1
|
Eralp Y, Ates U. Clinical Applications of Combined Immunotherapy Approaches in Gastrointestinal Cancer: A Case-Based Review. Vaccines (Basel) 2023; 11:1545. [PMID: 37896948 PMCID: PMC10610904 DOI: 10.3390/vaccines11101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Malignant neoplasms arising from the gastrointestinal (GI) tract are among the most common types of cancer with high mortality rates. Despite advances in treatment in a small subgroup harboring targetable mutations, the outcome remains poor, accounting for one in three cancer-related deaths observed globally. As a promising therapeutic option in various tumor types, immunotherapy with immune checkpoint inhibitors has also been evaluated in GI cancer, albeit with limited efficacy except for a small subgroup expressing microsatellite instability. In the quest for more effective treatment options, energetic efforts have been placed to evaluate the role of several immunotherapy approaches comprising of cancer vaccines, adoptive cell therapies and immune checkpoint inhibitors. In this review, we report our experience with a personalized dendritic cell cancer vaccine and cytokine-induced killer cell therapy in three patients with GI cancers and summarize current clinical data on combined immunotherapy strategies.
Collapse
Affiliation(s)
- Yesim Eralp
- Maslak Acıbadem Hospital, Acıbadem University, Istanbul 34398, Turkey
| | - Utku Ates
- Biotech4life Tissue and Cell R&D Center, Stembio Cell and Tissue Technologies, Inc., Istanbul 34398, Turkey
| |
Collapse
|
2
|
Application of mRNA Technology in Cancer Therapeutics. Vaccines (Basel) 2022; 10:vaccines10081262. [PMID: 36016150 PMCID: PMC9415393 DOI: 10.3390/vaccines10081262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
mRNA-based therapeutics pose as promising treatment strategies for cancer immunotherapy. Improvements in materials and technology of delivery systems have helped to overcome major obstacles in generating a sufficient immune response required to fight a specific type of cancer. Several in vivo models and early clinical studies have suggested that various mRNA treatment platforms can induce cancer-specific cytolytic activity, leading to numerous clinical trials to determine the optimal method of combinations and sequencing with already established agents in cancer treatment. Nevertheless, further research is required to optimize RNA stabilization, delivery platforms, and improve clinical efficacy by interacting with the tumor microenvironment to induce a long-term antitumor response. This review provides a comprehensive summary of the available evidence on the recent advances and efforts to overcome existing challenges of mRNA-based treatment strategies, and how these efforts play key roles in offering perceptive insights into future considerations for clinical application.
Collapse
|
3
|
Effect of Poly(methacrylic acid) on the Cytokine Level in an In Vivo Tumor Model. Molecules 2022; 27:molecules27144572. [PMID: 35889444 PMCID: PMC9316288 DOI: 10.3390/molecules27144572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is a leading cause of mortality globally. Despite remarkable improvements in cancer-treatment approaches, disease recurrence and progression remain major obstacles to therapy. While chemotherapy is still a first-line treatment for a variety of cancers, the focus has shifted to the development and application of new approaches to therapy. Nevertheless, the relationship between immune response, neoplastic diseases and treatment efficiency is not fully understood. Therefore, the aim of the study was to investigate the immunopharmacological effects of methacrylic acid homopolymer in an in vivo tumor model. Materials and methods: Monomeric methacrylic acid was used to synthesize polymers. Methacrylic acid was polymerized in dioxane in the presence of 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid. To study the molecular weight characteristics of PMAA by GPC, carboxyl groups were preliminarily methylated with diazomethane. An experimental cancer model was obtained by grafting RMK1 breast cancer cells. The serum levels of IL-6, IL-10, IL-17, transforming growth factor β1 (TGF-β1), and tumor necrosis factor α (TNF-α) were measured by ELISA. Results: The effect of PMAA on the serum concentrations of several cytokines was studied upon its single administration to laboratory animals in early neoplastic process. The IL-6, IL-17 and TGF-β1 concentrations were found to change significantly and reach the level observed in intact rats. The IL-10 concentration tended to normalize. Conclusion: The positive results obtained are the basis for further studies on the effect of methacrylic-acid polymers with different molecular-weight characteristics on the neoplastic process.
Collapse
|
4
|
Ahmed M, Ganesan A, Barakat K. Leveraging structural and 2D-QSAR to investigate the role of functional group substitutions, conserved surface residues and desolvation in triggering the small molecule-induced dimerization of hPD-L1. BMC Chem 2022; 16:49. [PMID: 35761353 PMCID: PMC9238240 DOI: 10.1186/s13065-022-00842-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Small molecules are rising as a new generation of immune checkpoints’ inhibitors, with compounds targeting the human Programmed death-ligand 1 (hPD-L1) protein are pioneering this area of research. Promising examples include the recently disclosed compounds from Bristol-Myers-Squibb (BMS). These molecules bind specifically to hPD-L1 through a unique mode of action. They induce dimerization between two hPD-L1 monomers through the hPD-1 binding interface in each monomer, thereby inhibiting the PD-1/PD-L1 axis. While the recently reported crystal structures of such small molecules bound to hPD-L1 reveal valuable insights regarding their molecular interactions, there is still limited information about the dynamics driving this unusual complex formation. The current study provides an in-depth computational structural analysis to study the interactions of five small molecule compounds in complex with hPD-L1. By employing a combination of molecular dynamic simulations, binding energy calculations and computational solvent mapping techniques, our analyses quantified the dynamic roles of different hydrophilic and lipophilic residues at the surface of hPD-L1 in mediating these interactions. Furthermore, ligand-based analyses, including Free-Wilson 2D-QSAR was conducted to quantify the impact of R-group substitutions at different sites of the phenoxy-methyl biphenyl core. Our results emphasize the importance of a terminal phenyl ring that must be present in any hPD-L1 small molecule inhibitor. This phenyl moiety overlaps with a very unfavorable hydration site, which can explain the ability of such small molecules to trigger hPD-L1 dimerization.
Collapse
Affiliation(s)
- Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Aravindhan Ganesan
- ArGan's Lab, School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada. .,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater Sci 2022; 10:3029-3053. [PMID: 35419582 DOI: 10.1039/d2bm00181k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For decades, nanomedicines have been reported as a potential means to overcome the limitations of conventional drug delivery systems by reducing side effects, toxicity and the non-ideal pharmacokinetic behaviour typically exhibited by small molecule drugs. However, upon administration many nanoparticles prompt induction of host inflammatory responses due to recognition and uptake by macrophages, eliminating up to 95% of the administered dose. While significant advances in nanoparticle engineering and consequent therapeutic efficacy have been made, it is becoming clear that nanoparticle recognition by the mononuclear phagocyte system (MPS) poses an impassable junction in the current framework of nanoparticle development. Hence, this has negative consequences on the clinical translation of nanotechnology with respect to therapeutic efficacy, systemic toxicity and economic benefit. In order to improve the translation of nanomedicines from bench-to-bedside, there is a requirement to either modify nanomedicines in terms of how they interact with intrinsic processes in the body, or modulate the body to be more accommodating for nanomedicine treatments. Here we provide an overview of the current standard for design elements of nanoparticles, as well as factors to consider when producing nanomedicines that have minimal MPS-nanoparticle interactions; we explore this landscape across the cellular to tissue and organ levels. Further, rather than designing materials to suit the body, a growing research niche involves modulating biological responses to administered nanomaterials. We here discuss how developing strategic methods of MPS 'pre-conditioning' with small molecule or biological drugs, as well as implementing strategic dosing regimens, such as 'decoy' nanoparticles, is essential to increasing nanoparticle therapeutic efficacy. By adopting such a perspective, we hope to highlight the increasing trends in research dedicated to improving nanomedicine translation, and subsequently making a positive clinical impact.
Collapse
Affiliation(s)
- Jessica A Mills
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| | - Feifei Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| | - Thomas R Jarrett
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| |
Collapse
|
6
|
Zhukova OV, Arkhipova EV, Kovaleva TF, Ryabov SA, Ivanova IP, Golovacheva AA, Zykova DA, Zaitsev SD. Immunopharmacological Properties of Methacrylic Acid Polymers as Potential Polymeric Carrier Constituents of Anticancer Drugs. Molecules 2021; 26:4855. [PMID: 34443443 PMCID: PMC8402103 DOI: 10.3390/molecules26164855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Cytostatic chemotherapeutics provide a classical means to treat cancer, but conventional treatments have not increased in efficacy in the past years, warranting a search for new approaches to therapy. The aim of the study was, therefore, to obtain methacrylic acid (MAA) (co)polymers and to study their immunopharmacological properties. 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CDSPA) and 2-cyano-2-propyl dodecyl trithiocarbonate (CPDT) were used as reversible chain transfer agents. Experiments were carried out in Wistar rats. The MTT assay was used to evaluate the cytotoxic effect of the polymeric systems on peritoneal macrophages. An experimental tumor model was obtained by grafting RMK-1 breast cancer cells. Serum cytokine levels of tumor-bearing rats were analyzed. The chain transfer agents employed in classical radical polymerization substantially reduced the molecular weight of the resulting polymers, but a narrow molecular weight distribution was achieved only with CDSPA and high CPDT concentrations. Toxicity was not observed when incubating peritoneal macrophages with polymeric systems. In tumor-bearing rats, the IL-10 concentration was 1.7 times higher and the IL-17 concentration was less than half that of intact rats. Polymeric systems decreased the IL-10 concentration and normalized the IL-17 concentration in tumor-bearing rats. The maximum effect was observed for a MAA homopolymer with a high molecular weight. The anion-active polymers proposed as carrier constituents are promising for further studies and designs of carrier constituents of drug derivatives.
Collapse
Affiliation(s)
- Olga V. Zhukova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603950 Nizhny Novgorod, Russia; (E.V.A.); (T.F.K.); (D.A.Z.)
| | - Evgenia V. Arkhipova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603950 Nizhny Novgorod, Russia; (E.V.A.); (T.F.K.); (D.A.Z.)
| | - Tatyana F. Kovaleva
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603950 Nizhny Novgorod, Russia; (E.V.A.); (T.F.K.); (D.A.Z.)
| | - Sergey A. Ryabov
- Department of High-Molecular Compounds and Colloid Chemistry, National Research Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.R.); (I.P.I.); (A.A.G.); (S.D.Z.)
| | - Irina. P. Ivanova
- Department of High-Molecular Compounds and Colloid Chemistry, National Research Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.R.); (I.P.I.); (A.A.G.); (S.D.Z.)
| | - Anna A. Golovacheva
- Department of High-Molecular Compounds and Colloid Chemistry, National Research Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.R.); (I.P.I.); (A.A.G.); (S.D.Z.)
| | - Daria A. Zykova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603950 Nizhny Novgorod, Russia; (E.V.A.); (T.F.K.); (D.A.Z.)
| | - Sergey D. Zaitsev
- Department of High-Molecular Compounds and Colloid Chemistry, National Research Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.R.); (I.P.I.); (A.A.G.); (S.D.Z.)
| |
Collapse
|
7
|
Emerging applications of bacteria as antitumor agents. Semin Cancer Biol 2021; 86:1014-1025. [PMID: 33989734 DOI: 10.1016/j.semcancer.2021.05.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Bacteria are associated with the human body and colonize the gut, skin, and mucous membranes. These associations can be either symbiotic or pathogenic. In either case, bacteria derive more benefit from their host. The ability of bacteria to enter and survive within the human body can be exploited for human benefit. They can be used as a vehicle for delivering or producing bioactive molecules, such as toxins and lytic enzymes, and eventually for killing tumor cells. Clostridium and Salmonella have been shown to infect and survive within the human body, including in tumors. There is a need to develop genetic circuits, which enable bacterial cells to carry out the following activities: (i) escape the human immune system, (ii) invade tumors, (iii) multiply within the tumorous cells, (iv) produce toxins via quorum sensing at low cell densities, and (v) express suicide genes to undergo cell death or cell lysis after the tumor has been lysed. Thus, bacteria have the potential to be exploited as anticancer agents.
Collapse
|
8
|
Effect of (co)polymers based on methacrylic acid on the state of cells of the immune system. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2938-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Enhanced Antitumor Immune Response in 2'-5' Oligoadenylate Synthetase-Like 1- (OASL1-) Deficient Mice upon Cisplatin Chemotherapy and Radiotherapy. J Immunol Res 2019; 2019:7596786. [PMID: 31049360 PMCID: PMC6462330 DOI: 10.1155/2019/7596786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Type I interferon (IFN-I) plays a critical role in the antitumor immune response. In our previous study, we showed that IFN-I-inducible 2′-5′ oligoadenylate synthetase-like 1 (OASL1) negatively regulated IFN-I production upon tumor challenge similar to that of viral infection. Thus, OASL1-deficient (Oasl1−/−) mice were more resistant to implanted tumor growth than wild-type (WT) mice. In this study, we investigated whether targeting or suppressing OASL1 could show synergistic effects on tumor clearance with conventional cancer therapies (such as chemotherapy and radiotherapy) using Oasl1−/− mice and a transplantable lung metastatic tumor cell model. Upon treatment with the anticancer drug cisplatin, we found that Oasl1−/− mice showed enhanced resistance to injected tumors compared to untreated Oasl1−/− mice. Similarly, irradiated Oasl1−/− mice showed better resistance to tumor challenge than untreated Oasl1−/− mice. Additionally, we found that Oasl1−/− mice applied with both types of the cancer therapies contained more cytotoxic effector cells, such as CD8+ T cells and NK cells, and produced more cytotoxic effector cytokine IFN-γ as well as IFN-I in their tumor-containing lungs compared to untreated Oasl1−/− mice. Collectively, these results show that targeting OASL1 together with conventional cancer therapies could be an effective strategy to enhance treatment efficacy.
Collapse
|
10
|
Lee HJ, Kim YA, Sim CK, Heo SH, Song IH, Park HS, Park SY, Bang WS, Park IA, Lee M, Lee JH, Cho YS, Chang S, Jung J, Kim J, Lee SB, Kim SY, Lee MS, Gong G. Expansion of tumor-infiltrating lymphocytes and their potential for application as adoptive cell transfer therapy in human breast cancer. Oncotarget 2017; 8:113345-113359. [PMID: 29371915 PMCID: PMC5768332 DOI: 10.18632/oncotarget.23007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022] Open
Abstract
Adoptive cell transfer (ACT) of ex vivo expanded tumor-infiltrating lymphocytes (TILs) has been successful in treating a considerable proportion of patients with metastatic melanoma. In addition, some patients with several other solid tumors were recently reported to have benefited clinically from such ACT. However, it remains unclear whether ACT using TILs is broadly applicable in breast cancer, the most common cancer in women. In this study, the utility of TILs as an ACT source in breast cancers was explored by deriving TILs from a large number of breast cancer samples and assessing their biological potentials. We successfully expanded TILs ex vivo under a standard TIL culture condition from over 100 breast cancer samples, including all breast cancer subtypes. We also found that the information about the percentage of TIL and presence of tertiary lymphoid structure in the tumor tissues could be useful for estimating the number of obtainable TILs after ex vivo culture. The ex vivo expanded TILs contained a considerable level of central memory phenotype T cells (about 20%), and a large proportion of TIL samples were reactive to autologous tumor cells in vitro. Furthermore, the in vitro tumor-reactive autologous TILs could also function in vivo in a xenograft mouse model implanted with the primary tumor tissue. Collectively, these results strongly indicate that ACT using ex vivo expanded autologous TILs is a feasible option in treating patients with breast cancer.
Collapse
Affiliation(s)
- Hee Jin Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young-Ae Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chan Kyu Sim
- Lab of Molecular Immunology and Medicine, Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun-Hee Heo
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - In Hye Song
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hye Seon Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Suk Young Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Won Seon Bang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - In Ah Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Miseon Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jung Hoon Lee
- Lab of Molecular Immunology and Medicine, Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon Sook Cho
- Lab of Molecular Immunology and Medicine, Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaeyun Jung
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Jisun Kim
- Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sae Byul Lee
- Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | | - Myeong Sup Lee
- Lab of Molecular Immunology and Medicine, Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Gyungyub Gong
- Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
11
|
Peterson JJ, Steele-Moses SK. Update on New Therapies With Immune Checkpoint Inhibitors. Clin J Oncol Nurs 2017; 20:405-10. [PMID: 27441513 DOI: 10.1188/16.cjon.405-410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Immunotherapy has had a long history in cancer treatment and, with recent breakthroughs, new drugs are available that have shown promising results. OBJECTIVES The current article discusses an overview of immune function, including immunoediting and the theory of immune checkpoints, as well as specific drugs that have been approved as immune checkpoint inhibitors. Additional discussion includes a review of nursing implications and administration, side effects, adverse events, and the future of immuno-oncology. METHODS This review of literature focused on locating, summarizing, and synthesizing data from published articles, the American Cancer Society, U.S. Food and Drug Administration, and literature from pharmaceutical manufacturers that focused on immunotherapy treatment options that use checkpoint inhibition. Search criteria included articles published from 2005-2015 and archived in CINAHL®, OVID®, and PubMed databases using the key words immunotherapy, immune checkpoint inhibition, PD-1, PD-L1, CTLA-4, and oncology. FINDINGS Cancer therapy targeting immune checkpoint inhibition has shown promising results and continues to evolve. Oncology nurses need to remain abreast of new immune-modulating therapies to understand their efficacy, as well as side effect management.
Collapse
|
12
|
Langhammer S, Scheerer J. Breaking the crosstalk of the cellular tumorigenic network: Hypothesis for addressing resistances to targeted therapies in advanced NSCLC. Oncotarget 2017; 8:43555-43570. [PMID: 28402937 PMCID: PMC5522169 DOI: 10.18632/oncotarget.16674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 12/26/2022] Open
Abstract
In the light of current treatment developments for non-small cell lung cancer (NSCLC), the idea of a plastic cellular tumorigenic network bound by key paracrine signaling pathways mediating resistances to targeted therapies is brought forward. Based on a review of available preclinical and clinical data in NSCLC combinational approaches to address drivers of this network with marketed drugs are discussed. Five criteria for selecting drug combination regimens aiming at its disruption and thereby overcoming resistances are postulated.
Collapse
|
13
|
Manna PR, Molehin D, Ahmed AU. Dysregulation of Aromatase in Breast, Endometrial, and Ovarian Cancers: An Overview of Therapeutic Strategies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:487-537. [PMID: 27865465 DOI: 10.1016/bs.pmbts.2016.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens, which play crucial roles on a spectrum of developmental and physiological processes. The biological actions of estrogens are classically mediated by binding to two estrogen receptors (ERs), ERα and ERβ. Encoded by the cytochrome P450, family 19, subfamily A, polypeptide 1 (CYP19A1) gene, aromatase is expressed in a wide variety of tissues, as well as benign and malignant tumors, and is regulated in a pathway- and tissue-specific manner. Overexpression of aromatase, leading to elevated systemic levels of estrogen, is unequivocally linked to the pathogenesis and growth of a number malignancies, including breast, endometrium, and ovarian cancers. Aromatase inhibitors (AIs) are routinely used to treat estrogen-dependent breast cancers in postmenopausal women; however, their roles in endometrial and ovarian cancers remain obscure. While AI therapy is effective in hormone sensitive cancers, they diminish estrogen production throughout the body and, thus, generate undesirable side effects. Despite the effectiveness of AI therapy, resistance to endocrine therapy remains a major concern and is the leading cause of cancer death. Considerable advances, toward mitigating these issues, have evolved in conjunction with a number of histone deacetylase (HDAC) inhibitors for countering an assortment of diseases and cancers, including the aforesaid malignancies. HDACs are a family of enzymes that are frequently dysregulated in human tumors. This chapter will discuss the current understanding of aberrant regulation and expression of aromatase in breast, endometrial, and ovarian cancers, and potential therapeutic strategies for prevention and treatment of these life-threatening diseases.
Collapse
Affiliation(s)
- P R Manna
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States.
| | - D Molehin
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| | - A U Ahmed
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, United States
| |
Collapse
|
14
|
Kovakenko LP, Kuznetsova OS, Tallerova AV, Nikitin SV, Durnev AD. Effect of 2-Isobutyl-4,6-dimethyl-5-hydroxypyrimidine on the Growth of Lewis Lung Carcinoma and Survival of Mice. Bull Exp Biol Med 2016; 161:99-103. [PMID: 27265128 DOI: 10.1007/s10517-016-3355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 12/20/2022]
Abstract
Experiments on male C57Bl/6 mice with transplantable Lewis lung epidermoid carcinoma were performed to evaluate the effect of early or delayed administration of compound SNK-411 (2-isobutyl-4,6-dimethyl-5-hydroxypyrimidine) on tumor growth and animal survival. Intraperitoneal injection of SNK-411 in doses of 25 and 50 mg/kg on days 2-8 of tumor growth was followed by significant inhibition of tumor growth (by 1.8 and 2.2 times, respectively, in comparison with the untreated control). Administration of this compound on days 8-15 of tumor development had little effect on tumor growth. SNK-411 in doses of 25 and 50 mg/kg (both dosing regimens) significantly increased survival rate and lifespan of animals with tumors. The drugs for verification of this model (Fluorofur, 400 mg/kg; and doxorubicin hydrochloride, 4 mg/kg) were injected intraperitoneally on days 2-4 and 8-10 of tumor development. Administration of Fluorofur and doxorubicin hydrochloride at the late stage was accompanied by significant inhibition of tumor growth (by 1.6 and 1.4 times, respectively). The increase in the survival rate of animals receiving the cytostatic according to standard dosing regimens was less significant than in experiments with SNK-411.
Collapse
Affiliation(s)
- L P Kovakenko
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation.
| | - O S Kuznetsova
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - A V Tallerova
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - S V Nikitin
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - A D Durnev
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| |
Collapse
|
15
|
Menderes G, Hicks C, Black JD, Schwab CL, Santin AD. Immune checkpoint inhibitors in gynecologic cancers with lessons learned from non-gynecologic cancers. Expert Opin Biol Ther 2016; 16:989-1004. [DOI: 10.1080/14712598.2016.1177018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Menderes G, Schwab CL, Black J, Santin AD. The Role of the Immune System in Ovarian Cancer and Implications on Therapy. Expert Rev Clin Immunol 2016; 12:681-95. [PMID: 26821930 DOI: 10.1586/1744666x.2016.1147957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancy in the United States. While the treatment options have improved with conventional cytotoxic chemotherapy and advanced surgical techniques, disease recurrence is common and fatal in nearly all cases. Current evidence suggests that the immune system and its ability to recognize and eliminate microscopic disease is paramount in preventing recurrence. The goal of immunotherapy is to balance the activation of the immune system against cancer while preventing the potential for tremendous toxicity elicited by immune modulation. In this paper we will review the role of immune system in disease pathogenesis and different immunotherapies available for the treatment of ovarian cancer as well as current ongoing studies and potential future directions.
Collapse
Affiliation(s)
- Gulden Menderes
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Carlton L Schwab
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Jonathan Black
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Alessandro D Santin
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
17
|
Wang L, Zhang S, Ou J, Bai H. [Cytotoxity of pomalidomide combined CAR-T cell for multiple myeloma cell RPMI8226 and U266]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 36:497-500. [PMID: 26134016 PMCID: PMC7343067 DOI: 10.3760/cma.j.issn.0253-2727.2015.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
目的 观察CD138-CAR-T细胞对人多发性骨髓瘤(MM)细胞株RPMI8226和U266细胞的杀伤作用,探讨泊马度胺对CD138-CAR-T细胞及其杀伤作用的影响。 方法 采用CFSE/7-AAD双标法检测CD138-CAR-T细胞及其联合泊马度胺对RPMI8226、U266细胞的杀伤活性。ELISA法检测CD138-CAR-T细胞分泌IFN-γ的变化。 结果 CD138-CAR-T细胞作用18 h后,对RPMI8226、U266细胞的杀伤活性分别为(55.2±3.9)%、(85.1±2.4)%,对照组分别为(7.0±1.5)%、(12.5±2.1)%,差异均有统计学意义(P值均<0.01);与CD138-CAR-T细胞组比较,CD138-CAR-T细胞联合泊马度胺(2.5 µg/ml)作用18 h后,对RPMI8226、U266细胞的杀伤活性差异无统计学意义(P值均>0.05)。与CD138-CAR-T细胞组比较,CD138-CAR-T细胞和MM细胞共培养组IFN-γ分泌水平显著增高;与共培养组比较,加入泊马度胺后能显著促进IFN-γ的释放,差异均有统计学意义(P值均<0.01)。 结论 CD138-CAR-T细胞对MM细胞及耐药细胞株均有明显的杀伤作用;其与MM细胞共培养能促进后者IFN-γ的分泌;泊马度胺能促进CD138-CAR-T细胞分泌IFN-γ。
Collapse
Affiliation(s)
- Lei Wang
- Department of Hematology, Center of Hematologic Diseases of Chinese PLA; Lanzhou Military Area General Hospital, Lanzhou 730050, China
| | - Shuting Zhang
- Department of Hematology, Center of Hematologic Diseases of Chinese PLA; Lanzhou Military Area General Hospital, Lanzhou 730050, China
| | - Jianfeng Ou
- Department of Hematology, Center of Hematologic Diseases of Chinese PLA; Lanzhou Military Area General Hospital, Lanzhou 730050, China
| | - Hai Bai
- Department of Hematology, Center of Hematologic Diseases of Chinese PLA; Lanzhou Military Area General Hospital, Lanzhou 730050, China
| |
Collapse
|
18
|
Torres Andón F, Alonso MJ. Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells. J Drug Target 2015; 23:656-71. [DOI: 10.3109/1061186x.2015.1073295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Wang SY, Yang ZJ, Zhang L. Olanzapine for preventing nausea and vomiting induced by moderately and highly emetogenic chemotherapy. Asian Pac J Cancer Prev 2015; 15:9587-92. [PMID: 25520071 DOI: 10.7314/apjcp.2014.15.22.9587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Nausea and vomiting are common adverse events in chemotherapy. In spite of the serious effects on the quality of life and further treatment, they remain overlooked by physicians, and no standard treatment has been developed. Neurokinin-1 (NK-1) receptor antagonists and palonosetron are the major agents in the standard regimen for treating moderately and highly emetogenic chemotherapy-induced nausea and vomiting (CINV). However, NK-1 receptor antagonists first became commercially available at the end of 2013 and palonosetron has not been extensively applied in China. Olanzapine was recommended as a therapy for moderate and severe CINV in antiemesis-clinical practice guidelines in oncology in 2014 for the first time. It is an atypical antipsychotic agent, which can block multiple receptors on neurotransmitters. During more than 10 years, olanzapine has demonstrated significant effects in preventing CINV and treating breakthrough and refractor CINV, which was observed in case reports, precise retrospective studies, and phase I, II and III clinical trials, with no grade 3 to 4 adverse events. In particular, it is superior to aprepitant and dexamethasone in delayed nausea and vomiting. Therefore, this compound is worthy of further investigation.
Collapse
Affiliation(s)
- Shi-Yong Wang
- Department of Biotherapy and Laboratory of Biotherapy, the Fourth Affiliated Hospital of China Medical University, Shenyang, China E-mail : ,
| | | | | |
Collapse
|
20
|
Immunotherapy of Ovarian Cancer: The Role of Checkpoint Inhibitors. J Immunol Res 2015; 2015:191832. [PMID: 26236750 PMCID: PMC4508475 DOI: 10.1155/2015/191832] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/23/2015] [Indexed: 01/21/2023] Open
Abstract
Ovarian cancer is the most important cause of gynecological cancer-related mortality, with the majority of women presenting with advanced disease. Although surgery and chemotherapy can improve survival rates, it is necessary to integrate alternative strategies to improve the outcomes. Advances in understanding the role of immune system in the pathogenesis of cancer have led to the rapid evolvement of immunotherapy, which might establish a sustained immune system response against recurring cancer cells. Recently, it has emerged that powerful immunologic effector cells may be blocked by inhibitory regulatory pathways controlled by specific molecules often called “immune checkpoints,” which turn off the immune system. Similarly, cancer cells are able to use these checkpoints to avoid immune control and rejection. Inhibition of these inhibitory pathways represents a potent strategy in the fight against cancer and is currently under investigation with encouraging results in some cancers, such as melanoma. In ovarian cancer researches are still in an early phase, but with promising results. In this review we will explore the rationale of immunotherapy in ovarian cancer with a special focus on these emerging molecules.
Collapse
|
21
|
Frahm M, Felgner S, Kocijancic D, Rohde M, Hensel M, Curtiss R, Erhardt M, Weiss S. Efficiency of conditionally attenuated Salmonella enterica serovar Typhimurium in bacterium-mediated tumor therapy. mBio 2015; 6:e00254-15. [PMID: 25873375 PMCID: PMC4453544 DOI: 10.1128/mbio.00254-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Increasing numbers of cancer cases generate a great urge for new treatment options. Applying bacteria like Salmonella enterica serovar Typhimurium for cancer therapy represents an intensively explored option. These bacteria have been shown not only to colonize solid tumors but also to exhibit an intrinsic antitumor effect. In addition, they could serve as tumor-targeting vectors for therapeutic molecules. However, the pathogenic S. Typhimurium strains used for tumor therapy need to be attenuated for safe application. Here, lipopolysaccharide (LPS) deletion mutants (ΔrfaL, ΔrfaG, ΔrfaH, ΔrfaD, ΔrfaP, and ΔmsbB mutants) of Salmonella were investigated for efficiency in tumor therapy. Of such variants, the ΔrfaD and ΔrfaG deep rough mutants exhibited the best tumor specificity and lowest pathogenicity. However, the intrinsic antitumor effect was found to be weak. To overcome this limitation, conditional attenuation was tested by complementing the mutants with an inducible arabinose promoter. The chromosomal integration of the respective LPS biosynthesis genes into the araBAD locus exhibited the best balance of attenuation and therapeutic benefit. Thus, the present study establishes a basis for the development of an applicably cancer therapeutic bacterium. IMPORTANCE Cancer has become the second most frequent cause of death in industrialized countries. This and the drawbacks of routine therapies generate an urgent need for novel treatment options. Applying appropriately modified S. Typhimurium for therapy represents the major challenge of bacterium-mediated tumor therapy. In the present study, we demonstrated that Salmonella bacteria conditionally modified in their LPS phenotype exhibit a safe tumor-targeting phenotype. Moreover, they could represent a suitable vehicle to shuttle therapeutic compounds directly into cancerous tissue without harming the host.
Collapse
Affiliation(s)
- Michael Frahm
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Roy Curtiss
- Biodesign Institute, Center for Infectious Diseases and Vaccinology, Tempe, Arizona, USA
| | - Marc Erhardt
- Junior Research Group Infection Biology of Salmonella, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
22
|
Trends in Nonparenteral Delivery of Biologics, Vaccines and Cancer Therapies. NOVEL APPROACHES AND STRATEGIES FOR BIOLOGICS, VACCINES AND CANCER THERAPIES 2015. [PMCID: PMC7150203 DOI: 10.1016/b978-0-12-416603-5.00005-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Wang DH, Guo L, Wu XH. Checkpoint inhibitors in immunotherapy of ovarian cancer. Tumour Biol 2014; 36:33-9. [PMID: 25409618 DOI: 10.1007/s13277-014-2848-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/12/2014] [Indexed: 12/16/2022] Open
Abstract
The treatment of ovarian cancer is a major challenge in oncology as mortality from ovarian cancer remains very high. The immune system plays a critical role in controlling cancer through a dynamic relationship with cancer cells. Immunotherapy can establish a sustained immune system response against recurring cancer cells leading to long-term remissions for ovarian cancer patient. The use of immune checkpoint inhibitors, which work by targeting molecules that serve as checks and balances in the regulation of immune responses, might be a promising avenue of immunotherapeutic research in ovarian cancer. In this review, we have focused on the potential of certain immune checkpoint inhibitors, such as anti-cytotoxic T lymphocyte antigens, anti-programmed death agents, and anti-program death ligands against ovarian cancer, with their mechanism of actions. Also, the problems arising due to checkpoint inhibitor immunotherapy have been discussed in this review. Checkpoint inhibitor immunotherapy is still in early-phase testing for ovarian cancer. Understanding the pivotal role of the tumor microenvironment in suppressing anticancer immunity, the unique adverse effects profiles of these agents, and the exploration of combinatorial treatment regimens will ultimately lead to enhance the efficacy of ovarian cancer immunotherapies and improved patient care.
Collapse
Affiliation(s)
- Dong-hui Wang
- First Department of Gynecology, Cangzhou Central Hospital, Cangzhou, 061001, Hebei, China,
| | | | | |
Collapse
|
24
|
Wei IH, Healy MA, Wong SL. Surgical Treatment Options for Stage IV Melanoma. Surg Clin North Am 2014; 94:1075-89, ix. [DOI: 10.1016/j.suc.2014.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Cell transfer therapy for cancer: past, present, and future. J Immunol Res 2014; 2014:525913. [PMID: 24741604 PMCID: PMC3987872 DOI: 10.1155/2014/525913] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/26/2013] [Indexed: 12/30/2022] Open
Abstract
Cell transfer therapy for cancer has made a rapid progress recently and the immunotherapy has been recognized as the fourth anticancer modality after operation, chemotherapy, and radiotherapy. Lymphocytes used for cell transfer therapy include dendritic cells, natural killer (NK) cells, and T lymphocytes such as tumor-infiltrating lymphocytes (TILs) and cytotoxic T lymphocytes (CTLs). In vitro activated or engineered immune cells can traffic to cancer tissues to elicit persistent antitumor immune response which is very important especially after immunosuppressive treatments such as chemotherapy. In this review, we overviewed recent advances in the exploration of dendritic cells, NK cells, and T cells for the treatment of human cancer cells.
Collapse
|