1
|
Go S, Demetriou C, Valenzano G, Hughes S, Lanfredini S, Ferry H, Arbe-Barnes E, Sivakumar S, Bashford-Rogers R, Middleton MR, Mukherjee S, Morton J, Jones K, Neill EO. Tissue-resident natural killer cells support survival in pancreatic cancer through promotion of cDC1-CD8 T activity. eLife 2024; 13:RP92672. [PMID: 39656086 PMCID: PMC11630822 DOI: 10.7554/elife.92672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma (PDAC) prevents tumor control and strategies to restore anti-cancer immunity (i.e. by increasing CD8 T-cell activity) have had limited success. Here, we demonstrate how inducing localized physical damage using ionizing radiation (IR) unmasks the benefit of immunotherapy by increasing tissue-resident natural killer (trNK) cells that support CD8 T activity. Our data confirms that targeting mouse orthotopic PDAC tumors with IR together with CCR5 inhibition and PD1 blockade reduces E-cadherin positive tumor cells by recruiting a hypoactive NKG2D-ve NK population, phenotypically reminiscent of trNK cells, that supports CD8 T-cell involvement. We show an equivalent population in human single-cell RNA sequencing (scRNA-seq) PDAC cohorts that represents immunomodulatory trNK cells that could similarly support CD8 T-cell levels in a cDC1-dependent manner. Importantly, a trNK signature associates with survival in PDAC and other solid malignancies revealing a potential beneficial role for trNK in improving adaptive anti-tumor responses and supporting CCR5 inhibitor (CCR5i)/αPD1 and IR-induced damage as a novel therapeutic approach.
Collapse
Affiliation(s)
- Simei Go
- Department of Oncology, University of OxfordOxfordUnited Kingdom
| | | | | | - Sophie Hughes
- Department of Oncology, University of OxfordOxfordUnited Kingdom
| | | | - Helen Ferry
- Experimental Medicine Division, University of OxfordOxfordUnited Kingdom
| | | | - Shivan Sivakumar
- Department of Oncology, University of OxfordOxfordUnited Kingdom
| | | | - Mark R Middleton
- Department of Oncology, University of OxfordOxfordUnited Kingdom
- Experimental Medicine Division, University of OxfordOxfordUnited Kingdom
- Oxford University Hospitals NHS Foundation TrustOxfordUnited Kingdom
| | - Somnath Mukherjee
- Oxford University Hospitals NHS Foundation TrustOxfordUnited Kingdom
| | - Jennifer Morton
- CRUK Beatson InstituteGlasgowUnited Kingdom
- School of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Keaton Jones
- Nuffield Department of Surgical Sciences, University of OxfordOxfordUnited Kingdom
| | - Eric O Neill
- Department of Oncology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
2
|
Hasan MZ, Claus M, Krüger N, Reusing S, Gall E, Bade-Döding C, Braun A, Watzl C, Uhrberg M, Walter L. SARS-CoV-2 infection induces adaptive NK cell responses by spike protein-mediated induction of HLA-E expression. Emerg Microbes Infect 2024; 13:2361019. [PMID: 38804979 PMCID: PMC11212573 DOI: 10.1080/22221751.2024.2361019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
HLA-E expression plays a central role for modulation of NK cell function by interaction with inhibitory NKG2A and stimulatory NKG2C receptors on canonical and adaptive NK cells, respectively. Here, we demonstrate that infection of human primary lung tissue with SARS-CoV-2 leads to increased HLA-E expression and show that processing of the peptide YLQPRTFLL from the spike protein is primarily responsible for the strong, dose-dependent increase of HLA-E. Targeting the peptide site within the spike protein revealed that a single point mutation was sufficient to abrogate the increase in HLA-E expression. Spike-mediated induction of HLA-E differentially affected NK cell function: whereas degranulation, IFN-γ production, and target cell cytotoxicity were enhanced in NKG2C+ adaptive NK cells, effector functions were inhibited in NKG2A+ canonical NK cells. Analysis of a cohort of COVID-19 patients in the acute phase of infection revealed that adaptive NK cells were induced irrespective of the HCMV status, challenging the paradigm that adaptive NK cells are only generated during HCMV infection. During the first week of hospitalization, patients exhibited a selective increase of early NKG2C+CD57- adaptive NK cells whereas mature NKG2C+CD57+ cells remained unchanged. Further analysis of recovered patients suggested that the adaptive NK cell response is primarily driven by a wave of early adaptive NK cells during acute infection that wanes once the infection is cleared. Together, this study suggests that NK cell responses to SARS-CoV-2 infection are majorly influenced by the balance between canonical and adaptive NK cells via the HLA-E/NKG2A/C axis.
Collapse
Affiliation(s)
- Mohammad Zahidul Hasan
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- PhD Program Molecular Biology of Cells, GGNB, Georg August University, Göttingen, Germany
| | - Maren Claus
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Nadine Krüger
- Platform Infection Models, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Sarah Reusing
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Eline Gall
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
- Institute of Immunology, Medical School Hannover, Hannover, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
3
|
De Federicis D, Capuano C, Ciuti D, Molfetta R, Galandrini R, Palmieri G. Nutrient transporter pattern in CD56 dim NK cells: CD16 (FcγRIIIA)-dependent modulation and association with memory NK cell functional profile. Front Immunol 2024; 15:1477776. [PMID: 39606236 PMCID: PMC11599182 DOI: 10.3389/fimmu.2024.1477776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Background Human memory NK cells represent a heterogeneous CD56dim population that expands and persists in human cytomegalovirus (HCMV)-seropositive healthy individuals. They are characterized by the preferential, not fully overlapping, expression of NKG2C (activating receptor for HLA-E) and CD57 maturation marker, and by the lack of FcεRIγ adaptor chain. Hyperresponsiveness to Fcγ receptor IIIA (CD16) engagement represents the distinctive functional signature of memory NK cells. Although CD16 engagement was shown to acutely enhance glycolytic and oxidative pathways, its capability to induce a persisting metabolic reprogramming of human NK cells is poorly understood yet. Results Here, we describe the peculiar nutrient transporter expression pattern of FcεRIγ- memory NK cells, characterized by higher levels of CD98 neutral amino acid antiporter and CD71 transferrin receptor, and lower expression of GLUT1 glucose transporter, with respect to FcεRIγ+ conventional NK cells. Although CD16 engagement acutely enhances glycolytic and oxidative pathways, its capability to induce a persisting metabolic reprogramming of human NK cells is poorly understood yet. Our results firstly show that sustained CD16 engagement by contact with IgG-opsonized target cells induces the mTORC1-dependent upregulation of CD98 and CD71 nutrient receptors on CD56dim NK cells, in a transporter-specific fashion, that is finely tuned by cell-dependent (grade of functional maturation, and memory or conventional lineage) and stimulus-dependent (time length and cooperation with cytokines) factors. We also demonstrate that CD98 antiporter function is required for CD16-dependent IFN-γ production, and that enhanced CD98-mediated neutral amino acid uptake associates with heightened memory NK cell functional response. Conclusion Collectively, our work documents that CD16 engagement leads to a metabolic rewiring of human NK cells and suggests that a distinct nutrient transporter expression pattern may contribute to memory NK cell peculiar functional features.
Collapse
Affiliation(s)
- Davide De Federicis
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Capuano
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Daniel Ciuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Asenjo J, Moraru M, Al‐Akioui‐Sanz K, Altadill M, Muntasell A, López‐Botet M, Vilches C. NKG2C Sequence Polymorphism Modulates the Expansion of Adaptive NK Cells in Response to Human CMV. HLA 2024; 104:e15764. [PMID: 39581700 PMCID: PMC11586157 DOI: 10.1111/tan.15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024]
Abstract
A subpopulation of NK cells with distinctive phenotype and function differentiates and expands specifically in response to infection by human cytomegalovirus (HCMV). A hallmark of these adaptive NK cells is their increased expression levels of the activating CD94/NKG2C receptor for HLA-E, and lack of expression of its inhibitory homologue CD94/NKG2A. Their frequency is highly variable in HCMV+ individuals, and the basis for such differences is only partially understood. Here, we explore the possible influence of sequence polymorphism of the NKG2C (or KLRC2) gene on the expansion of NKG2C+NKG2A- NK cells in healthy HCMV-seropositive donors. Our results show a significant association of greater proportions of adaptive NK cells with allele NKG2C*02. This is defined by two amino acid substitutions in comparison with the most prevalent allele, NKG2C*01, and associates with additional sequence polymorphisms in noncoding regions. Furthermore, we demonstrate consistently higher mRNA levels of NKG2C*02 in heterozygous individuals co-expressing this allele in combination with NKG2C*01 or *03. This predominance is independent of polymorphisms in the promoter and 3' UTRs and is appreciated also in HCMV-seronegative donors. In summary, although additional factors are most likely implicated in the variable expansion of NKG2C+NKG2A- NK cells in response to HCMV, our results demonstrate that host immunogenetics, in particular NKG2C diversity, influences the magnitude of such response.
Collapse
Affiliation(s)
- Judit Asenjo
- Immunogenetics & Histocompatibility LabInstituto de Investigación Sanitaria Puerta de Hierro – Segovia de AranaMajadahondaSpain
| | - Manuela Moraru
- Immunogenetics & Histocompatibility LabInstituto de Investigación Sanitaria Puerta de Hierro – Segovia de AranaMajadahondaSpain
| | - Karima Al‐Akioui‐Sanz
- Immunogenetics & Histocompatibility LabInstituto de Investigación Sanitaria Puerta de Hierro – Segovia de AranaMajadahondaSpain
| | | | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autonòma de BarcelonaBellaterraSpain
| | - Miguel López‐Botet
- University Pompeu FabraBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| | - Carlos Vilches
- Immunogenetics & Histocompatibility LabInstituto de Investigación Sanitaria Puerta de Hierro – Segovia de AranaMajadahondaSpain
- Organización Nacional de TrasplantesMinisterio de SanidadMadridSpain
| |
Collapse
|
5
|
Bottino C, Picant V, Vivier E, Castriconi R. Natural killer cells and engagers: Powerful weapons against cancer. Immunol Rev 2024; 328:412-421. [PMID: 39180430 PMCID: PMC11659922 DOI: 10.1111/imr.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Natural killer (NK) cells are innate immune effectors whose functions rely on receptors binding cytokines, recognizing self-molecules, or detecting danger signals expressed by virus-infected or tumor cells. The potent cytotoxic potential makes NK cells promising candidates for cancer immunotherapy. To enhance their activity strategies include cytokine administration, blocking of immune checkpoints, and designing of antibody-based NK cell engagers (NKCEs). NKCEs represent a cutting-edge approach to cancer therapy: they strengthen the NK-to-target cell interactions and optimize tumor killing, possibly overcoming the immunosuppressive tumor microenvironment. NK cells belong to the innate lymphoid cells (ILCs) and are categorized into different subsets also including cells with a memory-like phenotype: this complexity needs to be explored in the context of cancer immunotherapy, particularly when designing NKCEs. Two strategies to enhance NK cell activity in cancer patients can be adopted: activating patients' own NK cells versus the adoptive transfer of ex vivo activated NK cells. Furthermore, the capability of NKCEs to activate γδ T cells could have a significant synergistic effect in immunotherapy.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES)University of GenovaGenoaItaly
- Laboratory of Clinical and Experimental ImmunologyIRCCS Istituto Giannina GasliniGenoaItaly
| | - Valentin Picant
- Innate Pharma Research LaboratoriesInnate PharmaMarseilleFrance
| | - Eric Vivier
- Innate Pharma Research LaboratoriesInnate PharmaMarseilleFrance
- Centre National de la Recherche Scientifique, INSERM, Centre d'Immunologie de Marseille‐LuminyAix Marseille UniversitéMarseilleFrance
- Assistance Publique‐Hôpitaux de MarseilleHôpital de la Timone, Marseille ImmunopôleMarseilleFrance
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES)University of GenovaGenoaItaly
- Laboratory of Clinical and Experimental ImmunologyIRCCS Istituto Giannina GasliniGenoaItaly
| |
Collapse
|
6
|
Gao F, Mora MC, Constantinides M, Coënon L, Multrier C, Vaillant L, Peyroux J, Zhang T, Villalba M. Feeder cell training shapes the phenotype and function of in vitro expanded natural killer cells. MedComm (Beijing) 2024; 5:e740. [PMID: 39314886 PMCID: PMC11417427 DOI: 10.1002/mco2.740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Natural killer (NK) cells are candidates for adoptive cell therapy, and the protocols for their activation and expansion profoundly influence their function and fate. The complexity of NK cell origin and feeder cell cues impacts the heterogeneity of expanded NK (eNK) cells. To explore this, we compared the phenotype and function of peripheral blood-derived NK (PB-NK) and umbilical cord blood-derived NK (UCB-NK) cells activated by common feeder cell lines, including K562, PLH, and 221.AEH. After first encounter, most PB-NK cells showed degranulation independently of cytokines production. Meanwhile, most UCB-NK cells did both. We observed that each feeder cell line uniquely influenced the activation, expansion, and ultimate fate of PB eNK and UCB eNK cells, determining whether they became cytokine producers or killer cells. In addition, they also affected the functional performance of NK cell subsets after expansion, that is, expanded conventional NK (ecNK) and expanded FcRγ- NK (eg-NK) cells. Hence, the regulation of eNK cell function largely depends on the NK cell source and the chosen expansion system. These results underscore the significance of selecting feeder cells for NK cell expansion from various sources, notably for customized adoptive cell therapies to yield cytokine-producing or cytotoxic eNK cells.
Collapse
Affiliation(s)
- Fei Gao
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
- Department of PathologySchool of Basic MedicineCentral South UniversityChangshaChina
| | | | | | - Loïs Coënon
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
| | | | - Loïc Vaillant
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
| | - Julien Peyroux
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
| | - Tianxiang Zhang
- Department of ImmunobiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Martin Villalba
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
- Institut du Cancer Avignon‐Provence Sainte CatherineAvignonFrance
- IRMBUniv MontpellierINSERMCHU MontpellierCNRSMontpellierFrance
| |
Collapse
|
7
|
Cantoni C, Falco M, Vitale M, Pietra G, Munari E, Pende D, Mingari MC, Sivori S, Moretta L. Human NK cells and cancer. Oncoimmunology 2024; 13:2378520. [PMID: 39022338 PMCID: PMC11253890 DOI: 10.1080/2162402x.2024.2378520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
The long story of NK cells started about 50 y ago with the first demonstration of a natural cytotoxic activity within an undefined subset of circulating leukocytes, has involved an ever-growing number of researchers, fascinated by the apparently easy-to-reach aim of getting a "universal anti-tumor immune tool". In fact, in spite of the impressive progress obtained in the first decades, these cells proved far more complex than expected and, paradoxically, the accumulating findings have continuously moved forward the attainment of a complete control of their function for immunotherapy. The refined studies of these latter years have indicated that NK cells can epigenetically calibrate their functional potential, in response to specific environmental contexts, giving rise to extraordinarily variegated subpopulations, comprehensive of memory-like cells, tissue-resident cells, or cells in various differentiation stages, or distinct functional states. In addition, NK cells can adapt their activity in response to a complex body of signals, spanning from the interaction with either suppressive or stimulating cells (myeloid-derived suppressor cells or dendritic cells, respectively) to the engagement of various receptors (specific for immune checkpoints, cytokines, tumor/viral ligands, or mediating antibody-dependent cell-mediated cytotoxicity). According to this picture, the idea of an easy and generalized exploitation of NK cells is changing, and the way is opening toward new carefully designed, combined and personalized therapeutic strategies, also based on the use of genetically modified NK cells and stimuli capable of strengthening and redirecting their effector functions against cancer.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Massimo Vitale
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Enrico Munari
- Pathology Unit, Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Daniela Pende
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- UO Pathology and Experimental Immunology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico, San Martino, Genova, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| |
Collapse
|
8
|
Weinberg A, Johnson M, Crotteau M, Ghosh D, Vu T, Levin MJ. Trained Immunity Generated by the Recombinant Zoster Vaccine. RESEARCH SQUARE 2024:rs.3.rs-4607744. [PMID: 39041035 PMCID: PMC11261968 DOI: 10.21203/rs.3.rs-4607744/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Trained immunity may play a role in vaccine-induced protection against infections. We showed that the highly efficacious recombinant VZV-gE zoster vaccine (RZV) generated trained immunity in monocytes, natural killer (NK) cells, and dendritic cells (DCs) and that the less efficacious live zoster vaccine did not. RZV stimulated ex vivo gE-specific monocyte, DC and NK cell responses that did not correlate with CD4 + T-cell responses. These responses were also elicited in purified monocyte and NK cell cocultures stimulated with VZV-gE and persisted above prevaccination levels for ≥ 4 years post-RZV administration. RZV administration also increased ex vivo heterologous monocyte and NK cell responses to herpes simplex and cytomegalovirus antigens. ATAC-seq analysis and ex vivo TGFβ1 supplementation and inhibition experiments demonstrated that decreased tgfβ1 transcription resulting from RZV-induced chromatin modifications may explain the development of monocyte trained immunity. The role of RZV-trained immunity in protection against herpes zoster and other infections should be further studied.
Collapse
Affiliation(s)
| | | | | | | | - Thao Vu
- University of Colorado Denver
| | | |
Collapse
|
9
|
Andreu-Sánchez S, Ripoll-Cladellas A, Culinscaia A, Bulut O, Bourgonje AR, Netea MG, Lansdorp P, Aubert G, Bonder MJ, Franke L, Vogl T, van der Wijst MG, Melé M, Van Baarle D, Fu J, Zhernakova A. Antibody signatures against viruses and microbiome reflect past and chronic exposures and associate with aging and inflammation. iScience 2024; 27:109981. [PMID: 38868191 PMCID: PMC11167443 DOI: 10.1016/j.isci.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Encounters with pathogens and other molecules can imprint long-lasting effects on our immune system, influencing future physiological outcomes. Given the wide range of microbes to which humans are exposed, their collective impact on health is not fully understood. To explore relations between exposures and biological aging and inflammation, we profiled an antibody-binding repertoire against 2,815 microbial, viral, and environmental peptides in a population cohort of 1,443 participants. Utilizing antibody-binding as a proxy for past exposures, we investigated their impact on biological aging, cell composition, and inflammation. Immune response against cytomegalovirus (CMV), rhinovirus, and gut bacteria relates with telomere length. Single-cell expression measurements identified an effect of CMV infection on the transcriptional landscape of subpopulations of CD8 and CD4 T-cells. This examination of the relationship between microbial exposures and biological aging and inflammation highlights a role for chronic infections (CMV and Epstein-Barr virus) and common pathogens (rhinoviruses and adenovirus C).
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Anna Culinscaia
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, the Netherlands
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, the Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Wien, Austria
| | - Monique G.P. van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Debbie Van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Lauruschkat CD, Muchsin I, Rein AF, Erhard F, Grathwohl D, Dölken L, Köchel C, Nehmer A, Falk CS, Grigoleit GU, Einsele H, Wurster S, Kraus S. Impaired T cells and "memory-like" NK-cell reconstitution is linked to late-onset HCMV reactivation after letermovir cessation. Blood Adv 2024; 8:2967-2979. [PMID: 38315873 PMCID: PMC11302378 DOI: 10.1182/bloodadvances.2023012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
ABSTRACT Allogeneic hematopoietic stem cell transplantation (alloSCT) is the only cure for many hematologic malignancies. However, alloSCT recipients are susceptible to opportunistic pathogens, such as human cytomegalovirus (HCMV). Letermovir prophylaxis has revolutionized HCMV management, but the challenge of late HCMV reactivations has emerged. Immunological surrogates of clinically significant HCMV infection (csCMVi) after discontinuation of letermovir remain to be defined. Therefore, we studied natural killer (NK)-cell reconstitution along with the global and HCMV pp65-specific T-cell repertoire of 24 alloSCT recipients at 7 time points before (day +90) and after (days +120-270) cessation of letermovir prophylaxis. Patients who experienced csCMVi had lower counts of IFN-γ+ HCMV-specific CD4+ and CD8+ T cells than HCMV controllers. Furthermore, patients with csCMVi displayed late impairment of NK-cell reconstitution, especially suppression of "memory-like" CD159c+CD56dim NK-cell counts that preceded csCMVi events in most patients. Moreover, several surrogates of immune reconstitution were associated with the severity of HCMV manifestation, with patients suffering from HCMV end-organ disease and/or refractory HCMV infection harboring least HCMV-specific T cells and "memory-like" NK cells. Altogether, our findings establish an association of delayed or insufficient proliferation of both HCMV-specific T cells and "memory-like" NK cells with csCMVi and the severity of HCMV manifestations after discontinuation of letermovir prophylaxis.
Collapse
Affiliation(s)
| | - Ihsan Muchsin
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Würzburg, Germany
| | - Alice Felicitas Rein
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Würzburg, Germany
| | - Denise Grathwohl
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Wuerzburg, Würzburg, Germany
- Helmholtz-Institute for RNA-based Infection Research, Würzburg, Germany
| | - Carolin Köchel
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Anne Nehmer
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Christine Susanne Falk
- Institute of Transplant Immunology, Medizinische Hochschule Hanover, Hanover, Germany
- German Center for Infection Research, TTU-IICH, Hanover, Germany
- German Center for Lung Diseases, BREATH Site, Hanover, Germany
| | - Götz Ulrich Grigoleit
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
- Department of Hematology, Oncology and Immunology, Helios Hospital Duisburg, Duisburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital of Wuerzburg, Würzburg, Germany
| |
Collapse
|
11
|
Marri L, Contini P, Ivaldi F, Schiavi C, Magnani O, Vassallo C, Guastalla A, Traversone N, Angelini C, Del Zotto G, De Maria A, De Palma R. Evaluation of Frequency of CMV Replication and Disease Complications Reveals New Cellular Defects and a Time Dependent Pattern in CVID Patients. J Clin Immunol 2024; 44:142. [PMID: 38847943 PMCID: PMC11161436 DOI: 10.1007/s10875-024-01744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE Common Variable Immunodeficiency (CVID) is characterized by hypogammaglobulinemia and failure of specific antibody production due to B-cell defects. However, studies have documented various T-cell abnormalities, potentially linked to viral complications. The frequency of Cytomegalovirus (CMV) replication in CVID cohorts is poorly studied. To address this gap in knowledge, we set up an observational study with the objectives of identifying CVID patients with active viraemia (CMV, Epstein-Barr virus (EBV)), evaluating potential correlations with immunophenotypic characteristics, clinical outcome, and the dynamic progression of clinical phenotypes over time. METHODS 31 CVID patients were retrospectively analysed according to viraemia, clinical and immunologic characteristics. 21 patients with non CVID humoral immunodeficiency were also evaluated as control. RESULTS Active viral replication of CMV and/or EBV was observed in 25% of all patients. CMV replication was detected only in CVID patients (16%). CVID patients with active viral replication showed reduced HLA-DR+ NK counts when compared with CMV-DNA negative CVID patients. Viraemic patients had lower counts of LIN-DNAMbright and LIN-CD16+ inflammatory lymphoid precursors which correlated with NK-cell subsets. Analysis of the dynamic progression of CVID clinical phenotypes over time, showed that the initial infectious phenotype progressed to complicated phenotypes with time. All CMV viraemic patients had complicated disease. CONCLUSION Taken together, an impaired production of inflammatory precursors and NK activation is present in CVID patients with active viraemia. Since "Complicated" CVID occurs as a function of disease duration, there is need for an accurate evaluation of this aspect to improve classification and clinical management of CVID patients.
Collapse
Affiliation(s)
- Luca Marri
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
- Unit of Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Paola Contini
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Federico Ivaldi
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Chiara Schiavi
- Unit of Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ottavia Magnani
- Unit of Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Vassallo
- Unit of Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Guastalla
- Unit of Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Noemi Traversone
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
- Unit of Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Angelini
- Institute for Applied Mathematics "Mauro Picone", National Research Council, Naples, Italy
| | - Genny Del Zotto
- Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea De Maria
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
- Infections in Immunocompromised Host Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Raffaele De Palma
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy.
- Unit of Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
12
|
Felgueres MJ, Esteso G, García-Jiménez ÁF, Dopazo A, Aguiló N, Mestre-Durán C, Martínez-Piñeiro L, Pérez-Martínez A, Reyburn HT, Valés-Gómez M. BCG priming followed by a novel interleukin combination activates Natural Killer cells to selectively proliferate and become anti-tumour long-lived effectors. Sci Rep 2024; 14:13133. [PMID: 38849432 PMCID: PMC11161620 DOI: 10.1038/s41598-024-62968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
The short-lived nature and heterogeneity of Natural Killer (NK) cells limit the development of NK cell-based therapies, despite their proven safety and efficacy against cancer. Here, we describe the biological basis, detailed phenotype and function of long-lived anti-tumour human NK cells (CD56highCD16+), obtained without cell sorting or feeder cells, after priming of peripheral blood cells with Bacillus Calmette-Guérin (BCG). Further, we demonstrate that survival doses of a cytokine combination, excluding IL18, administered just weekly to BCG-primed NK cells avoids innate lymphocyte exhaustion and leads to specific long-term proliferation of innate cells that exert potent cytotoxic function against a broad range of solid tumours, mainly through NKG2D. Strikingly, a NKG2C+CD57-FcεRIγ+ NK cell population expands after BCG and cytokine stimulation, independently of HCMV serology. This strategy was exploited to rescue anti-tumour NK cells even from the suppressor environment of cancer patients' bone marrow, demonstrating that BCG confers durable anti-tumour features to NK cells.
Collapse
Affiliation(s)
- María-José Felgueres
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Álvaro F García-Jiménez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Nacho Aguiló
- Department of Microbiology, Pediatrics, Radiology and Public Health of the University of Zaragoza, IIS Aragon, CIBER de Enfermedades Respiratorias, Zaragoza, Spain
| | - Carmen Mestre-Durán
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, and Pediatric Hemato-Oncology, Hospital Universitario La Paz, Madrid, Spain
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049, Madrid, Spain
| | - Luis Martínez-Piñeiro
- Urology Department and Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, and Pediatric Hemato-Oncology, Hospital Universitario La Paz, Madrid, Spain
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049, Madrid, Spain
- Pediatric Department, Autonomous University of Madrid, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain.
| |
Collapse
|
13
|
Weinberg A, Johnson MJ, Garth K, Hsieh EWY, Kedl R, Weiskopf D, Cassaday M, Rester C, Cabrera-Martinez B, Baxter RM, Levin MJ. Innate and Adaptive Cell-Mediated Immune Responses to a COVID-19 mRNA Vaccine in Young Children. Open Forum Infect Dis 2023; 10:ofad608. [PMID: 38107018 PMCID: PMC10721446 DOI: 10.1093/ofid/ofad608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
Background There is little information on cell-mediated immunity (CMI) to COVID-19 mRNA vaccines in children. We studied adaptive and innate CMI in vaccinated children aged 6 to 60 months. Methods Blood obtained from participants in a randomized placebo-controlled trial of an mRNA vaccine before and 1 month after the first dose was used for antibody measurements and CMI (flow cytometry). Results We enrolled 29 children with a mean age of 28.5 months (SD, 15.7). Antibody studies revealed that 10 participants were infected with SARS-CoV-2 prevaccination. Ex vivo stimulation of peripheral blood mononuclear cells with SARS-CoV-2 spike peptides showed significant increases pre- to postimmunization of activated conventional CD4+ and γδ T cells, natural killer cells, monocytes, and conventional dendritic cells but not mucosa-associated innate T cells. Conventional T-cell, monocyte, and conventional dendritic cell responses in children were higher immediately after vaccination than after SARS-CoV-2 infection. The fold increase in CMI pre- to postvaccination did not differ between children previously infected with SARS-CoV-2 and those uninfected. Conclusions Children aged 6 to 60 months who were vaccinated with a COVID-19 mRNA vaccine developed robust CMI responses, including adaptive and innate immunity.
Collapse
Affiliation(s)
- Adriana Weinberg
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael J Johnson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Krystle Garth
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elena W Y Hsieh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ross Kedl
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mattie Cassaday
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cody Rester
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Berenice Cabrera-Martinez
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ryan M Baxter
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Myron J Levin
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Gao F, Mora MC, Constantinides M, Coenon L, Multrier C, Vaillant L, Zhang T, Villalba M. g-NK cells from umbilical cord blood are phenotypically and functionally different than g-NK cells from peripheral blood. Oncoimmunology 2023; 12:2283353. [PMID: 38126036 PMCID: PMC10732642 DOI: 10.1080/2162402x.2023.2283353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
FcRγ-deficient natural killer (NK) cells, designated as g-NK cells, exhibit enhanced antibody-dependent cellular cytotoxicity (ADCC) capacity and increased IFN-γ and TNF-α production, rendering them promising for antiviral and antitumor responses. g-NK cells from peripheral blood (PB) are often associated with prior human cytomegalovirus (HCMV) infection. However, the prevalence, phenotype, and function of g-NK cells in umbilical cord blood (UCB-g-NK) remain unclear. Here, we demonstrate significant phenotypical differences between UCB-g-NK and PB-g-NK cells. Unlike PB-g-NK cells, UCB-g-NK cells did not show heightened cytokine production upon CD16 engagement, in contrast to the conventional NK (c-NK) cell counterparts. Interestingly, following in vitro activation, UCB-g-NK cells also exhibited elevated levels of IFN-γ production, particularly when co-cultured with HCMV and plasma from g-NK+ adults. Furthermore, g-NK+ plasma from PB even facilitated the in vitro expansion of UCB-g-NK cells. These findings underscore the phenotypic and functional heterogeneity of g-NK cells based on their origin and demonstrate that components within g-NK+ plasma may directly contribute to the acquisition of an adult phenotype by the "immature" UCB-g-NK cells.
Collapse
Affiliation(s)
- Fei Gao
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
| | | | | | - Loïs Coenon
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
| | - Caroline Multrier
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
| | - Loïc Vaillant
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Martin Villalba
- IRMB, INSERM, CHRU de Montpellier, University Montpellier, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- IRMB, INSERM, CHRU de Montpellier, CNRS, Univ Montpellier, Montpellier, France
| |
Collapse
|
15
|
Capuano C, De Federicis D, Ciuti D, Turriziani O, Angeloni A, Anastasi E, Giannini G, Belardinilli F, Molfetta R, Alvaro D, Palmieri G, Galandrini R. Impact of SARS-CoV-2 vaccination on FcγRIIIA/CD16 dynamics in Natural Killer cells: relevance for antibody-dependent functions. Front Immunol 2023; 14:1285203. [PMID: 38045702 PMCID: PMC10693335 DOI: 10.3389/fimmu.2023.1285203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Natural Killer (NK) cells contribute to the protective effects of vaccine-induced antibodies thanks to the low affinity receptor for IgG, FcγRIIIA/CD16, whose aggregation leads to the killing of infected cells and IFNγ release, through which they potentiate adaptive immune responses. Methods Forty-seven healthy young individuals undergoing either homologous (ChAdOx1-S/ChAdOx1-S) or heterologous (ChAdOx1-S/BNT162B2) SARS-CoV-2 vaccination settings were recruited. Peripheral blood samples were collected immediately prior to vaccination and 8 weeks after the booster dose. The phenotypic and functional profile of NK cells was evaluated by flow cytometry at both time points. Serum samples were tested to evaluate circulating anti-Spike IgG levels and cytomegalovirus serostatus. CD16 F158V polymorphism was assessed by sequencing analysis. Results The downregulation of CD16 and the selective impairment of antibody-dependent cytotoxicity and IFNγ production in CD56dim NK population, persisting 8 weeks after boosting, were observed in heterologous, but not in homologous SARS-CoV-2 vaccination scheme. While the magnitude of CD16-dependent functions of the global CD56dim pool correlated with receptor levels before and after vaccination, the responsivity of NKG2C+ subset, that displays amplified size and functionality in HCMV+ individuals, resulted intrinsically insensitive to CD16 levels. Individual CD16 responsiveness was also affected by CD16F158V polymorphism; F/F low affinity individuals, characterized by reduced CD16 levels and functions independently of vaccination, did not show post-vaccinal functional impairment with respect to intermediate and high affinity ones, despite a comparable CD16 downregulation. Further, CD16 high affinity ligation conditions by means of afucosylated mAb overcame vaccine-induced and genotype-dependent functional defects. Finally, the preservation of CD16 expression directly correlated with anti-Spike IgG titer, hinting that the individual magnitude of receptor-dependent functions may contribute to the amplification of the vaccinal response. Conclusion This study demonstrates a durable downmodulation of CD16 levels and Ab-dependent NK functions after SARS-CoV-2 heterologous vaccination, and highlights the impact of genetic and environmental host-related factors in modulating NK cell susceptibility to post-vaccinal Fc-dependent functional impairment.
Collapse
Affiliation(s)
- Cristina Capuano
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Davide De Federicis
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniel Ciuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuela Anastasi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
16
|
Melero I, Ochoa MC, Molina C, Sanchez‐Gregorio S, Garasa S, Luri‐Rey C, Hervas‐Stubbs S, Casares N, Elizalde E, Gomis G, Cirella A, Berraondo P, Teijeira A, Alvarez M. Intratumoral co-injection of NK cells and NKG2A-neutralizing monoclonal antibodies. EMBO Mol Med 2023; 15:e17804. [PMID: 37782273 PMCID: PMC10630884 DOI: 10.15252/emmm.202317804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
NK-cell reactivity against cancer is conceivably suppressed in the tumor microenvironment by the interaction of the inhibitory receptor NKG2A with the non-classical MHC-I molecules HLA-E in humans or Qa-1b in mice. We found that intratumoral delivery of NK cells attains significant therapeutic effects only if co-injected with anti-NKG2A and anti-Qa-1b blocking monoclonal antibodies against solid mouse tumor models. Such therapeutic activity was contingent on endogenous CD8 T cells and type-1 conventional dendritic cells (cDC1). Moreover, the anti-tumor effects were enhanced upon combination with systemic anti-PD-1 mAb treatment and achieved partial abscopal efficacy against distant non-injected tumors. In xenografted mice bearing HLA-E-expressing human cancer cells, intratumoral co-injection of activated allogeneic human NK cells and clinical-grade anti-NKG2A mAb (monalizumab) synergistically achieved therapeutic effects. In conclusion, these studies provide evidence for the clinical potential of intratumoral NK cell-based immunotherapies that exert their anti-tumor efficacy as a result of eliciting endogenous T-cell responses.
Collapse
Affiliation(s)
- Ignacio Melero
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departments of Immunology and OncologyClínica Universidad de NavarraPamplonaSpain
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Carmen Molina
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Sandra Sanchez‐Gregorio
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Saray Garasa
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Carlos Luri‐Rey
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Sandra Hervas‐Stubbs
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Noelia Casares
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Edurne Elizalde
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Gabriel Gomis
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Assunta Cirella
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Pedro Berraondo
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Alvaro Teijeira
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMAUniversidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Cell Therapy, Stem Cells and Tissue GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
- Research Unit, Basque Center for Blood Transfusion and Human TissuesOsakidetzaGaldakaoSpain
| |
Collapse
|
17
|
Espinosa-Gil S, Ivanova S, Alari-Pahissa E, Denizli M, Villafranca-Magdalena B, Viñas-Casas M, Bolinaga-Ayala I, Gámez-García A, Faundez-Vidiella C, Colas E, Lopez-Botet M, Zorzano A, Lizcano JM. MAP kinase ERK5 modulates cancer cell sensitivity to extrinsic apoptosis induced by death-receptor agonists. Cell Death Dis 2023; 14:715. [PMID: 37919293 PMCID: PMC10622508 DOI: 10.1038/s41419-023-06229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Death receptor ligand TRAIL is a promising cancer therapy due to its ability to selectively trigger extrinsic apoptosis in cancer cells. However, TRAIL-based therapies in humans have shown limitations, mainly due inherent or acquired resistance of tumor cells. To address this issue, current efforts are focussed on dissecting the intracellular signaling pathways involved in resistance to TRAIL, to identify strategies that sensitize cancer cells to TRAIL-induced cytotoxicity. In this work, we describe the oncogenic MEK5-ERK5 pathway as a critical regulator of cancer cell resistance to the apoptosis induced by death receptor ligands. Using 2D and 3D cell cultures and transcriptomic analyses, we show that ERK5 controls the proteostasis of TP53INP2, a protein necessary for full activation of caspase-8 in response to TNFα, FasL or TRAIL. Mechanistically, ERK5 phosphorylates and induces ubiquitylation and proteasomal degradation of TP53INP2, resulting in cancer cell resistance to TRAIL. Concordantly, ERK5 inhibition or genetic deletion, by stabilizing TP53INP2, sensitizes cancer cells to the apoptosis induced by recombinant TRAIL and TRAIL/FasL expressed by Natural Killer cells. The MEK5-ERK5 pathway regulates cancer cell proliferation and survival, and ERK5 inhibitors have shown anticancer activity in preclinical models of solid tumors. Using endometrial cancer patient-derived xenograft organoids, we propose ERK5 inhibition as an effective strategy to sensitize cancer cells to TRAIL-based therapies.
Collapse
Affiliation(s)
- Sergio Espinosa-Gil
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Saska Ivanova
- IRB Institute for Research in Biomedicine, Barcelona, Spain
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Melek Denizli
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona. CIBERONC, Barcelona, Spain
| | - Beatriz Villafranca-Magdalena
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona. CIBERONC, Barcelona, Spain
| | - Maria Viñas-Casas
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Idoia Bolinaga-Ayala
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Andrés Gámez-García
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Claudia Faundez-Vidiella
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona. CIBERONC, Barcelona, Spain
| | - Miguel Lopez-Botet
- University Pompeu Fabra, Barcelona, Spain
- Immunology laboratory, Dpt. of Pathology, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Antonio Zorzano
- IRB Institute for Research in Biomedicine, Barcelona, Spain
- CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biología, Universitat de Barcelona, Barcelona, Spain
| | - José Miguel Lizcano
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències. Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
- Protein Kinases in Cancer Research. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
| |
Collapse
|
18
|
Paolini R, Molfetta R. Dysregulation of DNAM-1-Mediated NK Cell Anti-Cancer Responses in the Tumor Microenvironment. Cancers (Basel) 2023; 15:4616. [PMID: 37760586 PMCID: PMC10527063 DOI: 10.3390/cancers15184616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
NK cells play a pivotal role in anti-cancer immune responses, thanks to the expression of a wide array of inhibitory and activating receptors that regulate their cytotoxicity against transformed cells while preserving healthy cells from lysis. However, NK cells exhibit severe dysfunction in the tumor microenvironment, mainly due to the reduction of activating receptors and the induction or increased expression of inhibitory checkpoint receptors. An activating receptor that plays a central role in tumor recognition is the DNAM-1 receptor. It recognizes PVR and Nectin2 adhesion molecules, which are frequently overexpressed on the surface of cancerous cells. These ligands are also able to trigger inhibitory signals via immune checkpoint receptors that are upregulated in the tumor microenvironment and can counteract DNAM-1 activation. Among them, TIGIT has recently gained significant attention, since its targeting results in improved anti-tumor immune responses. This review aims to summarize how the recognition of PVR and Nectin2 by paired co-stimulatory/inhibitory receptors regulates NK cell-mediated clearance of transformed cells. Therapeutic approaches with the potential to reverse DNAM-1 dysfunction in the tumor microenvironment will be also discussed.
Collapse
Affiliation(s)
| | - Rosa Molfetta
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
19
|
Lin Z, Bashirova AA, Viard M, Garner L, Quastel M, Beiersdorfer M, Kasprzak WK, Akdag M, Yuki Y, Ojeda P, Das S, Andresson T, Naranbhai V, Horowitz A, McMichael AJ, Hoelzemer A, Gillespie GM, Garcia-Beltran WF, Carrington M. HLA class I signal peptide polymorphism determines the level of CD94/NKG2-HLA-E-mediated regulation of effector cell responses. Nat Immunol 2023; 24:1087-1097. [PMID: 37264229 PMCID: PMC10690437 DOI: 10.1038/s41590-023-01523-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023]
Abstract
Human leukocyte antigen (HLA)-E binds epitopes derived from HLA-A, HLA-B, HLA-C and HLA-G signal peptides (SPs) and serves as a ligand for CD94/NKG2A and CD94/NKG2C receptors expressed on natural killer and T cell subsets. We show that among 16 common classical HLA class I SP variants, only 6 can be efficiently processed to generate epitopes that enable CD94/NKG2 engagement, which we term 'functional SPs'. The single functional HLA-B SP, known as HLA-B/-21M, induced high HLA-E expression, but conferred the lowest receptor recognition. Consequently, HLA-B/-21M SP competes with other SPs for providing epitope to HLA-E and reduces overall recognition of target cells by CD94/NKG2A, calling for reassessment of previous disease models involving HLA-B/-21M. Genetic population data indicate a positive correlation between frequencies of functional SPs in humans and corresponding cytomegalovirus mimics, suggesting a means for viral escape from host responses. The systematic, quantitative approach described herein will facilitate development of prediction algorithms for accurately measuring the impact of CD94/NKG2-HLA-E interactions in disease resistance/susceptibility.
Collapse
Affiliation(s)
- Zhansong Lin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Arman A Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lee Garner
- Centre for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Max Quastel
- Centre for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Maya Beiersdorfer
- Leibniz Institute of Virology, Hamburg, Germany
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Wojciech K Kasprzak
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marjan Akdag
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Pedro Ojeda
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sudipto Das
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thorkell Andresson
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vivek Naranbhai
- Massachusetts General Hospital Cancer Center, Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Center for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Angelique Hoelzemer
- Leibniz Institute of Virology, Hamburg, Germany
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | | | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
20
|
Greppi M, Obino V, Goda R, Rebaudi F, Carlomagno S, Della Chiesa M, Sivori S, Ubezio G, Agostini V, Bo A, Pesce S, Marcenaro E. Identification of a novel cord blood NK cell subpopulation expressing functional programmed death receptor-1. Front Immunol 2023; 14:1183215. [PMID: 37441071 PMCID: PMC10335745 DOI: 10.3389/fimmu.2023.1183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Background Natural Killer cells (NKs) represent the innate counterpart of TCRαβ lymphocytes and are characterized by a high anti-tumor and an anti-viral cytotoxic activity. Recently, it has been demonstrated that NKs can express PD-1 as an additional inhibitory receptor. Specifically, PD-1 was identified on a subpopulation of terminally differentiated NKs from healthy adults with previous HCMV infection. So far it is unknown whether PD-1 appears during NK-cell development and whether this process is directly or indirectly related to HCMV infection. Methods In this study, we analyzed the expression and function of PD-1 on Cord Blood derived NKs (CB-NKs) on a large cohort of newborns through multiparametric cytofluorimetric analysis. Results We identified PD-1 on CB-NKs in more than of half the newborns analyzed. PD-1 was present on CD56dim NKs, and particularly abundant on CD56neg NKs, but only rarely present on CD56bright NKs. Importantly, unlike in adult healthy donors, in CB-NKs PD-1 is co-expressed not only with KIR, but also with NKG2A. PD-1 expression was independent of HCMV mother seropositivity and occurs in the absence of HCMV infection/reactivation during pregnancy. Notably, PD-1 expressed on CB-NKs was functional and mediated negative signals when triggered. Conclusion To our understanding, this study is the first to report PD-1 expression on CB derived NKs and its features in perinatal conditions. These data may prove important in selecting the most suitable CB derived NK cell population for the development of different immunotherapeutic treatments.
Collapse
Affiliation(s)
- Marco Greppi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Valentina Obino
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Rayan Goda
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Federico Rebaudi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | | | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | | | - Alessandra Bo
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Pesce
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
21
|
Moretta L, Vacca P. Innate immune effectors in cancer. Semin Immunol 2023; 67:101760. [PMID: 37084654 DOI: 10.1016/j.smim.2023.101760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Affiliation(s)
| | - Paola Vacca
- Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|