1
|
Sardela de Miranda F, Martinez-Marin D, Babcock RL, Castro M, Boligala GP, Khan SY, Furr KL, Castro-Piedras I, Wagner N, Robison DE, Daniele K, Singh SP, Pruitt K, Melkus MW, Layeequr Rahman R. Cryoablation of primary breast cancer tumors induces a systemic abscopal effect altering TIME (Tumor Immune Microenvironment) in distant tumors. Front Immunol 2024; 15:1498942. [PMID: 39703517 PMCID: PMC11657241 DOI: 10.3389/fimmu.2024.1498942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Despite recent advances, triple-negative breast cancer (TNBC) patients remain at high risk for recurrence and metastasis, which creates the need for innovative therapeutic approaches to improve patient outcomes. Cryoablation is a promising, less invasive alternative to surgical resection, capable of inducing tumor necrosis via freeze/thaw cycles. Necrotic cell death results in increased inflammatory signals and release of preserved tumor antigens, which have the potential to boost the local and systemic anti-tumor immune response. Thus, compared to surgery, cryoablation enhances the activation of T cells leading to an improved abscopal effect, defined as the occurrence of a systemic response after local treatment. We previously showed with a bilateral-tumor mouse model of TNBC that cryoablation of the primary tumor leads to increased infiltration of distant (abscopal) tumors by tumor infiltrating lymphocytes (TILs) and decreased rates of recurrence and metastasis. However, the early drivers of the cryoablation generated abscopal effect are still unknown and knowledge of the mechanism could provide insight into improving the anti-tumor immune response through pharmacologic immune modulation in addition to cryoablation. Methods One million 4T1-12B-luciferase expressing cells were transplanted into the mammary fat pad of BALB/c mice. Two weeks later, left (primary) tumors were either resected or cryoablated. A week after the procedure, right (abscopal) and left tumors, along with spleen, tumor-draining lymph node and blood were collected and processed for flow cytometry and/or RNA-sequencing and immunofluorescence. Results Here we show that cryoablation of mouse mammary carcinomas results in smaller abscopal tumors that harbor increased frequencies of anti-tumor cells [such as natural killer (NK) cells], accompanied by a systemic increase in the frequency of migratory conventional type 1 dendritic cells (cDC1; CD103+ XCR1+), compared to resection. The changes in cell frequencies are mirrored by the immune gene signature of the abscopal tumors, with cryoablation inducing genes involved with NK cell activation and leukocyte-mediated toxicity, including IL11ra1 and Pfr1. Conclusions These results better define the early mechanisms through which cryoablation improves tumor elimination, which is mediated by enhanced frequencies of anti-tumoral cells such as NK and cDC1s at the abscopal tumor and in the spleen of mice treated with cryoablation, respectively.
Collapse
Affiliation(s)
- Flávia Sardela de Miranda
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Dalia Martinez-Marin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rachel L. Babcock
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Maribel Castro
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Geetha P. Boligala
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sonia Y. Khan
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Surgery, The University of Texas Rio Grande Valley (UTRGV) Rio Grande Valley, Harlingen, TX, United States
| | - Kathryn L. Furr
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Isabel Castro-Piedras
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Nicholas Wagner
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Dakota E. Robison
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Karla Daniele
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sharda P. Singh
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Kevin Pruitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael W. Melkus
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rakhshanda Layeequr Rahman
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Breast Center of Excellence, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Cancer Institute, MetroHealth System, Cleveland, OH, United States
| |
Collapse
|
2
|
Cheng H, Dai Q, Liu G, Tong X, Wang Y. The Impact of Neoadjuvant Chemotherapy on Patients With T1N0M0 Triple-Negative and HER-2 Positive Breast Cancer: A Retrospective Analysis Based on the SEER Database. Clin Breast Cancer 2024; 24:e593-e599. [PMID: 38890023 DOI: 10.1016/j.clbc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The utilization of neoadjuvant chemotherapy (NAC) originated in the treatment of locally advanced breast cancer (BC). Our study is designed to elucidate the effects of NAC on patients with T1N0M0 triple-negative and HER-2 positive BC. METHODS This study involved the selection of 10,614 patients diagnosed with T1N0M0 triple-negative and HER-2 positive breast cancer (BC) from the surveillance, epidemiology, and end results (SEER) database. To ascertain the impact of neoadjuvant chemotherapy (NAC) on T1a, T1b, and T1c N0M0 BC, we conducted multivariate Cox regression analyses. Similarly, we performed multivariate Cox regression analyses to compare the effects of neoadjuvant chemotherapy against adjuvant chemotherapy on T1N0M0 BC. The Kaplan-Meier method was employed to delineate survival curves for different molecular subtypes and clinical stages. RESULTS The data results from the SEER database reveal a significant enhancement of overall survival (OS) in T1c BC patients as a result of NAC. For T1b BC patients, NAC does not present any significant effect. Contrarily, NAC seems to adversely impact the OS of T1a triple-negative BC patients. However, the prognosis comparison between neoadjuvant and adjuvant chemotherapy for T1N0M0 breast cancer did not show any significant difference, with the exception of T1a triple-negative BC. CONCLUSIONS Patients with T1cN0M0 triple-negative and HER-2 positive BC may derive OS benefits from NAC. Additionally, NAC could be detrimental to T1a triple-negative BC.
Collapse
Affiliation(s)
- Han Cheng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qichen Dai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyu Tong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yipeng Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Han X, Cheng Y, Jiang Z, Alu A, Ma X. Honokiol Exhibits Anti-Tumor Effects in Breast Cancer by Modulating the miR-148a-5p-CYP1B1 Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1843-1861. [PMID: 39347954 DOI: 10.1142/s0192415x24500721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in female patients. There is a significant lack of therapeutic strategies for BC, particularly triple-negative breast cancer (TNBC). Honokiol (HNK), a lignin extracted from the Magnolia genus plant, has demonstrated numerous pharmacological effects. Therefore, this study aims to investigate the antitumor effect of HNK on BC cells and employ high-throughput sequencing to elucidate its potential mechanism. We found that HNK significantly inhibited proliferation and induced apoptosis on BC cell lines in a dose-dependent manner. Moreover, HNK treatment suppressed migration and colony formation and initiated the intrinsic apoptotic pathway specifically in MDA-MB-231 cells. High-throughput sequencing and bioinformatics analysis revealed that miR-148a-5p expression was significantly up-regulated, whereas CYP1B1 expression was down-regulated following HNK treatment. Importantly, survival analysis based on TCGA database showed high miR-148a-5p expression was correlated with a better prognosis for BC patients. Inhibition of miR-148a-5p by inhibitor not only increased cell viability but also attenuated apoptosis induced by HNK. Finally, a strong synergistic effect between HNK and paclitaxel was observed in vitro. In conclusion, our study validated the antitumor efficacy of HNK against human BC cells and elucidated its underlying mechanism through high-throughput sequencing, thereby providing compelling evidence for further exploration of the potential clinical application of HNK towards the treatment of BC.
Collapse
Affiliation(s)
- Xuejiao Han
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yuan Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Aqu Alu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
4
|
Varzaru VB, Vlad T, Popescu R, Vlad CS, Moatar AE, Cobec IM. Triple-Negative Breast Cancer: Molecular Particularities Still a Challenge. Diagnostics (Basel) 2024; 14:1875. [PMID: 39272660 PMCID: PMC11393996 DOI: 10.3390/diagnostics14171875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Worldwide, breast cancer (BC) is one of the most common cancers in women and is responsible for the highest number of cancer-related deaths among women, with a special clinical behavior and therapy response. Triple-negative breast cancer (TNBC) is seen as a highly invasive BC, characterized by a short survival, higher mortality, recurrence, and metastasis when it is compared to the other BC subtypes. The molecular subtyping of TNBC based on mRNA expression levels does not accurately reflect protein expression levels, which impacts targeted therapy effectiveness and prognostic predictions. Most TNBC cases exhibit a high frequency of homologous recombination (HR) DNA repair deficiency (HRD) signatures and are associated with a complex genomic profile. Biomarker research in TNBC includes investigating genetic mutations, gene expression patterns, immune system-related markers, and other factors that can provide valuable information for diagnosis, treatment selection, and patient outcomes. Additionally, these biomarkers are often crucial in the development of personalized and precision medicine approaches, where treatments are customized to each patient's unique characteristics. This ongoing research is essential for improving the management and outcomes of TNBC, which is a challenging and heterogeneous form of breast cancer. The findings of this research have practical implications for refining treatment strategies, particularly in selecting appropriate systemic therapies and integrating traditional treatment modalities like surgery and radiotherapy into comprehensive care plans for TNBC patients.
Collapse
Affiliation(s)
- Vlad Bogdan Varzaru
- Doctoral School, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Tania Vlad
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Roxana Popescu
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Emergency County Clinical Hospital Pius Brinzeu Timisoara, 300723 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department of Pharmacology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Aurica Elisabeta Moatar
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Internal Medicine-Cardiology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| | - Ionut Marcel Cobec
- ANAPATMOL Research Center, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| |
Collapse
|
5
|
Chang L, Liu D, Hao Q, Ren X, Liu P, Liu X, Wei Y, Lin S, Ma X, Wu H, Kang H, Wang M. Impact of response to neoadjuvant chemotherapy on surgical modality in patients with T1-2N0-1M0 triple-negative breast cancer. J Cancer Res Clin Oncol 2024; 150:378. [PMID: 39085623 PMCID: PMC11291532 DOI: 10.1007/s00432-024-05907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE Many T1-2N0-1M0 triple-negative breast cancer (TNBC) patients who undergo neoadjuvant chemotherapy (NAC) do not receive breast-conserving therapy (BCT) due to concerns about non-pCR or lymph node metastasis presence. METHODS T1-2N0-1M0 TNBC patients who underwent NAC between 2010 and 2017 were collected from the SEER database. Factors affecting surgical modalities were analyzed by multinomial logistic regression. The overall survival (OS) and breast cancer-specific survival (BCSS) were evaluated by Kaplan-Meier curves and Cox proportional hazards models. Further stratified subgroup analyses were performed based on the response to NAC and N-stage. Adjusted-hazard ratios were also calculated to exclude potential bias. RESULTS A total of 1112 patients were enrolled (median follow-up: 81 months), 58.5% received BCT, 23.6% received reconstruction and 17.9% received mastectomy. Response to NAC and N-stage not only influenced the choice of surgical modality but also were independent predictors for OS and BCSS. The surgery-induced survival differences mainly affect OS. Survival analyses demonstrated that the 10-year OS of BCT was superior or equal to that of mastectomy even in patients with partial response (PR) (77.4% vs. 64.1%, P = 0.013), no response (NR) (44.9% vs. 64.2%, P = 0.33), or N1 stage (75.7% vs. 57.4%, P = 0.0021). In the N1-PR cohort, mastectomy may lead to worse OS (P = 0.0012). Besides, between reconstruction and BCT, there was no statistical difference in OS or BCSS (P > 0.05). CONCLUSION Our study reveals the necessity of breast surgical de-escalation. Besides, physicians should actively recommend reconstruction for individuals who strongly desire mastectomy.
Collapse
Affiliation(s)
- Lidan Chang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Dandan Liu
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qian Hao
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xueting Ren
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Peinan Liu
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xingyu Liu
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yumeng Wei
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shuai Lin
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiaobin Ma
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hao Wu
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Huafeng Kang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Meng Wang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
6
|
Zhang Y, Wei S, Zhang Q, Zhang Y, Sun C. Paris saponin VII inhibits triple-negative breast cancer by targeting the MEK/ERK/STMN1 signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155746. [PMID: 38763012 DOI: 10.1016/j.phymed.2024.155746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a category of breast cancer characterized with high molecular heterogeneity. Owing to the lack of effective therapeutic strategies, patients with TNBC have a poor prognosis. Paris saponin VII (PSⅦ), a steroidal saponin extracted from the rhizome of Trichillium tschonoskii Maxim, exhibits excellent anti-cancer activity in a variety of solid tumors. However, the role and potential mechanism of PSⅦ against TNBC remain unexplored. PURPOSE This study aimed to elucidate the therapeutic effects of PSⅦ against TNBC and explore the potential mechanism of action. METHODS We combined the analysis of public single-cell sequencing data with weighted gene co-expression network analysis (WGCNA) to identity differentially expressed genes (DEGs) that distinguished malignant and normal epithelial cells in TNBC. Subsequently, the biological features of DEGs in TNBC were evaluated. Gene set enrichment analysis (GSEA) was used to define potential pathways associated with the DEGs. The pharmacological activity of PSⅦ for TNBC was evidenced via in vitro and in vivo experiments, and molecular docking, molecular dynamics (MD), surface plasmon resonance (SPR) assay and western blotting were employed to confirm the relative mechanisms. RESULTS Single-cell sequencing and WGCNA revealed STMN1 as a pivotal biomarker of TNBC. STMN1 overexpression in TNBC was associated with poor patient prognosis. GSEA revealed a significant accumulation of STMN1 within the MAPK signaling pathway. Furthermore, In vitro experiments showed that PSⅦ showed significantly suppressive actions on the proliferation, migration and invasion abilities for TNBC cells, while inducing apoptosis. Molecular docking, MD analysis and SPR assay indicated a robust interaction between PSⅦ and the MEK protein. Western blotting revealed that PSⅦ may inhibit tumor progression by suppressing the phosphorylation of MEK1/2 and the downstream phosphorylation of ERK1/2 and STMN1. Intraperitoneal injection of PSⅦ (10 mg/kg) notably reduced tumor growth by 71.26 % in a 4T1 xenograft model. CONCLUSION In our study, the systems biology method was used to identify potential therapeutic targets for TNBC. In vitro and in vivo experiments demonstrated PSⅦ suppresses cancer progression by targeting the MEK/ERK/STMN1 signaling axis. For the first time, the inhibition of STMN1 phosphorylation has been indicated as a possible mechanism for the anticancer effects of PSⅦ. These results emphasize the potential value of PSⅦ as a promising anti-cancer drug candidate for further development in the field of TNBC therapeutics.
Collapse
Affiliation(s)
- Yubao Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Shijie Wei
- Department of Oncology, The Affiliated Qingdao Hiser hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao 266071, China
| | - Qinxiang Zhang
- Institute of Integrated Medicine, Qingdao University, Qingdao 266071, China
| | - Yue Zhang
- Institute of Integrated Medicine, Qingdao University, Qingdao 266071, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, Shandong Province 261000, China.
| |
Collapse
|
7
|
Kaur S, Mendonca P, Soliman KFA. The Anticancer Effects and Therapeutic Potential of Kaempferol in Triple-Negative Breast Cancer. Nutrients 2024; 16:2392. [PMID: 39125273 PMCID: PMC11314279 DOI: 10.3390/nu16152392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer is the second-leading cause of cancer death among women in the United States. Triple-negative breast cancer (TNBC), a subtype of breast cancer, is an aggressive phenotype that lacks estrogen (ER), progesterone (PR), and human epidermal growth (HER-2) receptors, which is challenging to treat with standardized hormonal therapy. Kaempferol is a natural flavonoid with antioxidant, anti-inflammatory, neuroprotective, and anticancer effects. Besides anti-tumorigenic, antiproliferative, and apoptotic effects, kaempferol protects non-cancerous cells. Kaempferol showed anti-breast cancer effects by inducing DNA damage and increasing caspase 3, caspase 9, and pAMT expression, modifying ROS production by Nrf2 modulation, inducing apoptosis by increasing cleaved PARP and Bax and downregulating Bcl-2 expression, inducing cell cycle arrest at the G2/M phase; inhibiting immune evasion by modulating the JAK-STAT3 pathway; and inhibiting the angiogenic and metastatic potential of tumors by downregulating MMP-3 and MMP-9 levels. Kaempferol holds promise for boosting the efficacy of anticancer agents, complementing their effects, or reversing developed chemoresistance. Exploring novel TNBC molecular targets with kaempferol could elucidate its mechanisms and identify strategies to overcome limitations for clinical application. This review summarizes the latest research on kaempferol's potential as an anti-TNBC agent, highlighting promising but underexplored molecular pathways and delivery challenges that warrant further investigation to achieve successful clinical translation.
Collapse
Affiliation(s)
- Sukhmandeep Kaur
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
8
|
Dai Y, Ji Z, Liang H, Jiang M, Wang L, Bao X, Liu J, Liu M, Yang C. CD44v5 domain regulates crosstalk between TNBC cells and tumor-associated macrophages by enhancing the IL-4R/STAT3 axis. Cancer Sci 2024; 115:2235-2253. [PMID: 38700108 PMCID: PMC11247601 DOI: 10.1111/cas.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has greater infiltration of M2-like macrophages (TAMs), which enhances cancer cell invasion and leads to a poor prognosis. TNBC progression is mediated by both tumor cells and the tumor microenvironment (TME). Here we elucidate the mechanism of the interaction between TNBC cells and TAMs. In this study, we confirmed that CD44v5 is highly expressed in TNBC, which drives TNBC cell metastasis and promotes TAM polarization by co-localizing with IL4Rα and inhibiting its internalization and degradation, thereby promoting activation of the STAT3/IL6 signaling axis. At the same time, TAMs also facilitate TNBC cell metastasis by secreting IL-4, IL-6, and other cytokines, in which the IL-4/IL-4R/STAT3/IL-6 signaling axis plays the same role for TNBC cells responding to TAMs. Moreover, we found that the above progress could be suppressed when the CD44v5 domain was blocked. We demonstrated that the CD44v5/IL-4R/STAT3/IL-6 signaling pathway plays a key role in TNBC cell metastasis, and in TNBC cells inducing TAM polarization and responding to TAMs, promoting metastasis. Collectively, we suggest that the CD44v5 domain may be a promising target for regulating the TME of TNBC as well as treating TNBC.
Collapse
Affiliation(s)
- Yanhua Dai
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Zhongjian Ji
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Hongyan Liang
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Meng Jiang
- Faculty of ComputingHarbin Institute of TechnologyHarbinChina
| | - Lan Wang
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Xinyi Bao
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Jiaren Liu
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Ming Liu
- Department of General SurgeryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Chun Yang
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
9
|
Siebert JN, Shah JV, Tan MC, Riman RE, Pierce MC, Lattime EC, Ganapathy V, Moghe PV. Early Detection of Myeloid-Derived Suppressor Cells in the Lung Pre-Metastatic Niche by Shortwave Infrared Nanoprobes. Pharmaceutics 2024; 16:549. [PMID: 38675210 PMCID: PMC11053826 DOI: 10.3390/pharmaceutics16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Metastatic breast cancer remains a significant source of mortality amongst breast cancer patients and is generally considered incurable in part due to the difficulty in detection of early micro-metastases. The pre-metastatic niche (PMN) is a tissue microenvironment that has undergone changes to support the colonization and growth of circulating tumor cells, a key component of which is the myeloid-derived suppressor cell (MDSC). Therefore, the MDSC has been identified as a potential biomarker for PMN formation, the detection of which would enable clinicians to proactively treat metastases. However, there is currently no technology capable of the in situ detection of MDSCs available in the clinic. Here, we propose the use of shortwave infrared-emitting nanoprobes for the tracking of MDSCs and identification of the PMN. Our rare-earth albumin nanocomposites (ReANCs) are engineered to bind the Gr-1 surface marker of murine MDSCs. When delivered intravenously in murine models of breast cancer with high rates of metastasis, the targeted ReANCs demonstrated an increase in localization to the lungs in comparison to control ReANCs. However, no difference was seen in the model with slower rates of metastasis. This highlights the potential utility of MDSC-targeted nanoprobes to assess PMN development and prognosticate disease progression.
Collapse
Affiliation(s)
- Jake N. Siebert
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Jay V. Shah
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd., Singapore 487372, Singapore
| | - Richard E. Riman
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08854, USA
| | - Mark C. Pierce
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Edmund C. Lattime
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
- Alex’s Lemonade Stand Foundation for Childhood Cancer, 333 E. Lancaster Ave., #414, Wynnewood, PA 19096, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Wu Z, Tang Y, Liu Y, Chen Z, Feng Y, Hu H, Liu H, Chen G, Lu Y, Hu Y, Xu R. Co-delivery of fucoxanthin and Twist siRNA using hydroxyethyl starch-cholesterol self-assembled polymer nanoparticles for triple-negative breast cancer synergistic therapy. J Adv Res 2024:S2090-1232(24)00160-7. [PMID: 38636588 DOI: 10.1016/j.jare.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer with an extremely dismal prognosis and few treatment options. As a desmoplastic tumor, TNBC tumor cells are girdled by stroma composed of cancer-associated fibroblasts (CAFs) and their secreted stromal components. The rapidly proliferating tumor cells, together with the tumor stroma, exert additional solid tissue pressure on tumor vasculature and surrounding tissues, severely obstructing therapeutic agent from deep intratumoral penetration, and resulting in tumor metastasis and treatment resistance. OBJECTIVES Fucoxanthin (FX), a xanthophyll carotenoid abundant in marine algae, has attracted widespread attention as a promising alternative candidate for tumor prevention and treatment. Twist is a pivotal regulator of epithelial to mesenchymal transition, and its depletion has proven to sensitize antitumor drugs, inhibit metastasis, reduce CAFs activation and the following interstitial deposition, and increase tumor perfusion. The nanodrug delivery system co-encapsulating FX and nucleic acid drug Twist siRNA (siTwist) was expected to form a potent anti-TNBC therapeutic cyclical feedback loop. METHODS AND RESULTS Herein, our studies constituted a novel self-assembled polymer nanomedicine (siTwist/FX@HES-CH) based on the amino-modified hydroxyethyl starch (HES-NH2) grafted with hydrophobic segment cholesterol (CH). The MTT assay, flow cytometry apoptosis analysis, transwell assay, western blot, and 3D multicellular tumor spheroids growth inhibition assay all showed that siTwist/FX@HES-CH could kill tumor cells and inhibit their metastasis in a synergistic manner. The in vivo anti-TNBC efficacy was demonstrated that siTwist/FX@HES-CH remodeled tumor microenvironment, facilitated interstitial barrier crossing, killed tumor cells synergistically, drastically reduced TNBC orthotopic tumor burden and inhibited lung metastasis. CONCLUSION Systematic studies revealed that this dual-functional nanomedicine that targets both tumor cells and tumor microenvironment significantly alleviates TNBC orthotopic tumor burden and inhibits lung metastasis, establishing a new paradigm for TNBC therapy.
Collapse
Affiliation(s)
- Zeliang Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxiang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuao Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Gang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Fan T, Huang Y, Liu Z, Huang J, Ke B, Rong Y, Qiu H, Zhang B. Unveiling the Mechanism of the ChaiShao Shugan Formula Against Triple-Negative Breast Cancer. Drug Des Devel Ther 2024; 18:1115-1131. [PMID: 38618280 PMCID: PMC11016267 DOI: 10.2147/dddt.s394287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Background The ChaiShao Shugan Formula (CSSGF) is a traditional Chinese medicine formula with recently identified therapeutic value in triple-negative breast cancer (TNBC). This study aimed to elucidate the underlying mechanism of CSSGF in TNBC treatment. Methods TNBC targets were analyzed using R and data were from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The major ingredients and related protein targets of CSSGF were explored via the Traditional Chinese Medicine Systems Pharmacology database, and an ingredient-target network was constructed via Cytoscape to identify hub genes. The STRING database was used to construct the PPI network. GO and KEGG enrichment analyses were performed via R to obtain the main targets. The online tool Kaplan‒Meier plotter was used to identify the prognostic genes. Molecular docking was applied to the core target genes and active ingredients. MDA-MB-231 and MCF-7 cell lines were used to verify the efficacy of the various drugs. Results A total of 4562 genes were screened as TNBC target genes. The PPI network consisted of 89 nodes and 845 edges. Our study indicated that quercetin, beta-sitosterol, luteolin and catechin might be the core ingredients of CSSGF, and EGFR and c-Myc might be the latent therapeutic targets of CSSGF in the treatment of TNBC. GO and KEGG analyses indicated that the anticancer effect of CSSGF on TNBC was mainly associated with DNA binding, transcription factor binding, and other biological processes. The related signaling pathways mainly involved the TNF-a, IL-17, and apoptosis pathways. The molecular docking data indicated that quercetin, beta-sitosterol, luteolin, and catechin had high affinity for EGFR, JUN, Caspase-3 and ESR1, respectively. In vitro, we found that CSSGF could suppress the expression of c-Myc or promote the expression of EGFR. In addition, we found that quercetin downregulates c-Myc expression in two BC cell lines. Conclusion This study revealed the effective ingredients and latent molecular mechanism of action of CSSGF against TNBC and confirmed that quercetin could target c-Myc to induce anti-BC effects.
Collapse
Affiliation(s)
- Teng Fan
- TCM&VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Yuanyuan Huang
- TCM&VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Zeyu Liu
- TCM&VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Jinsheng Huang
- TCM&VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Bin Ke
- TCM&VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Yuming Rong
- TCM&VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Huijuan Qiu
- TCM&VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Bei Zhang
- TCM&VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| |
Collapse
|
12
|
Hatzipanagiotou ME, Pigerl M, Gerken M, Räpple S, Zeltner V, Hetterich M, Ugocsai P, Inwald EC, Klinkhammer-Schalke M, Ortmann O, Seitz S. Clinical impact of delaying initiation of adjuvant chemotherapy in patients with early triple negative breast cancer. Breast Cancer Res Treat 2024; 204:607-615. [PMID: 38238552 PMCID: PMC10959785 DOI: 10.1007/s10549-023-07207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/29/2023] [Indexed: 03/24/2024]
Abstract
PURPOSE The optimal time to initiation of adjuvant chemotherapy (TTAC) for triple negative breast cancer (TNBC) patients is unclear. This study evaluates the association between TTAC and survival in TNBC patients. METHODS We conducted a retrospective study using data from a cohort of TNBC patients diagnosed between January 1, 2010 to December 31, 2018, registered in the Tumor Centre Regensburg was conducted. Data included demographics, pathology, treatment, recurrence and survival. TTAC was defined as days from primary surgery to first dose of adjuvant chemotherapy. The Kaplan-Meier method was used to evaluate impact of TTAC on overall survival (OS) and 5-year OS. RESULTS A total of 245 TNBC patients treated with adjuvant chemotherapy and valid TTAC data were included. Median TTAC was 29 days. The group receiving systemic therapy within 22 to 28 days after surgery had the most favorable outcome, with median OS of 10.2 years. Groups receiving systemic therapy between 29-35 days, 36-42 days, and more than 6 weeks after surgery had significantly decreased median survival, with median OS of 8.3 years, 7.8 years, and 6.9 years, respectively. Patients receiving therapy between 22-28 days had significantly better survival compared to those receiving therapy between 29-35 days (p = 0.043), and patients receiving therapy after 22-28 days also demonstrated significantly better survival compared to those receiving therapy after more than 43 days (p = 0.033). CONCLUSION Timing of adjuvant systemic therapy can influence OS in TNBC patients. Efforts should be made to avoid unnecessary delays in administering chemotherapy to ensure timely initiation of systemic therapy and optimize patient outcomes.
Collapse
Affiliation(s)
- Maria Eleni Hatzipanagiotou
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuterstraße 65, 93053, Regensburg, Germany.
| | - Miriam Pigerl
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuterstraße 65, 93053, Regensburg, Germany
| | - Michael Gerken
- Bavarian Cancer Registry, Regional Centre Regensburg, Bavarian Health and Food Safety Authority, Regensburg, Germany
| | - Sophie Räpple
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuterstraße 65, 93053, Regensburg, Germany
| | - Verena Zeltner
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuterstraße 65, 93053, Regensburg, Germany
| | - Madeleine Hetterich
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuterstraße 65, 93053, Regensburg, Germany
| | - Peter Ugocsai
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuterstraße 65, 93053, Regensburg, Germany
| | - Elisabeth Christine Inwald
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuterstraße 65, 93053, Regensburg, Germany
| | - Monika Klinkhammer-Schalke
- Tumor Center Regensburg - Centre for Quality Management and Health Services Research, University of Regensburg, Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuterstraße 65, 93053, Regensburg, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuterstraße 65, 93053, Regensburg, Germany
| |
Collapse
|
13
|
McKechnie T, Brown Z, Lovrics O, Yang S, Kazi T, Eskicioglu C, Parvez E. Concurrent Use of Statins in Patients Undergoing Curative Intent Treatment for Triple Negative Breast Cancer: A Systematic Review and Meta-Analysis. Clin Breast Cancer 2024; 24:e103-e115. [PMID: 38296737 DOI: 10.1016/j.clbc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/02/2024]
Abstract
Pre-clinical studies in triple negative breast cancer (TNBC) suggest that statins may inhibit cell proliferation, promote cell-cycle arrest, induce apoptosis, change the tumor microenvironment, and improve effectiveness of other therapies. Observational studies have demonstrated variable effects from statin therapy on oncologic outcomes in these patients. As such, we aimed to pool previous data via a systematic review and meta-analysis to elucidate the impact of concurrent statin use on oncologic outcomes for patients with TNBC. Medline, EMBASE, CENTRAL, and PubMed were systematically searched from inception through to June 2022. Studies were included if they compared patients with TNBC receiving and not receiving statin therapy concurrently with oncologic treatment for curative intent in terms of recurrence and survival in a non-metastatic setting. The primary outcomes were 5-year disease-free survival (DFS) and 5-year overall survival (OS). A pairwise meta-analyses was performed using inverse variance random effects. Risk of bias was assessed with the ROBINS-I and the GRADE approach was conducted to assess quality of evidence. From 4014 citations, 5 studies with 625 patients on statin therapy and 2707 patients not on statin therapy were included. There was a significant increase in 5-year DFS for patients on statin therapy compared to patients not on statin therapy (OR 1.44, 95% CI 1.04-1.98, P = .03). No significant difference was noted in 5-year OS between the 2 groups (OR 1.12, 95% CI 0.86-1.47, P = .40). Included studies were at moderate-to-high risk of bias. The GRADE quality of evidence was very low. This review presents very low-quality evidence that concurrent use of statins with oncologic treatment may potentially improve long-term DFS for patients with TNBC undergoing curative intent therapy. Future research by way of large, prospective study is required to further clarify the clinical utility of statins on patients undergoing treatment for TNBC.
Collapse
Affiliation(s)
- Tyler McKechnie
- Division of General Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Brown
- Division of General Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Olivia Lovrics
- Division of General Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Shuling Yang
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Tania Kazi
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Cagla Eskicioglu
- Division of General Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Elena Parvez
- Division of General Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
14
|
Tan Z, Boyapati K, Tressler CM, Jenkinson NM, Glunde K. Glutamine transporter SLC38A3 promotes breast cancer metastasis via Gsk3β/β-catenin/EMT pathway. Cancer Lett 2024; 586:216653. [PMID: 38309615 DOI: 10.1016/j.canlet.2024.216653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
Breast cancer is the leading cancer-related cause of death in women. Here we show that solute carrier family 38-member 3 (SLC38A3) is overexpressed in breast cancer, particularly in triple-negative breast cancer (TNBC) cells and tissues. Our study reveals that SLC38A3 regulates cellular glutamine, glutamate, asparagine, aspartate, alanine, and glutathione (GSH) levels in breast cancer cells. Our data demonstrate that SLC38A3 enhances cell viability, cell migration and invasion in vitro, and promotes tumor growth and metastasis in vivo, while reducing apoptosis and oxidative stress. Mechanistically, we show that SLC38A3 suppresses the activity of glycogen synthase kinase 3-β (Gsk3β), a negative regulator of β-catenin, and increases protein levels of β-catenin, leading to the upregulation of epithelial-to-mesenchymal-transition (EMT)-inducing transcription factors and EMT markers in breast cancer. In summary, we show that SLC38A3 is overexpressed in breast cancer and promotes breast cancer metastasis via the GSK3β/β-catenin/EMT pathway, presenting a novel therapeutic target to explore for breast cancer.
Collapse
Affiliation(s)
- Zheqiong Tan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Keerti Boyapati
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin M Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole M Jenkinson
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Iachettini S, Terrenato I, Porru M, Di Vito S, Rizzo A, D'Angelo C, Petti E, Dinami R, Maresca C, Di Benedetto A, Palange A, Mulè A, Santoro A, Palazzo A, Fuso P, Stoppacciaro A, Vici P, Filomeno L, Di Lisa FS, Arcuri T, Krasniqi E, Fabi A, Biroccio A, Zizza P. TRF2 as novel marker of tumor response to taxane-based therapy: from mechanistic insight to clinical implication. J Exp Clin Cancer Res 2024; 43:75. [PMID: 38459559 PMCID: PMC10924347 DOI: 10.1186/s13046-024-02998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Breast Cancer (BC) can be classified, due to its heterogeneity, into multiple subtypes that differ for prognosis and clinical management. Notably, triple negative breast cancer (TNBC) - the most aggressive BC form - is refractory to endocrine and most of the target therapies. In this view, taxane-based therapy still represents the elective strategy for the treatment of this tumor. However, due variability in patients' response, management of TNBC still represents an unmet medical need. Telomeric Binding Factor 2 (TRF2), a key regulator of telomere integrity that is over-expressed in several tumors, including TNBC, has been recently found to plays a role in regulating autophagy, a degradative process that is involved in drug detoxification. Based on these considerations, we pointed, here, at investigating if TRF2, regulating autophagy, can affect tumor sensitivity to therapy. METHODS Human TNBC cell lines, over-expressing or not TRF2, were subjected to treatment with different taxanes and drug efficacy was tested in terms of autophagic response and cell proliferation. Autophagy was evaluated first biochemically, by measuring the levels of LC3, and then by immunofluorescence analysis of LC3-puncta positive cells. Concerning the proliferation, cells were subjected to colony formation assays associated with western blot and FACS analyses. The obtained results were then confirmed also in mouse models. Finally, the clinical relevance of our findings was established by retrospective analysis on a cohort of TNBC patients subjected to taxane-based neoadjuvant chemotherapy. RESULTS This study demonstrated that TRF2, inhibiting autophagy, is able to increase the sensitivity of TNBC cells to taxanes. The data, first obtained in in vitro models, were then recapitulated in preclinical mouse models and in a cohort of TNBC patients, definitively demonstrating that TRF2 over-expression enhances the efficacy of taxane-based neoadjuvant therapy in reducing tumor growth and its recurrence upon surgical intervention. CONCLUSIONS Based on our finding it is possible to conclude that TRF2, already known for its role in promoting tumor formation and progression, might represents an Achilles' heel for cancer. In this view, TRF2 might be exploited as a putative biomarker to predict the response of TNBC patients to taxane-based neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Sara Iachettini
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- IRCCS - Regina Elena National Cancer Institute, Clinical Trial Center, Biostatistics and Bioinformatics Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Manuela Porru
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Serena Di Vito
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Angela Rizzo
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Carmen D'Angelo
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Eleonora Petti
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Roberto Dinami
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Carmen Maresca
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Anna Di Benedetto
- IRCCS - Regina Elena National Cancer Institute, Pathology Unit, Via Elio Chianesi 53, Rome, Italy
| | - Aldo Palange
- IRCCS - Regina Elena National Cancer Institute, Pathology Unit, Via Elio Chianesi 53, Rome, Italy
| | - Antonino Mulè
- Pathology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angela Santoro
- Pathology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonella Palazzo
- Medical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paola Fuso
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Patrizia Vici
- IRCCS - Regina Elena National Cancer Institute, Unit of Phase IV Trials, Via Elio Chianesi 53, Rome, Italy
| | - Lorena Filomeno
- IRCCS - Regina Elena National Cancer Institute, Unit of Phase IV Trials, Via Elio Chianesi 53, Rome, Italy
| | - Francesca Sofia Di Lisa
- IRCCS - Regina Elena National Cancer Institute, Unit of Phase IV Trials, Via Elio Chianesi 53, Rome, Italy
| | - Teresa Arcuri
- IRCCS - Regina Elena National Cancer Institute, Unit of Phase IV Trials, Via Elio Chianesi 53, Rome, Italy
| | - Eriseld Krasniqi
- IRCCS - Regina Elena National Cancer Institute, Unit of Phase IV Trials, Via Elio Chianesi 53, Rome, Italy
| | - Alessandra Fabi
- Precision Medicine Unit in Senology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Annamaria Biroccio
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Pasquale Zizza
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
16
|
Akhtar MF, Afzaal A, Saleem A, Roheel A, Khan MI, Imran M. A comprehensive review on the applications of ferrite nanoparticles in the diagnosis and treatment of breast cancer. Med Oncol 2024; 41:53. [PMID: 38198041 DOI: 10.1007/s12032-023-02277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Various conventional treatments including endocrine therapy, radiotherapy, surgery, and chemotherapy have been used for several decades to treat breast cancer; however, these therapies exhibit various life-threatening and debilitating adverse effects in patients. Additionally, combination therapies are required for prompt action as well as to prevent drug resistance toward standard breast cancer medications. Ferrite nanoparticles (NPs) are increasingly gaining momentum for their application in the diagnosis and treatment of breast cancer. Spinel ferrites are particularly used against breast cancer and have shown in vitro and in vivo better efficacy as compared to conventional cancer therapies. Magnetic resonance imaging contrast agents, magnetic particle imaging tracers, cell separation, and immune assays are some aspects related to the diagnosis of breast cancer against which different ferrite NPs have been successfully evaluated. Moreover, citrate-coated nickel ferrite, Mg/Zn ferrites, poly amidoamine dendrimers, cobalt ferrites, graphene oxide cobalt ferrites, doxorubicin functionalized cobalt ferrites, chitosan-coated zinc ferrites, PEG-coated cobalt ferrite, and copper ferrite NPs have demonstrated antiproliferative action against different breast cancer cells. Oxaliplatin-loaded polydopamine/BSA-copper ferrites, functionalized cobalt and zinc ferrites of curcumin, oxaliplatin-copper ferrite NPs, tamoxifen/diosgenin encapsulated ZnO/Mn ferrites, and fabricated core-shell fibers of doxorubicin have been developed to increase the bioavailability and anti-proliferative effect and decrease the toxicity of anticancer drugs. These ferrite NPs showed an anticancer effect at different doses in the presence or absence of an external magnetic field. The present review covers the in-depth investigations of ferrite NPs for the diagnosis and management of breast cancer.
Collapse
Affiliation(s)
- Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Aysha Afzaal
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Amna Roheel
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| |
Collapse
|
17
|
Lee CM, Hwang Y, Jeong JW, Kim M, Lee J, Bae SJ, Ahn SG, Fang S. BRCA1 mutation promotes sprouting angiogenesis in inflammatory cancer-associated fibroblast of triple-negative breast cancer. Cell Death Discov 2024; 10:5. [PMID: 38182557 PMCID: PMC10770063 DOI: 10.1038/s41420-023-01768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with inferior outcomes owing to its low treatment response and high invasiveness. Based on abundant cancer-associated fibroblasts (CAFs) and frequent mutation of breast cancer-associated 1 (BRCA1) in TNBC, the characteristics of CAFs in TNBC patients with BRCA1 mutation compared to wild-type were investigated using single-cell analysis. Intriguingly, we observed that characteristics of inflammatory CAFs (iCAFs) were enriched in patients with BRCA1 mutation compared to the wild-type. iCAFs in patients with BRCA1 mutation exhibited outgoing signals to endothelial cells (ECs) clusters, including chemokine (C-X-C motif) ligand (CXCL) and vascular endothelial growth factor (VEGF). During CXCL signaling, the atypical chemokine receptor 1 (ACKR1) mainly interacts with CXCL family members in tumor endothelial cells (TECs). ACKR1-high TECs also showed high expression levels of angiogenesis-related genes, such as ANGPT2, MMP1, and SELE, which might lead to EC migration. Furthermore, iCAFs showed VEGF signals for FLT1 and KDR in TECs, which showed high co-expression with tip cell marker genes, including ZEB1 and MAFF, involved in sprouting angiogenesis. Moreover, BRCA1 mutation patients with relatively abundant iCAFs and tip cell gene expression exhibited a limited response to neoadjuvant chemotherapy, including cisplatin and bevacizumab. Importantly, our study observed the intricate link between iCAFs-mediated angiogenesis and chemoresistance in TNBC with BRCA1 mutation.
Collapse
Affiliation(s)
- Chae Min Lee
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yeseong Hwang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jae Woong Jeong
- Department of Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Minki Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Janghee Lee
- Department of Surgery, Sacred Heart Hospital, Hallym University, Dongtan, 18450, Republic of Korea
- Department of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
| | - Soong June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
18
|
Siraj AK, Poyil PK, Padmaja D, Parvathareddy SK, Alobaisi K, Thangavel S, Diaz R, Begum R, Almalik O, Al-Dayel F, Al-Kuraya KS. PLK1 and PARP positively correlate in Middle Eastern breast cancer and their combined inhibition overcomes PARP inhibitor resistance in triple negative breast cancer. Front Oncol 2024; 13:1286585. [PMID: 38234395 PMCID: PMC10791948 DOI: 10.3389/fonc.2023.1286585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
Background Despite advancements in treatment approaches, patients diagnosed with aggressive breast cancer (BC) subtypes typically face an unfavorable prognosis. Globally, these cancers continue to pose a significant threat to women's health, leading to substantial morbidity and mortality. Consequently, there has been a significant struggle to identify viable molecular targets for therapeutic intervention in these patients. Polo-like Kinase-1 (PLK1) represents one of these molecular targets currently undergoing rigorous scrutiny for the treatment of such tumors. Yet, its role in the pathogenesis of BC in Middle Eastern ethnicity remains unexplored. Methods We investigated the expression of PLK1 protein in a cohort of more than 1500 Middle Eastern ethnicity BC cases by immunohistochemistry. Association with clinicopathological parameters and prognosis were performed. In vitro studies were conducted using the PLK1 inhibitor volasertib and the PARP inhibitor olaparib, either alone or in combination, in PTC cell lines. Results Overexpression of PLK1 was detected in 27.4% of all BC cases, and this was notably correlated with aggressive clinicopathological markers. PLK1 was enriched in the triple-negative breast cancer (TNBC) subtype and exhibited poor overall survival (p = 0.0347). Notably, there was a positive correlation between PLK1 and PARP overexpression, with co-expression of PLK1 and PARP observed in 15.7% of cases and was associated with significantly poorer overall survival (OS) compared to the overexpression of either protein alone (p = 0.0050). In vitro, we studied the effect of PLK1 and PARP inhibitors either single or combined treatments in two BRCA mutated, and one BRCA proficient TNBC cell lines. We showed that combined inhibition significantly reduced cell survival and persuaded apoptosis in TNBC cell lines. Moreover, our findings indicate that inhibition of PLK1 can reinstate sensitivity in PARP inhibitor (PARPi) resistant TNBC cell lines. Conclusion Our results shed light on the role of PLK1 in the pathogenesis and prognosis of Middle Eastern BC and support the potential clinical development of combined inhibition of PLK1 and PARP, a strategy that could potentially broaden the use of PLK1 and PARP inhibitors beyond BC cases lacking BRCA.
Collapse
Affiliation(s)
- Abdul K. Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Pratheesh Kumar Poyil
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Divya Padmaja
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Khadija Alobaisi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saravanan Thangavel
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Roxanne Diaz
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rafia Begum
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Osama Almalik
- Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Freitas AJA, Nunes CR, Mano MS, Causin RL, Santana IVV, de Oliveira MA, Calfa S, Silveira HCS, de Pádua Souza C, Marques MMC. Gene expression alterations predict the pathological complete response in triple-negative breast cancer exploratory analysis of the NACATRINE trial. Sci Rep 2023; 13:21411. [PMID: 38049525 PMCID: PMC10695933 DOI: 10.1038/s41598-023-48657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023] Open
Abstract
This exploratory analysis of the Neoadjuvant Carboplatin in Triple Negative Breast Cancer (NACATRINE) study aimed to identify the biomarkers of pathological complete response (pCR) in patients with triple-negative breast cancer (TNBC) treated with neoadjuvant chemotherapy (NAC) within the context of a clinical trial. The NACATRINE trial is a phase II, single-center, randomized, open-label clinical trial that investigated the addition of carboplatin to sequential anthracycline- and taxane-based NAC for TNBC. We evaluated the gene expression in untreated samples to investigate its association with pCR, overall survival (OS), and disease-free survival (DFS). RNA was extracted from the tissue biopsy, and the nCounter Breast Cancer panel was used to analyze gene expression. Of the 66 patients included in the gene expression profiling analysis, 24 (36.4%) achieved pCR and 42 (63.6%) had residual disease. In unsupervised hierarchical clustering analyses, differentially expressed genes between patients with and without pCR were identified irrespective of the treatment (24 genes), carboplatin (37 genes), and non-carboplatin (27 genes) arms. In receiver operating characteristic (ROC) curve analysis, 10 genes in the carboplatin arm (area under the ROC curve [AUC], 0.936) and three genes in the non-carboplatin arm (AUC, 0.939) were considered to be potential pCR-associated biomarkers. We identified genes that were associated with improvements in OS and DFS in addition to being related to pCR. We successfully identified gene expression signatures associated with pCR in pretreatment samples of patients with TNBC treated with NAC. Further investigation of these biomarkers is warranted.
Collapse
Affiliation(s)
- Ana Julia Aguiar Freitas
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos, SP, Brazil.
| | - Caroline Rocha Nunes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos, SP, Brazil
| | | | - Rhafaela Lima Causin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos, SP, Brazil
| | | | | | - Stéphanie Calfa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos, SP, Brazil
| | | | | | | |
Collapse
|
20
|
Tan Z, Deme P, Boyapati K, Claes BSR, Duivenvoorden AAM, Heeren RMA, Tressler CM, Haughey NJ, Glunde K. Key regulator PNPLA8 drives phospholipid reprogramming induced proliferation and migration in triple-negative breast cancer. Breast Cancer Res 2023; 25:148. [PMID: 38017485 PMCID: PMC10683240 DOI: 10.1186/s13058-023-01742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and leads to the poorest patient outcomes despite surgery and chemotherapy treatment. Exploring new molecular mechanisms of TNBC that could lead to the development of novel molecular targets are critically important for improving therapeutic options for treating TNBC. METHODS We sought to identify novel therapeutic targets in TNBC by combining genomic and functional studies with lipidomic analysis, which included mechanistic studies to elucidate the pathways that tie lipid profile to critical cancer cell properties. Our studies were performed in a large panel of human breast cancer cell lines and patient samples. RESULTS Comprehensive lipid profiling revealed that phospholipid metabolism is reprogrammed in TNBC cells. We discovered that patatin-like phospholipase domain-containing lipase 8 (PNPLA8) is overexpressed in TNBC cell lines and tissues from breast cancer patients. Silencing of PNPLA8 disrupted phospholipid metabolic reprogramming in TNBC, particularly affecting the levels of phosphatidylglycerol (PG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and glycerophosphocholine (GPC). We showed that PNPLA8 is essential in regulating cell viability, migration and antioxidation in TNBC cells and promoted arachidonic acid and eicosanoid production, which in turn activated PI3K/Akt/Gsk3β and MAPK signaling. CONCLUSIONS Our study highlights PNPLA8 as key regulator of phospholipid metabolic reprogramming and malignant phenotypes in TNBC, which could be further developed as a novel molecular treatment target.
Collapse
Affiliation(s)
- Zheqiong Tan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pragney Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keerti Boyapati
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Annet A M Duivenvoorden
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Caitlin M Tressler
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman James Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Mei M, Tang L, Zhou H, Xue N, Li M. Honokiol prevents lung metastasis of triple-negative breast cancer by regulating polarization and recruitment of macrophages. Eur J Pharmacol 2023; 959:176076. [PMID: 37797675 DOI: 10.1016/j.ejphar.2023.176076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Metastasis is the leading cause of breast cancer-associated death. Lung metastasis commonly occurs in triple-negative breast cancer (TNBC) metastasis, worsening the TNBC prognosis. Considering their role in tumor progression and metastasis, tumor-associated macrophages (TAMs) are essential therapeutic targets in cancer therapy. Previous studies have demonstrated that honokiol inhibits tumor growth and progression. Here we assessed how honokiol inhibits lung metastasis of TNBC by regulating the polarization of macrophages. We found that honokiol decreased the expression of IL-13-triggered M2 markers like CD206, Arg1, and CCL2, preventing the invasion and migration ability of TNBC cells. The activation of signal transducer and activator of transcription STAT6 and STAT3 was significantly suppressed by honokiol in M2 polarized macrophages. Meanwhile, honokiol increased the expression of LPS/IFNγ-induced M1 markers such as CD11c, iNOS, and IL12 by promoting STAT1 phosphorylation. Besides, honokiol decreased both the ratio of M2/M1 macrophages and the expression of the IL-10/IL-12 gene in lung tissues, thereby inhibiting the proliferation and metastasis of murine breast cancer. Moreover, honokiol reduced the infiltration of macrophages to the lung tissue through the CCL2/CCR2 pathways. These results highlight the potential of honokiol in suppressing TNBC tumor progression and lung metastasis by regulating the polarization and recruitment of macrophages.
Collapse
Affiliation(s)
- Mei Mei
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Linfeng Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Hao Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
22
|
Huang K, Jakub J, Gabriel E, Moreno-Aspitia A, McLaughlin S. Overall Survival Following Neoadjuvant Chemotherapy Versus Adjuvant Chemotherapy in Clinically Node Negative T1 Triple Negative Breast Cancer. Ann Surg Oncol 2023; 30:7026-7035. [PMID: 37490162 DOI: 10.1245/s10434-023-13977-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND The purpose of this study was to compare the overall survival (OS) of upfront surgery followed by adjuvant chemotherapy (ACT) versus neoadjuvant chemotherapy (NACT) followed by surgery in patients with clinical T1 clinically node negative triple negative breast cancer (TNBC). PATIENTS AND METHODS We retrospectively reviewed 48,329 women with cT1N0 TNBC from 2006 to 2016 in the National Cancer Database (NCDB). Patients were categorized into five pathologic subgroups based on ACT versus NACT and definitive pathologic stage after surgery: ACT with unchanged stage (pT0-1N0), ACT with pathologic upstage (any nodal disease, > pT1N0), NACT with pCR (ypT0-isN0), NACT with stable disease (SD) (ypT1N0), and NACT with progressive disease (PD) (any nodal disease, > ypT1N0). The primary outcome was 5 year OS. RESULTS Patients with TNBC who underwent upfront surgery followed by ACT had better OS compared with those who received NACT (p < 0.001). The hazard ratio (HR) for death for NACT compared with ACT was 1.42 (95% CI 1.26-1.59, p < 0.001) on multivariate analysis. Patients who underwent upfront surgery followed by ACT and whose pathological stage was unchanged from clinical stage had similar outcomes compared with those who received NACT and attained pCR with 5 year OS of 92.7% versus 93.3% (p = 0.34). Patients with clinical T1cN0 tumors who underwent NACT with pCR had better outcomes compared with those who underwent ACT with unchanged stages. (p = 0.025). CONCLUSIONS For cT1N0 TNBC patients, OS of upfront surgery followed by ACT was not inferior to those who underwent NACT. Neoadjuvant chemotherapy was associated with better outcomes in cT1c patients who attained pCR.
Collapse
Affiliation(s)
- Kai Huang
- Department of Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - James Jakub
- Department of Surgery, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Emmanuel Gabriel
- Department of Surgery, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Alvaro Moreno-Aspitia
- Jacoby Center for Breast Health, Division of Hematology Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Sarah McLaughlin
- Department of Surgery, Mayo Clinic Florida, Jacksonville, FL, USA.
| |
Collapse
|
23
|
Zhang B, Zhao R, Wang Q, Zhang YJ, Yang L, Yuan ZJ, Yang J, Wang QJ, Yao L. An EMT-Related Gene Signature to Predict the Prognosis of Triple-Negative Breast Cancer. Adv Ther 2023; 40:4339-4357. [PMID: 37462865 PMCID: PMC10499992 DOI: 10.1007/s12325-023-02577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION Epithelial-mesenchymal transition (EMT) is an important biological process in tumor invasion and metastasis, and thus a potential indicator of the progression and drug resistance of breast cancer. This study comprehensively analyzed EMT-related genes in triple-negative breast cancer (TNBC) to develop an EMT-related prognostic gene signature. METHODS With the application of The Cancer Genome Atlas (TCGA) database, Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), and the Genotype-Tissue Expression (GTEx) database, we identified EMT-related signature genes (EMGs) by Cox univariate regression and LASSO regression analysis. Risk scores were calculated and used to divide patients with TNBC into high-risk group and low-risk groups by the median value. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curve analyses were applied for model validation. Independent prognostic predictors were used to develop nomograms. Then, we assessed the risk model in terms of the immune microenvironment, genetic alteration and DNA methylation effects on prognosis, the probability of response to immunotherapy and chemotherapy, and small molecule drugs predicted by The Connectivity Map (Cmap) database. RESULTS Thirteen EMT-related genes with independent prognostic value were identified and used to stratify the patients with TNBC into high- and low-risk groups. The survival analysis revealed that patients in the high-risk group had significantly poorer overall survival than patients in the low-risk group. Populations of immune cells, including CD4 memory resting T cells, CD4 memory activated T cells, and activated dendritic cells, significantly differed between the high- and low-risk groups. Moreover, some therapeutic drugs to which the high-risk group might show sensitivity were identified. CONCLUSIONS Our research identified the significant impact of EMGs on prognosis in TNBC, providing new strategies for personalizing TNBC treatment and improving clinical outcomes.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Breast Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Rong Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Ya-Jing Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Liu Yang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhou-Jun Yuan
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jun Yang
- Department of Breast Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Qian-Jun Wang
- Department of Breast Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Liang Yao
- Department of Breast Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, China.
| |
Collapse
|
24
|
Xu H, Li L, Dong B, Lu J, Zhou K, Yin X, Sun H. TRAF6 promotes chemoresistance to paclitaxel of triple negative breast cancer via regulating PKM2-mediated glycolysis. Cancer Med 2023; 12:19807-19820. [PMID: 37746908 PMCID: PMC10587986 DOI: 10.1002/cam4.6552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Ample evidence reveals that glycolysis is crucial to tumor progression; however, the underlying mechanism of its drug resistance is still worth being further explored. TRAF6, an E3 ubiquitin ligase, is well recognized to overexpress in various types of cancer, which predicts a poor prognosis. In our study, we discovered that TRAF6 was expressed more significantly in the case of triple-negative breast cancer (TNBC) than in other of breast cancers, promoting chemoresistance to paclitaxel; that inhibited TRAF6 expression in the chemoresistant TNBC (TNBC-CR) cells enhanced the sensitivity by decreasing glucose uptake and lactate production; that TRAF6 regulated glycolysis and facilitated chemoresistance via binding directly to PKM2; and that overexpressing PKM2 in the TNBC-CR cells with TRAF6 knocked down regained significantly TRAF6-dependent drug resistance and glycolysis. Additionally, we verified that TRAF6 could facilitate PKM2-mediated glycolysis and chemoresistance in animal models and clinical tumor tissues. Thus, we identified the novel function of TRAF6 to promote glycolysis and drug resistance in TNBC with the regulation of PKM2, which could provide a potential molecular target for TNBC treatment.
Collapse
Affiliation(s)
- Han Xu
- Department of General SurgeryJing'an District Center Hospital of ShanghaiShanghaiChina
| | - Longzhi Li
- Department of General SurgeryJing'an District Center Hospital of ShanghaiShanghaiChina
| | - Bing Dong
- Department of General SurgeryJing'an District Center Hospital of ShanghaiShanghaiChina
| | - Ji Lu
- Department of General SurgeryJing'an District Center Hospital of ShanghaiShanghaiChina
| | - Kun Zhou
- Department of General SurgeryJing'an District Center Hospital of ShanghaiShanghaiChina
| | - Xiaoxing Yin
- Department of General SurgeryJing'an District Center Hospital of ShanghaiShanghaiChina
| | - Huizhen Sun
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
25
|
Hatzipanagiotou ME, Pigerl M, Gerken M, Räpple S, Zeltner V, Hetterich M, Ugocsai P, Fernandez-Pacheco M, Inwald EC, Klinkhammer-Schalke M, Ortmann O, Seitz S. Does timing of neoadjuvant chemotherapy influence the prognosis in patients with early triple negative breast cancer? J Cancer Res Clin Oncol 2023; 149:11941-11950. [PMID: 37418056 PMCID: PMC10465651 DOI: 10.1007/s00432-023-05060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE For patients with triple negative breast cancer (TNBC), the optimal time to initiate neoadjuvant chemotherapy (TTNC) is unknown. This study evaluates the association between TTNC and survival in patients with early TNBC. METHODS A retrospective study using data from of a cohort of TNBC patients diagnosed between January 1, 2010 to December 31, 2018 registered in the Tumor Centre Regensburg was performed. Data included demographics, pathology, treatment, recurrence, and survival. Interval to treatment was defined as days from pathology diagnosis of TNBC to first dose of neoadjuvant chemotherapy (NACT). The Kaplan-Meier and Cox regression methods were used to evaluate the impact of TTNC on overall survival (OS) and 5 year OS. RESULTS A total of 270 patients were included. Median follow up was 3.5 years. The 5-year OS estimates according to TTNC were 77.4%, 66.9%, 82.3%, 80.6%, 88.3%, 58.3%, 71.1% and 66.7% in patients who received NACT within 0-14, 15-21, 22-28, 29-35, 36-42, 43-49, 50-56 and > 56 days after diagnosis. Patients who received systemic therapy early had the highest estimated mean OS of 8.4 years, while patients who received systemic therapy after more than 56 days survived an estimated 3.3 years. CONCLUSION The optimal time interval between diagnosis and NACT remains to be determined. However, starting NACT more than 42 days after diagnosis of TNBC seems to reduce survival. Therefore, it is strongly recommended to carry out the treatment in a certified breast center with appropriate structures, in order to enable an adequate and timely care.
Collapse
Affiliation(s)
- Maria Eleni Hatzipanagiotou
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany.
- Department of Gynecology and Obstetrics, Maria Eleni Hatzipanagiotou, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany.
| | - Miriam Pigerl
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Michael Gerken
- Bavarian Cancer Registry, Regional Centre Regensburg, Bavarian Health and Food Safety Authority, Regensburg, Germany
| | - Sophie Räpple
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Verena Zeltner
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Madeleine Hetterich
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Peter Ugocsai
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Miriam Fernandez-Pacheco
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Elisabeth Christine Inwald
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Monika Klinkhammer-Schalke
- Tumor Center Regensburg - Centre for Quality Management and Health Services Research, University of Regensburg, Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| |
Collapse
|
26
|
Zhang Z, Zhang R, Li D. Molecular Biology Mechanisms and Emerging Therapeutics of Triple-Negative Breast Cancer. Biologics 2023; 17:113-128. [PMID: 37767463 PMCID: PMC10520847 DOI: 10.2147/btt.s426392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is conventionally characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), accounting for approximately 15-20% of all breast cancers. Compared to other molecular phenotypes, TNBC is typically associated with high malignancy and poor prognosis. Cytotoxic agents have been the mainstay of treatment for the past few decades due to the lack of definitive targets and limited therapeutic interventions. However, recent developments have demonstrated that TNBC has peculiar molecular classifications and biomarkers, which provide the possibility of evolving treatment from basic cytotoxic chemotherapy to an expanding domain of targeted therapies. This review presents a framework for understanding the current clinical experience surrounding molecular biology mechanisms in TNBC (Figure 1). Including immunotherapy, polymerase (PARP) and PI3K/AKT pathway inhibitors, antibody-drug conjugates, and androgen receptor (AR) blockade. Additionally, the role of miRNA therapeutics targeting TNBC and potential strategies targeting cancer stem cells (CSCs) are discussed and highlighted. As more and more treatments arise on the horizon, we believe that patients with TNBC will have a new sense of hope.
Collapse
Affiliation(s)
- Zhiying Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Rui Zhang
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Donghai Li
- Inner Mongolia Medical University, Department of Thyroid Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| |
Collapse
|
27
|
Son H, Jee S, Cha H, Song K, Bang S, Kim H, Paik S, Park H, Myung J. Effects of Cortactin Expression on Prognosis in Patients with Breast Cancer. Diagnostics (Basel) 2023; 13:2876. [PMID: 37761244 PMCID: PMC10530131 DOI: 10.3390/diagnostics13182876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Cortactin is overexpressed in several types of invasive cancers. However, the role of cortactin expression in breast cancer prognosis has not been sufficiently elucidated. Therefore, we investigated the clinicopathological significance of cortactin in breast cancer. METHODS Tissue microarrays were prepared from a cohort of 506 patients with breast cancer, and cortactin expression was evaluated using immunohistochemistry. The cortactin immunoreactivity score (IRS) was quantified as the product of the intensity score and the percentage of immunoreactive cells. Cortactin expression was classified as low or high using the IRS (IRS ≤ 4 as a cortactin-low value and IRS > 4 as a cortactin-high value). We compared cortactin expression and clinicopathological factors according to the molecular subtypes of breast cancer. RESULTS Of 506 breast cancer cases, 333 and 173 showed high and low cortactin expression, respectively. Of the 333 patients with high cortactin expression, 204, 58, and 71 had luminal, HER2, and triple-negative breast cancer (TNBC), respectively. In the univariate and multivariate analyses of patients with TNBC, cortactin expression was found to be a significant prognostic factor for overall survival (OS). However, in all patients with non-TNBC, cortactin expression had no significant association with prognosis or overall survival. Survival curves revealed that among patients with TNBC, the high-cortactin group had a better prognosis in disease-free survival and OS. CONCLUSIONS Cortactin expression may be a good biomarker for predicting the prognosis of patients with TNBC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hosub Park
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Jaekyung Myung
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
28
|
Ding R, Wang Y, Fan J, Tian Z, Wang S, Qin X, Su W, Wang Y. Identification of immunosuppressive signature subtypes and prognostic risk signatures in triple-negative breast cancer. Front Oncol 2023; 13:1108472. [PMID: 37377907 PMCID: PMC10292819 DOI: 10.3389/fonc.2023.1108472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/10/2023] [Indexed: 06/29/2023] Open
Abstract
Purpose Immune checkpoint blockade (ICB) therapy has transformed the treatment of triple-negative breast cancer (TNBC) in recent years. However, some TNBC patients with high programmed death-ligand 1 (PD-L1) expression levels develop immune checkpoint resistance. Hence, there is an urgent need to characterize the immunosuppressive tumor microenvironment and identify biomarkers to construct prognostic models of patient survival outcomes in order to understand biological mechanisms operating within the tumor microenvironment. Patients and methods RNA sequence (RNA-seq) data from 303 TNBC samples were analyzed using an unsupervised cluster analysis approach to reveal distinctive cellular gene expression patterns within the TNBC tumor microenvironment (TME). A panel of T cell exhaustion signatures, immunosuppressive cell subtypes and clinical features were correlated with the immunotherapeutic response, as assessed according to gene expression patterns. The test dataset was then used to confirm the occurrence of immune depletion status and prognostic features and to formulate clinical treatment recommendations. Concurrently, a reliable risk prediction model and clinical treatment strategy were proposed based on TME immunosuppressive signature differences between TNBC patients with good versus poor survival status and other clinical prognostic factors. Results Significantly enriched TNBC microenvironment T cell depletion signatures were detected in the analyzed RNA-seq data. A high proportion of certain immunosuppressive cell subtypes, 9 inhibitory checkpoints and enhanced anti-inflammatory cytokine expression profiles were noted in 21.4% of TNBC patients that led to the designation of this group of immunosuppressed patients as the immune depletion class (IDC). Although IDC group TNBC samples contained tumor-infiltrating lymphocytes present at high densities, IDC patient prognosis was poor. Notably, PD-L1 expression was relatively elevated in IDC patients that indicated their cancers were resistant to ICB treatment. Based on these findings, a set of gene expression signatures predicting IDC group PD-L1 resistance was identified then used to develop risk models for use in predicting clinical therapeutic outcomes. Conclusion A novel TNBC immunosuppressive tumor microenvironment subtype associated with strong PD-L1 expression and possible resistance to ICB treatment was identified. This comprehensive gene expression pattern may provide fresh insights into drug resistance mechanisms for use in optimizing immunotherapeutic approaches for TNBC patients.
Collapse
Affiliation(s)
- Ran Ding
- Changchun University of Chinese Medicine, Changchun, Jilin, China
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuhan Wang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jinyan Fan
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ziyue Tian
- The Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Shuang Wang
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiujuan Qin
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wei Su
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanbo Wang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
29
|
Yang Y, Lu T, Jia X, Gao Y. FSTL1 Suppresses Triple-Negative Breast Cancer Lung Metastasis by Inhibiting M2-like Tumor-Associated Macrophage Recruitment toward the Lungs. Diagnostics (Basel) 2023; 13:1724. [PMID: 37238210 PMCID: PMC10217361 DOI: 10.3390/diagnostics13101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Immune cell infiltration into the tumor microenvironment is associated with cancer prognosis. Tumor-associated macrophages play essential roles in tumor initiation, progression, and metastasis. Follistatin-like protein 1 (FSTL1), a widely expressed glycoprotein in human and mouse tissues, is a tumor suppressor in various cancers and a regulator of macrophage polarization. However, the mechanism by which FSTL1 affects crosstalk between breast cancer cells and macrophages remains unclear. By analyzing public data, we found that FSTL1 expression was significantly low in breast cancer tissues compared to normal breast tissues, and high expression of FSTL1 in patients indicated prolonged survival. Using flow cytometry, we found that total and M2-like macrophages dramatically increased in the metastatic lung tissues during breast cancer lung metastasis in Fstl1+/- mice. Transwell assay in vitro and q-PCR experimental results showed that FSTL1 inhibited macrophage migration toward 4T1 cells by decreasing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. We demonstrated that FSTL1 inhibited M2-like tumor-associated macrophage recruitment toward the lungs by suppressing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. Therefore, we identified a potential therapeutic strategy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Ying Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaowei Jia
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| | - Yan Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| |
Collapse
|
30
|
Ding R, Liu Q, Yu J, Wang Y, Gao H, Kan H, Yang Y. Identification of Breast Cancer Subtypes by Integrating Genomic Analysis with the Immune Microenvironment. ACS OMEGA 2023; 8:12217-12231. [PMID: 37033796 PMCID: PMC10077467 DOI: 10.1021/acsomega.2c08227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Objectives: We aim to identify the breast cancer (BC) subtype clusters and the crucial gene classifier prognostic signatures by integrating genomic analysis with the tumor immune microenvironment (TME). Methods: Data sets of BC were derived from the Cancer Genome Atlas (TCGA), METABRIC, and Gene Expression Omnibus (GEO) databases. Unsupervised consensus clustering was carried out to obtain the subtype clusters of BC patients. Weighted gene coexpression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), and univariate and multivariate regression analysis were employed to obtain the gene classifier signatures and their biological functions, which were validated by the BC dataset from the METABRIC database. Additionally, to evaluate the overall survival rates of BC patients, Kaplan-Meier survival analysis was carried out. Moreover, to assess how BC subtype clusters are related to the TME, single-cell analysis was performed. Finally, the drug sensitivity and the immune cell infiltration for different phenotypes of BC patients were also calculated by the CIBERSORT and ESTIMATE algorithms. Results : TCGA-BC samples were divided into three subtype clusters, S1, S2, and S3, among which the prognosis of S2 was poor and that of S1 and S3 were better. Three key pathways and 10 crucial prognostic-related gene signatures are screened. Finally, single-cell analysis suggests that S1 samples have the most types of immune cells, S2 with more sensitivity to tumor treatment drugs are enriched with more neutrophils, and more multilymphoid progenitor cells are involved in subtype cluster S3. Conclusions: Our novelty was to identify the BC subtype clusters and the gene classifier signatures employing a large-amount dataset combined with multiple bioinformatics methods. All of the results provide a basis for clinical precision treatment of BC.
Collapse
Affiliation(s)
- Ran Ding
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
- Anhui
Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei 230013, China
| | - Qiwei Liu
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
| | - Jing Yu
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
| | - Yongkang Wang
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
| | - Honglei Gao
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
| | - Hongxing Kan
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
- Anhui
Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei 230013, China
| | - Yinfeng Yang
- School
of Medical Informatics Engineering, Anhui
University of Chinese Medicine, Hefei 230012, China
- Anhui
Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei 230013, China
| |
Collapse
|
31
|
Nisticò N, Aloisio A, Lupia A, Zimbo AM, Mimmi S, Maisano D, Russo R, Marino F, Scalise M, Chiarella E, Mancuso T, Fiume G, Omodei D, Zannetti A, Salvatore G, Quinto I, Iaccino E. Development of Cyclic Peptides Targeting the Epidermal Growth Factor Receptor in Mesenchymal Triple-Negative Breast Cancer Subtype. Cells 2023; 12:cells12071078. [PMID: 37048151 PMCID: PMC10093212 DOI: 10.3390/cells12071078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy characterized by the lack of expression of estrogen and progesterone receptors and amplification of human epidermal growth factor receptor 2 (HER2). Being the Epidermal Growth Factor Receptor (EGFR) highly expressed in mesenchymal TNBC and correlated with aggressive growth behavior, it represents an ideal target for anticancer drugs. Here, we have applied the phage display for selecting two highly specific peptide ligands for targeting the EGFR overexpressed in MDA-MB-231 cells, a human TNBC cell line. Molecular docking predicted the peptide-binding affinities and sites in the extracellular domain of EGFR. The binding of the FITC-conjugated peptides to human and murine TNBC cells was validated by flow cytometry. Confocal microscopy confirmed the peptide binding specificity to EGFR-positive MDA-MB-231 tumor xenograft tissues and their co-localization with the membrane EGFR. Further, the peptide stimulation did not affect the cell cycle of TNBC cells, which is of interest for their utility for tumor targeting. Our data indicate that these novel peptides are highly specific ligands for the EGFR overexpressed in TNBC cells, and thus they could be used in conjugation with nanoparticles for tumor-targeted delivery of anticancer drugs.
Collapse
Affiliation(s)
- Nancy Nisticò
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Annamaria Aloisio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Lupia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
- Net4Science srl, University “Magna Græcia”, 88100 Catanzaro, Italy
| | - Anna Maria Zimbo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Domenico Maisano
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Rossella Russo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Teresa Mancuso
- “Annunziata” Regional Hospital Cosenza, 87100 Cosenza, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela Omodei
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy
| | - Giuliana Salvatore
- Dipartimento di Scienze Motorie e del Benessere, Università degli studi di Napoli “Parthenope”, 80133 Naples, Italy
- CEINGE- Biotecnologie Avanzate S.C.A.R.L., 80145 Naples, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
32
|
Li C, Hao M, Fang Z, Ding J, Duan S, Yi F, Wei Y, Zhang W. PARP inhibitor plus chemotherapy versus chemotherapy alone in patients with triple-negative breast cancer: a systematic review and meta-analysis based on randomized controlled trials. Cancer Chemother Pharmacol 2023; 91:203-217. [PMID: 36725727 DOI: 10.1007/s00280-023-04506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Chemotherapy is the standard treatment for triple-negative breast cancer (TNBC). Whether the addition of PARP inhibitors improves treatment efficacy remains controversial clinically. Thus, we performed a meta-analysis to compare the efficacy and safety of combination treatment (PC) and chemotherapy alone (CA). METHODS Relevant studies were identified through searches of 7 databases. The primary endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS We screened 317 studies and included seven RCTs involving 2091 patients in the final analysis. PC tended to have better efficacy than CA according to PFS (HR [hazard ratio]: 0.83 [0.75, 0.93], p = 0.001), OS (HR: 0.89 [0.76,1.03], p = 0.11) and overall response rate (ORR) (RR [risk ratio]: 1.19 [0.97,1.46], p = 0.10). However, grade 3-5 AEs (RR: 1.50 [0.87,2.61], p = 0.15) were observed in the PC group. In the PC arm, the 10 most-reported grade 3-5 AEs were neutropenia (62.8%), anemia (28.5%), thrombocytopenia (26.4%), lymphopenia (19.05%), leukopenia (16.9%), fatigue (5%), heart failure (4.76%), lung infection (4.76%), thromboembolic events (4.76%) and ventricular tachycardia (4.76%). Similar results for pathological complete response (pCR), total AEs, rate of complete response (CR), stable disease (SD) and progressive disease (PD), breast conservation rate (BCR), and drug discontinuation (DD) rate were found between the two groups. CONCLUSIONS For TNBC treatment, the combination of PARP inhibitors and chemotherapy appears to be superior to chemotherapy alone with better antitumor efficacy. However, its higher rate of AEs needs to be taken seriously. More high-quality RCTs are needed to confirm these results.
Collapse
Affiliation(s)
- Chenxi Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Meiqi Hao
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zige Fang
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jiatong Ding
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Sijia Duan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fengming Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
33
|
Li C, Geng C. GLIS Family Zinc Finger 3 Promotes Triple-Negative Breast Cancer Progression by Inducing Cell Proliferation, Migration and Invasion, and Activating the NF-κB Signaling Pathway. Biol Pharm Bull 2023; 46:209-218. [PMID: 36724950 DOI: 10.1248/bpb.b22-00595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Triple-negative breast cancer (TNBC) puts a great threat to women's health. GLIS family zinc finger 3 (GLIS3) belongs to the GLI transcription factor family and acts as a critical factor in cancer progression. Nevertheless, the part of GLIS3 played in TNBC is not known. Immunohistochemical (IHC) staining analysis displayed that GLIS3 was highly expressed in TNBC tissues. The effect of GLIS3 on the malignant phenotype of TNBC was tested in two different cell lines according to GLIS3 regulation. Upregulation of GLIS3 promoted the proliferation, migration, and invasion of TNBC cell lines, whereas the knockdown of GLIS3 suppressed these tumor activities. Inhibition of GLIS3 induced TNBC cell apoptosis. Furthermore, study as immunofluorescence and electrophoretic mobility shift assay confirmed that the nuclear factor-κB (NF-κB) signaling pathway activated by GLIS3 played an important role in TNBC cells' malignant phenotype. In conclusion, the present work demonstrated that GLIS3 acts as a crucial element in TNBC progression via activating the NF-κB signaling pathway. Accordingly, above mentioned findings indicated that modulation of GLIS3 expression is a potential tactic to interfere with the progression of TNBC.
Collapse
Affiliation(s)
- Chenhao Li
- Diagnostic and Therapeutic Center for Breast Disease, The Fourth Hospital of Hebei Medical University.,The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital
| | - Cuizhi Geng
- Diagnostic and Therapeutic Center for Breast Disease, The Fourth Hospital of Hebei Medical University.,Key Laboratory of Molecular Medicine of Breast Cancer in Hebei
| |
Collapse
|
34
|
Efficacy and Safety of Immune Checkpoint Inhibitors in Triple-negative Breast Cancer: A Study Based on 41 Cohorts Incorporating 6558 Participants. J Immunother 2023; 46:29-42. [PMID: 36378154 DOI: 10.1097/cji.0000000000000447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
The project was designed to investigate the efficacy and safety of immune checkpoint inhibitors (ICIs) in triple-negative breast cancer (TNBC). Electronic databases were screened to identify relevant trials. The primary endpoints were prognostic parameters and adverse events (AEs) through pooled rate, odds ratio, and hazard ratio (HR) with 95% CI. Totally, 6558 TNBC patients from 41 cohorts were included. The pooled pathologic complete response rate (odds ratio=2.03, 95% CI: 1.35-3.06, P =0.0007) and event-free survival (HR=0.84, 95% CI: 0.73-0.96, P =0.0100) of ICIs plus chemotherapy was higher than that of chemotherapy-alone in early-stage TNBC. For metastatic TNBC, compared with chemotherapy-alone, the addition of ICIs prolonged the progression-free survival (PFS) (HR=0.92, 95% CI: 0.88-0.96, P <0.0001); the improvement also existed in the following 3 subgroups: programmed cell death-ligand 1 positive, race of White and Asian, and patients without previous neoadjuvant or adjuvant chemotherapy; however, the benefit of the combined regimen was not observed in overall survival (OS) (HR=0.95; 95% CI: 0.89-1.03, P =0.2127). In addition, the pooled rates of OS, PFS, and objective response rate of ICIs plus chemotherapy were better than those of ICIs plus targeted therapy or ICIs-alone. In the safety analysis, compared with chemotherapy-alone, ICIs plus chemotherapy increased immune-related AEs and several serious AE. The regimen of ICIs plus chemotherapy is promising in both early-stage and metastatic TNBC, while the increased serious AE should not be neglected. Furthermore, the pooled rates of OS, PFS, and objective response rate of ICIs plus chemotherapy were better than those of ICIs plus targeted therapy or ICIs-alone.
Collapse
|
35
|
Zhang J, Wang Z, Liang Z, Jin C, Shi Y, Fan M, Hu X, Wan Y. NFIC1 inhibits the migration and invasion of MDA-MB-231 cells through S100A2-mediated inactivation of MEK/ERK pathway. Arch Biochem Biophys 2023; 734:109497. [PMID: 36574914 DOI: 10.1016/j.abb.2022.109497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
NFIC is a potent transcriptional factor involved in many physiological and pathological processes, including tumorigenesis. However, the role of NFIC1, the longest isoform of NFIC, in the progression of triple negative breast cancer (TNBC) remains elusive. Our study demonstrates that overexpression of NFIC1 inhibits the migration and invasion of TNBC MDA-MB-231 cells. NFIC1 regulates the expression of S100A2, and knockdown of S100A2 reverses the inhibitive effects of NFIC1 on the migration and invasion of MDA-MB-231 cells. Furthermore, knockdown of S100A2 activates the MEK/ERK signaling transduction pathway that is inhibited by NFIC1 overexperssion. Treatment with MEK/ERK pathway inhibitor, U0126, abolishes the effects of S100A2 knockdown. In addition, overexpression of NFIC1 in MDA-MB-231 cells increases the expression of epithelial markers and decreases the expression of mesenchymal markers, and these effects could also be reversed by knockdown of S100A2. Collectively, these results demonstrate that NFIC1 inhibits the Epithelial-mesenchymal transition (EMT) of MDA-MB-231 cells by regulating S100A2 expression, which suppress the activation of MEK/ERK pathway. Therefore, our study confirms the role of NFIC1 as a tumor repressor in TNBC, and reveals the molecular mechanism through which NFIC1 inhibits the migration and invasion of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Jing Zhang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China; School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Zhaoying Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China; School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Zehua Liang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Chanjuan Jin
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Yueru Shi
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Mingyue Fan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China; School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Xin Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, China.
| |
Collapse
|
36
|
Zhu Y, Zhang J, Yu L, Xu S, Chen L, Wu K, Kong L, Lin W, Xue J, Wang Q, Lin Y, Chen X. SENP3 promotes tumor progression and is a novel prognostic biomarker in triple-negative breast cancer. Front Oncol 2023; 12:972969. [PMID: 36698419 PMCID: PMC9868814 DOI: 10.3389/fonc.2022.972969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background The clinical outcome of triple-negative breast cancer (TNBC) is poor. Finding more targets for the treatment of TNBC is an urgent need. SENPs are SUMO-specific proteins that play an important role in SUMO modification. Among several tumor types, SENPs have been identified as relevant biomarkers for progression and prognosis. The role of SENPs in TNBC is not yet clear. Methods The expression and prognosis of SENPs in TNBC were analyzed by TCGA and GEO data. SENP3 coexpression regulatory networks were determined by weighted gene coexpression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and Cox univariate analyses were used to develop a risk signature based on genes associated with SENP3. A time-dependent receiver operating characteristic (ROC) analysis was employed to evaluate a risk signature's predictive accuracy and sensitivity. Moreover, a nomogram was constructed to facilitate clinical application. Results The prognostic and expression effects of SENP family genes were validated using the TCGA and GEO databases. SENP3 was found to be the only gene in the SENP family that was highly expressed and associated with an unfavorable prognosis in TNBC patients. Cell functional experiments showed that knockdown of SENP3 leads to growth, invasion, and migration inhibition of TNBC cells in vitro. By using WGCNA, 273 SENP3-related genes were identified. Finally, 11 SENP3-related genes were obtained from Cox univariate analysis and LASSO regression. Based on this, a prognostic risk prediction model was established. The risk signature of SENP3-related genes was verified as an independent prognostic marker for TNBC patients. Conclusion Among SENP family genes, we found that SENP3 was overexpressed in TNBC and associated with a worse prognosis. SENP3 knockdown can inhibit tumor proliferation, invasion, and migration. In TNBC patients, a risk signature based on the expression of 11 SENP3-related genes may improve prognosis prediction. The established risk markers may be promising prognostic biomarkers that can guide the individualized treatment of TNBC patients.
Collapse
Affiliation(s)
- Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiasheng Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangfei Yu
- Department of Breast Surgery, the First Hospital of Fuzhou, Fuzhou, China
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lingjun Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiajie Xue
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingshui Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China,*Correspondence: Xiangjin Chen, ; Yao Lin, ; Qingshui Wang,
| | - Yao Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China,*Correspondence: Xiangjin Chen, ; Yao Lin, ; Qingshui Wang,
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,*Correspondence: Xiangjin Chen, ; Yao Lin, ; Qingshui Wang,
| |
Collapse
|
37
|
Shi X, Zhang W, Bao X, Liu X, Yang M, Yin C. Eugenol modulates the NOD1-NF-κB signaling pathway via targeting NF-κB protein in triple-negative breast cancer cells. Front Endocrinol (Lausanne) 2023; 14:1136067. [PMID: 36923216 PMCID: PMC10009163 DOI: 10.3389/fendo.2023.1136067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The most aggressive subtype of breast cancer, triple-negative breast cancer (TNBC), has a worse prognosis and a higher probability of relapse since there is a narrow range of treatment options. Identifying and testing potential therapeutic targets for the treatment of TNBC is of high priority. METHODS Using a transcriptional signature of triple-negative breast cancer collected from Gene Expression Omnibus (GEO), CMap was utilized to reposition compounds for the treatment of TNBC. CCK8 and colony formation experiments were performed to detect the effect of the candidate drug on the proliferation of TNBC cells. Meanwhile, transwell and wound healing assay were implemented to detect cell metastasis change caused by the candidate drug. Moreover, the proteomic approach was presently ongoing to evaluate the underlying mechanism of the candidate drug in TNBC. Furthermore, drug affinity responsive target stability (DARTS) coupled with LC-MS/MS was carried out to explore the potential drug target candidate in TNBC cells. RESULTS We found that the most widely used medication, eugenol, reduced the growth and metastasis of TNBC cells. According to the underlying mechanism revealed by proteomics, eugenol could inhibit TNBC cell proliferation and metastasis via the NOD1-NF-κB signaling pathway. DARTS experiment further revealed that eugenol may bind to NF-κB in TNBC cells. CONCLUDES Our findings pointed out that eugenol was a potential candidate drug for the treatment of TNBC.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Pharmacy, Yantai University, Yantai, China
| | - Weiwei Zhang
- Department of Pharmacy, Yantai University, Yantai, China
| | - Xiao Bao
- Pharmacy Department, Wenzhou Nursing School, Wenzhou, China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Yang
- Obstetrics Department, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Chengliang Yin
- Macau University of Science and Technology, Faculty of Medicine, Macau, Macau SAR, China
- *Correspondence: Chengliang Yin,
| |
Collapse
|
38
|
Akter Z, Khan FZ, Khan MA. Gold Nanoparticles in Triple-Negative Breast Cancer Therapeutics. Curr Med Chem 2023; 30:316-334. [PMID: 34477507 DOI: 10.2174/0929867328666210902141257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer with enhanced metastasis and poor survival. Though chemotherapy, radiotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), and gene delivery are used to treat TNBC, various side effects limit these therapeutics against TNBC. In this review article, we have focused on the mechanism of action of gold nanoparticles (AuNPs) to enhance the efficacy of therapeutics with targeted delivery on TNBC cells. METHODS Research data were accumulated from PubMed, Scopus, Web of Science, and Google Scholar using searching criteria "gold nanoparticles and triple-negative breast cancer" and "gold nanoparticles and cancer". Though we reviewed many old papers, the most cited papers were from the last ten years. RESULTS Various studies indicate that AuNPs can enhance bioavailability, site-specific drug delivery, and efficacy of chemotherapy, radiotherapy, PTT, and PDT as well as modulate gene expression. The role of AuNPs in the modulation of TNBC therapeutics through the inhibition of cell proliferation, progression, and metastasis has been proved in vitro and in vivo studies. As these mechanistic actions of AuNPs are most desirable to develop drugs with enhanced therapeutic efficacy against TNBC, it might be a promising approach to apply AuNPs for TNBC therapeutics. CONCLUSION This article reviewed the mechanism of action of AuNPs and their application in the enhancement of therapeutics against TNBC. Much more attention is required for studying the role of AuNPs in developing them either as a single or synergistic anticancer agent against TNBC.
Collapse
Affiliation(s)
- Zakia Akter
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas, USA
| | - Fabiha Zaheen Khan
- Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Md Asaduzzaman Khan
- Key laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
39
|
Zhang Y, Wang Q, Yang WK, Wang YS, Zhou Q, Lin J, Wei XX, Liang T, Liu T, Fan WT, Liang L, Xu YN. Development of an immune-related prognostic biomarker for triple-negative breast cancer. Ann Med 2022; 54:1212-1220. [PMID: 35481432 PMCID: PMC9068007 DOI: 10.1080/07853890.2022.2067894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose: Oncology studies employing digital dissection methodologies have provided some insight on the biological features of tumor microenvironment of Triple-negative breast cancer (TNBC), but molecular diagnostics rarely have therapeutic impact. We aimed to identify a novel prognostic biomarker to investigate immune characteristics of TNBC using transcriptomic features.Patients and Methods: We extracted whole transcriptome from breast cancer tissue of 30 TNBC patients and then used bioinformatics approaches to characterize the different immune cell contents in tumor tissue and para-cancerous tissue. We extract 2 indicators to describe the major differences in immune infiltration in the microenvironment between tumor tissue and para-cancerous tissue. We then combined the 2 indicators that represent the levels of increased and decreased infiltration in each sample to obtain the Immune Infiltration Score (IIS). Then we compared the tumor-infiltrating immune cell contents and immune infiltrating status in TNBC samples with CIBERSORT and ESTIMATE score to validate the IIS. Finally, 132 TNBC patients from the Cancer Genome Atlas program (TCGA) dataset was used to validate the predictive power of IIS.Results: 4 types of upregulated and 4 types of downregulated immune cells were identified in the tumor tissue samples of the TNBC patients. Then we developed a novel biomarker, IIS. Results showed that IIS score can clearly separate cancer and para-cancerous tissue. Using the same cutoff value of 0 in the TNBC-TCGA cohort, we show that those patients with a higher IIS had significantly higher PD-L1 expression and shorter progression-free survival time than those with a lower IIS value, indicating IIS score can be generalized to other TNBC datasets.Conclusion: we explored the immune infiltration landscape in 30 TNBC patients and provided IIS as a novel and reliable biomarker to evaluate the progression-free survival and prognosis of the TNBC patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, The First Affiliated Hospital of Guangdong University of Pharmacy, Guangzhou, China.,Department of Pathology, Maternity & Child Healthcare Hospital of Longhua District, Shenzhen, China
| | - Quan Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wei-Kang Yang
- Department of Prevention and Health Care, Maternity & Child Healthcare Hospital of Longhua District, Shenzhen, China
| | - Yong-Si Wang
- Guangzhou Huayin Medical Laboratory Center. Ltd, Guangzhou, China
| | - Qiao Zhou
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, China
| | - Jie Lin
- Department of Pathology, Southern Medical University School of Basic Medical Sciences, Guangzhou, China
| | - Xu-Xuan Wei
- Department of Pathology, The First Affiliated Hospital of Guangdong University of Pharmacy, Guangzhou, China
| | - Tian Liang
- Department of Pathology, The First Affiliated Hospital of Guangdong University of Pharmacy, Guangzhou, China
| | - Tongtong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wen-Tao Fan
- Guangzhou Huayin Medical Laboratory Center. Ltd, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - You-Nian Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Myricetin-induced apoptosis in triple-negative breast cancer cells through inhibition of the PI3K/Akt/mTOR pathway. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:248. [PMID: 36209343 DOI: 10.1007/s12032-022-01856-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/17/2022] [Indexed: 10/10/2022]
Abstract
Breast cancer is still a severe origin of malignant demise in females, and its prevalence is rising worldwide. Triple-negative breast cancer (TNBC) is a diversified aggressive breast tumor distinguished by inadequate prognosis, early recurrence, high invasion, and extremely metastasized disease. Chemotherapy is being used to treat it; however, it has low efficacy. On the other hand, with the growing number of corroborations on subtypes of TNBC and molecular biology of tumors, significant advancement in TNBC targeted treatment has been made. Myricetin (MYR), a polyhydroxyflavonol compound widely found in nature, has been shown to possess anticancer effects in various cancers. Though, the mechanisms and impacts of MYR on metastasis of TNBC remain unclear. Early and late apoptotic cell death and cell proliferation inhibition were observed in MYR-treated TNBC cells. MYR modulated cell cycle, pro-angiogenic, and invasion effects via the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Protein kinase B (PKB/also known as AKT) signaling pathways. Moreover, it regulates the expression of MAPK, PI3K/AKT/mTOR, IκB/NF-κB, Hippo, STAT3, GSK-3β, Nrf2/HO-1, TLR, eNOS / NO, ACE, and AChE. Here, we review the anticancer effects of MYR for TNBC and target the PI3K/AKT/mTOR pathway as a therapeutic target for the fruitful treatment of TNBC to summarize MYR's therapeutic potential.
Collapse
|
41
|
Sun A, Tian X, Yang W, Lin Q. Overexpression of SCYL1 Is Associated with Progression of Breast Cancer. Curr Oncol 2022; 29:6922-6932. [PMID: 36290821 PMCID: PMC9600755 DOI: 10.3390/curroncol29100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023] Open
Abstract
SCYL1 is a pseudokinase and plays roles in cell division and gene transcription, nuclear/cytoplasmic shuttling of tRNA, protein glycosylation, and Golgi morphology. However, the role of SCYL1 in human breast cancer progression remains largely unknown. In this study, we determined expression of SCYL1 in breast cancer by searching the Cancer Genome Atlas (TCGA) and Tumor Immunoassay Resource (TIMER) databases. Meanwhile, we collected breast tumor tissue samples from 247 cases and detected expression of SCYL1 in the tumors using the tissue microarray assay (TMA). Association of SCYL1 with prognosis of breast cancer was determined based on the PrognoScan database. The results have shown that SCYL1 is overexpressed in breast cancer, and the expression of SCYL1 is associated with poor clinical outcomes of breast cancer patients. Furthermore, knockdown of SCYL1 by shRNAs significantly inhibited the proliferation and migration of breast cancer cells. Taken together, our data suggest that SCYL1 is a biomarker for poor prognosis of breast cancer, has a promoting role in breast cancer progression, and is a potential target for breast cancer therapy.
Collapse
|
42
|
MRI Images-Based Evaluation of Efficacy of Neoadjuvant Chemotherapy for Breast Cancer and Its Effect on Depression and Immune Function of Patients. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8685680. [PMID: 36118949 PMCID: PMC9467715 DOI: 10.1155/2022/8685680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/09/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the therapeutic value of neoadjuvant chemotherapy for breast cancer (BC) based on magnetic resonance imaging (MRI) and to evaluate its effect on depressive mood and immune function in patients. 70 female patients with BC who received neoadjuvant chemotherapy were selected for the experiment to comprehensively evaluate the MRI image findings, immune cell levels before and after chemotherapy, as well as the depression score and influencing factors of the patients during chemotherapy. The results showed that 49 patients (70%) responded to treatment, and MRI showed that the breast mass after chemotherapy was significantly reduced. 55 patients experienced depressive mood during chemotherapy, and the incidence of depression was 78.5%. Adverse symptoms such as pain, worry, sadness, vertigo, and nausea are important factors in the development of depression in patients. However, there were no significant changes in the levels of CD4+, CD8+, CD4+/CD8+, and killer cells before and after chemotherapy, and only B cells showed a significant decrease (9.78 ± 3.65% and 7.63 ± 3.65%) (P < 0.05). In summary, neoadjuvant chemotherapy can effectively shrink the breast mass and provide favorable conditions for subsequent surgery, and its clinical efficacy can be more accurately assessed by MRI. Neoadjuvant chemotherapy has little effect on the immune function of patients, but it will promote patients to experience depression. It provides a reference for the clinical treatment and prognosis of BC patients.
Collapse
|
43
|
Mahmoud R, Ordóñez-Morán P, Allegrucci C. Challenges for Triple Negative Breast Cancer Treatment: Defeating Heterogeneity and Cancer Stemness. Cancers (Basel) 2022; 14:cancers14174280. [PMID: 36077812 PMCID: PMC9454775 DOI: 10.3390/cancers14174280] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
The Triple Negative Breast Cancer (TNBC) subtype is known to have a more aggressive clinical course compared to other breast cancer subtypes. Targeted therapies for this type of breast cancer are limited and patients are mostly treated with conventional chemo- and radio-therapies which are not specific and do not target resistant cells. Therefore, one of the major clinical challenges is to find compounds that target the drug-resistant cell populations which are responsible for reforming secondary tumours. The molecular profiling of the different TNBC subtypes holds a promise for better defining these resistant cells specific to each tumour. To this end, a better understanding of TNBC heterogeneity and cancer stemness is required, and extensive genomic analysis can help to understand the disease complexity and distinguish new molecular drivers that can be targeted in the clinics. The use of persister cancer cell-targeting therapies combined with other therapies may provide a big advance to improve TNBC patients' survival.
Collapse
Affiliation(s)
- Rinad Mahmoud
- Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Paloma Ordóñez-Morán
- Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence: (P.O.-M.); (C.A.)
| | - Cinzia Allegrucci
- Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- SVMS, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Correspondence: (P.O.-M.); (C.A.)
| |
Collapse
|
44
|
Lan A, Jin Y, Wang Y, Ding N, Wang Y, Dai Y, Jiang L, Tang Z, Peng Y, Liu S. Association of serum reproductive hormones changes after neoadjuvant chemotherapy with hormone receptors expression alterations and survival outcomes in breast cancer. Front Surg 2022; 9:947218. [PMID: 36117838 PMCID: PMC9470751 DOI: 10.3389/fsurg.2022.947218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose This study aimed to determine the effect of neoadjuvant chemotherapy (NAC) on circulating levels of reproductive hormones and evaluate the correlation of hormone changes after NAC with hormone receptors expression alterations and relapse-free survival (RFS) outcomes in breast cancer. Methods Information from 181 breast cancer patients who received NAC was retrospectively analyzed. For hormones parameters, the median and interquartile range (IQR) were provided at baseline and the end of NAC then was compared by Wilcoxon signed-rank test. Categorical variables were represented as numbers and percentages and were compared via two-sided chi-square and Fisher's tests. The RFS outcomes were compared between patients according to hormone changes using the log-rank test. Univariate and multivariate survival analyses with hazard ratios (HR) and 95% confidence intervals (95% CI) were carried out using Cox regression. Results Sex steroids including estradiol, progesterone, testosterone, and dehydroepiandrosterone sulfate (DHEAS) levels decreased significantly after NAC among both premenopausal and postmenopausal patients (all P < 0.05). Decreased estradiol levels were associated with reduced progesterone receptor (PR) expression (P = 0.030). In multivariate survival analysis, the non-decreased progesterone level was strongly associated with worse RFS (non-decreased vs. decreased, HR = 7.178, 95% CI 2.340–22.019, P = 0.001). Patients with decreased progesterone levels exhibited better 3-year RFS compared with those with non-decreased (87.6% vs. 58.3%, log-rank, P = 0.001). Conclusion Multiple reproductive hormone levels were influenced by NAC. The change in estradiol level had a positive connection with PR expression alteration. Furthermore, an inverse association between the change in progesterone level and RFS outcomes was found. These findings may provide a theoretical basis for pre-operative endocrine therapy combined with NAC in breast cancer patients.
Collapse
|
45
|
Cortes J, Rugo HS, Cescon DW, Im SA, Yusof MM, Gallardo C, Lipatov O, Barrios CH, Perez-Garcia J, Iwata H, Masuda N, Torregroza Otero M, Gokmen E, Loi S, Guo Z, Zhou X, Karantza V, Pan W, Schmid P. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N Engl J Med 2022; 387:217-226. [PMID: 35857659 DOI: 10.1056/nejmoa2202809] [Citation(s) in RCA: 408] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In an interim analysis of this phase 3 trial, the addition of pembrolizumab to chemotherapy resulted in longer progression-free survival than chemotherapy alone among patients with advanced triple-negative breast cancer whose tumors expressed programmed death ligand 1 (PD-L1) with a combined positive score (CPS; the number of PD-L1-staining tumor cells, lymphocytes, and macrophages, divided by the total number of viable tumor cells, multiplied by 100) of 10 or more. The results of the final analysis of overall survival have not been reported. METHODS We randomly assigned patients with previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer in a 2:1 ratio to receive pembrolizumab (200 mg) every 3 weeks plus the investigator's choice of chemotherapy (nanoparticle albumin-bound paclitaxel, paclitaxel, or gemcitabine-carboplatin) or placebo plus chemotherapy. The primary end points were progression-free survival (reported previously) and overall survival among patients whose tumors expressed PD-L1 with a CPS of 10 or more (the CPS-10 subgroup), among patients whose tumors expressed PD-L1 with a CPS of 1 or more (the CPS-1 subgroup), and in the intention-to-treat population. Safety was also assessed. RESULTS A total of 847 patients underwent randomization: 566 were assigned to the pembrolizumab-chemotherapy group, and 281 to the placebo-chemotherapy group. The median follow-up was 44.1 months. In the CPS-10 subgroup, the median overall survival was 23.0 months in the pembrolizumab-chemotherapy group and 16.1 months in the placebo-chemotherapy group (hazard ratio for death, 0.73; 95% confidence interval [CI], 0.55 to 0.95; two-sided P = 0.0185 [criterion for significance met]); in the CPS-1 subgroup, the median overall survival was 17.6 and 16.0 months in the two groups, respectively (hazard ratio, 0.86; 95% CI, 0.72 to 1.04; two-sided P = 0.1125 [not significant]); and in the intention-to-treat population, the median overall survival was 17.2 and 15.5 months, respectively (hazard ratio, 0.89; 95% CI, 0.76 to 1.05 [significance not tested]). Adverse events of grade 3, 4, or 5 that were related to the trial regimen occurred in 68.1% of the patients in the pembrolizumab-chemotherapy group and in 66.9% in the placebo-chemotherapy group, including death in 0.4% of the patients in the pembrolizumab-chemotherapy group and in no patients in the placebo-chemotherapy group. CONCLUSIONS Among patients with advanced triple-negative breast cancer whose tumors expressed PD-L1 with a CPS of 10 or more, the addition of pembrolizumab to chemotherapy resulted in significantly longer overall survival than chemotherapy alone. (Funded by Merck Sharp and Dohme; KEYNOTE-355 ClinicalTrials.gov number, NCT02819518.).
Collapse
Affiliation(s)
- Javier Cortes
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Hope S Rugo
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - David W Cescon
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Seock-Ah Im
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Mastura M Yusof
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Carlos Gallardo
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Oleg Lipatov
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Carlos H Barrios
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Jose Perez-Garcia
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Hiroji Iwata
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Norikazu Masuda
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Marco Torregroza Otero
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Erhan Gokmen
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Sherene Loi
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Zifang Guo
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Xuan Zhou
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Vassiliki Karantza
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Wilbur Pan
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| | - Peter Schmid
- From the International Breast Cancer Center, Pangaea Oncology, Quirónsalud Group, Barcelona (J.C., J.P.-G.), and the Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid (J.C.) - both in Spain; the Department of Medicine, University of California San Francisco Comprehensive Cancer Center, San Francisco (H.S.R.); Princess Margaret Cancer Centre, Toronto (D.W.C.); Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul (S.-A.I.); Cancer Center at Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia (M.M.Y.); the Oncology Institute, Arturo Lopez Perez Foundation, Santiago, Chile (C.G.); the Department of Oncology, Republican Clinical Oncology Dispensary, Ufa, Russia (O.L.); the Oncology Research Unit, Hospital São Lucas, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (C.H.B.); the Department of Breast Oncology, Aichi Cancer Center Hospital (H.I.), and the Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine (N.M.) - both in Nagoya, Japan; the Department of Hematology and Oncology, Oncomedica, Montería, Colombia (M.T.O.); Ege University Medical Faculty, Izmir, Turkey (E.G.); the Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville - both in Australia (S.L.); Merck, Rahway, NJ (Z.G., X.Z., V.K., W.P.); and the Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London (P.S.)
| |
Collapse
|
46
|
Cui S, Zhang Y, Xing L, Li R, Piao Y, Liu H. Circular RNA dehydrodolichyl diphosphate synthase facilitated triple-negative breast cancer progression via miR-362-3p/DDX5 axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1483-1494. [PMID: 35343646 DOI: 10.1002/tox.23500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/25/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a common hypotype of breast cancer. Circular RNAs (circRNAs) are burgeoning serve as vital controllers in numerous tumors. Nevertheless, the expression and regulatory mode of circRNAs in TNBC are still indistinct. This paper aimed to reveal the function and molecular mechanism of circular RNA dehydrodolichyl diphosphate synthase (circDHDDS) in TNBC. METHODS The contents of circDHDDS, DHDDS mRNA, microRNA-362-3p (miR-362-3p) and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 (DDX5) were indicated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) assay were executed to assess cell proliferation. The flow cytometry assay was utilized to detect cell apoptosis. The transwell assay and tube formation assay were applied to measure cell migration, invasion and angiogenesis. The targeted relationships of miR-362-3p and circDHDDS or DDX5 were forecasted and detected by dual-luciferase reporter assay. The in vivo test was implemented to confirm the effect of circDHDDS. RESULTS The contents of circDHDDS and DDX5 were increased, and miR-362-3p level was decreased in TNBC. CircDHDDS deficiency reserved cell proliferation, migration, invasion and angiogenesis, while facilitated cell apoptosis in TNBC cells. Furthermore, miR-362-3p was validated to exert a tumor repressive effect in TNBC cells by suppressing DDX5. Moreover, DDX5 could regulate the development of TNBC. The experimental data exposed that levels of miR-362-3p presented noteworthy negative correlation with circDHDDS and DDX5, while circDHDDS and DDX5 exhibited significant positive correlation. In mechanism, circDHDDS bound to miR-362-3p to modulate DDX5 expression. In addition, circDHDDS knock-down also attenuated tumor growth. CONCLUSION CircDHDDS expedited TNBC by swelling DDX5 via adapting miR-362-3p.
Collapse
Affiliation(s)
- Suping Cui
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Head and Neck Molecular Pathological Diagnosis, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yong Zhang
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Head and Neck Molecular Pathological Diagnosis, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li Xing
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Head and Neck Molecular Pathological Diagnosis, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rui Li
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Head and Neck Molecular Pathological Diagnosis, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yingshi Piao
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Head and Neck Molecular Pathological Diagnosis, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Honggang Liu
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Head and Neck Molecular Pathological Diagnosis, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Neoadjuvant Chemotherapy Combined with Breast-Conserving Surgery in the Treatment of Triple-Negative Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7847889. [PMID: 35664559 PMCID: PMC9162830 DOI: 10.1155/2022/7847889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022]
Abstract
Objective To study the clinical efficacy and quality of life of neoadjuvant chemotherapy combined with breast-conserving surgery in the treatment of triple-negative breast cancer. Methods A retrospective analysis of 100 patients with triple-negative breast cancer was performed from May 2012 to April 2017. The patients were divided into an observation group and a control group according to different treatment methods, with 50 cases in each group. The control group received AC-T sequential chemotherapy after breast-conserving surgery, and the observation group received AC-T sequential chemotherapy before breast-conserving surgery (neoadjuvant). The operation time, postoperative immune function, postoperative tumor markers, postoperative efficacy, and postoperative complications of the two groups of patients were statistically analyzed, and the quality of life of the two groups of patients 1 year after the operation was compared. Results Compared with the control group, the operation time and blood loss of the observation group were significantly reduced, and the difference was statistically significant (P < 0.05). The observation group produced significantly higher total effective rate after treatment (82.00% vs. 56.00%) (P < 0.05). The observation group exhibited superior immune function indexes CD3, CD4, and CD8 after operation when compared with the control group (P < 0.05). There was no significant difference in serum tumor marker levels between the two groups before surgery and after surgery (both P > 0.05). Three days after operation, the levels of procalcitonin (PCT) and TNF-α in the observation group were lower than those in the control group (P < 0.05). There was no significant difference in the local recurrence rate, distant metastasis rate, and 3-year survival rate between the two groups (P > 0.05); however, the postoperative complication rate of the observation group was 6.00%, which was significantly lower than that of the control group (30%) (P < 0.05). The overall health, physiological function, physiological function, and body pain of the observation group were significantly higher than those of the control group (P < 0.05). Conclusion Neoadjuvant chemotherapy combined with breast-conserving surgery for triple-negative breast cancer can not only improve the therapeutic effect of patients and reduce the incidence of postoperative adverse reactions but also significantly improve the quality of life of patients after surgery.
Collapse
|
48
|
Kong L, Liu X, Yu B, Yuan Y, Zhao Q, Chen Y, Qu B, Du X, Tian X, Shao R, Wang Y. Cinobufacini Injection Inhibits the Proliferation of Triple-Negative Breast Cancer Through the Pin1-TAZ Signaling Pathway. Front Pharmacol 2022; 13:797873. [PMID: 35450041 PMCID: PMC9016199 DOI: 10.3389/fphar.2022.797873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC), which is characterized by the total absence of human epidermal growth factor receptor 2 (HER2), progesterone receptor (PR), and estrogen receptor (ER) expression. Cinobufacini injection (CI) is the aqueous extract from the dry skin of Bufo gargarizans, which is broadly used for the treatment of malignant tumors. However, the potential mechanism of CI against TNBC has not been fully revealed. In this study, we found that CI inhibited the proliferation of MDA-MB-231 and 4T1 cells in a time- and dose-dependent manner. RNA-seq data showed that downregulated and upregulated genes were mainly enriched in biological processes related to tumor cell proliferation, including cell cycle arrest and regulation of apoptosis signaling pathways. Indeed, after CI treatment, the protein level of CDK1 and Bcl-2/Bax decreased, indicating that CI induced the cell cycle of MDA-MB-231 arrest in the G2/M phase and increased the rate of apoptosis. Meanwhile, CI significantly inhibited the growth of tumor in vivo, and RNA-seq data showed that the TAZ signaling pathway played a vital role after CI treatment. Both immunohistochemistry and Western blot analysis confirmed the downregulation of Pin1 and TAZ, caused by CI treatment. Furthermore, the bioinformatics analysis indicated that Pin1 and TAZ were indeed elevated in TNBC patients, with poor staging, classification, and patient survival rate. In conclusion, CI effectively inhibited the proliferation of TNBC in vitro and in vivo and induced their apoptosis and cycle arrest through the Pin1–TAZ pathway.
Collapse
Affiliation(s)
- Lu Kong
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bing Yu
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Ye Yuan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianru Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuru Chen
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,INM-Leibniz Institute for New Materials, Saarbruecken, Germany
| | - Xue Du
- Tianjin Union Medical Centre, Tianjin, China
| | - Xiaoxuan Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
49
|
Jimenez JE, Abdelhafez A, Mittendorf EA, Elshafeey N, Yung JP, Litton JK, Adrada BE, Candelaria RP, White J, Thompson AM, Huo L, Wei P, Tripathy D, Valero V, Yam C, Hazle JD, Moulder SL, Yang WT, Rauch GM. A model combining pretreatment MRI radiomic features and tumor-infiltrating lymphocytes to predict response to neoadjuvant systemic therapy in triple-negative breast cancer. Eur J Radiol 2022; 149:110220. [DOI: 10.1016/j.ejrad.2022.110220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
|
50
|
Metz G, Snook K, Sood S, Baron-Hay S, Spillane A, Lamoury G, Carroll S. Breast Radiotherapy after Oncoplastic Surgery-A Multidisciplinary Approach. Cancers (Basel) 2022; 14:1685. [PMID: 35406457 PMCID: PMC8996843 DOI: 10.3390/cancers14071685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Oncoplastic breast surgery encompasses a range of techniques used to provide equitable oncological outcomes compared with standard breast surgery while, simultaneously, prioritizing aesthetic outcomes. While the outcomes of oncoplastic breast surgery are promising, it can add an extra complexity to the treatment paradigm of breast cancer and impact on decision-making surrounding adjuvant therapies, like chemotherapy and radiotherapy. As such, early discussions at the multidisciplinary team meeting with surgeons, medical oncologists, and radiation oncologists present, should be encouraged to facilitate best patient care.
Collapse
Affiliation(s)
- Gabrielle Metz
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia; (S.S.); (S.B.-H.); (G.L.); (S.C.)
| | - Kylie Snook
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (K.S.); (A.S.)
- Breast and Surgical Oncology, The Poche Centre, Sydney, NSW 2060, Australia
- The Mater Hospital, Sydney, NSW 2060, Australia
| | - Samriti Sood
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia; (S.S.); (S.B.-H.); (G.L.); (S.C.)
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (K.S.); (A.S.)
- Breast and Surgical Oncology, The Poche Centre, Sydney, NSW 2060, Australia
- The Mater Hospital, Sydney, NSW 2060, Australia
- Breast and Melanoma Surgery Unit, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Sally Baron-Hay
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia; (S.S.); (S.B.-H.); (G.L.); (S.C.)
| | - Andrew Spillane
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (K.S.); (A.S.)
- Breast and Surgical Oncology, The Poche Centre, Sydney, NSW 2060, Australia
- The Mater Hospital, Sydney, NSW 2060, Australia
- Breast and Melanoma Surgery Unit, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Gillian Lamoury
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia; (S.S.); (S.B.-H.); (G.L.); (S.C.)
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (K.S.); (A.S.)
- The Mater Hospital, Sydney, NSW 2060, Australia
| | - Susan Carroll
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia; (S.S.); (S.B.-H.); (G.L.); (S.C.)
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; (K.S.); (A.S.)
- The Mater Hospital, Sydney, NSW 2060, Australia
| |
Collapse
|