1
|
Marabello D, Canepa C, Cioci A, Benzi P. Beta-Hydroxybutyric Acid as a Template for the X-ray Powder Diffraction Analysis of Gamma-Hydroxybutyric Acid. Molecules 2024; 29:4678. [PMID: 39407606 PMCID: PMC11477879 DOI: 10.3390/molecules29194678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/20/2024] Open
Abstract
In this paper, we report the possibility of using the X-ray powder diffraction (XRPD) technique to detect gamma-hydroxybutyric acid (GHB) in the form of its sodium salt in different beverages, but because it is not possible to freely buy GHB, beta-hydroxybutyric acid (BHB) and its sodium salt (NaBHB) were used as a model to fine-tune an X-ray diffraction method for the qualitative analysis of the sodium salt of GHB. The method requires only a small quantity of beverage and an easy sample preparation that consists only of the addition of NaOH to the drink and a subsequent drying step. The dry residue obtained can be easily analyzed with XRPD using a single-crystal X-ray diffractometer, which exploits its high sensitivity and allows for very fast pattern collection. Several beverages with different NaBHB:NaOH molar ratios were tested, and the results showed that NaBHB was detected in all drinks analyzed when the NaBHB:NaOH molar ratio was 1:50, using a characteristic peak at very low 2θ values, which also permitted the detection of its presence in complex beverage matrices. Moreover, depending on the amount of NaOH added, shifting and/or splitting of the characteristic NaBHB salt peak was observed, and the origin of this behavior was investigated.
Collapse
Affiliation(s)
- Domenica Marabello
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (D.M.); (C.C.); (A.C.)
- Centre for Crystallography (CrisDi), University of Torino, 10125 Torino, Italy
| | - Carlo Canepa
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (D.M.); (C.C.); (A.C.)
| | - Alma Cioci
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (D.M.); (C.C.); (A.C.)
| | - Paola Benzi
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (D.M.); (C.C.); (A.C.)
- Centre for Crystallography (CrisDi), University of Torino, 10125 Torino, Italy
| |
Collapse
|
2
|
Biscarini F, Barateau L, Pizza F, Plazzi G, Dauvilliers Y. Narcolepsy and rapid eye movement sleep. J Sleep Res 2024:e14277. [PMID: 38955433 DOI: 10.1111/jsr.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Since the first description of narcolepsy at the end of the 19th Century, great progress has been made. The disease is nowadays distinguished as narcolepsy type 1 and type 2. In the 1960s, the discovery of rapid eye movement sleep at sleep onset led to improved understanding of core sleep-related disease symptoms of the disease (excessive daytime sleepiness with early occurrence of rapid eye movement sleep, sleep-related hallucinations, sleep paralysis, rapid eye movement parasomnia), as possible dysregulation of rapid eye movement sleep, and cataplexy resembling an intrusion of rapid eye movement atonia during wake. The relevance of non-sleep-related symptoms, such as obesity, precocious puberty, psychiatric and cardiovascular morbidities, has subsequently been recognized. The diagnostic tools have been improved, but sleep-onset rapid eye movement periods on polysomnography and Multiple Sleep Latency Test remain key criteria. The pathogenic mechanisms of narcolepsy type 1 have been partly elucidated after the discovery of strong HLA class II association and orexin/hypocretin deficiency, a neurotransmitter that is involved in altered rapid eye movement sleep regulation. Conversely, the causes of narcolepsy type 2, where cataplexy and orexin deficiency are absent, remain unknown. Symptomatic medications to treat patients with narcolepsy have been developed, and management has been codified with guidelines, until the recent promising orexin-receptor agonists. The present review retraces the steps of the research on narcolepsy that linked the features of the disease with rapid eye movement sleep abnormality, and those that do not appear associated with rapid eye movement sleep.
Collapse
Affiliation(s)
- Francesco Biscarini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
3
|
McIntosh BW, Mayeux C. Accidental calcium, magnesium, potassium and sodium oxybates (Xywave) overdose: mistiming of a single night's narcolepsy medication leading to respiratory failure requiring mechanical ventilation. BMJ Case Rep 2024; 17:e260025. [PMID: 38821567 DOI: 10.1136/bcr-2024-260025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024] Open
Abstract
While typically thought of as an illicit substance, oxybate salts or gamma-hydroxybutyrate (GHB) has more recently been prescribed to treat narcolepsy by enhancing night-time sleep resulting in decreased daytime drowsiness. This case involves a college-aged female with prescribed GHB for narcolepsy who took her second nightly dose too early. This resulted in mental depression, respiratory failure, intubation and mechanical ventilation. The patient was successfully extubated in the intensive care unit several hours later with no residual morbidity. We were unable to identify any prior reports of mixed-salt oxybate toxicity following mistimed drug administration. This case should serve as a warning to emergency physicians to be on the lookout for GHB as part of the differential diagnosis for patients with narcolepsy presenting with altered mental status. It should also serve as a warning to patients and prescribers that this medication can have outcomes that require immediate medical intervention.
Collapse
Affiliation(s)
- Braden W McIntosh
- Emergency Medicine Residency Program, Louisiana State University Health Sciences Center - New Orleans, Baton Rouge, Louisiana, USA
| | - Charles Mayeux
- Emergency Medicine Residency Program, Louisiana State University Health Sciences Center - New Orleans, Baton Rouge, Louisiana, USA
| |
Collapse
|
4
|
Roth T, Dauvilliers Y, Bogan RK, Plazzi G, Black J. Effects of oxybate dose and regimen on disrupted nighttime sleep and sleep architecture. Sleep Med 2024; 114:255-265. [PMID: 38244463 DOI: 10.1016/j.sleep.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
Many components of sleep are disrupted in patients with narcolepsy, including sleep quality, sleep architecture, and sleep stability (ie, frequent awakenings/arousals and frequent shifts from deeper to lighter stages of sleep). Sodium oxybate, dosed twice nightly, has historically been used to improve sleep, and subsequent daytime symptoms, in patients with narcolepsy. Recently, new formulations have been developed to address the high sodium content and twice-nightly dosing regimen of sodium oxybate: low-sodium oxybate and once-nightly sodium oxybate. To date, no head-to-head trials have been conducted to compare the effects of each oxybate product. This review aims to give an overview of the existing scientific literature regarding the impact of oxybate dose and regimen on sleep architecture and disrupted nighttime sleep in patients with narcolepsy. Evidence from 5 key clinical trials, as well as supporting evidence from additional studies, suggests that sodium oxybate, dosed once- and twice-nightly, is effective in improving sleep, measures of sleep architecture, and disrupted nighttime sleep in patients with narcolepsy. Direct comparison of available efficacy and safety data between oxybate products is complicated by differences in trial designs, outcomes assessed, and statistical analyses; future head-to-head trials are needed to better understand the advantage and disadvantages of each agent.
Collapse
Affiliation(s)
| | - Yves Dauvilliers
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, Montpellier, France; University of Montpellier, INSERM Institute Neuroscience Montpellier (INM), Montpellier, France
| | - Richard K Bogan
- Medical University of South Carolina, Charleston, SC, USA; Bogan Sleep Consultants, LLC, Columbia, SC, USA
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Jed Black
- Stanford University Center for Sleep Sciences and Medicine, Palo Alto, CA, USA; Jazz Pharmaceuticals, Palo Alto, CA, USA
| |
Collapse
|
5
|
Wei H, Cao J, Fallert T, Yeo S, Felmlee MA. GHB toxicokinetics and renal monocarboxylate transporter expression are influenced by the estrus cycle in rats. BMC Pharmacol Toxicol 2023; 24:58. [PMID: 37919807 PMCID: PMC10623699 DOI: 10.1186/s40360-023-00700-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The illicit use and abuse of gamma-hydroxybutyric acid (GHB) occurs due to its sedative/hypnotic and euphoric effects. Currently, there are no clinically available therapies to treat GHB overdose, and care focuses on symptom treatment until the drug is eliminated from the body. Proton- and sodium-dependent monocarboxylate transporters (MCTs (SLC16A) and SMCTs (SLC5A)) transport and mediate the renal clearance and distribution of GHB. Previously, it has been shown that MCT expression is regulated by sex hormones in the liver, skeletal muscle and Sertoli cells. The focus of the current study is to evaluate GHB toxicokinetics and renal monocarboxylate transporter expression over the estrus cycle in females, and in the absence of male and female sex hormones. METHODS GHB toxicokinetics and renal transporter expression of MCT1, SMCT1 and CD147 were evaluated in females over the estrus cycle, and in ovariectomized (OVX) female, male and castrated (CST) male rats. GHB was administered iv bolus (600 and 1000 mg/kg) and plasma and urine samples were collected for six hours post-dose. GHB concentrations were quantified using a validated LC/MS/MS assay. Transporter mRNA and protein expression was quantified by qPCR and Western Blot. RESULTS GHB renal clearance and AUC varied between sexes and over the estrus cycle in females with higher renal clearance and a lower AUC in proestrus females as compared to males (intact and CST), and OVX females. We demonstrated that renal MCT1 membrane expression varies over the estrus cycle, with the lowest expression observed in proestrus females, which is consistent with the observed changes in GHB renal clearance. CONCLUSIONS Our results suggest that females may be less susceptible to GHB-induced toxicity due to decreased exposure resulting from increased renal clearance, as a result of decreased renal MCT1 expression.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Jieyun Cao
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
- AstraZeneca, Gaithersburg, Maryland, USA
| | - Tyler Fallert
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
- Clovis Community Medical Center, Clovis, CA, USA
| | - Su Yeo
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
- Kaiser Permanente, Santa Clara, CA, USA
| | - Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA.
| |
Collapse
|
6
|
Torstensen EW, Haubjerg Østerby NC, Kornum BR, Wanscher B, Mignot E, Barløse M, Jennum PJ. Repeated polysomnography and multiple sleep latency test in narcolepsy type 1 and other hypersomnolence disorders. Sleep Med 2023; 110:91-98. [PMID: 37544279 DOI: 10.1016/j.sleep.2023.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND The diagnosis of narcolepsy is based on clinical information, combined with polysomnography (PSG) and the Multiple Sleep Latency Test (MSLT). PSG and the MSLT are moderately reliable at diagnosing narcolepsy type 1 (NT1) but unreliable for diagnosing narcolepsy type 2 (NT2). This is a problem, especially given the increased risk of a false-positive MSLT in the context of circadian misalignment or sleep deprivation, both of which commonly occur in the general population. AIM We aimed to clarify the accuracy of PSG/MSLT testing in diagnosing NT1 versus controls without sleep disorders. Repeatability and reliability of PSG/MSLT testing and temporal changes in clinical findings of patients with NT1 versus patients with hypersomnolence with normal hypocretin-1 were compared. METHOD 84 patients with NT1 and 100 patients with non-NT1-hypersomnolence disorders, all with congruent cerebrospinal fluid hypocretin-1 (CSF-hcrt-1) levels, were included. Twenty-five of the 84 NT1 patients and all the hypersomnolence disorder patients underwent a follow-up evaluation consisting of clinical assessment, PSG, and a modified MSLT. An additional 68 controls with no sleep disorders were assessed at baseline. CONCLUSION Confirming results from previous studies, we found that PSG and our modified MSLT accurately and reliably diagnosed hypocretin-deficient NT1 (accuracy = 0.88, reliability = 0.80). Patients with NT1 had stable clinical and electrophysiological presentations over time that suggested a stable phenotype. In contrast, the PSG/MSLT results of patients with hypersomnolence, and normal CSF-hcrt-1 had poor reliability (0.32) and low repeatability.
Collapse
Affiliation(s)
- Eva Wiberg Torstensen
- Danish Center for Sleep Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| | | | | | | | - Emmanuel Mignot
- Stanford University Center for Sleep Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Mads Barløse
- Department of Functional and Diagnostic Imaging, Hvidovre Hospital, Copenhagen, Denmark; Danish Headache Center, Rigshospitalet, Glostrup, Denmark.
| | - Poul Jørgen Jennum
- Danish Center for Sleep Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
7
|
Frisoni P, Corli G, Bilel S, Tirri M, Gasparini LC, Alfieri L, Neri M, De-Giorgio F, Marti M. Effect of Repeated Administration of ɣ-Valerolactone (GVL) and GHB in the Mouse: Neuroadaptive Changes of the GHB and GABAergic System. Pharmaceuticals (Basel) 2023; 16:1225. [PMID: 37765033 PMCID: PMC10536195 DOI: 10.3390/ph16091225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Gamma-hydroxybutyric acid (GHB) at low dosages has anxiolytic effects and promotes REM sleep and low-wave deep sleep. In the U.S., the legal form of GHB is prescribed to adults suffering from narcolepsy-associated cataplexy; the sodium salt of GHB is reserved for alcohol-addiction treatment. GHB is also a molecule of abuse and recreational use, it is a controlled substance in several countries, so gamma-valerolactone (GVL) has frequently been used as a legal substitute for it. GHB's abuse profile is most likely attributable to its anxiolytic, hypnotic, and euphoric properties, as well as its widespread availability and inexpensive/low cost on the illicit market. METHODS Our study is focused on evaluating the potential effects on the mouse brain after repeated/prolonged administration of GHB and GVL at a pharmacologically active dose (100 mg/kg) through behavioral study and immunohistochemical analysis using the markers tetraspanin 17 (TSPAN17), aldehyde dehydrogenase 5 (ALDH5A1), Gamma-aminobutyric acid type A receptor (GABA-A), and Gamma-aminobutyric acid type B receptor (GABA-B). RESULTS Our findings revealed that prolonged administration of GHB and GVL at a pharmacologically active dose (100 mg/kg) can have effects on a component of the mouse brain, the intensity of which can be assessed using immunohistochemistry. The findings revealed that long-term GHB administration causes a significant plastic alteration of the GHB signaling system, with downregulation of the putative binding site (TSPAN17) and overexpression of ALDH5A1, especially in hippocampal neurons. Our findings further revealed that GABA-A and GABA-B receptors are downregulated in these brain locations, resulting in a greater decrease in GABA-B expression. CONCLUSIONS The goal of this study, from the point of view of forensic pathology, is to provide a new methodological strategy for better understanding the properties of this controversial substance, which could help us better grasp the unknown mechanism underlying its abuse profile.
Collapse
Affiliation(s)
- Paolo Frisoni
- Unit of Legal Medicine, AUSL of Ferrara, Via Arturo Cassoli 30, 44121 Ferrara, Italy;
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (G.C.); (S.B.); (M.T.); (M.M.)
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (G.C.); (S.B.); (M.T.); (M.M.)
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (G.C.); (S.B.); (M.T.); (M.M.)
| | - Laura Camilla Gasparini
- Department of Biomedical, Metabolic and Neural Sciences, Institute of Legal Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Letizia Alfieri
- Department of Medical Sciences, Section of Legal Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Margherita Neri
- Department of Medical Sciences, Section of Legal Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (G.C.); (S.B.); (M.T.); (M.M.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
| |
Collapse
|
8
|
Sun Y, Ranjan A, Tisdale R, Ma SC, Park S, Haire M, Heu J, Morairty SR, Wang X, Rosenbaum DM, Williams NS, Brabander JKD, Kilduff TS. Evaluation of the efficacy of the hypocretin/orexin receptor agonists TAK-925 and ARN-776 in narcoleptic orexin/tTA; TetO-DTA mice. J Sleep Res 2023; 32:e13839. [PMID: 36808670 PMCID: PMC10356740 DOI: 10.1111/jsr.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023]
Abstract
The sleep disorder narcolepsy, a hypocretin deficiency disorder thought to be due to degeneration of hypothalamic hypocretin/orexin neurons, is currently treated symptomatically. We evaluated the efficacy of two small molecule hypocretin/orexin receptor-2 (HCRTR2) agonists in narcoleptic male orexin/tTA; TetO-DTA mice. TAK-925 (1-10 mg/kg, s.c.) and ARN-776 (1-10 mg/kg, i.p.) were injected 15 min before dark onset in a repeated measures design. EEG, EMG, subcutaneous temperature (Tsc ) and activity were recorded by telemetry; recordings for the first 6 h of the dark period were scored for sleep/wake and cataplexy. At all doses tested, TAK-925 and ARN-776 caused continuous wakefulness and eliminated sleep for the first hour. Both TAK-925 and ARN-776 caused dose-related delays in NREM sleep onset. All doses of TAK-925 and all but the lowest dose of ARN-776 eliminated cataplexy during the first hour after treatment; the anti-cataplectic effect of TAK-925 persisted into the second hour for the highest dose. TAK-925 and ARN-776 also reduced the cumulative amount of cataplexy during the 6 h post-dosing period. The acute increase in wakefulness produced by both HCRTR2 agonists was characterised by increased spectral power in the gamma EEG band. Although neither compound provoked a NREM sleep rebound, both compounds affected NREM EEG during the second hour post-dosing. TAK-925 and ARN-776 also increased gross motor activity, running wheel activity, and Tsc , suggesting that the wake-promoting and sleep-suppressing activities of these compounds could be a consequence of hyperactivity. Nonetheless, the anti-cataplectic activity of TAK-925 and ARN-776 is encouraging for the development of HCRTR2 agonists.
Collapse
Affiliation(s)
- Yu Sun
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Alok Ranjan
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Tisdale
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Shun-Chieh Ma
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Sunmee Park
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Meghan Haire
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Jasmine Heu
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Stephen R. Morairty
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Xiaoyu Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel M. Rosenbaum
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Noelle S. Williams
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jef K. De Brabander
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas S. Kilduff
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| |
Collapse
|
9
|
Wolf CJH, Venselaar H, Spoelder M, Beurmanjer H, Schellekens AFA, Homberg JR. An Overview of the Putative Structural and Functional Properties of the GHBh1 Receptor through a Bioinformatics Approach. Life (Basel) 2023; 13:life13040926. [PMID: 37109455 PMCID: PMC10142108 DOI: 10.3390/life13040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The neurotransmitter γ-hydroxybutyric acid (GHB) is suggested to be involved in neuronal energy homeostasis processes, but the substance is also used as a recreational drug and as a prescription medication for narcolepsy. GHB has several high-affinity targets in the brain, commonly generalized as the GHB receptor. However, little is known about the structural and functional properties of GHB receptor subtypes. This opinion article discusses the literature on the putative structural and functional properties of the GHBh1 receptor subtype. GHBh1 contains 11 transmembrane helices and at least one intracellular intrinsically disordered region (IDR). Additionally, GHBh1 shows a 100% overlap in amino acid sequence with the Riboflavin (vitamin B2) transporter, which opens the possibility of a possible dual-function (transceptor) structure. Riboflavin and GHB also share specific neuroprotective properties. Further research into the GHBh1 receptor subtype may pave the way for future therapeutic possibilities for GHB.
Collapse
Affiliation(s)
- Casper J. H. Wolf
- Department of Psychiatry, Radboudumc, 6525 GC Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboudumc, 6525 EN Nijmegen, The Netherlands
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), 6525 HR Nijmegen, The Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Marcia Spoelder
- Department of Primary and Community Care, Radboudumc, 6525 GC Nijmegen, The Netherlands
| | - Harmen Beurmanjer
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), 6525 HR Nijmegen, The Netherlands
- Behavioural Science Institute, Radboud University, 6525 GD Nijmegen, The Netherlands
- Novadic-Kentron Addiction Care, 5261 LX Vught, The Netherlands
| | - Arnt F. A. Schellekens
- Department of Psychiatry, Radboudumc, 6525 GC Nijmegen, The Netherlands
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), 6525 HR Nijmegen, The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboudumc, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
10
|
Zhan S, Ye H, Li N, Zhang Y, Cheng Y, Wang Y, Hu S, Hou Y. Comparative Efficacy and Safety of Multiple Wake-Promoting Agents for the Treatment of Excessive Daytime Sleepiness in Narcolepsy: A Network Meta-Analysis. Nat Sci Sleep 2023; 15:217-230. [PMID: 37082610 PMCID: PMC10112483 DOI: 10.2147/nss.s404113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Purpose Narcolepsy is a rare debilitating disorder for which multiple novel pharmacological options have been approved as treatment for the past few years. The current study systematically updates the comparative efficacy and detailed safety analysis of approved wake-promoting agents in narcolepsy. Methods Randomized controlled trials (RCTs) were searched for diagnosed narcolepsy with approved interventions. Efficacy outcomes included the Maintenance of Wakefulness Test (MWT), Epworth Sleepiness Scale (ESS), Clinical Global Impression of Change (CGI-C), and Patient Global Impression of Change (PGI-C). Safety outcomes including overall adverse event (AE) risk were measured. The study was registered at PROSPERO (CRD 42022334915). Results The final analysis included 17 RCTs with five drug treatments: modafinil/armodafinil, sodium oxybate, pitolisant, solriamfetol, and lower-sodium oxybate (LXB). For efficacy measures, interventions included in each outcome were effective compared with placebo. Furthermore, the magnitude of solriamfetol effect on MWT (9.11 minutes; 95% CI=7.05-11.16), ESS (-4.79; 95% CI=-6.56 to -3.01), and PGI-C (9.39; 95% CI= 2.37-37.19), and LXB effect on CGI-C (9.67; 95% CI=2.73-34.26) was greater than that of other treatments included in each outcome compared with placebo. For safety measures, all interventions had an acceptable safety profile with LXB having least risk for overall AEs (0.56; 95% CI=0.20-1.53), serious AEs (0.33; 95% CI=0.09-1.20), AEs leading to treatment discontinuation (0.11; 95% CI=0.01-2.04), and all-cause discontinuation (0.04; 95% CI=0.00-0.67) compared to placebo. Placebo had the lowest risk for exploratory AEs. Conclusion All approved interventions were effective in controlling the symptoms of narcolepsy at varying degrees with an acceptable safety profile.
Collapse
Affiliation(s)
- Shuqin Zhan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Correspondence: Shuqin Zhan, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China, Tel +8613801027285, Email
| | - Hui Ye
- Ignis Therapeutics (Shanghai) Limited, Shanghai, 200000, People’s Republic of China
| | - Ning Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yimeng Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yueyang Cheng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yuanqing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Department of Neurology, People’s Hospital of Rizhao, Rizhao, 276800, People’s Republic of China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Yue Hou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| |
Collapse
|
11
|
Mamelak M. The Treatment of Parkinson's Disease with Sodium Oxybate. Curr Mol Pharmacol 2023; 16:564-579. [PMID: 36330625 DOI: 10.2174/1874467216666221103121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Sodiun Oxybate (SO) has a number of attributes that may mitigate the metabolic stress on the substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons in Parkinson's disease (PD). These neurons function at the borderline of energy sufficiency. SO is metabolized to succinate and supplies energy to the cell by generating ATP. SO is a GABAB agonist and, as such, also arrests the high energy requiring calcium pace-making activity of these neurons. In addition, blocking calcium entry impedes the synaptic release and subsequent neurotransmission of aggregated synuclein species. As DA neurons degenerate, a homeostatic failure exposes these neurons to glutamate excitotoxicity, which in turn accelerates the damage. SO inhibits the neuronal release of glutamate and blocks its agonistic actions. Most important, SO generates NADPH, the cell's major antioxidant cofactor. Excessive free radical production within DA neurons and even more so within activated microglia are early and key features of the degenerative process that are present long before the onset of motor symptoms. NADPH maintains cell glutathione levels and alleviates oxidative stress and its toxic consequences. SO, a histone deacetylase inhibitor also suppresses the expression of microglial NADPH oxidase, the major source of free radicals in Parkinson brain. The acute clinical use of SO at night has been shown to reduce daytime sleepiness and fatigue in patients with PD. With long-term use, its capacity to supply energy to DA neurons, impede synuclein transmission, block excitotoxicity and maintain an anti-oxidative redox environment throughout the night may delay the onset of PD and slow its progress.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Steuer AE, Sutter L, Steuer C, Kraemer T. New gamma-hydroxybutyric acid (GHB) biomarkers: Development and validation of a liquid chromatography-tandem mass spectrometry method for the determination of GHB amino acid, carnitine, and fatty acid conjugates in urine. Drug Test Anal 2022; 15:426-443. [PMID: 36562189 DOI: 10.1002/dta.3430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Gamma-hydroxybutyric acid (GHB) represents an important drug in clinical and forensic toxicology, particularly in the context of drug-facilitated crimes. Analytically, GHB remains a major challenge given its endogenous occurrence and short detection window. Previous studies identified a number of potential interesting novel conjugates of GHB with carnitine, amino acids (AA, glutamate, glycine, and taurine), or fatty acids. As a basis for comprehensive studies on the suitability of these novel biomarkers, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in human urine. Additionally, already known markers 2,4-dihydroxy butyric acid (2,4-DHB), 3,4-DHB, glycolic acid, succinic acid, succinylcarnitine, and GHB glucuronide were included. The method was fully validated according to (inter)national guidelines. Synthetic urine proved suitable as a surrogate matrix for calibration. Matrix effects were observed for all analytes with suppression effects of about 50% at QC LOW, and approximately 20% to 40% at QC HIGH, but with consistent standard deviation of <25% at QC LOW and <15% at QC HIGH, respectively. All analytes showed acceptable intra- and inter-day imprecision of below 20%, except for inter-day variation of GHB taurine and FA conjugates at the lowest QC. Preliminary applicability studies proved the usefulness of the method and pointed towards GHB glycine, followed by other AA conjugates as the most promising candidates to improve GHB detection. FA conjugates were not detected in urine samples yet. The method can be used now for comprehensive sample analysis on (controlled) GHB administration to prove the usefulness of the novel GHB biomarkers.
Collapse
Affiliation(s)
- Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Linda Sutter
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Pérez-Carbonell L, Mignot E, Leschziner G, Dauvilliers Y. Understanding and approaching excessive daytime sleepiness. Lancet 2022; 400:1033-1046. [PMID: 36115367 DOI: 10.1016/s0140-6736(22)01018-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 10/14/2022]
Abstract
Excessive daytime sleepiness (EDS) is a public health issue. However, it remains largely undervalued, scarcely diagnosed, and poorly supported. Variations in the definition of EDS and limitations in clinical assessment lead to difficulties in its epidemiological study, but the relevance of this symptom from a socioeconomic perspective is inarguable. EDS might be a consequence of several behavioural issues leading to insufficient or disrupted sleep, as well as a consequence of sleep disorders including sleep apnoea syndrome, circadian disorders, central hypersomnolence disorders (narcolepsy and idiopathic hypersomnia), other medical or psychiatric conditions, or medications. Furthermore, EDS can have implications for health as it is thought to act as a risk factor for other conditions, such as cardiovascular and neurodegenerative disorders. Because of the heterogeneous causes of EDS and the complexity of its pathophysiology, management will largely depend on the cause, with the final aim of making treatment specific to the individual using precision medicine and personalised medicine.
Collapse
Affiliation(s)
| | - Emmanuel Mignot
- Center for Narcolepsy, Stanford University, Palo Alto, CA, USA
| | - Guy Leschziner
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK; Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Département de Neurologie, Hôpital Gui-de-Chauliac, Inserm INM, Université Montpellier, Montpellier, France
| |
Collapse
|
14
|
Ngo Q, Plante DT. An Update on the Misuse and Abuse Potential of Pharmacological Treatments for Central Disorders of Hypersomnolence. CURRENT SLEEP MEDICINE REPORTS 2022. [DOI: 10.1007/s40675-022-00227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Wilkerson JL, Hiranita T, Koek W, McMahon LR. The discriminative stimulus effects of baclofen and gamma hydroxybutyrate in C57BL/6J mice. Behav Pharmacol 2022; 33:427-434. [PMID: 35947069 PMCID: PMC9373713 DOI: 10.1097/fbp.0000000000000691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Baclofen and γ-hydroxybutyrate (GHB) exert γ-aminobutyric acid (GABA)B receptor agonism and have therapeutic utility but possess different pharmacological activities. We examined whether separate groups of mice could be trained to discriminate either baclofen or GHB, and the contribution of GABAB receptors to discriminative stimulus effects. Male C57BL/6J mice were trained to discriminate either baclofen (3.2 mg/kg, intraperitoneal) or GHB (178 mg/kg, intraperitoneal) from saline under a fixed-ratio 10 schedule. The GABAB antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP 35348) was used to pharmacologically assess GABAB receptor involvement. The selectivity of the resulting discriminations was assessed with the opioid agonist morphine and the benzodiazepine midazolam. In baclofen-trained mice, both baclofen and GHB were readily discriminated. Baclofen produced a maximum of 86% baclofen-appropriate responding. CGP 35348 (320 mg/kg, i.p.) produced a 4.7-fold rightward shift in the dose-effect function. GHB produced a maximum of 85.8% baclofen-appropriate responding. In GHB-trained mice, both GHB and baclofen were readily discriminated. In GHB-trained mice, GHB produced a maximum of 85.3% drug-appropriate responding; CGP 35348 (320 mg/kg, i.p.) produced a 1.8-fold rightward shift in the GHB discrimination dose-effect function. Baclofen produced up to 70.0% GHB-appropriate responding. CGP 35348 (320 mg/kg, i.p.) significantly antagonized baclofen discrimination and baclofen produced up to 37% GHB-appropriate responding up to doses that disrupted operant responding. Morphine did not produce substitution for either baclofen or GHB. Midazolam produced partial substitution for both. GHB and baclofen discrimination assays in mice provide a useful approach for examining different receptor types mediating the effects of these two drugs.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Takato Hiranita
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Wouter Koek
- Departments of Pharmacology
- Psychiatry, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
- Departments of Pharmacology
| |
Collapse
|
16
|
Zhang Y, Ren R, Yang L, Zhang H, Shi Y, Vitiello MV, Tang X, Sanford LD. Comparative polysomnography parameters between narcolepsy type 1/type 2 and idiopathic hypersomnia: A systematic review and meta-analysis. Sleep Med Rev 2022; 63:101610. [DOI: 10.1016/j.smrv.2022.101610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
|
17
|
Pharmacology of Sleep. Respir Med 2022. [DOI: 10.1007/978-3-030-93739-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Tête X, Masson Y, Donat N, Rager G, Leclerc T, Fontaine B. Mise au point sur l’utilisation du GammaOH en anesthésie–réanimation. ANESTHÉSIE & RÉANIMATION 2021. [PMCID: PMC8346353 DOI: 10.1016/j.anrea.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Ponziani V, Pizza F, Zenesini C, Vignatelli L, Pession A, Plazzi G. BMI changes in pediatric type 1 narcolepsy under sodium oxybate treatment. Sleep 2021; 44:6060056. [PMID: 33388769 DOI: 10.1093/sleep/zsaa295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Pediatric type 1 narcolepsy (NT1) is often associated with overweight and obesity. Sodium oxybate (SO), approved for the treatment of narcolepsy with cataplexy from the age of 7 years old in the United States, has been associated with weight loss, although longitudinal pediatric studies are lacking. We report a retrospective cohort of 129 consecutive patients with a 4-year follow-up, to analyze the impact of different pharmacological treatments on body mass index (BMI) z-score. At baseline, the prevalence of obesity and overweight was 26.4% (34/129) and 29.5% (38/129), respectively. Patients were divided into three groups: children treated with SO alone (group 1), with SO-combined therapy (group 2), and without SO (group 3). At the end of the first year of follow-up, group 1 and group 2 showed a significant BMI z-score reduction compared to baseline: from 1.2 ± 1.1 to 0.4 ± 1.4 for group 1 (p < 0.001), and from 1.4 ± 1.1 to 1 ± 1.3 for group 2 (p = 0.002), independently from baseline clinical features. In the second year, only group 2 experienced a further and significant BMI z-score decrease (from 1.0 ± 1.2 to 0.6 ± 1.2, p = 0.037). No further significant BMI z-score changes were observed in SO-treated patients in the following years. Instead, children treated without SO developed a significant weight increase between the second and third year of therapy (BMI z-score from 0.3 ± 0.9 to 0.5 ± 0.9). In conclusion, SO treatment in pediatric NT1 is associated with a favorable weight reduction in the first year of treatment.
Collapse
Affiliation(s)
- Virginia Ponziani
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | | | | | - Andrea Pession
- Department of Pediatrics, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
20
|
Vringer M, Kornum BR. Emerging therapeutic targets for narcolepsy. Expert Opin Ther Targets 2021; 25:559-572. [PMID: 34402358 DOI: 10.1080/14728222.2021.1969361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Narcolepsy type 1 (NT1) and type 2 (NT2) are chronic sleep disorders primarily characterized by excessive daytime sleepiness (EDS), disturbed sleep-wake regulation, and reduced quality of life. The precise disease mechanism is unclear, but it is certain that in NT1 the hypocretin/orexin (Hcrt) system is affected. Current treatment options are symptomatic - they improve EDS and/or reduce cataplexy. Complete symptom control is relatively rare - particularly problematic is residual daytime sleepiness. AREAS COVERED This review discusses various emerging treatment targets for narcolepsy. The focus is on the Hcrt receptors but included are also wake-promoting pathways, and sleep-stabilization through GABAergic mechanisms. Additionally, we discuss the potential of targeting the likely autoimmune basis of narcolepsy. PubMed and ClinicalTrials.gov was searched through June 2021 for relevant information. EXPERT OPINION Targeting Hcrt receptors has the potential to alleviate narcolepsy symptoms. Results from ongoing drug development programs are promising, but care needs to be taken when evaluating potential side effects. It is still largely unknown what roles Hcrt receptors play in the periphery and how these might be affected by treatment. Immunotherapies could potentially target the core pathophysiology of narcolepsy, but more work is needed to identify the best therapeutic target for this approach.
Collapse
Affiliation(s)
- Marieke Vringer
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience (Mhens), Maastricht University, Maastricht, Netherlands
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Bassetti CLA, Kallweit U, Vignatelli L, Plazzi G, Lecendreux M, Baldin E, Dolenc-Groselj L, Jennum P, Khatami R, Manconi M, Mayer G, Partinen M, Pollmächer T, Reading P, Santamaria J, Sonka K, Dauvilliers Y, Lammers GJ. European guideline and expert statements on the management of narcolepsy in adults and children. J Sleep Res 2021; 30:e13387. [PMID: 34173288 DOI: 10.1111/jsr.13387] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Narcolepsy is an uncommon hypothalamic disorder of presumed autoimmune origin that usually requires lifelong treatment. This paper aims to provide evidence-based guidelines for the management of narcolepsy in both adults and children. METHODS The European Academy of Neurology (EAN), European Sleep Research Society (ESRS), and European Narcolepsy Network (EU-NN) nominated a task force of 18 narcolepsy specialists. According to the EAN recommendations, 10 relevant clinical questions were formulated in PICO format. Following a systematic review of the literature (performed in Fall 2018 and updated in July 2020) recommendations were developed according to the GRADE approach. RESULTS A total of 10,247 references were evaluated, 308 studies were assessed and 155 finally included. The main recommendations can be summarized as follows: (i) excessive daytime sleepiness (EDS) in adults-scheduled naps, modafinil, pitolisant, sodium oxybate (SXB), solriamfetol (all strong); methylphenidate, amphetamine derivatives (both weak); (ii) cataplexy in adults-SXB, venlafaxine, clomipramine (all strong) and pitolisant (weak); (iii) EDS in children-scheduled naps, SXB (both strong), modafinil, methylphenidate, pitolisant, amphetamine derivatives (all weak); (iv) cataplexy in children-SXB (strong), antidepressants (weak). Treatment choices should be tailored to each patient's symptoms, comorbidities, tolerance and risk of potential drug interactions. CONCLUSION The management of narcolepsy involves non-pharmacological and pharmacological approaches with an increasing number of symptomatic treatment options for adults and children that have been studied in some detail.
Collapse
Affiliation(s)
- Claudio L A Bassetti
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ulf Kallweit
- Center for Narcolepsy/Hypersomnias, Clin. Sleep and Neuroimmunology, Institute of Immunology, University Witten/Herdecke, Witten, Germany
| | - Luca Vignatelli
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michel Lecendreux
- AP-HP, Pediatric Sleep Center, CHU Robert-Debré, Paris, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Paris, France
| | - Elisa Baldin
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Leja Dolenc-Groselj
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Faculty of Health Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ramin Khatami
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Center of Sleep Medicine, Sleep Research and Epileptology, Clinic Barmelweid, Barmelweid, Switzerland
| | - Mauro Manconi
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Sleep Center, Faculty of Biomedical Sciences, Neurocenter of Southern Switzerland, Università della Svizzera Italiana, Lugano, Switzerland
| | - Geert Mayer
- Neurology Department, Hephata Klinik, Schwalmstadt, Germany.,Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
| | - Markku Partinen
- Department of Clinial Neurosciences, Clinicum, Helsinki Sleep Clinic, Vitalmed Research Center, Terveystalo Biobank and Clinical Research, University of Helsinki, Helsinki, Finland
| | | | - Paul Reading
- Department of Neurology, James Cook University Hospital, Middlesbrough, UK
| | - Joan Santamaria
- Neurology Service, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Karel Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Yves Dauvilliers
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, INM INSERM, Montpellier, France
| | - Gert J Lammers
- Sleep Wake Centre SEIN, Heemstede, The Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
22
|
Bassetti CLA, Kallweit U, Vignatelli L, Plazzi G, Lecendreux M, Baldin E, Dolenc-Groselj L, Jennum P, Khatami R, Manconi M, Mayer G, Partinen M, Pollmächer T, Reading P, Santamaria J, Sonka K, Dauvilliers Y, Lammers GJ. European guideline and expert statements on the management of narcolepsy in adults and children. Eur J Neurol 2021; 28:2815-2830. [PMID: 34173695 DOI: 10.1111/ene.14888] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIM Narcolepsy is an uncommon hypothalamic disorder of presumed autoimmune origin that usually requires lifelong treatment. This paper aims to provide evidence-based guidelines for the management of narcolepsy in both adults and children. METHODS The European Academy of Neurology (EAN), European Sleep Research Society (ESRS) and European Narcolepsy Network (EU-NN) nominated a task force of 18 narcolepsy specialists. According to the EAN recommendations, 10 relevant clinical questions were formulated in PICO format. Following a systematic review of the literature (performed in Fall 2018 and updated in July 2020) recommendations were developed according to the GRADE approach. RESULTS A total of 10,247 references were evaluated, 308 studies were assessed and 155 finally included. The main recommendations can be summarized as follows: (i) excessive daytime sleepiness in adults-scheduled naps, modafinil, pitolisant, sodium oxybate (SXB), solriamfetol (all strong), methylphenidate, amphetamine derivates (both weak); (ii) cataplexy in adults-SXB, venlafaxine, clomipramine (all strong) and pitolisant (weak); (iii) excessive daytime sleepiness in children-scheduled naps, SXB (both strong), modafinil, methylphenidate, pitolisant, amphetamine derivates (all weak); (iv) cataplexy in children-SXB (strong), antidepressants (weak). Treatment choices should be tailored to each patient's symptoms, comorbidities, tolerance and risk of potential drug interactions. CONCLUSION The management of narcolepsy involves non-pharmacological and pharmacological approaches with an increasing number of symptomatic treatment options for adults and children that have been studied in some detail.
Collapse
Affiliation(s)
- Claudio L A Bassetti
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ulf Kallweit
- Center for Narcolepsy/Hypersomnias, Clin. Sleep and Neuroimmunology, Institute of Immunology, University Witten/Herdecke, Witten, Germany
| | - Luca Vignatelli
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michel Lecendreux
- AP-HP, Pediatric Sleep Center, CHU Robert-Debré, Paris, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Paris, France
| | - Elisa Baldin
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Leja Dolenc-Groselj
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Faculty of Health Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ramin Khatami
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Center of Sleep Medicine, Sleep Research and Epileptology. Clinic Barmelweid, Barmelweid, Switzerland
| | - Mauro Manconi
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Sleep Center, Faculty of Biomedical Sciences, Neurocenter of Southern Switzerland, Università della Svizzera Italiana, Lugano, Switzerland
| | - Geert Mayer
- Neurology Department, Hephata Klinik, Schwalmstadt, Germany.,Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
| | - Markku Partinen
- Department of Clinial Neurosciences, Clinicum, Helsinki Sleep Clinic, Vitalmed Research Center, Terveystalo Biobank and Clinical Research, University of Helsinki, Helsinki, Finland
| | | | - Paul Reading
- Department of Neurology, James Cook University Hospital, Middlesbrough, UK
| | - Joan Santamaria
- Neurology Service, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Karel Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Yves Dauvilliers
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, INM INSERM, Montpellier, France
| | - Gert J Lammers
- Sleep Wake Centre SEIN, Heemstede, The Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
23
|
Dijkstra BAG, Beurmanjer H, Goudriaan AE, Schellekens AFA, Joosten EAG. Unity in diversity: A systematic review on the GHB using population. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2021; 94:103230. [PMID: 33892279 DOI: 10.1016/j.drugpo.2021.103230] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Over the past decades gamma-hydroxybutyrate (GHB) has emerged as a popular drug with high potential of (ab)use due to its euphoric and relaxing effects. An overview of different populations using GHB is urgently needed, since this would enable development of adequate prevention and treatment policies to diminish the risks associated with GHB use. We systematically reviewed literature on different GHB using populations, comparing demographic characteristics, GHB use patterns, psychosocial aspects and psychiatric comorbidity. METHODS We conducted a systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using Rayyan software. Original studies published from January 1997 up to October 2019 on GHB use were included. Out of 80 full-text articles, 60 articles of 51 unique studies were included. Most studies included people using GHB 1) presenting at emergency departments (n = 22), 2) recruited from the general population (n = 11), or 3) presenting at addiction care (n = 8). RESULTS Three main sub-populations of people using GHB are described in the literature: people using GHB recreationally without adverse effects; people using GHB recreationally with adverse effects, and people with dependence on GHB. These groups show considerable overlap in gender, age range, and comorbid substance use, as well as amount of GHB use per occasion. Differences are related to frequency and function of GHB use, the number of comas experienced, as well as work status, and psychiatric comorbidity. CONCLUSION Policy interventions should aim at preventing the transition from recreational substance use to GHB use, as most users are experienced recreational substance users prior to starting GHB use. When people use GHB regularly, interventions should aim at reducing the level of GHB use and preventing GHB use-related harm. Longitudinal studies and population-based probability sampling are required for more insight in the dynamics of GHB use in different sub-populations, and the transition from one group to the other, ultimately leading to dependence on GHB.
Collapse
Affiliation(s)
- B A G Dijkstra
- Nijmegen Institute for Scientist-Practitioner in Addiction (NISPA), Radboud University, Nijmegen, the Netherlands; Radboudumc, Department of Psychiatry, Nijmegen, the Netherlands; Novadic-Kentron Addiction Treatment Center, Vught, the Netherlands.
| | - H Beurmanjer
- Nijmegen Institute for Scientist-Practitioner in Addiction (NISPA), Radboud University, Nijmegen, the Netherlands; Novadic-Kentron Addiction Treatment Center, Vught, the Netherlands
| | - A E Goudriaan
- Jellinek and Arkin, Amsterdam, the Netherlands; Amsterdam University Medical Center, Department of Psychiatry, University of Amsterdam, Amsterdam, the Netherlands
| | - A F A Schellekens
- Nijmegen Institute for Scientist-Practitioner in Addiction (NISPA), Radboud University, Nijmegen, the Netherlands; Radboudumc, Department of Psychiatry, Nijmegen, the Netherlands
| | - E A G Joosten
- Nijmegen Institute for Scientist-Practitioner in Addiction (NISPA), Radboud University, Nijmegen, the Netherlands; Radboudumc, Department of Psychiatry, Nijmegen, the Netherlands
| |
Collapse
|
24
|
Mamelak M. Sleep, Narcolepsy, and Sodium Oxybate. Curr Neuropharmacol 2021; 20:272-291. [PMID: 33827411 PMCID: PMC9413790 DOI: 10.2174/1570159x19666210407151227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
Sodium oxybate (SO) has been in use for many decades to treat narcolepsy with cataplexy. It functions as a weak GABAB agonist but also as an energy source for the brain as a result of its metabolism to succinate and as a powerful antioxidant because of its capacity to induce the formation of NADPH. Its actions at thalamic GABAB receptors can induce slow-wave activity, while its actions at GABAB receptors on monoaminergic neurons can induce or delay REM sleep. By altering the balance between monoaminergic and cholinergic neuronal activity, SO uniquely can induce and prevent cataplexy. The formation of NADPH may enhance sleep’s restorative process by accelerating the removal of the reactive oxygen species (ROS), which accumulate during wakefulness. SO improves alertness in normal subjects and in patients with narcolepsy. SO may allay severe psychological stress - an inflammatory state triggered by increased levels of ROS and characterized by cholinergic supersensitivity and monoaminergic deficiency. SO may be able to eliminate the inflammatory state and correct the cholinergic/ monoaminergic imbalance.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario. Canada
| |
Collapse
|
25
|
Zhang Y, Ren R, Yang L, Zhang H, Shi Y, Sanford LD, Tang X. Polysomnographic nighttime features of narcolepsy: A systematic review and meta-analysis. Sleep Med Rev 2021; 58:101488. [PMID: 33934047 DOI: 10.1016/j.smrv.2021.101488] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023]
Abstract
Polysomnographic studies have been conducted to explore nighttime sleep features in narcolepsy, but their relationship to narcolepsy is still imperfectly understood. We conducted a systematic review of the literature exploring polysomnographic differences between narcolepsy patients and healthy controls (HCs) in EMBASE, MEDLINE, All EBM databases, CINAHL, and PsycINFO. 108 studies were identified for this review, 105 of which were used for meta-analysis. Meta-analyses revealed significant reductions in sleep latency, sleep efficiency, slow wave sleep percentage, rapid eye movement sleep (REM) latency, cyclic alternating pattern rate, and increases in total sleep time, wake time after sleep onset (WASO), awakening numbers (AWN) per hour, stage shift (SS) per hour, N1 percentage, apnea hypopnea index, and periodic limb movement index in narcolepsy patients compared with HCs. Furthermore, narcolepsy type 1 patients showed more disturbed nighttime sleep compared with narcolepsy type 2 patients. Children and adolescent narcolepsy patients show increased WASO, AWN, and SS compared with adult patients. Macro- and micro-structurally, our study suggests that narcolepsy patients have poor nighttime sleep. Sex, age, body mass index, disease duration, disease type, medication status, and adaptation night are demographic, clinical and methodological factors that contribute to heterogeneity between studies.
Collapse
Affiliation(s)
- Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haipeng Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Shi
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA.
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Steuer AE, Raeber J, Simbuerger F, Dornbierer DA, Bosch OG, Quednow BB, Seifritz E, Kraemer T. Towards Extending the Detection Window of Gamma-Hydroxybutyric Acid-An Untargeted Metabolomics Study in Serum and Urine Following Controlled Administration in Healthy Men. Metabolites 2021; 11:metabo11030166. [PMID: 33809281 PMCID: PMC7998200 DOI: 10.3390/metabo11030166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
In forensic toxicology, gamma-hydroxybutyrate (GHB) still represents one of the most challenging drugs of abuse in terms of analytical detection and interpretation. Given its rapid elimination, the detection window of GHB in common matrices is short (maximum 12 h in urine). Additionally, the differentiation from naturally occurring endogenous GHB, is challenging. Thus, novel biomarkers to extend the detection window of GHB are urgently needed. The present study aimed at searching new potential biomarkers of GHB use by means of mass spectrometry (MS) metabolomic profiling in serum (up to 16.5 h) and urine samples (up to 8 h after intake) collected during a placebo-controlled crossover study in healthy men. MS data acquired by different analytical methods (reversed phase and hydrophilic interaction liquid chromatography; positive and negative electrospray ionization each) were filtered for significantly changed features applying univariate and mixed-effect model statistics. Complementary to a former study, conjugates of GHB with glycine, glutamate, taurine, carnitine and pentose (ribose) were identified in urine, with particularly GHB-pentose being promising for longer detection. None of the conjugates were detectable in serum. Therein, mainly energy metabolic substrates were identified, which may be useful for more detailed interpretation of underlying pathways but are too unspecific as biomarkers.
Collapse
Affiliation(s)
- Andrea E. Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
- Correspondence: ; Tel.: +41-(0)4-4635-5679
| | - Justine Raeber
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
| | - Fabio Simbuerger
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
| | - Dario A. Dornbierer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
| | - Oliver G. Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
| | - Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research (ZiS), University of Zurich, 8091 Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
| |
Collapse
|
27
|
Metabolic Alterations Associated with γ-Hydroxybutyric Acid and the Potential of Metabolites as Biomarkers of Its Exposure. Metabolites 2021; 11:metabo11020101. [PMID: 33578991 PMCID: PMC7916753 DOI: 10.3390/metabo11020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
γ-Hydroxybutyric acid (GHB) is an endogenous short chain fatty acid that acts as a neurotransmitter and neuromodulator in the mammalian brain. It has often been illegally abused or misused due to its strong anesthetic effect, particularly in drug-facilitated crimes worldwide. However, proving its ingestion is not straightforward because of the difficulty in distinguishing between endogenous and exogenous GHB, as well as its rapid metabolism. Metabolomics and metabolism studies have recently been used to identify potential biomarkers of GHB exposure. This mini-review provides an overview of GHB-associated metabolic alterations and explores the potential of metabolites for application as biomarkers of GHB exposure. For this, we discuss the biosynthesis and metabolism of GHB, analytical issues of GHB in biological samples, alterations in metabolic pathways, and changes in the levels of GHB conjugates in biological samples from animal and human studies. Metabolic alterations in organic acids, amino acids, and polyamines in urine enable discrimination between GHB-ingested animals or humans and controls. The potential of GHB conjugates has been investigated in a variety of clinical settings. Despite the recent growth in the application of metabolomics and metabolism studies associated with GHB exposure, it remains challenging to distinguish between endogenous and exogenous GHB. This review highlights the significance of further metabolomics and metabolism studies for the discovery of practical peripheral biomarkers of GHB exposure.
Collapse
|
28
|
Strunc MJ, Black J, Lillaney P, Profant J, Mills S, Bujanover S, Thorpy MJ. The Xyrem ® (Sodium Oxybate) Risk Evaluation and Mitigation Strategy (REMS) Program in the USA: Results From 2016 to 2017. Drugs Real World Outcomes 2021; 8:15-28. [PMID: 33439474 PMCID: PMC7984153 DOI: 10.1007/s40801-020-00223-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2020] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Sodium oxybate, which is approved for the treatment of cataplexy or excessive daytime sleepiness in patients with narcolepsy, is available in the USA only through the restricted-distribution Xyrem® Risk Evaluation and Mitigation Strategy Program (Xyrem REMS Program, XRP). The XRP requires prescriber enrollment and certification, patient enrollment, and prescriber attestation of patient counseling. Sodium oxybate is dispensed only by the certified pharmacy. After pharmacist/patient counseling, sodium oxybate is shipped only to enrolled patients, with documentation of safe use. Documentation of enrollments, prescriptions, counseling, shipments, and adverse events in a central database, and risk management reporting of any suspicion of abuse, misuse, or diversion, ensure provider notification and facilitate monitoring. OBJECTIVE This analysis reports data from the XRP regarding assessment of the risks of serious adverse outcomes that may result from inappropriate prescribing, abuse, misuse, and diversion. METHODS Data collected from December 2016 to December 2017 were analyzed. RESULTS Prescriptions were from enrolled prescribers (n = 4524); 17,037 patients received one or more shipment of sodium oxybate. No patients were shipped sodium oxybate under more than one name/identifier or after being disenrolled; no individual patient had overlapping active prescriptions. Sodium oxybate was dispensed in 146,426 shipments containing 375,173 bottles; of those, 13 shipments (0.009%) and 26 bottles (0.007%) were lost in delivery and not recovered. Notifications regarding potential abuse (n = 31), misuse (n = 343), or diversion (n = 22) were discussed with prescribers. Most patients and prescribers were aware of the main safety risks of sodium oxybate. CONCLUSIONS The XRP maintains controlled access to sodium oxybate; additional prescriber education on safety risks may be warranted.
Collapse
Affiliation(s)
- Michael J Strunc
- The Center for Pediatric Sleep Medicine, Children's Hospital of The King's Daughters, 601 Children's Lane, Norfolk, VA, 23507, USA.
| | - Jed Black
- Jazz Pharmaceuticals, Palo Alto, CA, USA.,Stanford Center for Sleep Sciences and Medicine, Palo Alto, CA, USA
| | | | | | | | | | - Michael J Thorpy
- Albert Einstein College of Medicine, Bronx, NY, USA.,Sleep-Wake Disorders Center, Bronx, NY, USA
| |
Collapse
|
29
|
Franceschini C, Pizza F, Cavalli F, Plazzi G. A practical guide to the pharmacological and behavioral therapy of Narcolepsy. Neurotherapeutics 2021; 18:6-19. [PMID: 33886090 PMCID: PMC8061157 DOI: 10.1007/s13311-021-01051-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 01/19/2023] Open
Abstract
Narcolepsy is a rare, chronic, and disabling central nervous system hypersomnia; two forms can be recognized: narcolepsy type 1 (NT1) and narcolepsy type 2 (NT2). Its etiology is still largely unknown, but studies have reported a strong association between NT1 and HLA, as well as a pathogenic association with the deficiency of cerebrospinal hypocretin-1. Thus, the most reliable pathogenic hypothesis is an autoimmune process destroying hypothalamic hypocretin-producing cells. A definitive cure for narcolepsy is not available to date, and although the research in the field is highly promising, up to now, current treatments have aimed to reduce the symptoms by means of different pharmacological approaches. Moreover, overall narcolepsy symptoms management can also benefit from non-pharmacological approaches such as cognitive behavioral therapies (CBTs) and psychosocial interventions to improve the patients' quality of life in both adult and pediatric-affected individuals as well as the well-being of their families. In this review, we summarize the available therapeutic options for narcolepsy, including the pharmacological, behavioral, and psychosocial interventions.
Collapse
Affiliation(s)
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Francesca Cavalli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy.
| |
Collapse
|
30
|
Uzun N, Akıncı MA. Treatment of Isolated Cataplexy With Low-dose Aripiprazole in an Adolescent Patient. Clin Neuropharmacol 2020; 43:125-126. [PMID: 32590615 DOI: 10.1097/wnf.0000000000000398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cataplexy is a clinical entity that is characterized by transient muscle tone loss that mostly occurring as a part of narcolepsy. On the other hand, isolated cataplexy (IC) (hereditary cataplexy) is defined as loss of muscle tone that is not accompanied by narcolepsy. Emotional reactions may trigger IC episodes. Additionally, human leukocyte antigen (HLA) DQB1 alleles were shown to be related to IC. Various antidepressants are useful in the treatment of IC; however, there is limited knowledge on the use of antipsychotics in the treatment of IC. CASE REPORT A 16-year-old adolescent girl was consulted child and adolescent psychiatry outpatient clinic with complaint of sudden episodes of loss of muscle tone. Her HLA typing showed HLA DQB1*03 haplotype. She was diagnosed with IC and was prescribed aripiprazole 2.5 mg/d and her IC symptoms disappeared and never recurred over 6 months of follow-up. CONCLUSIONS In this case report, we present an adolescent girl with IC that is successfully treated with aripiprazole, an antipsychotic. This case report suggests that aripiprazole may be safely used in some adolescents who diagnosed with IC.
Collapse
Affiliation(s)
- Necati Uzun
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Meram School of Medicine
| | - Mehmet Akif Akıncı
- Department of Child and Adolescent Psychiatry, Ali Kemal Belviranlı Maternity and Children Hospital, Konya, Turkey
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To review sleep complaints reported in patients with autoimmune encephalitis, explore the relationship between sleep disturbances and subtypes of autoimmune encephalitis, and leverage knowledge concerning antibody-antigen specificity to inform the receptors, structures, and disseminated neural networks that contribute to sleep function in health and disease. RECENT FINDINGS Autoimmune encephalitis is an inflammatory brain disorder characterized by the subacute onset of psychiatric symptoms, cognitive impairment, and focal neurologic deficits or seizures. Sleep disturbances are detected in a majority of patients systematically screened for sleep complaints, may be the presenting symptom in patients with autoimmune encephalitis, and may compromise recovery in patients with autoimmune encephalitis. Early recognition of specific sleep disturbances in patients with subacute changes in behavior or cognition may support the diagnosis of autoimmune encephalitis. Similarly, recognition and treatment of sleep dysfunction in patients with known autoimmune encephalitis may speed recovery and improve long-term outcomes.
Collapse
Affiliation(s)
- Margaret S Blattner
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, USA.
| |
Collapse
|
32
|
Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020; 45:6-20. [PMID: 31216564 PMCID: PMC6879642 DOI: 10.1038/s41386-019-0444-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
The principal neurons of the arousal and sleep circuits are comprised by glutamate and GABA neurons, which are distributed within the reticular core of the brain and, through local and distant projections and interactions, regulate cortical activity and behavior across wake-sleep states. These are in turn modulated by the neuromodulatory systems that are comprised by acetylcholine, noradrenaline, dopamine, serotonin, histamine, orexin (hypocretin), and melanin-concentrating hormone (MCH) neurons. Glutamate and GABA neurons are heterogeneous in their profiles of discharge, forming distinct functional cell types by selective or maximal discharge during (1) waking and paradoxical (REM) sleep, (2) during slow wave sleep, (3) during waking, or (4) during paradoxical (REM) sleep. The neuromodulatory systems are each homogeneous in their profile of discharge, the majority discharging maximally during waking and paradoxical sleep or during waking. Only MCH neurons discharge maximally during sleep. They each exert their modulatory influence upon other neurons through excitatory and inhibitory receptors thus effecting a concerted differential change in the functionally different cell groups. Both arousal and sleep circuit neurons are homeostatically regulated as a function of their activity in part through changes in receptors. The major pharmacological agents used for the treatment of wake and sleep disorders act upon GABA and neuromodulatory transmission.
Collapse
Affiliation(s)
- Barbara E. Jones
- 0000 0004 1936 8649grid.14709.3bDepartment of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
33
|
Pérez-Carbonell L. Treatment of Excessive Daytime Sleepiness in Patients with Narcolepsy. Curr Treat Options Neurol 2019; 21:57. [DOI: 10.1007/s11940-019-0595-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Lehert P, Falissard B. Multiple treatment comparison in narcolepsy: a network meta-analysis. Sleep 2019; 41:5102365. [PMID: 30239930 PMCID: PMC6289237 DOI: 10.1093/sleep/zsy185] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 01/29/2023] Open
Abstract
Study Objectives Randomized controlled trials (RCTs) that compared the safety and efficacy of medical treatments for narcolepsy were analyzed using network meta-analysis. Methods The RCTs in narcolepsy were searched. Network meta-analysis compared efficacy and safety of multiple treatments, multi-arm studies, and multi-criteria treatment decisions, based on a random model that assumed heterogeneity between studies, with corrections for multi-arm studies. Results Fourteen RCTs, three drug treatments, and six doses were identified: sodium oxybate (6 and 9 g/d), modafinil (between 200 and 400 mg/d), and pitolisant (up to 20 and up to 40 mg/d). Significant heterogeneity (>50%) between studies was found in 12/14 studies for almost all endpoints, but between-design consistency was present. For ESS and MWT, sodium oxybate 9 g/d, modafinil, and pitolisant up to 40 mg/d had similar efficacy. Pitolisant 40 mg/d and sodium oxybate 9 g/d in two nightly doses had similar efficacy in reducing cataplexy. A good safety profile characterized by a TEAE incidence risk ratio (IRR) <1.5 was found for all the compared treatments, except for sodium oxybate 9 g/d. Although no significant difference was found, Pitolisant 40 mg was shown with the best P scores for the benefit/risk (BR) ratio. Conclusions Modafinil (200–400 mg/d), sodium oxybate 9 g/d, and pitolisant up to 40 mg/d had similar efficacy in reducing excessive day time sleepiness. Only sodium oxybate 9 g/d and pitolisant up to 40 mg/d were shown with a comparable beneficial effect on cataplexy. Overall, Pitolisant was found with the best P score on the BR ratio Clinical Trial Registration PROSPERO 2017 CRD42017054686. Efficacy, safety, and benefit-risk comparison of alternative treatments in narcolepsy: a network multiple comparisons of treatment meta-analysis. http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42017054686.
Collapse
Affiliation(s)
- Philippe Lehert
- Faculty of Medicine, University of Melbourne, Melbourne, Australia.,Faculty of Economics, University of Louvain, Mons, Belgium
| | - Bruno Falissard
- Centre de Recherche en Epidemiologie et Santé des Populations, CESP/INSERM, Paris, France
| |
Collapse
|
35
|
Dornbierer DA, Boxler M, Voegel CD, Stucky B, Steuer AE, Binz TM, Baumgartner MR, Baur DM, Quednow BB, Kraemer T, Seifritz E, Landolt HP, Bosch OG. Nocturnal Gamma-Hydroxybutyrate Reduces Cortisol-Awakening Response and Morning Kynurenine Pathway Metabolites in Healthy Volunteers. Int J Neuropsychopharmacol 2019; 22:631-639. [PMID: 31504554 PMCID: PMC6822136 DOI: 10.1093/ijnp/pyz047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/03/2019] [Accepted: 08/27/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Gamma-hydroxybutyrate (GHB; or sodium oxybate) is an endogenous GHB-/gamma-aminobutyric acid B receptor agonist. It is approved for application in narcolepsy and has been proposed for the potential treatment of Alzheimer's disease, Parkinson's disease, fibromyalgia, and depression, all of which involve neuro-immunological processes. Tryptophan catabolites (TRYCATs), the cortisol-awakening response (CAR), and brain-derived neurotrophic factor (BDNF) have been suggested as peripheral biomarkers of neuropsychiatric disorders. GHB has been shown to induce a delayed reduction of T helper and natural killer cell counts and alter basal cortisol levels, but GHB's effects on TRYCATs, CAR, and BDNF are unknown. METHODS Therefore, TRYCAT and BDNF serum levels, as well as CAR and the affective state (Positive and Negative Affect Schedule [PANAS]) were measured in the morning after a single nocturnal dose of GHB (50 mg/kg body weight) in 20 healthy male volunteers in a placebo-controlled, balanced, randomized, double-blind, cross-over design. RESULTS In the morning after nocturnal GHB administration, the TRYCATs indolelactic acid, kynurenine, kynurenic acid, 3-hydroxykynurenine, and quinolinic acid; the 3-hydroxykynurenine to kynurenic acid ratio; and the CAR were significantly reduced (P < 0.05-0.001, Benjamini-Hochberg corrected). The quinolinic acid to kynurenic acid ratio was reduced by trend. Serotonin, tryptophan, and BDNF levels, as well as PANAS scores in the morning, remained unchanged after a nocturnal GHB challenge. CONCLUSIONS GHB has post-acute effects on peripheral biomarkers of neuropsychiatric disorders, which might be a model to explain some of its therapeutic effects in disorders involving neuro-immunological pathologies. This study was registered at ClinicalTrials.gov as NCT02342366.
Collapse
Affiliation(s)
- D A Dornbierer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland,Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland,Correspondence: Dario A. Dornbierer, MSc, Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics Psychiatric Hospital, University of Zurich Lenggstrasse 31, CH-8032 Zurich, Switzerland ()
| | - M Boxler
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - C D Voegel
- Center for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - B Stucky
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland,Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - A E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - T M Binz
- Center for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - M R Baumgartner
- Center for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - D M Baur
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland,Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - B B Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, University Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - T Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - E Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, University Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - H P Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland,Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, University Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - O G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Castelnovo A, Lopez R, Proserpio P, Nobili L, Dauvilliers Y. NREM sleep parasomnias as disorders of sleep-state dissociation. Nat Rev Neurol 2019; 14:470-481. [PMID: 29959394 DOI: 10.1038/s41582-018-0030-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Non-rapid eye movement (NREM) sleep parasomnias (or NREM parasomnias) are fascinating disorders with mysterious neurobiological substrates. These conditions are common and often severe, with social, personal and forensic implications. The NREM parasomnias include sleepwalking, sleep terrors and confusional arousals - collectively termed disorders of arousal (DOAs) - as well as less well-known entities such as sleep-related sexual behaviours and eating disorders. Affected patients can exhibit waking behaviours arising abruptly out of NREM sleep. Although the individual remains largely unresponsive to the external environment, their EEG shows both typical sleep-like and wake-like features, and they occasionally report dreaming afterwards. Therefore, these disorders offer a unique natural model to explore the abnormal coexistence of local sleep and wake brain activity and the dissociation between behaviour and various aspects of consciousness. In this article, we critically review major findings and updates on DOAs, focusing on neurophysiological studies, and offer an overview of new clinical frontiers and promising future research areas. We advocate a joint effort to inform clinicians and the general public about the management and follow-up of these conditions. We also strongly encourage collaborative multicentre studies to add more objective polysomnographic criteria to the current official diagnostic definitions and to develop clinical practice guidelines, multidisciplinary research approaches and evidence-based medical care.
Collapse
Affiliation(s)
- Anna Castelnovo
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.,Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital of Lugano, Lugano, Switzerland
| | - Régis Lopez
- Reference National Center for Narcolepsy-Hypersomnia, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France
| | - Paola Proserpio
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Milan, Italy
| | - Lino Nobili
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Milan, Italy. .,Department of Neuroscience, DINOGMI, University of Genoa, Genoa, Italy.
| | - Yves Dauvilliers
- Reference National Center for Narcolepsy-Hypersomnia, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.
| |
Collapse
|
37
|
Barateau L, Lopez R, Dauvilliers Y. Clinical neurophysiology of CNS hypersomnias. HANDBOOK OF CLINICAL NEUROLOGY 2019; 161:353-367. [PMID: 31307613 DOI: 10.1016/b978-0-444-64142-7.00060-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Central nervous system hypersomnias (narcolepsy type 1 and type 2, idiopathic hypersomnia, and Kleine-Levin syndrome) are orphan sleep disorders in which the predominant symptom is excessive daytime sleepiness. The evaluation of sleepiness requires rigorous clinical and neurophysiologic approaches that may include the Epworth Sleepiness Scale, multiple sleep latency tests, and the maintenance of wakefulness test. However, to date, no gold standard measurement of excessive sleepiness exists, and there are no quantifiable biologic markers. The main pathophysiologic feature of central hypersomnias is thought to reflect a deficiency of arousal systems, rather than an overactivity of sleep systems or an imbalance between those systems. Impaired neurotransmission of hypocretin/orexin (neuropeptides of the lateral hypothalamus) is involved in the neurobiology of narcolepsy with cataplexy (NT1). NT1 is a well-characterized disorder, due to the destruction of hypocretin/orexin neurons by a probable autoimmune process. The biologic hallmarks of the other central hypersomnias remain unknown, and neurophysiologic biomarkers are still of major importance for the diagnosis and characterization of those disorders.
Collapse
Affiliation(s)
- Lucie Barateau
- Department of Neurology, Sleep-Wake Disorders Center, Hôpital Gui-de-Chauliac, Montpellier, France; National Reference Network for Narcolepsy, Montpellier, France
| | - Régis Lopez
- Department of Neurology, Sleep-Wake Disorders Center, Hôpital Gui-de-Chauliac, Montpellier, France; National Reference Network for Narcolepsy, Montpellier, France
| | - Yves Dauvilliers
- Department of Neurology, Sleep-Wake Disorders Center, Hôpital Gui-de-Chauliac, Montpellier, France; National Reference Network for Narcolepsy, Montpellier, France.
| |
Collapse
|
38
|
Franceschini C, Pizza F, Antelmi E, Folli MC, Plazzi G. Narcolepsy treatment: pharmacological and behavioral strategies in adults and children. Sleep Breath 2019; 24:615-627. [PMID: 31290083 DOI: 10.1007/s11325-019-01894-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 11/27/2022]
Abstract
Narcolepsy is a disabling, rare, and chronic sleep disorder, currently classified as distinct central nervous system hypersomnia in narcolepsy type 1 (NT1) and narcolepsy type 2 (NT2). Although today a reliable pathogenic hypothesis identifies the cause of NT1 as an autoimmune process destroying hypocretin-producing cells, there is no cure for narcolepsy, and the symptomatic pharmacological available treatments are not entirely effective for all symptoms. Behavioral therapies play a synergistic role in the disease treatment. We here review the available therapeutic options for narcolepsy, including symptomatic pharmacological treatments as well as behavioral and psychosocial interventions that could help clinicians improve the quality of life of patients with narcolepsy in adulthood and childhood.
Collapse
Affiliation(s)
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Elena Antelmi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
39
|
Xu XM, Wei YD, Liu Y, Li ZX. Gamma-hydroxybutyrate (GHB) for narcolepsy in adults: an updated systematic review and meta-analysis. Sleep Med 2019; 64:62-70. [PMID: 31671326 DOI: 10.1016/j.sleep.2019.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Narcolepsy is a chronic and debilitating sleep disorder characterized by cataplexy and excessive daytime sleeping. Gamma-hydroxybutyrate (GHB) has been widely used to treat narcolepsy, and new findings have been published in recent years. OBJECTIVE A meta-analysis was conducted to assess the efficacy and tolerability of GHB treatment in adults with narcolepsy. METHODS A systematic search of PubMed, Cochrane, Embase, Web of Science, and clinical-trials.gov from inception to June 2018 was performed. Change in daily diaries and polysomnographic data of narcoleptic patients were defined as the efficacy outcomes. The tolerability and acceptability outcomes were the rates of adverse events and dropping out for adverse effects or other reasons. RESULTS Fifteen randomized controlled trials involving 2104 participants were identified. GHB was found to improve cataplexy attacks (P = 0.001), subjective daytime sleepiness (P < 0.0001), daytime sleep latency (P < 0.0001), inadvertent naps/sleep attacks (P < 0.00001), effective rates (Clinical Global Impression of change) (P < 0.00001), hypnagogic hallucinations (P = 0.004), sleep paralysis (P = 0.004), stage 1 sleep (P = 0.04), slow wave sleep (P = 0.003), REM sleep (P = 0.0006), sleep shifts (P = 0.005), nocturnal awakenings (P = 0.004), quality of nocturnal sleep (P < 0.00001), chin muscle activity, and quality of life, but had no effect on stage 2 sleep (P = 0.88). GHB was less well tolerated than placebo because of side effects that occurred in a dose-dependent fashion (RR = 6.08; 95% CI = 2.18 to 16.97; P = 0.0006). CONCLUSIONS GHB was effective in improving narcolepsy-cataplexy and related symptoms in adults but was less well tolerated than placebo because of dose-dependent side effects.
Collapse
Affiliation(s)
- Xiao-Min Xu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - You-Dong Wei
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Zuo-Xiao Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
40
|
Schinkelshoek MS, Smolders IM, Donjacour CE, van der Meijden WP, van Zwet EW, Fronczek R, Lammers GJ. Decreased body mass index during treatment with sodium oxybate in narcolepsy type 1. J Sleep Res 2019; 28:e12684. [PMID: 29504180 PMCID: PMC7378953 DOI: 10.1111/jsr.12684] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022]
Abstract
Narcolepsy type 1 is characterised by an increase in body weight after disease onset, frequently leading to obesity. It was suggested that this weight gain may be counteracted by treatment with sodium oxybate. We here provide longitudinal body mass index data of patients with narcolepsy type 1 after starting treatment with sodium oxybate, compared with patients in whom treatment with modafinil was initiated. Eighty-one individuals with narcolepsy type 1 fulfilled the entry criteria for this retrospective study: 59 had newly started treatment with sodium oxybate and 22 had newly started modafinil. Gender-specific differences between both treatment groups were compared using Student's t tests and mixed effect modeling. Patients using sodium oxybate lost weight, with a mean body mass index decrease of 2.56 kg/m2 between the first and last measurement (women; p = .001) and 0.84 kg/m2 (men; p = .006). Patients using modafinil, however, gained weight, with a mean body mass index increase of 0.57 kg/m2 (women; p = .033) and 0.67 kg/m2 (men; p = .122). Medication (p = .006) and baseline body mass index (p = .032) were predictors for body mass index decrease. In conclusion, treatment with sodium oxybate is associated with a body mass index reduction in narcolepsy type 1, whereas modafinil treatment is not. This effect is most pronounced in those who already have a higher baseline body mass index.
Collapse
Affiliation(s)
- Mink S. Schinkelshoek
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Sleep‐Wake CenterStichting Epilepsie Instellingen Nederland (SEIN)HeemstedeThe Netherlands
| | | | - Claire E. Donjacour
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Sleep‐Wake CenterStichting Epilepsie Instellingen Nederland (SEIN)ZwolleThe Netherlands
| | - Wisse P. van der Meijden
- Department of Sleep and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Erik W. van Zwet
- Department of Medical Statistics and BioinformaticsLeiden University Medical CenterLeidenThe Netherlands
| | - Rolf Fronczek
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Sleep‐Wake CenterStichting Epilepsie Instellingen Nederland (SEIN)HeemstedeThe Netherlands
| | - Gert Jan Lammers
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Sleep‐Wake CenterStichting Epilepsie Instellingen Nederland (SEIN)HeemstedeThe Netherlands
| |
Collapse
|
41
|
Abad VC. An evaluation of sodium oxybate as a treatment option for narcolepsy. Expert Opin Pharmacother 2019; 20:1189-1199. [DOI: 10.1080/14656566.2019.1617273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vivien C. Abad
- Adjunct Clinical Associate Professor, Division of Sleep Medicine, Department of Psychiatry & Behavioral Sciences, Stanford University, Redwood City, CA, USA
| |
Collapse
|
42
|
Filardi M, Pizza F, Antelmi E, Ferri R, Natale V, Plazzi G. In-field assessment of sodium oxybate effect in pediatric type 1 narcolepsy: an actigraphic study. Sleep 2019. [PMID: 29522206 DOI: 10.1093/sleep/zsy050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Study Objectives Sodium oxybate (SXB) is a GABAergic agent widely used as off-label treatment in pediatric type 1 narcolepsy (NT1). Here, we aimed at analyzing by wrist actigraphy the sleep/wake profile of NT1 children and adolescents in drug-naïve condition and after 1 year of SXB treatment. As secondary aim, we investigated changes on sleepiness, cataplexy, and children's anthropometric profile after 1 year of SXB treatment. Methods Twenty-four drug-naïve NT1 children underwent 7 days of actigraphy during the school week. Information on sleepiness, narcolepsy symptoms, and anthropometric features were collected during the same week with questionnaires and semistructured clinical interview. Children started SXB treatment and underwent a second evaluation encompassing actigraphy, clinical interview, questionnaires, and anthropometric assessment after 1 year of stable treatment. Results Actigraphy effectively documented an improvement of nocturnal sleep quality and duration coupled with a reduction of diurnal total sleep time, nap frequency, and duration at 1 year follow-up. Reduction of sleepiness, cataplexy frequency and severity, and weight loss, mainly in obese and overweight NT1 children, were also observed at the 1 year follow-up. Conclusions Actigraphy objectively documented changes in nocturnal sleep quality and diurnal napping behavior after 1 year of SXB treatment, thus representing a valid approach to ecologically assess SXB treatment effect on NT1 children's sleep/wake profile. NT1 symptoms severity and children's anthropometric features also changed as expected. Actigraphy offers the possibility to longitudinally follow up children and has potential to become a key tool to tailor treatment in pediatric patients.
Collapse
Affiliation(s)
- Marco Filardi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche, AUSL di Bologna, Bologna, Italy
| | - Elena Antelmi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche, AUSL di Bologna, Bologna, Italy
| | - Raffaele Ferri
- Department of Neurology I.C., Sleep Research Centre, Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, Italy
| | - Vincenzo Natale
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche, AUSL di Bologna, Bologna, Italy
| |
Collapse
|
43
|
Lee HS, Seo C, Kim YA, Park M, Choi B, Ji M, Lee S, Paik MJ. Metabolomic study of polyamines in rat urine following intraperitoneal injection of γ-hydroxybutyric acid. Metabolomics 2019; 15:58. [PMID: 30941522 DOI: 10.1007/s11306-019-1517-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Recently, illegal abuse of γ-hydroxybutyric acid (GHB) has increased in drug-facilitated crimes, but the determination of GHB exposure and intoxication is difficult due to rapid metabolism of GHB. Its biochemical mechanism has not been completely investigated. And a metabolomic study by polyamine profile and pattern analyses was not performed in rat urine following intraperitoneal injection with GHB. OBJECTIVES Urinary polyamine (PA) profiling by gas chromatography-tandem mass spectrometry was performed to monitor an altered PA according to GHB administration. METHODS Polyamine profiling analysis by gas chromatography-mass spectrometry combined with star pattern recognition analysis was performed in this study. The multivariate statistical analysis was used to evaluate discrimination among control and GHB administration groups. RESULTS Six polyamines were determined in control, single and multiple GHB administration groups. Star pattern showed distorted hexagonal shapes with characteristic and readily distinguishable patterns for each group. N1-Acetylspermine (p < 0.001), putrescine (p < 0.006), N1-acetylspermidine (p < 0.009), and spermine (p < 0.027) were significantly increased in single administration group but were significantly lower in the multiple administration group than in the control group. N1-Acetylspermine was the main polyamine for discrimination among control, single and multiple administration groups. Spermine showed similar levels in single and multiple administration groups. CONCLUSIONS The polyamine metabolic pattern was monitored in GHB administration groups. N1-Acetylspermine and spermine were evaluated as potential biomarkers of GHB exposure and addiction.
Collapse
Affiliation(s)
- Hyeon-Seong Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Chan Seo
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Young-A Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Meejung Park
- National Forensic Service, 10 Ipchoon-ro, Wonju, Kangwon-do, 220-170, Republic of Korea
| | - Boyeon Choi
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 704-701, Republic of Korea
| | - Moongi Ji
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 704-701, Republic of Korea.
| | - Man-Jeong Paik
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 540-950, Republic of Korea.
| |
Collapse
|
44
|
Steuer AE, Raeber J, Steuer C, Boxler MI, Dornbierer DA, Bosch OG, Quednow BB, Seifritz E, Kraemer T. Identification of new urinary gamma‐hydroxybutyric acid markers applying untargeted metabolomics analysis following placebo‐controlled administration to humans. Drug Test Anal 2019; 11:813-823. [DOI: 10.1002/dta.2558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Andrea E. Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic MedicineUniversity of Zurich Switzerland
| | - Justine Raeber
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic MedicineUniversity of Zurich Switzerland
| | - Christian Steuer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology (ETH) Switzerland
| | - Martina I. Boxler
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic MedicineUniversity of Zurich Switzerland
| | - Dario A. Dornbierer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic MedicineUniversity of Zurich Switzerland
- Institute of Pharmacology and ToxicologyUniversity of Zürich Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of Zürich Switzerland
- Zürich Center for interdisciplinary Sleep Research (ZiS)University of Zürich Switzerland
| | - Oliver G. Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of Zürich Switzerland
| | - Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of Zürich Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of Zürich Switzerland
- Zürich Center for interdisciplinary Sleep Research (ZiS)University of Zürich Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic MedicineUniversity of Zurich Switzerland
| |
Collapse
|
45
|
Bosch OG, Esposito F, Dornbierer D, von Rotz R, Kraehenmann R, Staempfli P, Quednow BB, Seifritz E. Prohedonic properties of gamma-hydroxybutyrate are associated with changes in limbic resting-state functional connectivity. Hum Psychopharmacol 2018; 33:e2679. [PMID: 30426556 DOI: 10.1002/hup.2679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Gamma-hydroxybutyrate (GHB) is an endogenous GHB-/GABA-B receptor agonist and a narcolepsy treatment. However, GHB is also abused for its prohedonic effects. On a neuronal level, it was shown that GHB increases regional cerebral blood flow in limbic areas such as the right anterior insula (rAI) and the anterior cingulate cortex (ACC). We aimed to further explore the association between the subjective and neuronal signatures of GHB. METHOD We assessed subjective effects and resting-state functional connectivity (rsFC) of an rAI- and an ACC-seed in 19 healthy male subjects after GHB (35 mg/kg p.o.) using a placebo-controlled, double-blind, randomized, cross-over functional magnet resonance imaging design. RESULTS GHB increased subjective ratings for euphoria (p < 0.001) and sexual arousal (p < 0.01). Moreover, GHB increased rAI-rsFC to the right thalamus and the superior frontal gyrus and decreased ACC-rsFC to the bilateral paracentral lobule (all p < 0.05, cluster corrected). Moreover, GHB-induced euphoria was associated with rAI-rsFC to the superior frontal gyrus (p < 0.05, uncorrected). CONCLUSIONS GHB induces prohedonic effects such as euphoria and sexual arousal and in parallel modulates limbic rsFC with areas linked to regulation of mood, cognitive control, and sexual experience. These results further elucidate the drug's effects in neuropsychiatric disorders and as drug of abuse.
Collapse
Affiliation(s)
- Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland.,Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Dario Dornbierer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland.,Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Robin von Rotz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland.,Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Rainer Kraehenmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Philipp Staempfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland.,MR-Center of the Department of Psychiatry, Psychotherapy and Psychosomatics and the Department of Child and Adolescent Psychiatry, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University and ETH, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University and ETH, Zurich, Switzerland
| |
Collapse
|
46
|
|
47
|
Romigi A, Vitrani G, Lo Giudice T, Centonze D, Franco V. Profile of pitolisant in the management of narcolepsy: design, development, and place in therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2665-2675. [PMID: 30214155 PMCID: PMC6124464 DOI: 10.2147/dddt.s101145] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Narcolepsy is a rare sleep disorder characterized by excessive daytime sleepiness and rapid eye movement sleep dysregulation, manifesting as cataplexy and sleep paralysis, as well as hypnagogic and hypnopompic hallucinations. Disease onset may occur at any age, although adolescents and young adults are mainly affected. Currently, the diagnosis delay ranges from 8 to 10 years and drug therapy may only attenuate symptoms. Pitolisant is a first-in-class new drug currently authorized by the European Medicines Agency to treat narcolepsy with or without cataplexy in adults and with an expanded evaluation for the treatment of neurologic diseases such as Parkinson’s disease and epilepsy. This article reviews the pharmacokinetic and pharmacodynamic profile of pitolisant, highlighting its effectiveness and safety in patients with narcolepsy. We performed a systematic review of the literature using PubMed, Embase, and Google Scholar. We report on the efficacy and safety data of pitolisant in narcoleptic patients regarding cataplexy episodes and subjective and objective daytime sleepiness. The development program of pitolisant was characterized by eight Phase II/III studies. One proof-of-concept study followed by two pivotal studies, three randomized controlled trials, and two open studies were evaluated. Our review confirmed the effectiveness of pitolisant in treating major clinically relevant narcolepsy symptoms, including cataplexy, as compared to placebo. In addition, pitolisant revealed a safe profile when compared with placebo and active comparators. Headache, insomnia, and nausea were the prominent side effects. Further long-term randomized controlled trials comparing the efficacy of pitolisant with active comparators (ie, modafinil and sodium oxybate) may clarify its real place in therapy and its possible use as a first-line agent on the basis of its safety and tolerability.
Collapse
Affiliation(s)
- Andrea Romigi
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli (IS), Italy,
| | - Giuseppe Vitrani
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli (IS), Italy,
| | | | - Diego Centonze
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli (IS), Italy, .,Department of System Medicine, University of Rome Tor Vergata Rome, Italy
| | | |
Collapse
|
48
|
Psychosis in a 22-Year-Old Woman With Narcolepsy After Restarting Sodium Oxybate. PSYCHOSOMATICS 2018; 59:298-301. [DOI: 10.1016/j.psym.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 01/23/2023]
|
49
|
The clinical spectrum of childhood narcolepsy. Sleep Med Rev 2018; 38:70-85. [DOI: 10.1016/j.smrv.2017.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
|
50
|
Evangelista E, Lopez R, Dauvilliers Y. Update on treatment for idiopathic hypersomnia. Expert Opin Investig Drugs 2018; 27:187-192. [DOI: 10.1080/13543784.2018.1417385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Elisa Evangelista
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac Montpellier, Montpellier, France
- Inserm U1061, Montpellier, France
| | - Régis Lopez
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac Montpellier, Montpellier, France
- Inserm U1061, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac Montpellier, Montpellier, France
- Inserm U1061, Montpellier, France
- Université de Montpellier, Montpellier, France
| |
Collapse
|