1
|
Chen J, Wang S, Wang K, Abiri P, Huang Z, Yin J, Jabalera AM, Arianpour B, Roustaei M, Zhu E, Zhao P, Cavallero S, Duarte‐Vogel S, Stark E, Luo Y, Benharash P, Tai Y, Cui Q, Hsiai TK. Machine learning-directed electrical impedance tomography to predict metabolically vulnerable plaques. Bioeng Transl Med 2024; 9:e10616. [PMID: 38193119 PMCID: PMC10771559 DOI: 10.1002/btm2.10616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 10/15/2023] [Indexed: 01/10/2024] Open
Abstract
The characterization of atherosclerotic plaques to predict their vulnerability to rupture remains a diagnostic challenge. Despite existing imaging modalities, none have proven their abilities to identify metabolically active oxidized low-density lipoprotein (oxLDL), a marker of plaque vulnerability. To this end, we developed a machine learning-directed electrochemical impedance spectroscopy (EIS) platform to analyze oxLDL-rich plaques, with immunohistology serving as the ground truth. We fabricated the EIS sensor by affixing a six-point microelectrode configuration onto a silicone balloon catheter and electroplating the surface with platinum black (PtB) to improve the charge transfer efficiency at the electrochemical interface. To demonstrate clinical translation, we deployed the EIS sensor to the coronary arteries of an explanted human heart from a patient undergoing heart transplant and interrogated the atherosclerotic lesions to reconstruct the 3D EIS profiles of oxLDL-rich atherosclerotic plaques in both right coronary and left descending coronary arteries. To establish effective generalization of our methods, we repeated the reconstruction and training process on the common carotid arteries of an unembalmed human cadaver specimen. Our findings indicated that our DenseNet model achieves the most reliable predictions for metabolically vulnerable plaque, yielding an accuracy of 92.59% after 100 epochs of training.
Collapse
Affiliation(s)
- Justin Chen
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Shaolei Wang
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Kaidong Wang
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Parinaz Abiri
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Zi‐Yu Huang
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Alejandro M. Jabalera
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Brian Arianpour
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Mehrdad Roustaei
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Peng Zhao
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Division of Cardiology, Department of MedicineGreater Los Angeles VA Healthcare SystemLos AngelesCaliforniaUSA
| | - Sandra Duarte‐Vogel
- Division of Laboratory Animal Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Elena Stark
- Division of Anatomy, Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yuan Luo
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Peyman Benharash
- Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yu‐Chong Tai
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Qingyu Cui
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Tzung K. Hsiai
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Division of Cardiology, Department of MedicineGreater Los Angeles VA Healthcare SystemLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Chen M, Neverova N, Xu S, Suwannaphoom K, Lluri G, Tamboline M, Duarte S, Fishbein MC, Luo Y, Packard RRS. Flexible 3-D Electrochemical Impedance Spectroscopy Sensors Incorporating Phase Delay for Comprehensive Characterization of Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558681. [PMID: 37786712 PMCID: PMC10541620 DOI: 10.1101/2023.09.20.558681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Distinguishing quiescent from rupture-prone atherosclerotic lesions has significant translational and clinical implications. Electrochemical impedance spectroscopy (EIS) characterizes biological tissues by assessing impedance and phase delay responses to alternating current at multiple frequencies.We evaluated invasive 6-point stretchable EIS sensors over a spectrum of experimental atherosclerosis and compared results with intravascular ultrasound (IVUS), molecular positron emission tomography (PET) imaging, and histology. Methods Male New Zealand White rabbits (n=16) were placed on a high-fat diet for 4 or 8 weeks, with or without endothelial denudation via balloon injury of the infrarenal abdominal aorta. Rabbits underwent in vivo micro-PET imaging of the abdominal aorta with 68 Ga-DOTATATE, 18 F-NaF, and 18 F-FDG, followed by invasive interrogation via IVUS and EIS. Background signal corrected values of impedance and phase delay were determined. Abdominal aortic samples were collected for histological analyses. Analyses were performed blindly. Results Phase delay correlated with anatomic markers of plaque burden, namely intima/media ratio (r=0.883 at 1 kHz, P =0.004) and %stenosis (r=0.901 at 0.25 kHz, P =0.002), similar to IVUS. Moreover, impedance was associated with markers of plaque activity including macrophage infiltration (r=0.813 at 10 kHz, P =0.008) and macrophage/smooth muscle cell (SMC) ratio (r=0.813 at 25 kHz, P =0.026). 68 Ga-DOTATATE correlated with intimal macrophage infiltration (r=0.861, P =0.003) and macrophage/SMC ratio (r=0.831, P =0.021), 18 F-NaF with SMC infiltration (r=-0.842, P =0.018), and 18 F-FDG correlated with macrophage/SMC ratio (r=0.787, P =0.036). Conclusions EIS with phase delay integrates key atherosclerosis features that otherwise require multiple complementary invasive and non-invasive imaging approaches to capture. These findings indicate the potential of invasive EIS as a comprehensive modality for evaluation of human coronary artery disease. GRAPHICAL ABSTRACT HIGHLIGHTS Electrochemical impedance spectroscopy (EIS) characterizes both anatomic features - via phase delay; and inflammatory activity - via impedance profiles, of underlying atherosclerosis.EIS can serve as an integrated, comprehensive metric for atherosclerosis evaluation by capturing morphological and compositional plaque characteristics that otherwise require multiple imaging modalities to obtain.Translation of these findings from animal models to human coronary artery disease may provide an additional strategy to help guide clinical management.
Collapse
|
3
|
Hoare D, Tsiamis A, Marland JRK, Czyzewski J, Kirimi MT, Holsgrove M, Russell E, Neale SL, Mirzai N, Mitra S, Mercer JR. Predicting Cardiovascular Stent Complications Using Self-Reporting Biosensors for Noninvasive Detection of Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105285. [PMID: 35322587 PMCID: PMC9130883 DOI: 10.1002/advs.202105285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Self-reporting implantable medical devices are the future of cardiovascular healthcare. Cardiovascular complications such as blocked arteries that lead to the majority of heart attacks and strokes are frequently treated with inert metal stents that reopen affected vessels. Stents frequently re-block after deployment due to a wound response called in-stent restenosis (ISR). Herein, an implantable miniaturized sensor and telemetry system are developed that can detect this process, discern the different cell types associated with ISR, distinguish sub plaque components as demonstrated with ex vivo samples, and differentiate blood from blood clot, all on a silicon substrate making it suitable for integration onto a vascular stent. This work shows that microfabricated sensors can provide clinically relevant information in settings closer to physiological conditions than previous work with cultured cells.
Collapse
Affiliation(s)
- Daniel Hoare
- Institute of Cardiovascular and Medical Sciences/British Heart FoundationUniversity of GlasgowGlasgowUK
| | - Andreas Tsiamis
- School of EngineeringInstitute for Integrated Micro and Nano SystemsUniversity of EdinburghEdinburghUK
| | - Jamie R. K. Marland
- School of EngineeringInstitute for Integrated Micro and Nano SystemsUniversity of EdinburghEdinburghUK
| | - Jakub Czyzewski
- BioElectronics UnitCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Mahmut T. Kirimi
- Centre for Medical and Industrial UltrasonicsJames Watt School of EngineeringUniversity of GlasgowGlasgowUK
| | - Michael Holsgrove
- BioElectronics UnitCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Ewan Russell
- Centre for Medical and Industrial UltrasonicsJames Watt School of EngineeringUniversity of GlasgowGlasgowUK
| | - Steven L. Neale
- Centre for Medical and Industrial UltrasonicsJames Watt School of EngineeringUniversity of GlasgowGlasgowUK
| | - Nosrat Mirzai
- BioElectronics UnitCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Srinjoy Mitra
- School of EngineeringInstitute for Integrated Micro and Nano SystemsUniversity of EdinburghEdinburghUK
| | - John R. Mercer
- Institute of Cardiovascular and Medical Sciences/British Heart FoundationUniversity of GlasgowGlasgowUK
| |
Collapse
|
4
|
Luo Y, Huang D, Huang ZY, Hsiai TK, Tai YC. An Ex Vivo Study of Outward Electrical Impedance Tomography (OEIT) for Intravascular Imaging. IEEE Trans Biomed Eng 2022; 69:734-745. [PMID: 34383642 PMCID: PMC8837386 DOI: 10.1109/tbme.2021.3104300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Atherosclerosis is a chronic immuno-inflammatory condition emerging in arteries and considered the cause of a myriad of cardiovascular diseases. Atherosclerotic lesion characterization through invasive imaging modalities is essential in disease evaluation and determining intervention strategy. Recently, electrical properties of the lesions have been utilized in assessing its vulnerability mainly owing to its capability to differentiate lipid content existing in the lesion, albeit with limited detection resolution. Electrical impedance tomography is the natural extension of conventional spectrometric measurement by incorporating larger number of interrogating electrodes and advanced algorithm to achieve imaging of target objects and thus provides significantly richer information. It is within this context that we develop Outward Electrical Impedance Tomography (OEIT), aimed at intravascular imaging for atherosclerotic lesion characterization. METHODS We utilized flexible electronics to establish the 32-electrode OEIT device with outward facing configuration suitable for imaging of vessels. We conducted comprehensive studies through simulation model and ex vivo setup to demonstrate the functionality of OEIT. RESULTS Quantitative characterization for OEIT regarding its proximity sensing and conductivity differentiation was achieved using well-controlled experimental conditions. Imaging capability for OEIT was further verified with phantom setup using porcine aorta to emulate in vivo environment. CONCLUSION We have successfully demonstrated a novel tool for intravascular imaging, OEIT, with unique advantages for atherosclerosis detection. SIGNIFICANCE This study demonstrates for the first time a novel electrical tomography-based platform for intravascular imaging, and we believe it paves the way for further adaptation of OEIT for intravascular detection in more translational settings and offers great potential as an alternative imaging tool for medical diagnosis.
Collapse
Affiliation(s)
| | | | | | - Tzung K. Hsiai
- Department of Bioengineering, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Chong Tai
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
5
|
Baek KI, Li R, Jen N, Choi H, Kaboodrangi A, Ping P, Liem D, Beebe T, Hsiai TK. Flow-Responsive Vascular Endothelial Growth Factor Receptor-Protein Kinase C Isoform Epsilon Signaling Mediates Glycolytic Metabolites for Vascular Repair. Antioxid Redox Signal 2018; 28:31-43. [PMID: 28762754 PMCID: PMC5695747 DOI: 10.1089/ars.2017.7044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022]
Abstract
AIMS Hemodynamic shear stress participates in maintaining vascular redox status. Elucidating flow-mediated endothelial metabolites enables us to discover metabolic biomarkers and therapeutic targets. We posited that flow-responsive vascular endothelial growth factor receptor (VEGFR)-protein kinase C isoform epsilon (PKCɛ)-6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling modulates glycolytic metabolites for vascular repair. RESULTS Bidirectional oscillatory flow (oscillatory shear stress [OSS]: 0.1 ± 3 dyne·cm-2 at 1 Hz) upregulated VEGFR-dependent PKCɛ expression to a greater degree than did unidirectional pulsatile flow (pulsatile shear stress [PSS]: 23 ± 8 dyne·cm-2 at 1 Hz) in human aortic endothelial cells (p < 0.05, n = 3). PSS and OSS further upregulated PKCɛ-dependent PFKFB3 expression for glycolysis (p < 0.05, n = 4). Constitutively active PKCɛ increased, whereas dominant-negative PKCɛ reduced both basal and maximal extracellular acidification rates for glycolytic flux (p < 0.01, n = 4). Metabolomic analysis demonstrated an increase in PKCɛ-dependent glycolytic metabolite, dihydroxyacetone (DHA), but a decrease in gluconeogenic metabolite, aspartic acid (p < 0.05 vs. control, n = 6). In a New Zealand White rabbit model, both PKCɛ and PFKFB3 immunostaining was prominent in the PSS- and OSS-exposed aortic arch and descending aorta. In a transgenic Tg(flk-1:EGFP) zebrafish model, GATA-1a morpholino oligonucleotide injection (to reduce viscosity-dependent shear stress) impaired vascular regeneration after tail amputation (p < 0.01, n = 20), which was restored with PKCɛ messenger RNA (mRNA) rescue (p < 0.05, n = 5). As a corollary, siPKCɛ inhibited tube formation and vascular repair, which were restored by DHA treatment in our Matrigel and zebrafish models. Innovation and Conclusion: Flow-sensitive VEGFR-PKCɛ-PFKFB3 signaling increases the glycolytic metabolite, dihydroxyacetone, to promote vascular repair. Antioxid. Redox Signal. 28, 31-43.
Collapse
Affiliation(s)
- Kyung In Baek
- 1 Department of Bioengineering, School of Engineering and Applied Science, University of California , Los Angeles, Los Angeles, California
| | - Rongsong Li
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Nelson Jen
- 1 Department of Bioengineering, School of Engineering and Applied Science, University of California , Los Angeles, Los Angeles, California
| | - Howard Choi
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Amir Kaboodrangi
- 1 Department of Bioengineering, School of Engineering and Applied Science, University of California , Los Angeles, Los Angeles, California
| | - Peipei Ping
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
- 3 Department of Physiology, School of Medicine, University of California , Los Angeles, Los Angeles, California
| | - David Liem
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Tyler Beebe
- 1 Department of Bioengineering, School of Engineering and Applied Science, University of California , Los Angeles, Los Angeles, California
| | - Tzung K Hsiai
- 1 Department of Bioengineering, School of Engineering and Applied Science, University of California , Los Angeles, Los Angeles, California
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
- 3 Department of Physiology, School of Medicine, University of California , Los Angeles, Los Angeles, California
- 4 Greater Los Angeles VA Healthcare System , Los Angeles, California
- 5 Department of Medical Engineering, California Institute of Technology , Pasadena, California
| |
Collapse
|
6
|
Packard RRS, Luo Y, Abiri P, Jen N, Aksoy O, Suh WM, Tai YC, Hsiai TK. 3-D Electrochemical Impedance Spectroscopy Mapping of Arteries to Detect Metabolically Active but Angiographically Invisible Atherosclerotic Lesions. Am J Cancer Res 2017; 7:2431-2442. [PMID: 28744325 PMCID: PMC5525747 DOI: 10.7150/thno.19184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/18/2017] [Indexed: 11/18/2022] Open
Abstract
We designed a novel 6-point electrochemical impedance spectroscopy (EIS) sensor with 15 combinations of permutations for the 3-D mapping and detection of metabolically active atherosclerotic lesions. Two rows of 3 stretchable electrodes circumferentially separated by 120° were mounted on an inflatable balloon for intravascular deployment and endoluminal interrogation. The configuration and 15 permutations of 2-point EIS electrodes allowed for deep arterial penetration via alternating current (AC) to detect varying degrees of lipid burden with distinct impedance profiles (Ω). By virtue of the distinctive impedimetric signature of metabolically active atherosclerotic lesions, a detailed impedance map was acquired, with the 15 EIS permutations uncovering early stages of disease characterized by fatty streak lipid accumulation in the New Zealand White rabbit model of atherosclerosis. Both the equivalent circuit and statistical analyses corroborated the 3-D EIS permutations to detect small, angiographically invisible, lipid-rich lesions, with translational implications for early atherosclerotic disease detection and prevention of acute coronary syndromes or strokes.
Collapse
|