemical methods. Here, we performed efficient quantitative production of RvE4 and its enantiomer from EPA using Escherichia coli expressing double-dioxygenating 15S-lipoxygenase (15S-LOX) from Archangium violaceum and double-dioxygenating 15R-LOX from Sorangium cellulosum, respectively, with solvent, polymer, and adsorbent resin. The cell density, substrate concentration, solvent types and concentrations, polymer types and concentrations, and resin concentration were optimized for the enhanced bioconversion of EPA into RvE4 and its enantiomer. Under the optimized conditions, A. violaceum 15S-LOX and S. cellulosum 15R-LOX expressed in E. coli converted 6.0 mM EPA into 4.3 mM (1.44 g/L) RvE4 and 5.8 mM (1.94 g/L) RvE4 enantiomer in 60 min, with productivities of 4.3 and 5.8 mM/h and molar conversions of 72% and 97%, respectively. To date, these are the highest concentrations, productivities, and conversions of RvE4 and its enantiomer. The concentrations of RvE4 and its enantiomer obtained from the conversion of EPA with solvent, polymer, and resin were 2.5- and 3.2-fold higher than those without the additives, respectively.
Collapse
Affiliation(s)
- Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, South Korea
| | - Hyun-Ah Park
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, South Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Mohyein-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17035, South Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, South Korea.
| |
Collapse
|
4
|
Tian Y, Sun J, Jiao D, Zhang W. The potential role of n-3 fatty acids and their lipid mediators on asthmatic airway inflammation. Front Immunol 2024; 15:1488570. [PMID: 39720728 PMCID: PMC11666451 DOI: 10.3389/fimmu.2024.1488570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Asthma, is a common, significant and diverse condition marked by persistent airway inflammation, with a major impact on human health worldwide. The predisposing factors for asthma are complex and widespread. The beneficial effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in asthma have increasingly attracted attention recently. In asthma therapy, n-3 PUFAs may reduce asthma risk by controlling on levels of inflammatory cytokines and regulating recruitment of inflammatory cells in asthma. The specialized pro-resolving mediators (SPMs) derived from n-3 PUFAs, including the E- and D-series resolvins, protectins, and maresins, were discovered in inflammatory exudates and their biosynthesis by lipoxygenase mediated pathways elucidated., SPMs alleviated T-helper (Th)1/Th17 and type 2 cytokine immune imbalance, and regulated macrophage polarization and recruitment of inflammatory cells in asthma via specific receptors such as formyl peptide receptor 2 (ALX/FPR2) and G protein-coupled receptor 32. In conclusion, the further study of n-3 PUFAs and their derived SPMs may lead to novel anti-inflammatory asthma treatments.
Collapse
Affiliation(s)
- Yuan Tian
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - JingMeng Sun
- Department of Pharmacy, First Hospital of Jilin University, Changchun, China
| | - DongMei Jiao
- Analytical Preparation Process Department, Shouyao Holdings (Beijing) Co., Ltd, Beijing, China
| | - WeiYu Zhang
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Neprelyuk OA, Irza OL, Kriventsov MA. Omega-3 fatty acids as a treatment option in periodontitis: Systematic review of preclinical studies. Nutr Health 2024; 30:671-685. [PMID: 39319422 DOI: 10.1177/02601060241284694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Background: Periodontitis presents as a chronic inflammatory disease that affects the gingival tissues and structures surrounding the tooth. However, the existing approaches for periodontitis do not allow complete control of the disease. In this regard, an active search is being carried out both in preclinical and clinical studies for new approaches based, among other things, on nutraceuticals. Aim: This systematic review aimed to summarize and systematize data from preclinical studies on the effects of the use of polyunsaturated omega-3 fatty acids in experimentally induced periodontitis. Methods: A systematic search for research articles was performed using electronic scientific databases. Only original in vivo experimental studies investigating the use of omega-3 polyunsaturated fatty acids in experimentally induced periodontitis were included. Quality and risk of bias assessment (Systematic Review Centre for Laboratory Animal Experimentation) and quality of evidence assessment (using the modified Grading of Recommendations Assessment, Development and Evaluation approach) were performed. Results: Nineteen studies were included in this systematic review. It has been shown that omega-3 polyunsaturated fatty acids may decrease the progression of periodontitis with amelioration of alveolar bone loss along with decreased pro-inflammatory response and inhibition of osteoclasts. Despite the promising results, most of the analyzed studies were characterized by low to moderate quality and a significant risk of bias. Conclusion: Based on the retrieved data, the possibility of extrapolating the obtained results to humans is limited, indicating the need for additional studies to elucidate the key patterns and mechanisms of action of omega-3 polyunsaturated fatty acids and their endogenous metabolites in experimentally induced periodontitis.
Collapse
Affiliation(s)
- Olga A Neprelyuk
- Department of Orthopedic Dentistry, Medical Institute named after SI Georgievsky, VI Vernadsky Crimean Federal University, Simferopol, Russia
| | - Oksana L Irza
- Department of Orthopedic Dentistry, Medical Institute named after SI Georgievsky, VI Vernadsky Crimean Federal University, Simferopol, Russia
| | - Maxim A Kriventsov
- Pathomorphology Department, Medical Institute named after SI Georgievsky, VI Vernadsky Crimean Federal University, Simferopol, Russia
| |
Collapse
|
6
|
Prouse T, Majumder S, Majumder R. Functions of TAM Receptors and Ligands Protein S and Gas6 in Atherosclerosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:12736. [PMID: 39684449 DOI: 10.3390/ijms252312736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Atherosclerosis and cardiovascular disease are associated with high morbidity and mortality in industrialized nations. The Tyro3, Axl, and Mer (TAM) family of receptor tyrosine kinases is involved in the amplification or resolution of atherosclerosis pathology and other cardiovascular pathology. The ligands of these receptors, Protein S (PS) and growth arrest specific protein 6 (Gas6), are essential for TAM receptor functions in the amplification and resolution of atherosclerosis. The Axl-Gas6 interaction has various effects on cardiovascular disease. Mer and PS dampen inflammation, thereby protecting against atherosclerosis progression. Tyro3, the least studied TAM receptor in cardiovascular disease, appears to protect against fibrosis in post-myocardial infarction injury. Ultimately, PS, Gas6, and TAM receptors present an exciting avenue of potential therapeutic targets against inflammation associated with atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Teagan Prouse
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Rinku Majumder
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Li W, Xia Y, Yang J, Sanyal AJ, Shah VH, Chalasani NP, Yu Q. Disrupted balance between pro-inflammatory lipid mediators and anti-inflammatory specialized pro-resolving mediators is linked to hyperinflammation in patients with alcoholic hepatitis. Front Immunol 2024; 15:1377236. [PMID: 39640267 PMCID: PMC11617321 DOI: 10.3389/fimmu.2024.1377236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Alcoholic hepatitis (AH) is characterized by intense systemic and liver inflammation, posing significant risks of health complications and mortality. While inflammation is a crucial defense mechanism against injury and infection, its timely resolution is essential to prevent tissue damage and restore tissue homeostasis. The resolution of inflammation is primarily governed by specialized pro-resolving mediators (SPMs), lipid metabolites derived from w-6 and w-3 poly-unsaturated fatty acids (PUFAs). Currently, the balance between pro-inflammatory lipid mediators (PLMs) and SPMs in the w-6 and w-3 PUFA metabolic pathways and the impact of alcohol abstinence on profiles of PLMs and SPMs in AH patients are not well studied. Methods In this study, we used LC-MS/MS and ELISA to quantify levels of lipid mediators (LMs) and their precursors in the plasma samples from 58 AH patients, 29 heavy drinkers without overt liver diseases (HDCs), and 35 healthy controls (HCs). Subsequently, we assessed correlations of altered LMs with clinical parameters and inflammatory mediators. Furthermore, we conducted a longitudinal study to analyze the effects of alcohol abstinence on LMs over 6- and 12-month follow-ups. Results AH patients exhibited significantly higher plasma levels of w-6 PLMs (PGD2 and LTB4) and SPM RvE1 compared to HDCs or HCs. Conversely, the SPM LXA4 was significantly downregulated in AH patients. Some of these altered LMs were found to correlate with AH disease severity and various inflammatory cytokines. Particularly, the LTB4/LXA4 ratio was substantially elevated in AH patients relative to HDCs and HCs. This altered ratio displayed a positive correlation with the MELD score. Importantly, the majority of dysregulated LMs, particularly PLMs, were normalized following alcohol abstinence.
Collapse
Affiliation(s)
- Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Xia
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jing Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Arun J. Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Naga P. Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Fredman G, Serhan CN. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:808-823. [PMID: 38216693 DOI: 10.1038/s41569-023-00984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/14/2024]
Abstract
Timely resolution of the acute inflammatory response (or inflammation resolution) is an active, highly coordinated process that is essential to optimal health. Inflammation resolution is regulated by specific endogenous signalling molecules that function as 'stop signals' to terminate the inflammatory response when it is no longer needed; to actively promote healing, regeneration and tissue repair; and to limit pain. Specialized pro-resolving mediators are a superfamily of signalling molecules that initiate anti-inflammatory and pro-resolving actions. Without an effective and timely resolution response, inflammation can become chronic, a pathological state that is associated with many widely occurring human diseases, including atherosclerotic cardiovascular disease. Uncovering the mechanisms of inflammation resolution failure in cardiovascular diseases and identifying useful biomarkers for non-resolving inflammation are unmet needs. In this Review, we discuss the accumulating evidence that supports the role of non-resolving inflammation in atherosclerosis and the use of specialized pro-resolving mediators as therapeutic tools for the treatment of atherosclerotic cardiovascular disease. We highlight open questions about therapeutic strategies and mechanisms of disease to provide a framework for future studies on the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Tian Y, Liu Y, Liu C, Huang S. NPD1 Relieves Neuropathic Pain and Accelerates the Recovery of Motor Function After Peripheral Nerve Injury. Pain Res Manag 2024; 2024:1109287. [PMID: 39512892 PMCID: PMC11540876 DOI: 10.1155/2024/1109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
The incidence of peripheral nerve injury (PNI) in China is continuously increasing. With an inability to function due to sensory and motor abnormalities, patients with PNI suffer from neuropathic pain and subsequent lesions. Presently, effective treatments for PNI are limited. To determine the role of neuroprotectin D1 (NPD1) in PNI, a sciatic nerve crush injury model was developed to investigate the impact of NPD1 on sensory and motor function recovery following nerve injury. The results demonstrated that NPD1 administered at different time points might reduce mechanical allodynia and thermal hyperalgesia caused by PNI, and its analgesic effect was not tolerated. Immunohistochemistry analyses revealed that administering NPD1 to PNI mice decreased the spinal microglia and astrocyte activation and decreased the inflammatory factor expression in the spinal dorsal horn. Furthermore, NPD1 can inhibit the invasion of IBA-1+ macrophages in dorsal root ganglions generated by nerve injury. Meanwhile, it can help rehabilitate motor and neuromuscular functions following PNI. The results indicate that NPD1 may be involved in the sensory and motor function recovery following PNI.
Collapse
Affiliation(s)
- Yu Tian
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - YanFang Liu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Chang Liu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - SaiSai Huang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
10
|
Roe K. Are secondary bacterial pneumonia mortalities increased because of insufficient pro-resolving mediators? J Infect Chemother 2024; 30:959-970. [PMID: 38977072 DOI: 10.1016/j.jiac.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Respiratory viral infections, including respiratory syncytial virus (RSV), parainfluenza viruses and type A and B influenza viruses, can have severe outcomes. Bacterial infections frequently follow viral infections, and influenza or other viral epidemics periodically have higher mortalities from secondary bacterial pneumonias. Most secondary bacterial infections can cause lung immunosuppression by fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, natural killer cells, dendritic cells and other lung immune cells. Bacterial infections induce synthesis of inflammatory mediators including prostaglandins and leukotrienes, then eventually also special pro-resolving mediators, including lipoxins, resolvins, protectins and maresins, which normally resolve inflammation and immunosuppression. Concurrent viral and secondary bacterial infections are more dangerous, because viral infections can cause inflammation and immunosuppression before the secondary bacterial infections worsen inflammation and immunosuppression. Plausibly, the higher mortalities of secondary bacterial pneumonias are caused by the overwhelming inflammation and immunosuppression, which the special pro-resolving mediators might not resolve.
Collapse
Affiliation(s)
- Kevin Roe
- Retired United States Patent and Trademark Office, San Jose, CA, USA.
| |
Collapse
|
11
|
Serhan CN, Chiang N, Nshimiyimana R. Low-dose pro-resolving mediators temporally reset the resolution response to microbial inflammation. Mol Med 2024; 30:153. [PMID: 39294573 PMCID: PMC11411770 DOI: 10.1186/s10020-024-00877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Specialized pro-resolving mediators (SPMs) promote resolution of inflammation, clear infections and stimulate tissue regeneration. These include resolvins, protectins, and maresins. During self-resolving acute inflammation, SPMs are produced and have key functions activating endogenous resolution response for returning to homeostasis. Herein, we addressed whether infections initiated with ongoing inflammation alter resolution programs, and if low-dose repetitive SPM regimen re-programs the resolution response. METHODS Inflammation was initiated with zymosan (1 mg/mouse) followed by E. coli (105 CFU/mouse) infections carried out in murine peritonitis, and exudates collected at 4-72 h. Leukocytes were enumerated using light microscopy, percentages of PMN, monocytes and macrophages were determined using flow cytometry, and resolution indices calculated. Lipid mediators and SPM profiles were established using mass spectrometry-based metabololipidomics. Repetitive dosing with a SPM panel consisting of RvD1, RvD2, RvD5, MaR1 and RvE2 (0.1 ng/mouse each, i.p.) was given to mice, followed by zymosan challenge. Leukocyte composition, resolution indices and RNA-sequencing were carried out for the repetitive SPM treatments. RESULTS E. coli infections initiated acute inflammation-resolution programs with temporal SPM production in the infectious exudates. Zymosan-induced inflammation prior to E. coli peritonitis shifted exudate resolution indices and delayed E. coli clearance. Lipid mediator metabololipidomics demonstrated that E. coli infection with ongoing zymosan-induced inflammation shifted the time course of exudate SPMs, activating a SPM cluster that included RvD1, RvD5 and MaR1 during the initiation phase of infectious inflammation (0-4 h); RvD5 and MaR1 were present also in the resolution phase (24-48 h). To emulate daily SPM regimens used in humans, a repetitive subthreshold dosing of the SPM panel RvD1, RvD2, RvD5, MaR1 and RvE2 each at 0.1 ng per mouse was administered. This low-dose SPM regimen accelerated exudate PMN clearance following zymosan-induced inflammation, and shortened the resolution interval by > 70%. These low-dose SPMs regulated genes and pathways related to immune response, chemokine clearance and tissue repair, as demonstrated by using RNA-sequencing. CONCLUSIONS Infections encountered during ongoing inflammation in mice reset the resolution mechanisms of inflammation via SPM clusters. Low-dose SPMs activate innate immune responses and pathways towards the resolution response that can be reprogrammed.
Collapse
Affiliation(s)
- Charles N Serhan
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Mass General Brigham and Harvard Medical School, 60 Fenwood Rd., Hale Building for Transformative Medicine 3-016, Boston, MA, 02115, USA.
| | - Nan Chiang
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Mass General Brigham and Harvard Medical School, 60 Fenwood Rd., Hale Building for Transformative Medicine 3-016, Boston, MA, 02115, USA
| | - Robert Nshimiyimana
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Mass General Brigham and Harvard Medical School, 60 Fenwood Rd., Hale Building for Transformative Medicine 3-016, Boston, MA, 02115, USA
| |
Collapse
|
12
|
Wenderoth T, Feldotto M, Hernandez J, Schäffer J, Leisengang S, Pflieger FJ, Bredehöft J, Mayer K, Kang JX, Bier J, Grimminger F, Paßlack N, Rummel C. Effects of Omega-3 Polyunsaturated Fatty Acids on the Formation of Adipokines, Cytokines, and Oxylipins in Retroperitoneal Adi-Pose Tissue of Mice. Int J Mol Sci 2024; 25:9904. [PMID: 39337391 PMCID: PMC11432517 DOI: 10.3390/ijms25189904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Oxylipins and specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated fatty acids (PUFAs) are mediators that coordinate an active process of inflammation resolution. While these mediators have potential as circulating biomarkers for several disease states with inflammatory components, the source of plasma oxylipins/SPMs remains a matter of debate but may involve white adipose tissue (WAT). Here, we aimed to investigate to what extent high or low omega (n)-3 PUFA enrichment affects the production of cytokines and adipokines (RT-PCR), as well as oxylipins/SPMs (liquid chromatography-tandem mass spectrometry) in the WAT of mice during lipopolysaccharide (LPS)-induced systemic inflammation (intraperitoneal injection, 2.5 mg/kg, 24 h). For this purpose, n-3 PUFA genetically enriched mice (FAT-1), which endogenously synthesize n-3 PUFAs, were compared to wild-type mice (WT) and combined with n-3 PUFA-sufficient or deficient diets. LPS-induced systemic inflammation resulted in the decreased expression of most adipokines and interleukin-6 in WAT, whereas the n-3-sufficient diet increased them compared to the deficient diet. The n-6 PUFA arachidonic acid was decreased in WAT of FAT-1 mice, while n-3 derived PUFAs (eicosapentaenoic acid, docosahexaenoic acid) and their metabolites (oxylipins/SPMs) were increased in WAT by genetic and nutritional n-3 enrichment. Several oxylipins/SPMs were increased by LPS treatment in WAT compared to PBS-treated controls in genetically n-3 enriched FAT-1 mice. Overall, we show that WAT may significantly contribute to circulating oxylipin production. Moreover, n-3-sufficient or n-3-deficient diets alter adipokine production. The precise interplay between cytokines, adipokines, and oxylipins remains to be further investigated.
Collapse
Affiliation(s)
- Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Charlestown, MA 02129, USA
| | - Jens Bier
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Nadine Paßlack
- Small Animal Clinic, Internal Medicine and Department of Veterinary Clinical Sciences, Justus Liebig University, 35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
13
|
Kim N, Shin HY. Deciphering the Potential Role of Specialized Pro-Resolving Mediators in Obesity-Associated Metabolic Disorders. Int J Mol Sci 2024; 25:9598. [PMID: 39273541 PMCID: PMC11395256 DOI: 10.3390/ijms25179598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity-related metabolic disorders, including diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease, increasingly threaten global health. Uncontrolled inflammation is a key pathophysiological factor in many of these conditions. In the human body, inflammatory responses generate specialized pro-resolving mediators (SPMs), which are crucial for resolving inflammation and restoring tissue balance. SPMs derived from omega-3 polyunsaturated fatty acids (n-3 PUFAs) such as resolvins, protectins, and maresins hold promise in attenuating the chronic inflammatory diseases associated with lipid metabolism disorders. Recent research has highlighted the therapeutic potential of n-3 PUFA-derived metabolites in addressing these metabolic disorders. However, the understanding of the pharmacological aspects of SPMs, particularly in obesity-related metabolic disorders, remains limited. This review comprehensively summarizes recent advances in understanding the role of SPMs in resolving metabolic disorders, based on studies in animal models and humans. These studies indicate that SPMs have potential as therapeutic targets for combating obesity, as well as offering insights into their mechanisms of action.
Collapse
Affiliation(s)
- Nahyun Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Yang X, Li X, Hu M, Huang J, Yu S, Zeng H, Mao L. EPA and DHA differentially improve insulin resistance by reducing adipose tissue inflammation-targeting GPR120/PPARγ pathway. J Nutr Biochem 2024; 130:109648. [PMID: 38631512 DOI: 10.1016/j.jnutbio.2024.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Insulin resistance (IR) is a global health challenge, often initiated by dysfunctional adipose tissue. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may have different effects on IR, but the mechanisms are unknown. This study aims to evaluate the protective effect of EPA and DHA against IR in a high-fat diet (HFD) mice model and investigate whether EPA and DHA alter IR modulate the G-protein-poupled receptor 120/peroxisome proliferator-activated receptor γ (GPR120/PPARγ) pathway in macrophages and adipocytes, which may affect IR in adipocytes. The findings of this study show that 4% DHA had a better effect in improving IR and reducing inflammatory cytokines in adipose tissue of mice. Additionally, in the cell experiment, the use of AH7614 (a GPR120 antagonist) inhibited the glucose consumption increase and the increasable expression of PPARγ and insulin signaling molecules mediated by DHA in adipocytes. Furthermore, GW9662 (a PPARγ antagonist) hindered the upregulation of glucose consumption and insulin signaling molecule expression induced by EPA and DHA in adipocytes. DHA exhibited significant effects in reducing the number of migrated cells and inflammation. The compounds AH7614 and GW9662 hindered the suppressive effects of EPA and DHA on macrophage-induced IR in adipocytes. These findings suggest that DHA has a stronger potential in improving IR in adipocytes through the GPR120/PPARγ pathway in macrophages, when compared to EPA.
Collapse
Affiliation(s)
- Xian Yang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xudong Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Manjiang Hu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jie Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Siyan Yu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Huanting Zeng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Limei Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
15
|
Ghodsi A, Hidalgo A, Libreros S. Lipid mediators in neutrophil biology: inflammation, resolution and beyond. Curr Opin Hematol 2024; 31:175-192. [PMID: 38727155 PMCID: PMC11301784 DOI: 10.1097/moh.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Acute inflammation is the body's first defense in response to pathogens or injury. Failure to efficiently resolve the inflammatory insult can severely affect tissue homeostasis, leading to chronic inflammation. Neutrophils play a pivotal role in eradicating infectious pathogens, orchestrating the initiation and resolution of acute inflammation, and maintaining physiological functions. The resolution of inflammation is a highly orchestrated biochemical process, partially modulated by a novel class of endogenous lipid mediators known as specialized pro-resolving mediators (SPMs). SPMs mediate their potent bioactions via activating specific cell-surface G protein-coupled receptors (GPCR). RECENT FINDINGS This review focuses on recent advances in understanding the multifaceted functions of SPMs, detailing their roles in expediting neutrophil apoptosis, promoting clearance by macrophages, regulating their excessive infiltration at inflammation sites, orchestrating bone marrow deployment, also enhances neutrophil phagocytosis and tissue repair mechanisms under both physiological and pathological conditions. We also focus on the novel role of SPMs in regulating bone marrow neutrophil functions, differentiation, and highlight open questions about SPMs' functions in neutrophil heterogeneity. SUMMARY SPMs play a pivotal role in mitigating excessive neutrophil infiltration and hyperactivity within pathological milieus, notably in conditions such as sepsis, cardiovascular disease, ischemic events, and cancer. This significant function highlights SPMs as promising therapeutic agents in the management of both acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Anita Ghodsi
- Vascular Biology and Therapeutics Program and Department of Pathology, Yale University, New Haven, USA
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| | - Stephania Libreros
- Vascular Biology and Therapeutics Program and Department of Pathology, Yale University, New Haven, USA
| |
Collapse
|
16
|
Murray M. Omega-3 polyunsaturated fatty acid derived lipid mediators: a comprehensive update on their application in anti-cancer drug discovery. Expert Opin Drug Discov 2024; 19:617-629. [PMID: 38595031 DOI: 10.1080/17460441.2024.2340493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION ω-3 Polyunsaturated fatty acids (PUFAs) have a range of health benefits, including anticancer activity, and are converted to lipid mediators that could be adapted into pharmacological strategies. However, the stability of these mediators must be improved, and they may require formulation to achieve optimal tissue concentrations. AREAS COVERED Herein, the author reviews the literature around chemical stabilization and formulation of ω-3 PUFA mediators and their application in anticancer drug discovery. EXPERT OPINION Aryl-urea bioisosteres of ω-3 PUFA epoxides that killed cancer cells targeted the mitochondrion by a novel dual mechanism: as protonophoric uncouplers and as inhibitors of electron transport complex III that activated ER-stress and disrupted mitochondrial integrity. In contrast, aryl-ureas that contain electron-donating substituents prevented cancer cell migration. Thus, aryl-ureas represent a novel class of agents with tunable anticancer properties. Stabilized analogues of other ω-3 PUFA-derived mediators could also be adapted into anticancer strategies. Indeed, a cocktail of agents that simultaneously promote cell killing, inhibit metastasis and angiogenesis, and that attenuate the pro-inflammatory microenvironment is a novel future anticancer strategy. Such regimen may enhance anticancer drug efficacy, minimize the development of anticancer drug resistance and enhance outcomes.
Collapse
Affiliation(s)
- Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, NSW, Australia
- Woolcock Institute of Medical Research, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
17
|
Mohammad-Rafiei F, Negahdari S, Tahershamsi Z, Gheibihayat SM. Interface between Resolvins and Efferocytosis in Health and Disease. Cell Biochem Biophys 2024; 82:53-65. [PMID: 37794303 DOI: 10.1007/s12013-023-01187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Acute inflammation resolution acts as a vital process for active host response, tissue support, and homeostasis maintenance, during which resolvin D (RvD) and E (RvE) as mediators derived from omega-3 polyunsaturated fatty acids display specific and stereoselective anti-inflammations like restricting neutrophil infiltration and pro-resolving activities. On the other side of the coin, potent macrophage-mediated apoptotic cell clearance, namely efferocytosis, is essential for successful inflammation resolution. Further studies mentioned a linkage between efferocytosis and resolvins. For instance, resolvin D1 (RvD1), which is endogenously formed from docosahexaenoic acid within the inflammation resolution, thereby provoking efferocytosis. There is still limited information regarding the mechanism of action of RvD1-related efferocytosis enhancement at the molecular level. The current review article was conducted to explore recent data on how the efferocytosis process and resolvins relate to each other during the inflammation resolution in illness and health. Understanding different aspects of this connection sheds light on new curative approaches for medical conditions caused by defective efferocytosis and disrupted inflammation resolution.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samira Negahdari
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany.
| |
Collapse
|
18
|
Gerdesmeyer L, Vester J, Schneider C, Wildemann B, Frank C, Schultz M, Seilheimer B, Smit A, Kerkhoffs G. Topical Treatment Is Effective and Safe for Acute Ankle Sprains: The Multi-Center Double-Blind Randomized Placebo-Controlled TRAUMED Trial. J Clin Med 2024; 13:841. [PMID: 38337536 PMCID: PMC10856131 DOI: 10.3390/jcm13030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Topical NSAIDs are widely used to treat ankle sprains. Traumed (Tr14) gel is a multicomponent formulation, demonstrating inflammation-resolution properties. METHODS This multicenter, double-blind trial investigated the efficacy and safety of Tr14 gel versus placebo gel and non-inferiority versus 1% diclofenac gel, applied 3×/day for 7 days after acute lateral ankle sprain (EudraCT Number: 2016-004792-50). The primary outcome was AUC for pain on passive movement, assessed by VAS from baseline to Days 4 and 7. RESULTS The trial population included 625 patients aged 18 to 78 years. The AUC scores were 187.88 and 200.75 on Day 4 (p = 0.02) and 294.14 and 353.42 on Day 7 (p < 0.001) for Tr14 and placebo, respectively. For Tr14 compared to diclofenac, the AUC scores were 187.50 and 197.19 on Day 4 (p = 0.3804) and 293.85 and 327.93 on Day 7 (p = 0.0017), respectively. On the FAAM-ADL subscale, Tr14 was superior to placebo and non-inferior to diclofenac at all time points. Time to 50% pain improvement was lowest for Tr14 (6.0 days), compared to placebo (7.1 days) and diclofenac (7.0 days). Adverse events were uncommon and minor. CONCLUSIONS Tr14 gel is effective and safe in acute ankle sprains, compared to placebo gel and diclofenac gel, and has faster pain resolution. TRIAL REGISTRATION The trial was registered in clinicaltrialsregister.eu, EudraCT number 2016-004792-50 on 07.06.2017.
Collapse
Affiliation(s)
- Ludger Gerdesmeyer
- Orthopedics and Trauma Surgery, Kiel Municipal Hospital, 24116 Kiel, Germany
| | | | | | - Britt Wildemann
- Experimental Trauma Surgery, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
| | | | | | | | - Alta Smit
- Heel GmbH, 76532 Baden-Baden, Germany
| | - Gino Kerkhoffs
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
19
|
Huang Y, Dong S, Li X, Shi J, Zhang Y, Liu S, Zhang Y, Yu J. VNS-mediated α7nAChR signaling promotes SPM synthesis via regulation of netrin-1 expression during LPS-induced ALI. FASEB J 2024; 38:e9664. [PMID: 38038805 DOI: 10.1096/fj.202301623r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) plays a crucial role in the cholinergic anti-inflammatory pathway (CAP) during sepsis-associated acute lung injury (ALI). Increasing evidence suggests that specialized pro-resolving mediators (SPMs) are important in resolving α7nAChR-mediated ALI resolution. Our study aims to elucidate the pivotal role of α7nAChR in the CAP during LPS-associated acute lung injury (ALI). By employing vagus nerve stimulation (VNS), we identified α7nAChR as the key CAP subunit in ALI mice, effectively reducing lung permeability and the release of inflammatory cytokines. We further investigated the alterations in SPMs regulated by α7nAChR, revealing a predominant synthesis of lipoxin A4 (LXA4). The significance of α7nAChR-netrin-1 pathway in governing SPM synthesis was confirmed through the use of netrin-1 knockout mice and siRNA-transfected macrophages. Additionally, our evaluation identified a synchronous alteration of LXA4 synthesis in the α7nAChR-netrin-1 pathway accompanied by 5-lipoxygenase (5-LOX), thereby confirming an ameliorative effect of LXA4 on lung injury and macrophage inflammatory response. Concurrently, inhibiting the function of LXA4 annulled the lung-protective effect of VNS. As a result, our findings reveal a novel anti-inflammatory pathway wherein VNS modulates netrin-1 expression via α7nAChR, ultimately leading to LXA4 synthesis and subsequent lung protection.
Collapse
Affiliation(s)
- Yan Huang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shasha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Biagini D, Oliveri P, Baj A, Gasperina DD, Ferrante FD, Lomonaco T, Ghimenti S, Lenzi A, Bonini A, Vivaldi F, Oger C, Galano JM, Balas L, Durand T, Maggi F, Di Francesco F. The effect of SARS-CoV-2 variants on the plasma oxylipins and PUFAs of COVID-19 patients. Prostaglandins Other Lipid Mediat 2023; 169:106770. [PMID: 37633481 DOI: 10.1016/j.prostaglandins.2023.106770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Oxylipins are important signalling compounds that are significantly involved in the regulation of the immune system and the resolution of inflammation. Lipid metabolism is strongly activated upon SARS-CoV-2 infection, however the modulating effects of oxylipins induced by different variants remain unexplored. Here, we compare the plasma profiles of thirty-seven oxylipins and four PUFAs in subjects infected with Wild-type, Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529) variants. The results suggest that oxidative stress and inflammation resulting from COVID-19 were highly dependent on the SARS-CoV-2 variant, and that the Wild-type elicited the strongest inflammatory storm. The Alpha and Delta variants induced a comparable lipid profile alteration upon infection, which differed significantly from Omicron. The latter variant increased the levels of pro-inflammatory mediators and decreased the levels of omega-3 PUFA in infected patients. We speculate that changes in therapeutics, vaccination, and prior infections may have a role in the alteration of the oxylipin profile besides viral mutations. The results shed new light on the evolution of the inflammatory response in COVID-19.
Collapse
Affiliation(s)
- Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy.
| | | | - Andreina Baj
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | | | | | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Federico Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy.
| |
Collapse
|
21
|
Centanni D, Henricks PAJ, Engels F. The therapeutic potential of resolvins in pulmonary diseases. Eur J Pharmacol 2023; 958:176047. [PMID: 37742814 DOI: 10.1016/j.ejphar.2023.176047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Uncontrolled inflammation leads to nonspecific destruction and remodeling of tissues and can contribute to many human pathologies, including pulmonary diseases. Stimulation of inflammatory resolution is considered an important process that protects against the progression of chronic inflammatory diseases. Resolvins generated from essential omega-3 polyunsaturated fatty acids have been demonstrated to be signaling molecules in inflammation with important pro-resolving and anti-inflammatory capabilities. By binding to specific receptors, resolvins can modulate inflammatory processes such as neutrophil migration, macrophage phagocytosis and the presence of pro-inflammatory mediators to reduce inflammatory pathologies. The discovery of these pro-resolving mediators has led to a shift in drug research from suppressing pro-inflammatory molecules to investigating compounds that promote resolution to treat inflammation. The exploration of inflammatory resolution also provided the opportunity to further understand the pathophysiology of pulmonary diseases. Alterations of resolution are now linked to both the development and exacerbation of diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, acute respiratory distress syndrome, cancer and COVID-19. These findings have resulted in the rise of novel design and testing of innovative resolution-based therapeutics to treat diseases. Hence, this paper reviews the generation and mechanistic actions of resolvins and investigates their role and therapeutic potential in several pulmonary diseases that may benefit from resolution-based pharmaceuticals.
Collapse
Affiliation(s)
- Daniel Centanni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Ferdi Engels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
22
|
Bradbury J, Wilkinson S, Schloss J. Nutritional Support During Long COVID: A Systematic Scoping Review. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2023; 29:695-704. [PMID: 37102680 DOI: 10.1089/jicm.2022.0821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Introduction: Long COVID is a term that encompasses a range of signs, symptoms, and sequalae that continue or develop after an acute COVID-19 infection. The lack of early recognition of the condition contributed to delays in identifying factors that may contribute toward its development and prevention. The aim of this study was to scope the available literature to identify potential nutritional interventions to support people with symptoms associated with long COVID. Methods: This study was designed as a systematic scoping review of the literature (registration PROSPERO CRD42022306051). Studies with participants aged 18 years or older, with long COVID and who underwent a nutritional intervention were included in the review. Results: A total of 285 citations were initially identified, with five papers eligible for inclusion: two were pilot studies of nutritional supplements in the community, and three were nutritional interventions as part of inpatient or outpatient multidisciplinary rehabilitation programs. There were two broad categories of interventions: those that focused on compositions of nutrients (including micronutrients such as vitamin and mineral supplements) and those that were incorporated as part of multidisciplinary rehabilitation programs. Nutrients included in more than one study were multiple B group vitamins, vitamin C, vitamin D, and acetyl-l-carnitine. Discussion: Two studies trialed nutritional supplements for long COVID in community samples. Although these initial reports were positive, they are based on poorly designed studies and therefore cannot provide conclusive evidence. Nutritional rehabilitation was an important aspect of recovery from severe inflammation, malnutrition, and sarcopenia in hospital rehabilitation programs. Current gaps in the literature include a potential role for anti-inflammatory nutrients such as the omega 3 fatty acids, which are currently undergoing clinical trials, glutathione-boosting treatments such as N-acetylcysteine, alpha-lipoic acid, or liposomal glutathione in long COVID, and a possible adjunctive role for anti-inflammatory dietary interventions. This review provides preliminary evidence that nutritional interventions may be an important part of a rehabilitation program for people with severe long COVID symptomatology, including severe inflammation, malnutrition, and sarcopenia. For those in the general population with long COVID symptoms, the role of specific nutrients has not yet been studied well enough to recommend any particular nutrient or dietary intervention as a treatment or adjunctive treatment. Clinical trials of single nutrients are currently being conducted, and future systematic reviews could focus on single nutrient or dietary interventions to identify their nuanced mechanisms of action. Further clinical studies incorporating complex nutritional interventions are also warranted to strengthen the evidence base for using nutrition as a useful adjunctive treatment for people living with long COVID.
Collapse
Affiliation(s)
- Joanne Bradbury
- Health Sciences, Faculty of Health, Southern Cross University, Bilinga, QLD, Australia
| | - Sarah Wilkinson
- Health Sciences, Faculty of Health, Southern Cross University, Bilinga, QLD, Australia
- National Centre for Natural Medicine (NCNM), Faculty of Health, Southern Cross University, Lismore, NSW, Australia
| | - Janet Schloss
- National Centre for Natural Medicine (NCNM), Faculty of Health, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
23
|
Engert LC, Mullington JM, Haack M. Prolonged experimental sleep disturbance affects the inflammatory resolution pathways in healthy humans. Brain Behav Immun 2023; 113:12-20. [PMID: 37369338 PMCID: PMC10528069 DOI: 10.1016/j.bbi.2023.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Sleep disturbances, as manifested in insomnia symptoms of difficulties falling asleep or frequent nighttime awakenings, are a strong risk factor for a diverse range of diseases involving immunopathology. Low-grade systemic inflammation has been frequently found associated with sleep disturbances and may mechanistically contribute to increased disease risk. Effects of sleep disturbances on inflammation have been observed to be long lasting and remain after recovery sleep has been obtained, suggesting that sleep disturbances may not only affect inflammatory mediators, but also the so-called specialized pro-resolving mediators (SPMs) that actively resolve inflammation. The goal of this investigation was to test for the first time whether the omega-3 fatty acid-derived D- (RvD) and E-series (RvE) resolvins are impacted by prolonged experimental sleep disturbance (ESD). METHODS Twenty-four healthy participants (12 F, age 20-42 years) underwent two 19-day in-hospital protocols (ESD/control), separated by > 2 months. The ESD protocol consisted of repeated nights of short and disrupted sleep with intermittent nights of undisturbed sleep, followed by three nights of recovery sleep at the end of the protocol. Under the control sleep condition, participants had an undisturbed sleep opportunity of 8 h/night throughout the protocol. The D- and E-series resolvins were measured in plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS The precursor of the D-series resolvins, 17-HDHA, was downregulated in the ESD compared to the control sleep condition (p <.001 for condition), and this effect remained after the third night of recovery sleep has been obtained. This effect was also observed for the resolvins RvD3, RvD4, and RvD5 (p <.001 for condition), while RvD1 was higher in the ESD compared to the control sleep condition (p <.01 for condition) and RvD2 showed a mixed effect of a decrease during disturbed sleep followed by an increase during recovery sleep in the ESD condition (p <.001 for condition*day interaction). The precursor of E-series resolvins, 18-HEPE, was downregulated in the ESD compared to the control sleep condition (p <.01 for condition) and remained low after recovery sleep has been obtained. This effect of downregulation was also observed for RvE2 (p <.01 for condition), while there was no effect for RvE1 (p >.05 for condition or condition*day interaction). Sex-differential effects were found for two of the D-series resolvins, i.e., RvD2 and RvD4. CONCLUSION This first investigation on the effects of experimental sleep disturbance on inflammatory resolution processes shows that SPMs, particularly resolvins of the D-series, are profoundly downregulated by sleep disturbances and remain downregulated after recovery sleep has been obtained, suggesting a longer lasting impact of sleep disturbances on these mediators. These findings also suggest that sleep disturbances contribute to the development and progression of a wide range of diseases characterized by immunopathology by interfering with processes that actively resolve inflammation. Pharmacological interventions aimed at promoting inflammatory resolution physiology may help to prevent future disease risk as a common consequence of sleep disturbances. TRIAL REGISTRATION ClinicalTrials.gov NCT02484742.
Collapse
Affiliation(s)
- Larissa C Engert
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Janet M Mullington
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Monika Haack
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Driscoll DF, Welty FK, Bistrian BR. Omega-3 Fatty Acids as Antiarrhythmic Drugs: Upstream Target Modulators Affecting Acute and Long-Term Pathological Alterations in Cardiac Structure and Function. Crit Care Explor 2023; 5:e0977. [PMID: 37753235 PMCID: PMC10519500 DOI: 10.1097/cce.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
OBJECTIVES Postoperative atrial fibrillation (POAF) is a common complication in the acute care period following coronary artery bypass grafting (CABG) surgery that is associated with significant morbidity and mortality in both short-term and long-term settings. Recently, the Vaughn Williams Classification of antiarrhythmic agents, first proposed in 1975 and widely viewed as the authoritative description of their electrophysiologic actions, was updated and notably omega-3 fatty acids (Ω-3 fatty acids) have been included in class VII, described as "upstream target modulators," to mitigate pathological structural and electrophysiological remodeling changes in the aged and/or injured myocardium. DATA SOURCES A PubMed literature search was performed. STUDY SELECTION Studies examining the significance of complications in patients undergoing isolated CABG surgery were selected for inclusion. DATA EXTRACTION Relevant data were qualitatively assessed and narratively summarized. DATA SYNTHESIS POAF occurs in approximately 30% of patients, and inflammation from chronic coronary artery disease preoperatively, as well as acute atrial inflammation from surgery postoperatively are the leading causes. Inflammation underlies its pathophysiology; therefore Ω-3 fatty acids not only exhibit antiarrhythmic properties but are an effective anti-inflammatory treatment that may reduce the clinical risks of POAF. CONCLUSIONS At present no effective prophylaxis is available to address POAF following CABG surgery. Clinical approaches that focus on the inflammatory response in this setting may optimize the response to treatment. The current literature supports the hypothesis that Ω-3 fatty acids may acutely reduce the inflammatory response via favorable alterations in the metabolism of prostaglandins and leukotrienes (eicosanoids) and specialized pro-resolving mediators.
Collapse
Affiliation(s)
- David F Driscoll
- Stable Solutions LLC, Easton MA
- Department of Medicine, UMASS Chan Medical School, Worcester, MA
| | | | | |
Collapse
|
25
|
Park J, Roh J, Pan J, Kim YH, Park CK, Jo YY. Role of Resolvins in Inflammatory and Neuropathic Pain. Pharmaceuticals (Basel) 2023; 16:1366. [PMID: 37895837 PMCID: PMC10610411 DOI: 10.3390/ph16101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic pain is an unpleasant experience associated with actual or potential tissue damage. Inflammatory pain alerts the body to inflammation and promotes healing; however, unresolved inflammation can lead to chronic pain. Conversely, neuropathic pain, due to somatosensory damage, can be a disease in itself. However, inflammation plays a considerable role in the progression of both types of pain. Resolvins, derived from omega-3 fatty acids, actively suppress pro-inflammatory mediators and aid in the resolution of inflammation. Resolvins alleviate various inflammatory and neuropathic pain models by reducing hypersensitivity and regulating inflammatory cytokines and glial activation in the spinal cord and dorsal root ganglia. Thus, resolvins are a promising alternative for pain management with the potential to reduce the side effects associated with conventional medications. Continued research is crucial to unlock the therapeutic potential of resolvins and integrate them into effective clinical pain management strategies. This review aimed to evaluate the literature surrounding the resolvins in inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Jaeik Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
| | - Jueun Roh
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
| | - Jingying Pan
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
- Department of Histology and Embryology, Medical School of Nantong University, Nantong 226007, China
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
| | - Youn Yi Jo
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
26
|
Gorina SS, Egorova AM, Lantsova NV, Toporkova YY, Grechkin AN. Discovery of α-Linolenic Acid 16( S)-Lipoxygenase: Cucumber ( Cucumis sativus L.) Vegetative Lipoxygenase 3. Int J Mol Sci 2023; 24:12977. [PMID: 37629162 PMCID: PMC10454662 DOI: 10.3390/ijms241612977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The GC-MS profiling of the endogenous oxylipins (Me/TMS) from cucumber (Cucumis sativus L.) leaves, flowers, and fruit peels revealed a remarkable abundance of 16-hydroxy-9,12,14-octadecatrienoic acid (16-HOT). Incubations of homogenates from these organs with α-linolenic acid yielded 16(S)-hydroperoxide (16-HPOT) as a predominant product. Targeted proteomic analyses of these tissues revealed the presence of several highly homologous isoforms of the putative "9S-lipoxygenase type 6". One of these isoenzymes (CsLOX3, an 877 amino acid polypeptide) was prepared by heterologous expression in E. coli and exhibited 16(S)- and 13(S)-lipoxygenase activity toward α-linolenic and linoleic acids, respectively. Furthermore, α-linolenate was a preferred substrate. The molecular structures of 16(S)-HOT and 16(S)-HPOT (Me or Me/TMS) were unequivocally confirmed by the mass spectral data, 1H-NMR, 2D 1H-1H-COSY, TOCSY, HMBC, and HSQC spectra, as well as enantiomeric HPLC analyses. Thus, the vegetative CsLOX3, biosynthesizing 16(S)-HPOT, is the first 16(S)-LOX and ω3-LOX ever discovered. Eicosapentaenoic and hexadecatrienoic acids were also specifically transformed to the corresponding ω3(S)-hydroperoxides by CsLOX3.
Collapse
Affiliation(s)
- Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Alevtina M Egorova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Natalia V Lantsova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| |
Collapse
|
27
|
Driscoll DF, Bistrian BR. Cytokine storm associated with severe COVID-19 infections: The potential mitigating role of omega-3 fatty acid triglycerides in the ICU. FASEB J 2023; 37:e23066. [PMID: 37389478 DOI: 10.1096/fj.202300396r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
Cytokine storm during severe COVID-19 infection increases the risk of mortality in critically ill patients in the intensive care unit. Multiple therapeutic proposals include, for example, anti-inflammatory and immunosuppressive agents, selective inhibitors of key pro-inflammatory receptors, and key enzymes necessary for viral replication. Unfortunately, safe and effective therapy remains an elusive goal. An alternative anti-inflammatory approach vis á vis omega-3 fatty acids, which yields less pro-inflammatory mediators by altering eicosanoid metabolism, has been proposed. Although theoretically promising, enteral tube delivery or oral capsules containing specific doses of omega-3 fatty acids take precious time (7 days to 6 weeks) to be incorporated in plasma cell membranes to be most effective, making this route of administration in the acute care setting an unfeasible therapeutic approach. Parenteral administration of precise doses of omega-3 fatty acid triglycerides in an injectable emulsion can greatly accelerate the incorporation and potential therapeutic effects (within hours), but at present, there is no commercially available product designed for this purpose. We describe a potential formulation that may address this deficiency, while recognizing that the high incidence of hyperlipidemia that occurs during severe COVID-19 infection must be recognized as a complicating factor, and, therefore, caution is advised.
Collapse
Affiliation(s)
| | - Bruce R Bistrian
- Harvard Medical School, Beth Israel Deaconess Center, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Serhan CN, Chiang N. Resolvins and cysteinyl-containing pro-resolving mediators activate resolution of infectious inflammation and tissue regeneration. Prostaglandins Other Lipid Mediat 2023; 166:106718. [PMID: 36813255 PMCID: PMC10175197 DOI: 10.1016/j.prostaglandins.2023.106718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
This review is a synopsis of the main points from the opening presentation by the authors in the Resolution of Inflammation session at the 8th European Workshop on Lipid Mediators held at the Karolinska Institute, Stockholm, Sweden, June 29th, 2022. Specialized pro-resolving mediators (SPM) promote tissue regeneration, control infections and resolution of inflammation. These include resolvins, protectins, maresins and the newly identified conjugates in tissue regeneration (CTRs). We reported mechanisms of CTRs in activating primordial regeneration pathways in planaria using RNA-sequencing. Also, the 4S,5S-epoxy-resolvin intermediate in the biosynthesis of resolvin D3 and resolvin D4 was prepared by total organic synthesis. Human neutrophils convert this to resolvin D3 and resolvin D4, while human M2 macrophages transformed this labile epoxide intermediate to resolvin D4 and a novel cysteinyl-resolvin that is a potent isomer of RCTR1. The novel cysteinyl-resolvin significantly accelerates tissue regeneration with planaria and inhibits human granuloma formation.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Hajishengallis G. Illuminating the oral microbiome and its host interactions: animal models of disease. FEMS Microbiol Rev 2023; 47:fuad018. [PMID: 37113021 PMCID: PMC10198557 DOI: 10.1093/femsre/fuad018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis and caries are driven by complex interactions between the oral microbiome and host factors, i.e. inflammation and dietary sugars, respectively. Animal models have been instrumental in our mechanistic understanding of these oral diseases, although no single model can faithfully reproduce all aspects of a given human disease. This review discusses evidence that the utility of an animal model lies in its capacity to address a specific hypothesis and, therefore, different aspects of a disease can be investigated using distinct and complementary models. As in vitro systems cannot replicate the complexity of in vivo host-microbe interactions and human research is typically correlative, model organisms-their limitations notwithstanding-remain essential in proving causality, identifying therapeutic targets, and evaluating the safety and efficacy of novel treatments. To achieve broader and deeper insights into oral disease pathogenesis, animal model-derived findings can be synthesized with data from in vitro and clinical research. In the absence of better mechanistic alternatives, dismissal of animal models on fidelity issues would impede further progress to understand and treat oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104-6030, USA
| |
Collapse
|
30
|
Bäck M. Icosapent ethyl in cardiovascular prevention: Resolution of inflammation through the eicosapentaenoic acid - resolvin E1 - ChemR23 axis. Pharmacol Ther 2023:108439. [PMID: 37201735 DOI: 10.1016/j.pharmthera.2023.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Cardiovascular outcome trials on omega-3 fatty acids have generated contradictory results but indicate a dose-dependent beneficial effect of eicosapentaenoic acid (EPA). Beneficial cardiovascular effects of EPA may in addition to triglyceride lowering be mediated through alternative mechanisms of action. In this review, the link between EPA and a resolution of atherosclerotic inflammation is addressed. EPA is a substrate for the enzymatic metabolism into the lipid mediator resolvin E1 (RvE1), which activates the receptor ChemR23 to transduce an active resolution of inflammation. This has been shown to dampen the immune response and provide atheroprotective responses in different models. The intermediate EPA metabolite 18-HEPE emerges as a biomarker of EPA metabolism towards proresolving mediators in observational studies. Genetic variations within the EPA-RvE1-ChemR23 axis affecting the response to EPA may open up for precision medicine to identify responders and non-responders to EPA and fish oil supplementation. In conclusion, activation of the EPA-RvE1-ChemR23 axis towards a resolution of inflammation may contribute to beneficial effects in cardiovascular prevention.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, Stockholm, Sweden; Translational Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Université de Lorraine, Inserm, DCAC, Nancy, France; CHRU Nancy, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
31
|
Grewal T, Buechler C. Adipokines as Diagnostic and Prognostic Markers for the Severity of COVID-19. Biomedicines 2023; 11:1302. [PMID: 37238973 PMCID: PMC10215701 DOI: 10.3390/biomedicines11051302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Accumulating evidence implicates obesity as a risk factor for increased severity of disease outcomes in patients infected with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Obesity is associated with adipose tissue dysfunction, which not only predisposes individuals to metabolic complications, but also substantially contributes to low-grade systemic inflammation, altered immune cell composition, and compromised immune function. This seems to impact the susceptibility and outcome of diseases caused by viruses, as obese people appear more vulnerable to developing infections and they recover later from infectious diseases than normal-weight individuals. Based on these findings, increased efforts to identify suitable diagnostic and prognostic markers in obese Coronavirus disease 2019 (COVID-19) patients to predict disease outcomes have been made. This includes the analysis of cytokines secreted from adipose tissues (adipokines), which have multiple regulatory functions in the body; for instance, modulating insulin sensitivity, blood pressure, lipid metabolism, appetite, and fertility. Most relevant in the context of viral infections, adipokines also influence the immune cell number, with consequences for overall immune cell activity and function. Hence, the analysis of the circulating levels of diverse adipokines in patients infected with SARS-CoV-2 have been considered to reveal diagnostic and prognostic COVID-19 markers. This review article summarizes the findings aimed to correlate the circulating levels of adipokines with progression and disease outcomes of COVID-19. Several studies provided insights on chemerin, adiponectin, leptin, resistin, and galectin-3 levels in SARS-CoV-2-infected patients, while limited information is yet available on the adipokines apelin and visfatin in COVID-19. Altogether, current evidence points at circulating galectin-3 and resistin levels being of diagnostic and prognostic value in COVID-19 disease.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
32
|
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-Induced Inflammation, Resolution and Cardiovascular Disease: Causes, Consequences and Clinical Opportunities. Circ Res 2023; 132:751-774. [PMID: 36927184 DOI: 10.1161/circresaha.122.321636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pneumonia is inflammation in the lungs, which is usually caused by an infection. The symptoms of pneumonia can vary from mild to life-threatening, where severe illness is often observed in vulnerable populations like children, older adults, and those with preexisting health conditions. Vaccines have greatly reduced the burden of some of the most common causes of pneumonia, and the use of antimicrobials has greatly improved the survival to this infection. However, pneumonia survivors do not return to their preinfection health trajectories but instead experience an accelerated health decline with an increased risk of cardiovascular disease. The mechanisms of this association are not well understood, but a persistent dysregulated inflammatory response post-pneumonia appears to play a central role. It is proposed that the inflammatory response during pneumonia is left unregulated and exacerbates atherosclerotic vascular disease, which ultimately leads to adverse cardiac events such as myocardial infarction. For this reason, there is a need to better understand the inflammatory cross talk between the lungs and the heart during and after pneumonia to develop therapeutics that focus on preventing pneumonia-associated cardiovascular events. This review will provide an overview of the known mechanisms of inflammation triggered during pneumonia and their relevance to the increased cardiovascular risk that follows this infection. We will also discuss opportunities for new clinical approaches leveraging strategies to promote inflammatory resolution pathways as a novel therapeutic target to reduce the risk of cardiac events post-pneumonia.
Collapse
Affiliation(s)
- Cameron Stotts
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| | - Vicente F Corrales-Medina
- Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (V.F.C-M).,Ottawa Hospital Research Institute, Ottawa, ON, Canada (V.F.C.-M)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW This review provides an update on the actions of omega-3 polyunsaturated fatty acids (PUFAs) and presents the most recent findings from trials in patients in the intensive care unit (ICU) setting including relevant meta-analyses. Many specialized pro-resolving mediators (SPMs) are produced from bioactive omega-3 PUFAs and may explain many of the beneficial effects of omega-3 PUFAs, although other mechanisms of action of omega-3 PUFAs are being uncovered. RECENT FINDINGS SPMs resolve inflammation, promote healing and support antiinfection activities of the immune system. Since publication of the ESPEN guidelines, numerous studies further support the use of omega-3 PUFAs. Recent meta-analyses favor the inclusion of omega-3 PUFAs in nutrition support of patients with acute respiratory distress syndrome or sepsis. Recent trials indicate that omega-3 PUFAs may protect against delirium and liver dysfunction in patients in the ICU, although effects on muscle loss are unclear and require further investigation. Critical illness may alter omega-3 PUFA turnover. There has been significant discussion about the potential for omega-3 PUFAs and SPMs in treatment of coronavirus disease 2019. SUMMARY Evidence for benefits of omega-3 PUFAs in the ICU setting has strengthened through new trials and meta-analyses. Nevertheless, better quality trials are still needed. SPMs may explain many of the benefits of omega-3 PUFAs.
Collapse
Affiliation(s)
- Pierre Singer
- Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine
- NIHR Southampton Biomedical Research Centre and University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, UK
| |
Collapse
|
34
|
Kumar V, Yasmeen N, Chaudhary AA, Alawam AS, Al-Zharani M, Suliman Basher N, Harikrishnan S, Goud MD, Pandey A, Lakhawat SS, Sharma PK. Specialized pro-resolving lipid mediators regulate inflammatory macrophages: A paradigm shift from antibiotics to immunotherapy for mitigating COVID-19 pandemic. Front Mol Biosci 2023; 10:1104577. [PMID: 36825200 PMCID: PMC9942001 DOI: 10.3389/fmolb.2023.1104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The most severe clinical manifestations of the horrifying COVID-19 disease, that claimed millions of lives during the pandemic time, were Acute respiratory distress syndrome (ARDS), Coagulopathies, septic shock leading eventually to death. ARDS was a consequence of Cytokine storm. The viral SARS-COV2infection lead to avalanche of cytokines and eicosanoids causing "cytokine storm" and "eicosanoid storm." Cytokine storm is one of the macrophage-derived inflammatory responses triggered by binding of virus particles to ACE2 receptors of alveolar macrophages, arise mainly due to over production of various pro-inflammatory mediators like cytokines, e.g., interleukin (IL)-1, IL-2, and tumor necrosis factor (TNF)- α, causing pulmonary edema, acute respiratory distress, and multi-organ failure. Cytokine storm was regarded as the predictor of severity of the disease and was deemed one of the causes of the high mortality rates due to the COVID-19. The basis of cytokine storm is imbalanced switching between an inflammation increasing - pro-inflammatory (M1) and an inflammation regulating-anti-inflammatory (M2) forms of alveolar macrophages which further deteriorates if opportunistic secondary bacterial infections prevail in the lungs. Lack of sufficient knowledge regarding the virus and its influence on co-morbidities, clinical treatment of the diseases included exorbitant use of antibiotics to mitigate secondary bacterial infections, which led to the unwarranted development of multidrug resistance (MDR) among the population across the globe. Antimicrobial resistance (AMR) needs to be addressed from various perspectives as it may deprive future generations of the basic health immunity. Specialized pro-resolving mediators (SPMs) are generated from the stereoselective enzymatic conversions of essential fatty acids that serve as immune resolvents in controlling acute inflammatory responses. SPMs facilitate the clearance of injured tissue and cell debris, the removal of pathogens, and augment the concentration of anti-inflammatory lipid mediators. The SPMs, e.g., lipoxins, protectins, and resolvins have been implicated in exerting inhibitory influence on with cytokine storm. Experimental evidence suggests that SPMS lower antibiotic requirement. Therefore, in this review potential roles of SPMs in enhancing macrophage polarization, triggering immunological functions, hastening inflammation resolution, subsiding cytokine storm and decreasing antibiotic requirement that can reduce AMR load are discussed.
Collapse
Affiliation(s)
- Vikram Kumar
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India,*Correspondence: Vikram Kumar,
| | - Nusrath Yasmeen
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nosiba Suliman Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - S. Harikrishnan
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | | | - Aishwarya Pandey
- INRS, Eau Terre Environnement Research Centre, Québec, QC, Canada
| | | | | |
Collapse
|
35
|
Perretti M, Dalli J. Resolution Pharmacology: Focus on Pro-Resolving Annexin A1 and Lipid Mediators for Therapeutic Innovation in Inflammation. Annu Rev Pharmacol Toxicol 2023; 63:449-469. [PMID: 36151051 DOI: 10.1146/annurev-pharmtox-051821-042743] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic diseases that affect our society are made more complex by comorbidities and are poorly managed by the current pharmacology. While all present inflammatory etiopathogeneses, there is an unmet need for better clinical management of these diseases and their multiple symptoms. We discuss here an innovative approach based on the biology of the resolution of inflammation. Studying endogenous pro-resolving peptide and lipid mediators, how they are formed, and which target they interact with, can offer innovative options through augmenting the expression or function of pro-resolving pathways or mimicking their actions with novel targeted molecules. In all cases, resolution offers innovation for the treatment of the primary cause of a given disease and/or for the management of its comorbidities, ultimately improving patient quality of life. By implementing resolution pharmacology, we harness the whole physiology of inflammation, with the potential to bring a marked change in the management of inflammatory conditions.
Collapse
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| | - Jesmond Dalli
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| |
Collapse
|
36
|
Díaz Del Campo LS, García-Redondo AB, Rodríguez C, Zaragoza C, Duro-Sánchez S, Palmas F, de Benito-Bueno A, Socuéllamos PG, Peraza DA, Rodrigues-Díez R, Valenzuela C, Dalli J, Salaices M, Briones AM. Resolvin D2 Attenuates Cardiovascular Damage in Angiotensin II-Induced Hypertension. Hypertension 2023; 80:84-96. [PMID: 36337053 DOI: 10.1161/hypertensionaha.122.19448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Resolution of inflammation is orchestrated by specialized proresolving lipid mediators (SPMs), and this would be impaired in some cardiovascular diseases. Among SPMs, resolvins (Rv) have beneficial effects in cardiovascular pathologies, but little is known about their effect on cardiovascular damage in hypertension. METHODS Aorta, small mesenteric arteries, heart, and peritoneal macrophages were taken from C57BL/6J mice, infused or not with angiotensin II (AngII; 1.44 mg/kg/day, 14 days) in presence or absence of resolvin D2 (RvD2) (100 ng/mice, every second day) starting 1 day before or 7 days after AngII infusion. RESULTS Enzymes and receptors involved in SPMs biosynthesis and signaling were increased in aorta or heart from AngII-infused mice. We also observed a differential regulation of SPMs in heart from these mice. Preventive treatment with RvD2 partially avoided AngII-induced hypertension and protected the heart and large and small vessels against functional and structural alterations induced by AngII. RvD2 increased the availability of vasoprotective factors, modified SPMs profile, decreased cardiovascular fibrosis, and increased the infiltration of pro-resolving macrophages. When administered in hypertensive animals with established cardiovascular damage, RvD2 partially improved cardiovascular function and structure, decreased fibrosis, reduced the infiltration of neutrophils, and shifted macrophage phenotype toward a pro-resolving phenotype. CONCLUSIONS There is a disbalance between proinflammatory and resolution mediators in hypertension. RvD2 protects cardiovascular function and structure when administered before and after the development of hypertension by modulating vascular factors, fibrosis and inflammation. Activating resolution mechanisms by treatment with RvD2 may represent a novel therapeutic strategy for the treatment of hypertensive cardiovascular disease.
Collapse
Affiliation(s)
- Lucia S Díaz Del Campo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.)
| | - Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.).,Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.B.G.-R., R.R.-D, M.S., A.M.B.).,CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.)
| | - Cristina Rodríguez
- CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.).,Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain (C.R.)
| | - Carlos Zaragoza
- CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.).,Unidad de Investigación Cardiovascular, Departamento de Cardiología, Hospital Ramón y Cajal (IRYCIS), Universidad Francisco de Vitoria, Madrid, Spain (C.Z.)
| | - Santiago Duro-Sánchez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.)
| | - Francesco Palmas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom (F.P., J.D.)
| | - Angela de Benito-Bueno
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom (J.D.)
| | - Paula G Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (A.d.B.-B., P.G.S., D.A.P., C.V.)
| | - Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (A.d.B.-B., P.G.S., D.A.P., C.V.)
| | - Raquel Rodrigues-Díez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.B.G.-R., R.R.-D, M.S., A.M.B.).,CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.)
| | - Carmen Valenzuela
- CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.).,Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (A.d.B.-B., P.G.S., D.A.P., C.V.)
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom (F.P., J.D.).,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom (J.D.)
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.B.G.-R., R.R.-D, M.S., A.M.B.).,CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.)
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.B.G.-R., R.R.-D, M.S., A.M.B.).,CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.)
| |
Collapse
|
37
|
Perretti M, Subramanian M. Resolution pharmacology - A fresh approach to the clinical management of human inflammatory diseases. Semin Immunol 2023; 65:101669. [PMID: 36565567 DOI: 10.1016/j.smim.2022.101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Manikandan Subramanian
- The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| |
Collapse
|
38
|
Sugimoto MA, Perucci LO, Tavares LP, Teixeira MM, Sousa LP. Fibrinolysis in COVID-19: Impact on Clot Lysis and Modulation of Inflammation. Curr Drug Targets 2022; 23:1578-1592. [PMID: 36221881 DOI: 10.2174/1389450123666221011102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
COVID-19 is a multisystem disease caused by SARS-CoV-2 and is associated with an imbalance between the coagulation and fibrinolytic systems. Overall, hypercoagulation, hypofibrinolysis and fibrin-clot resistance to fibrinolysis predispose patients to thrombotic and thromboembolic events. In the lungs, the virus triggers alveolar and interstitial fibrin deposition, endothelial dysfunction, and pulmonary intravascular coagulation, all events intrinsically associated with the activation of inflammation and organ injury. Adding to the pathogenesis of COVID-19, there is a positive feedback loop by which local fibrin deposition in the lungs can fuel inflammation and consequently dysregulates coagulation, a process known as immunothrombosis. Therefore, fibrinolysis plays a central role in maintaining hemostasis and tissue homeostasis during COVID-19 by cleaning fibrin clots and controlling feed-forward products of coagulation. In addition, components of the fibrinolytic system have important immunomodulatory roles, as evidenced by studies showing the contribution of Plasminogen/Plasmin (Plg/Pla) to the resolution of inflammation. Herein, we review clinical evidence for the dysregulation of the fibrinolytic system and discuss its contribution to thrombosis risk and exacerbated inflammation in severe COVID-19. We also discuss the current concept of an interplay between fibrinolysis and inflammation resolution, mirroring the well-known crosstalk between inflammation and coagulation. Finally, we consider the central role of the Plg/Pla system in resolving thromboinflammation, drawing attention to the overlooked consequences of COVID-19-associated fibrinolytic abnormalities to local and systemic inflammation.
Collapse
Affiliation(s)
- Michelle A Sugimoto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Division of Medicine, University College London, London, UK.,Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiza O Perucci
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Nucleus of Research on Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luciana P Tavares
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
39
|
Liu C, Fan D, Lei Q, Lu A, He X. Roles of Resolvins in Chronic Inflammatory Response. Int J Mol Sci 2022; 23:ijms232314883. [PMID: 36499209 PMCID: PMC9738788 DOI: 10.3390/ijms232314883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
An inflammatory response is beneficial to the organism, while an excessive uncontrolled inflammatory response can lead to the nonspecific killing of tissue cells. Therefore, promoting the resolution of inflammation is an important mechanism for protecting an organism suffering from chronic inflammatory diseases. Resolvins are a series of endogenous lipid mediums and have the functions of inhibiting a leukocyte infiltration, increasing macrophagocyte phagocytosis, regulating cytokines, and alleviating inflammatory pain. By promoting the inflammation resolution, resolvins play an irreplaceable role throughout the pathological process of some joint inflammation, neuroinflammation, vascular inflammation, and tissue inflammation. Although a large number of experiments have been conducted to study different subtypes of resolvins in different directions, the differences in the action targets between the different subtypes are rarely compared. Hence, this paper reviews the generation of resolvins, the characteristics of resolvins, and the actions of resolvins under a chronic inflammatory response and clinical translation of resolvins for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Chang Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Dancai Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Lei
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai 200052, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, China
- Correspondence: (A.L.); (X.H.)
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (A.L.); (X.H.)
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW This review aims to discuss the potential roles of omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) in the prevention and treatment of metabolic diseases, to provide the latest evidence from epidemiological and clinical studies, and to highlight novel insights into this field. RECENT FINDINGS Higher dietary or circulating ω-3 PUFA levels are related to a lower risk of metabolic syndrome. Novel findings in obesity indicate higher proportions of ω-6 and ω-3 PUFAs, a modulated oxylipin profile and an altered transcriptome in subcutaneous white adipose tissue, that seem resistant to the effects of ω-3 PUFAs compared with what occurs in normal weight individuals. ω-3 PUFAs may improve the blood lipid profile and glycemic outcomes in patients with type 2 diabetes mellitus and reduce liver fat in nonalcoholic fatty liver disease (NAFLD); the findings of several recent meta-analyses support these effects. Genetic background affects inter-individual variability in the insulin sensitivity response to ω-3 PUFA supplementation. ω-3 PUFAs have prebiotic effects, altering the gut microbiota. SUMMARY Although evidence for health benefits of ω-3 PUFAs is strong, recent findings suggest a more personalized approach to ω-3 PUFA intake for individuals at high risk for metabolic diseases.
Collapse
Affiliation(s)
- Ivana Djuricic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| |
Collapse
|
41
|
First total synthesis of 4(R),17(R)-Resolvin D6 stereoisomer, a potent neuroprotective docosanoid. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Specialized Pro-Resolving Lipid Mediators: New Therapeutic Approaches for Vascular Remodeling. Int J Mol Sci 2022; 23:ijms23073592. [PMID: 35408952 PMCID: PMC8998739 DOI: 10.3390/ijms23073592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Vascular remodeling is a typical feature of vascular diseases, such as atherosclerosis, aneurysms or restenosis. Excessive inflammation is a key mechanism underlying vascular remodeling via the modulation of vascular fibrosis, phenotype and function. Recent evidence suggests that not only augmented inflammation but unresolved inflammation might also contribute to different aspects of vascular diseases. Resolution of inflammation is mediated by a family of specialized pro-resolving mediators (SPMs) that limit immune cell infiltration and initiate tissue repair mechanisms. SPMs (lipoxins, resolvins, protectins, maresins) are generated from essential polyunsaturated fatty acids. Synthases and receptors for SPMs were initially described in immune cells, but they are also present in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), where they regulate processes important for vascular physiology, such as EC activation and VSMC phenotype. Evidence from genetic models targeting SPM pathways and pharmacological supplementation with SPMs have demonstrated that these mediators may play a protective role against the development of vascular remodeling in atherosclerosis, aneurysms and restenosis. This review focuses on the latest advances in understanding the role of SPMs in vascular cells and their therapeutic effects in the vascular remodeling associated with different cardiovascular diseases.
Collapse
|