1
|
Zhang Y, Yu Y, Yuan L, Zhang B. EZH2 Promotes Glioma Cell Proliferation, Invasion, and Migration via Mir-142-3p/KCNQ1OT1/HMGB3 Axis : Running Title: EZH2 Promotes Glioma cell Malignant Behaviors. Mol Neurobiol 2024; 61:8668-8687. [PMID: 38556567 DOI: 10.1007/s12035-024-04080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
This study investigates the role and molecular mechanism of EZH2 in glioma cell proliferation, invasion, and migration. EZH2, miR-142-3p, lncRNA KCNQ1OT1, LIN28B, and HMGB3 expressions in glioma tissues and cells were determined using qRT-PCR or Western blot, followed by CCK-8 assay detection of cell viability, Transwell detection of invasion and migration, ChIP analysis of the enrichment of EZH2 and H3K27me3 on miR-142-3p promoter, dual-luciferase reporter assay and RIP validation of the binding of miR-142-3p-KCNQ1OT1 and KCNQ1OT1-LIN28B, and actinomycin D detection of KCNQ1OT1 and HMGB3 mRNA stability. A nude mouse xenograft model and a lung metastasis model were established. EZH2, KCNQ1OT1, LIN28B, and HMGB3 were highly expressed while miR-142-3p was poorly expressed in gliomas. EZH2 silencing restrained glioma cell proliferation, invasion, and migration. EZH2 repressed miR-142-3p expression by elevating the H3K27me3 level. miR-142-3p targeted KCNQ1OT1 expression, and KCNQ1OT1 bound to LIN28B to stabilize HMGB3 mRNA, thereby promoting its protein expression. EZH2 silencing depressed tumor growth and metastasis in nude mice via the miR-142-3p/KCNQ1OT1/HMGB3 axis. In conclusion, EZH2 curbed miR-142-3p expression, thereby relieving the inhibition of KCNQ1OT1 expression by miR-142-3p, enhancing the binding of KCNQ1OT1 to LIN28B, elevating HMGB3 expression, and ultimately accelerating glioma cell proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Neurosurgery, Beijing Fengtai You'anmen Hospital, Beijing, 100069, China
| | - Yong Yu
- Epilepsy Center, Beijing Fengtai You'anmen Hospital, Beijing, 100069, China
| | - Lei Yuan
- Department of Neurosurgery, PLA Rocket Force Characteristic Medical Center, No. 16, Xin Jie Kou Wai Street, Beijing, 100088, China.
| | - Baozhong Zhang
- Department of Neurosurgery, He Bei Hua Ao Hospital, No. 11, the Changcheng West Street, Zhangjiakou, 075000, Hebei Province, China.
| |
Collapse
|
2
|
Zhang S, Zhong R, Younis MR, He H, Xu H, Li G, Yang R, Lui S, Wang Y, Wu M. Hydrogel Applications in the Diagnosis and Treatment of Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39366948 DOI: 10.1021/acsami.4c11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Glioblastoma multiforme (GBM), a common malignant neurological tumor, has boundaries indistinguishable from those of normal tissue, making complete surgical removal ineffective. The blood-brain barrier (BBB) further impedes the efficacy of radiotherapy and chemotherapy, leading to suboptimal treatment outcomes and a heightened probability of recurrence. Hydrogels offer multiple advantages for GBM diagnosis and treatment, including overcoming the BBB for improved drug delivery, controlled drug release for long-term efficacy, and enhanced relaxation properties of magnetic resonance imaging (MRI) contrast agents. Hydrogels, with their excellent biocompatibility and customizability, can mimic the in vivo microenvironment, support tumor cell culture, enable drug screening, and facilitate the study of tumor invasion and metastasis. This paper reviews the classification of hydrogels and recent research for the diagnosis and treatment of GBM, including their applications as cell culture platforms and drugs including imaging contrast agents carriers. The mechanisms of drug release from hydrogels and methods to monitor the activity of hydrogel-loaded drugs are also discussed. This review is intended to facilitate a more comprehensive understanding of the current state of GBM research. It offers insights into the design of integrated hydrogel-based GBM diagnosis and treatment with the objective of achieving the desired therapeutic effect and improving the prognosis of GBM.
Collapse
Affiliation(s)
- Shuaimei Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Renming Zhong
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital, Chengdu, Sichuan 610041, P. R. China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Hualong He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ruiyan Yang
- Department of Biology, Macalester College, Saint Paul, Minnesota 55105, United States
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
3
|
John Hamilton A, Lane S, Werry EL, Suri A, Bailey AW, Mercé C, Kadolsky U, Payne AD, Kassiou M, Treiger Sredni S, Saxena A, Gunosewoyo H. Synthesis and Antitumour Evaluation of Tricyclic Indole-2-Carboxamides against Paediatric Brain Cancer Cells. ChemMedChem 2024; 19:e202400098. [PMID: 38923350 DOI: 10.1002/cmdc.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Antitumour properties of some cannabinoids (CB) have been reported in the literature as early as 1970s, however there is no clear consensus to date on the exact mechanisms leading to cancer cell death. The indole-based WIN 55,212-2 and SDB-001 are both known as potent agonists at both CB1 and CB2 receptors, yet we demonstrate herein that only the former can exert in vitro antitumour effects when tested against a paediatric brain cancer cell line KNS42. In this report, we describe the synthesis of novel 3,4-fused tricyclic indoles and evaluate their functional potencies at both cannabinoid receptors, as well as their abilities to inhibit the growth or proliferation of KNS42 cells. Compared to our previously reported indole-2-carboxamides, these 3,4-fused tricyclic indoles had either completely lost activities, or, showed moderate-to-weak antagonism at both CB1 and CB2 receptors. Compound 23 displayed the most potent antitumour properties among the series. Our results further support the involvement of non-CB pathways for the observed antitumour activities of amidoalkylindole-based cannabinoids, in line with our previous findings. Transcriptomic analysis comparing cells treated or non-treated with compound 23 suggested the observed antitumour effects of 23 are likely to result mainly from disruption of the FOXM1-regulated cell cycle pathways.
Collapse
Affiliation(s)
| | - Samuel Lane
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney NSW, 2006, Australia
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | | | | | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alka Saxena
- Genomics WA, QEII Campus, Nedlands, WA, 6009, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
4
|
Nie L, Jiang T. CircNUP98 promotes the malignant behavior of glioma cells through the miR-520f-3p/ELK4 axis. Int J Dev Neurosci 2024; 84:581-593. [PMID: 38923578 DOI: 10.1002/jdn.10355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Glioma, a formidable form of brain cancer, poses significant challenges in terms of treatment and prognosis. Circular RNA nucleoporin 98 (circNUP98) has emerged as a potential regulator in various cancers, yet its role in glioma remains unclear. Here, we elucidate the functional role of circNUP98 in glioma cell proliferation, invasion, and migration, shedding light on its therapeutic implications. Glioma cells were subjected to si-NUP98 transfection, followed by assessments of cell viability, proliferation, invasion, and migration. Subcellular localization of circNUP98 was determined, and its downstream targets were identified. We delineated the binding relationships between circNUP98 and microRNA (miR)-520f-3p, as well as between miR-520f-3p and ETS transcription factor ELK4 (ELK4). The expression levels of circNUP98/miR-520f-3p/ELK4 were quantified. Our findings demonstrated that circNUP98 was upregulated in glioma cells, and its inhibition significantly attenuated glioma cell proliferation, invasion, and migration. Mechanistically, circNUP98 functioned as a sponge for miR-520f-3p, thereby relieving the inhibitory effect of miR-520f-3p on ELK4. Moreover, inhibition of miR-520f-3p or overexpression of ELK4 partially rescued the suppressive effect of circNUP98 knockdown on glioma cell behaviors. In summary, our study unveils that circNUP98 promotes glioma cell progression via the miR-520f-3p/ELK4 axis, offering novel insights into the therapeutic targeting of circNUP98 in glioma treatment.
Collapse
Affiliation(s)
- Liangqin Nie
- Department of Radiotherapy and Chemotherapy, Ningbo No.2 Hospital, Ningbo City, China
| | | |
Collapse
|
5
|
Mao Q, Qiao Z, Wang Q, Zhao W, Ju H. Construction and validation of a machine learning-based immune-related prognostic model for glioma. J Cancer Res Clin Oncol 2024; 150:439. [PMID: 39352539 PMCID: PMC11445300 DOI: 10.1007/s00432-024-05970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Glioma stands as the most prevalent primary brain tumor found within the central nervous system, characterized by high invasiveness and treatment resistance. Although immunotherapy has shown potential in various tumors, it still faces challenges in gliomas. This study seeks to develop and validate a prognostic model for glioma based on immune-related genes, to provide new tools for precision medicine. METHODS Glioma samples were obtained from a database that includes the ImmPort database. Additionally, we incorporated ten machine learning algorithms to assess the model's performance using evaluation metrics like the Harrell concordance index (C-index). The model genes were further studied using GSCA, TISCH2, and HPA databases to understand their role in glioma pathology at the genomic, molecular, and single-cell levels, and validate the biological function of IKBKE in vitro experiments. RESULTS In this study, a total of 199 genes associated with prognosis were identified using univariate Cox analysis. Subsequently, a consensus prognostic model was developed through the application of machine learning algorithms. In which the Lasso + plsRcox algorithm demonstrated the best predictive performance. The model showed a good ability to distinguish two groups in both the training and test sets. Additionally, the model genes were closely related to immunity (oligodendrocytes and macrophages), and mutation burden. The results of in vitro experiments showed that the expression level of the IKBKE gene had a significant effect on the apoptosis and migration of GL261 glioma cells. Western blot analysis showed that down-regulation of IKBKE resulted in increased expression of pro-apoptotic protein Bax and decreased expression of anti-apoptotic protein Bcl-2, which was consistent with increased apoptosis rate. On the contrary, IKBKE overexpression caused a decrease in Bax expression an increase in Bcl-2 expression, and a decrease in apoptosis rate. Tunel results further confirmed that down-regulation of IKBKE promoted apoptosis, while overexpression of IKBKE reduced apoptosis. In addition, cells with down-regulated IKBKE had reduced migration in scratch experiments, while cells with overexpression of IKBKE had increased migration. CONCLUSION This study successfully constructed a glioma prognosis model based on immune-related genes. These findings provide new perspectives for glioma prognosis assessment and immunotherapy.
Collapse
Affiliation(s)
- Qi Mao
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhi Qiao
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Qiang Wang
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wei Zhao
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Haitao Ju
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
6
|
Quan W, Xu CS, Ma C, Chen X, Yu DH, Li ZY, Wang DW, Tang F, Wan GP, Wan J, Wang ZF, Li ZQ. Anti-tumor effects of telmisartan in glioma-astrocyte non-contact co-cultures: A critical role of astrocytic IL-6-mediated paracrine growth promotion. Int Immunopharmacol 2024; 139:112707. [PMID: 39032472 DOI: 10.1016/j.intimp.2024.112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Telmisartan, an angiotensin II type 1 receptor (AT1R) blocker, exhibits broad anti-tumor activity. However, in vitro, anti-proliferative effects are shown at doses far beyond the therapeutic plasma concentration. Considering the role of tumor microenvironment in glioma progression, glioma-astrocyte co-cultures were employed to test the anti-tumor potential of low-dose telmisartan. When a high dose was required for a direct anti-proliferative effect on glioma cell lines, a low dose significantly inhibited glioma cell proliferation and migration in the co-culture system. Under co-culture conditions, upregulated IL-6 expression in astrocytes played a critical role in glioma progression. Silencing IL-6 in astrocytes or IL-6R in glioma cells reduced proliferation and migration. Telmisartan (5 μM) inhibited astrocytic IL-6 expression, and its anti-tumor effects were reversed by silencing IL-6 or IL-6R and inhibiting signal transducer and activator of transcription 3 (STAT3) activity in glioma cells. Moreover, the telmisartan-driven IL-6 downregulation was not imitated by losartan, an AT1R blocker with little capacity of peroxisome proliferator-activated receptor-gamma (PPARγ) activation, but was eliminated by a PPARγ antagonist, indicating that the anti-glioma effects of telmisartan rely on its PPARγ agonistic activity rather than AT1R blockade. This study highlights the importance of astrocytic IL-6-mediated paracrine signaling in glioma growth and the potential of telmisartan as an adjuvant therapy for patients with glioma, especially those with hypertension.
Collapse
Affiliation(s)
- Wei Quan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng-Shi Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chao Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xi Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Hu Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi-Yu Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan-Wen Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Feng Tang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gui-Ping Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Hubei, China.
| |
Collapse
|
7
|
Tan J, Lin G, Zhang R, Wen Y, Luo C, Wang R, Wang F, Peng S, Zhang J. Bufotalin Induces Oxidative Stress-Mediated Apoptosis by Blocking the ITGB4/FAK/ERK Pathway in Glioblastoma. Antioxidants (Basel) 2024; 13:1179. [PMID: 39456433 PMCID: PMC11505062 DOI: 10.3390/antiox13101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Bufotalin (BT), a major active constituent of Chansu, has been found to possess multiple pharmacological activities. Although previous studies have shown that BT could inhibit the growth of glioblastoma (GBM), the safety of BT in vivo and the potential mechanism are still unclear. We conducted a systematic assessment to investigate the impact of BT on GBM cell viability, migration, invasion, and colony formation. Furthermore, in vivo results were obtained to evaluate the effect of BT on tumor growth. The preliminary findings of our study demonstrate the effective inhibition of GBM cell growth and subcutaneous tumor development in mice by BT, with tolerable levels of tolerance observed. Mechanistically, BT treatment induced mitochondrial dysfunction, bursts of reactive oxygen species (ROS), and subsequent cell apoptosis. More importantly, proteomic-based differentially expressed proteins analysis revealed a significant downregulation of integrin β4 (ITGB4) following BT treatment. Furthermore, our evidence suggested that the ITGB4/focal adhesion kinase (FAK)/extracellular signal-related kinase (ERK) pathway involved BT-induced apoptosis. Overall, our study demonstrates the anti-GBM effects of BT and elucidates the underlying mechanism, highlighting BT as a potential therapeutic option for GBM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feiyun Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.T.); (G.L.); (R.Z.); (Y.W.); (C.L.); (R.W.)
| | - Shoujiao Peng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.T.); (G.L.); (R.Z.); (Y.W.); (C.L.); (R.W.)
| | - Jiange Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.T.); (G.L.); (R.Z.); (Y.W.); (C.L.); (R.W.)
| |
Collapse
|
8
|
Leili FR, Shali N, Sheibani M, Jafarian MJ, Pashizeh F, Gerami R, Iraj F, Lashkarshekan AA. Detailed pathological role of non-coding RNAs (ncRNAs) in regulating drug resistance of glioblastoma, and update. Pathol Res Pract 2024; 263:155590. [PMID: 39326365 DOI: 10.1016/j.prp.2024.155590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Glioma is a kind of brain tumor that develops in the central nervous system and is classified based on its histology and molecular genetic features. The lifespan of patients does not exceed 22 months. One of the motives for the low effectiveness of glioma treatment is its radioresistance and chemoresistance. Noncoding RNAs (ncRNAs) are a diverse set of transcripts that do not undergo translation to become proteins in glioma. The ncRNAs have been identified as significant regulators of several biological processes in different cell types and tissues, and their abnormal function has been linked to glioma. They are known to impact important occurrences, including carcinogenesis, progression, and enhanced treatment resistance in glioma cells. The ncRNAs control cell proliferation, migration, epithelial-to-mesenchymal transition (EMT), invasion, and drug resistance in glioma cells. The main focus of this study is to inspect the involvement of ncRNAs in the drug resistance of glioma.
Collapse
Affiliation(s)
- Foad Rahmanpour Leili
- Department of Neurology Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Niloofar Shali
- Department of Clinical Biochemistry, School of Medicine, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Mehrnaz Sheibani
- Division of Pediatric Neurology, University of Tabriz, Tabriz, Iran
| | | | - Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd 8916188635, Iran
| | - Reza Gerami
- Department of Radiology, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran.
| | | | | |
Collapse
|
9
|
Liu W, Jia B, Wang Z, Li C, Li N, Tang J, Wang J. Unveiling the role of PSMA5 in glioma progression and prognosis. Discov Oncol 2024; 15:414. [PMID: 39240463 PMCID: PMC11379840 DOI: 10.1007/s12672-024-01296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
Glioma is the most aggressive intracranial malignancy and is associated with poor survival rates and limited quality of life, impairing neuropsychological function and cognitive competence in survivors. The Proteasome Subunit Alpha Type-5 (PSMA5) is a multicatalytic proteinase complex that has been linked with tumor progression but is rarely reported in glioma. This study investigates the expression pattern, prognostic characteristics, and potential biological functions of PSMA5 in glioma. PSMA5 was significantly overexpressed in 28 types of cancer when compared to normal tissue. Furthermore, elevated levels of PSMA5 were observed in patients with wild-type isocitrate dehydrogenase 1 and exhibited a positive correlation with tumor grade. It was also found to be a standalone predictor of outcomes in glioma patients. Additionally, inhibiting PSMA5-induced cell cycle arrest may provide a therapeutic option for glioma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Bo Jia
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Zan Wang
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Chengcai Li
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Nanding Li
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China
| | - Jie Tang
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jiwei Wang
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China.
- Department of Neurosurgery, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, China.
| |
Collapse
|
10
|
Yuxiao C, Jiachen W, Yanjie L, Shenglan L, Yuji W, Wenbin L. Therapeutic potential of arginine deprivation therapy for gliomas: a systematic review of the existing literature. Front Pharmacol 2024; 15:1446725. [PMID: 39239650 PMCID: PMC11375294 DOI: 10.3389/fphar.2024.1446725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Background Arginine deprivation therapy (ADT) hinders glioma cells' access to nutrients by reducing peripheral blood arginine, showing great efficacy in various studies, which suggests it as a potentially promising treatment for glioma. The aim of this systematic review was to explore the mechanism of ADT for gliomas, the therapeutic effect based on existing research, and possible combination therapies. Methods We performed a systematic literature review of PubMed, ScienceDirect and Web of Science databases according to PRISMA guidelines, searching for articles on the efficacy of ADT in glioma. Results We identified 17 studies among 786 search results, among which ADT therapy mainly based on Arginine free condition, Arginine Deiminase and Arginase, including three completed clinical trials. ADT therapy has shown promising results in vivo and in vitro, with its safety confirmed in clinical trials. In the early phase of treatment, glioblastoma (GBM) cells develop protective mechanisms of stress and autophagy, which eventually evolve into caspase dependent apoptosis or senescence, respectively. The immunosuppressive microenvironment is also altered by arginine depletion, such as the transformation of microglia into a pro-inflammatory phenotype and the activation of T-cells. Thus, ADT therapy demonstrates glioma-killing effect in the presence of a combination of mechanisms. In combination with various conventional therapies and investigational drugs such as radiotherapy, temozolomide (TMZ), cyclin-dependent kinase inhibitors (CDK) inhibitors and autophagy inducers, ADT therapy has been shown to be more effective. However, the phenomenon of drug resistance due to re-expression of ASS1 rather than stem cell remains to be investigated. Conclusion Despite the paucity of studies in the literature, the available data demonstrate the therapeutic potential of arginine deprivation therapy for glioma and encourage further research, especially the exploration of its combination therapies and the extrapolation of what we know about the effects and mechanisms of ADT from other tumors to glioma.
Collapse
Affiliation(s)
- Chen Yuxiao
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Xuanwu Hospital (The First Clinical College of Capital Medical University), Beijing, China
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wang Jiachen
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lan Yanjie
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Shenglan
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wang Yuji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Li Wenbin
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
12
|
Hadzi-Petrushev N, Stojchevski R, Jakimovska A, Stamenkovska M, Josifovska S, Stamatoski A, Sazdova I, Sopi R, Kamkin A, Gagov H, Mladenov M, Avtanski D. GLUT5-overexpression-related tumorigenic implications. Mol Med 2024; 30:114. [PMID: 39107723 PMCID: PMC11304774 DOI: 10.1186/s10020-024-00879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Glucose transporter 5 (GLUT5) overexpression has gained increasing attention due to its profound implications for tumorigenesis. This manuscript provides a comprehensive overview of the key findings and implications associated with GLUT5 overexpression in cancer. GLUT5 has been found to be upregulated in various cancer types, leading to alterations in fructose metabolism and enhanced glycolysis, even in the presence of oxygen, a hallmark of cancer cells. This metabolic shift provides cancer cells with an alternative energy source and contributes to their uncontrolled growth and survival. Beyond its metabolic roles, recent research has unveiled additional aspects of GLUT5 in cancer biology. GLUT5 overexpression appears to play a critical role in immune evasion mechanisms, which further worsens tumor progression and complicates therapeutic interventions. This dual role of GLUT5 in both metabolic reprogramming and immune modulation highlights its significance as a potential diagnostic marker and therapeutic target. Understanding the molecular mechanisms driving GLUT5 overexpression is crucial for developing targeted therapeutic strategies that can disrupt the unique vulnerabilities of GLUT5-overexpressing cancer cells. This review emphasizes the complexities surrounding GLUT5's involvement in cancer and underscores the pressing need for continued research to unlock its potential as a diagnostic biomarker and therapeutic target, ultimately improving cancer management and patient outcomes.
Collapse
Affiliation(s)
- Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Anastasija Jakimovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Mimoza Stamenkovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Slavica Josifovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Aleksandar Stamatoski
- Faculty of Dental Medicine, University Clinic for Maxillofacial Surgery in Skopje, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina, 10 000, Kosovo
| | - Andre Kamkin
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
13
|
Xue Z, Tian L, Zheng H, Zhang Y, Song J. Cyanidin inhibits glioma stem cells proliferation through the Wnt signaling pathway. Int J Neurosci 2024; 134:858-865. [PMID: 36458565 DOI: 10.1080/00207454.2022.2154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Cyanidin has a protective effect on the nervous system and has been reported to treat tumor effectively. However, its impact on glioma stem cells (GSC) is unknown. METHODS Using seven GSC lines, the anti-tumor effect of cyanidin is tested. The effect of cyanidin on the cell viability in each cell line is evaluated. Wnt signaling pathway-related genes are checked after treatment of cyanidin. Cytoplasmic/nuclear β-catenin protein levels post cyanidin treatment is detected. Protein levels of c-Myc after cyanidin treatment are determined. Twist1 and Snail1 protein levels after cyanidin treatment are checked as well. RESULTS Cyanidin significantly reduces the cell viability of all GSCs, and exhibited the most substantial effect in GBM2 but no apparent effect in 293T cells. It can regulate the Wnt signaling pathway of all GSC lines. In the GBM2, GBM7, G166, and G179 cell lines, there is upregulation of WNT1 and MYC genes, while in the G144 and GliNS2 cell line, these two genes are down-regulated after cyanidin treatment. Cytoplasmic and nuclear protein levels of β-catenin in all cell lines are down-regulated. Cyanidin treatment significantly decreases the protein level for c-Myc in the GBM2 cell line compared with untreated cells, not in G144 or GliNS2 cells. Furthermore, cyanidin strongly reduces the expression of Twist1 and Snail1 in GBM2, G179, and G144 cell lines, while the GliNS2 cells show an opposite change in the cytoplasm and no change in nuclear. CONCLUSION Cyanidin exerts an anti-tumor effect in glioma stem cell lines, probably through the Wnt signaling pathway.
Collapse
Affiliation(s)
- Zicheng Xue
- Department of Pharmacy, Maternity and Child Health Care of Zaozhuang, Zaozhuang City, Shandong Province, China
| | - Lei Tian
- Department of Pharmacy, People's Hospital of Shizhong District, Zaozhuang City, Shandong Province, China
| | - Hui Zheng
- Zaozhuang Vocational College of Science and Technology, Shandong Province, China
| | - Yucai Zhang
- Department of Pharmacy, Maternity and Child Health Care of Zaozhuang, Zaozhuang City, Shandong Province, China
| | - Junying Song
- Department of Pharmacy, Maternity and Child Health Care of Zaozhuang, Zaozhuang City, Shandong Province, China
| |
Collapse
|
14
|
Seyhan AA. Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges. Int J Mol Sci 2024; 25:7974. [PMID: 39063215 PMCID: PMC11277426 DOI: 10.3390/ijms25147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
15
|
Cheng H, Zhao Y, Hou X, Ling F, Wang J, Wang Y, Cao Y. Unveiling the therapeutic prospects of IFNW1 and IFNA21: insights into glioma pathogenesis and clinical significance. Neurogenetics 2024:10.1007/s10048-024-00769-5. [PMID: 38958838 DOI: 10.1007/s10048-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Glioma, a type of brain tumor, poses significant challenges due to its heterogeneous nature and limited treatment options. Interferon-related genes (IRGs) have emerged as potential players in glioma pathogenesis, yet their expression patterns and clinical implications remain to be fully elucidated. We conducted a comprehensive analysis to investigate the expression patterns and functional enrichment of IRGs in glioma. This involved constructing protein-protein interaction networks, heatmap analysis, survival curve plotting, diagnostic and prognostic assessments, differential expression analysis across glioma subgroups, GSVA, immune infiltration analysis, and drug sensitivity analysis. Our analysis revealed distinct expression patterns and functional enrichment of IRGs in glioma. Notably, IFNW1 and IFNA21 were markedly downregulated in glioma tissues compared to normal tissues, and higher expression levels were associated with improved overall survival and disease-specific survival. Furthermore, these genes showed diagnostic capabilities in distinguishing glioma tissues from normal tissues and were significantly downregulated in higher-grade and more aggressive gliomas. Differential expression analysis across glioma subgroups highlighted the association of IFNW1 and IFNA21 expression with key pathways and biological processes, including metabolic reprogramming and immune regulation. Immune infiltration analysis revealed their influence on immune cell composition in the tumor microenvironment. Additionally, elevated expression levels were associated with increased resistance to chemotherapeutic agents. Our findings underscore the potential of IFNW1 and IFNA21 as diagnostic biomarkers and prognostic indicators in glioma. Their roles in modulating glioma progression, immune response, and drug sensitivity highlight their significance as potential therapeutic targets. These results contribute to a deeper understanding of glioma biology and may inform the development of personalized treatment strategies for glioma patients.
Collapse
Affiliation(s)
- Hong Cheng
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China.
| | - Yingjie Zhao
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
- Cardiovascular Medicine, The Third People's Hospital of Danyang, Danyang, 212300, Jiangsu, China
| | - Xiaoli Hou
- Yangzhou Vocational University Medical College, Yangzhou, 225000, Jiangsu, China
| | - Fang Ling
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
- Otorhinolaryngology, The Third People's Hospital of Danyang, Danyang, 212300, Jiangsu, China
| | - Jing Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
- Medicine Section, The Third People's Hospital of Danyang, Danyang, 212300, Jiangsu, China
| | - Yixia Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Yasen Cao
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
| |
Collapse
|
16
|
Faris MM, Dhillon HM, Campbell R, Halkett GKB, Miller A, Chan RJ, Haydon HM, Sansom-Daly UM, Koh ES, Ownsworth T, Nowak AK, Kelly B, Leonard R, Pike KE, Legge DM, Pinkham MB, Agar MR. Unmet needs in people with high-grade glioma: defining criteria for stepped care intervention. JNCI Cancer Spectr 2024; 8:pkae034. [PMID: 38730547 PMCID: PMC11218915 DOI: 10.1093/jncics/pkae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND We aimed to define levels of unmet supportive care needs in people with primary brain tumor and to reach expert consensus on feasibility of addressing patients' needs in clinical practice. METHODS We conducted secondary analysis of a prospective cohort study of people diagnosed with high-grade glioma (n = 116) who completed the Supportive Care Needs Survey-Short Form during adjuvant chemoradiation therapy. Participants were allocated to 1 of 3 categories: no need ("no need" for help on all items), low need ("low need" for help on at least 1 item, but no "moderate" or "high" need), or moderate/high need (at least 1 "moderate" or "high" need indicated). Clinical capacity to respond to the proportion of patients needing to be prioritized was assessed. RESULTS Overall, 13% (n = 5) were categorized as no need, 23% (n = 27) low need, and 64% (n = 74) moderate/high need. At least 1 moderate/high need was reported in the physical and daily living domain (42%) and the psychological (34%) domain. In recognition of health system capacity, the moderate/high need category was modified to distinguish between moderate need ("moderate" need indicated for at least 1 item but "high" need was not selected for any item) and high need (at least 1 "high" need indicated). Results revealed 24% (n = 28) moderate need and 40% (n = 46) high need. Those categorized as high need indicated needing assistance navigating the health system and information. CONCLUSIONS Using four step allocations resulted in 40% of patients indicating high need. Categories may facilitate appropriate triaging and guide stepped models of healthcare delivery.
Collapse
Affiliation(s)
- Mona M Faris
- Psycho-Oncology Cooperative Research Group, School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Haryana M Dhillon
- Psycho-Oncology Cooperative Research Group, School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- Centre for Medical Psychology & Evidence-Based Decision-Making, School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Rachel Campbell
- Psycho-Oncology Cooperative Research Group, School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Georgia K B Halkett
- Curtin School of Nursing/Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Annie Miller
- Community advisory group, Psycho-Oncology Cooperative Research Group, The University of Sydney, Sydney, NSW, Australia
| | - Raymond J Chan
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Helen M Haydon
- Centre for Online Health, The University of Queensland, Brisbane, QLD, Australia
- Centre for Health Services Research, The University of Queensland, Brisbane, QLD, Australia
| | - Ursula M Sansom-Daly
- School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales, Kensington, NSW, Australia
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
- Sydney Youth Cancer Service, Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Eng-Siew Koh
- South West Sydney Clinical School, UNSW Medicine, University of New South Wales, Liverpool, NSW, Australia
- Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Tamara Ownsworth
- School of Applied Psychology & Menzies Health Institute of Queensland, Brisbane, QLD, Australia
| | - Anna K Nowak
- Medical School, University of Western Australia, Crawley, WA, Australia
| | - Brian Kelly
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Robyn Leonard
- Brain Cancer Collective, NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Kerryn E Pike
- School of Applied Psychology & Menzies Health Institute of Queensland, Brisbane, QLD, Australia
- Griffith Centre for Mental Health, Griffith University, Queensland, Australia
- School of Psychology & Public Health and John Richards Centre for Rural Ageing Research, La Trobe University, Victoria, Australia
| | - Dianne M Legge
- Curtin School of Nursing/Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
- Olivia Newton-John Cancer and Wellness Centre, Austin Hospital, Heidelberg, VIC, Australia
| | - Mark B Pinkham
- Division of Cancer Services, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Meera R Agar
- Improving Palliative, Aged and Chronic Care through Clinical Research and Translation (IMPACCT) Research Centre, Faculty of Health, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
17
|
Dawod M, Rush E, Nagib PB, Aduwo J, Bodempudi P, Appiah-Kubi E. The Utility of Prostate-Specific Membrane Antigen-11 PET in Detection and Management of Central Nervous System Neoplasms. Clin Nucl Med 2024; 49:e340-e345. [PMID: 38598534 DOI: 10.1097/rlu.0000000000005157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
ABSTRACT We present a case series of 5 patients diagnosed with schwannoma and 1 patient diagnosed with astrocytoma who underwent PSMA PET imaging for tumor detection. We retrospectively analyzed the records of 4 male and 2 female patients (mean age, 53.2 ± 13.2) who underwent PSMA PET imaging between March and September 2023. PET interpretation showed increased Ga-PSMA-11 accumulation in all patients with a mean SUV max of 3.11 ± 1.8. This series underscores PSMA PET's potential for CNS neoplasm detection.
Collapse
Affiliation(s)
- Mina Dawod
- From the The Ohio State University College of Medicine
| | - Evan Rush
- Department of Radiology, The Ohio State University College of Medicine
| | - Paul B Nagib
- From the The Ohio State University College of Medicine
| | - Jessica Aduwo
- From the The Ohio State University College of Medicine
| | | | | |
Collapse
|
18
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
19
|
Wei J, Wang M, Li S, Han R, Xu W, Zhao A, Yu Q, Li H, Li M, Chi G. Reprogramming of astrocytes and glioma cells into neurons for central nervous system repair and glioblastoma therapy. Biomed Pharmacother 2024; 176:116806. [PMID: 38796971 DOI: 10.1016/j.biopha.2024.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Central nervous system (CNS) damage is usually irreversible owing to the limited regenerative capability of neurons. Following CNS injury, astrocytes are reactively activated and are the key cells involved in post-injury repair mechanisms. Consequently, research on the reprogramming of reactive astrocytes into neurons could provide new directions for the restoration of neural function after CNS injury and in the promotion of recovery in various neurodegenerative diseases. This review aims to provide an overview of the means through which reactive astrocytes around lesions can be reprogrammed into neurons, to elucidate the intrinsic connection between the two cell types from a neurogenesis perspective, and to summarize what is known about the neurotranscription factors, small-molecule compounds and MicroRNA that play major roles in astrocyte reprogramming. As the malignant proliferation of astrocytes promotes the development of glioblastoma multiforme (GBM), this review also examines the research advances on and the theoretical basis for the reprogramming of GBM cells into neurons and discusses the advantages of such approaches over traditional treatment modalities. This comprehensive review provides new insights into the field of GBM therapy and theoretical insights into the mechanisms of neurological recovery following neurological injury and in GBM treatment.
Collapse
Affiliation(s)
- Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Shilin Li
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, 1xinmin Avenue, Changchun, Jilin Province 130021, China.
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
20
|
Lu Y, Du N, Fang X, Shu W, Liu W, Xu X, Ye Y, Xiao L, Mao R, Li K, Lin G, Li S. Identification of T2W hypointense ring as a novel noninvasive indicator for glioma grade and IDH genotype. Cancer Imaging 2024; 24:80. [PMID: 38943156 PMCID: PMC11212435 DOI: 10.1186/s40644-024-00726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the T2W hypointense ring and T2-FLAIR mismatch signs in gliomas and use these signs to construct prediction models for glioma grading and isocitrate dehydrogenase (IDH) mutation status. METHODS Two independent radiologists retrospectively evaluated 207 glioma patients to assess the presence of T2W hypointense ring and T2-FLAIR mismatch signs. The inter-rater reliability was calculated using the Cohen's kappa statistic. Two logistic regression models were constructed to differentiate glioma grade and predict IDH genotype noninvasively, respectively. Receiver operating characteristic (ROC) analysis was used to evaluate the developed models. RESULTS Of the 207 patients enrolled (119 males and 88 females, mean age 51.6 ± 14.8 years), 45 cases were low-grade gliomas (LGGs), 162 were high-grade gliomas (HGGs), 55 patients had IDH mutations, and 116 were IDH wild-type. The number of T2W hypointense ring signs was higher in HGGs compared to LGGs (p < 0.001) and higher in the IDH wild-type group than in the IDH mutant group (p < 0.001). There were also significant differences in T2-FLAIR mismatch signs between HGGs and LGGs, as well as between IDH mutant and wild-type groups (p < 0.001). Two predictive models incorporating T2W hypointense ring, absence of T2-FLAIR mismatch, and age were constructed. The area under the ROC curve (AUROC) was 0.940 for predicting HGGs (95% CI = 0.907-0.972) and 0.830 for differentiating IDH wild-type (95% CI = 0.757-0.904). CONCLUSIONS The combination of T2W hypointense ring, absence of T2-FLAIR mismatch, and age demonstrate good predictive capability for HGGs and IDH wild-type. These findings suggest that MRI can be used noninvasively to predict glioma grading and IDH mutation status, which may have important implications for patient management and treatment planning.
Collapse
Affiliation(s)
- Yawen Lu
- Department of Radiology, Huadong Hospital, Fudan University, No.220 West YanAn Road, Shanghai, 200040, China
| | - Ningfang Du
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Weiquan Shu
- Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Wei Liu
- Department of Radiology, Huadong Hospital, Fudan University, No.220 West YanAn Road, Shanghai, 200040, China
| | - Xinxin Xu
- Clinical Research Center for Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yao Ye
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai, China
| | - Li Xiao
- Department of Pathology, Huadong Hospital, Fudan University, Shanghai, China
| | - Renling Mao
- Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Kefeng Li
- Center for AI-driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China.
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital, Fudan University, No.220 West YanAn Road, Shanghai, 200040, China.
| | - Shihong Li
- Department of Radiology, Huadong Hospital, Fudan University, No.220 West YanAn Road, Shanghai, 200040, China.
| |
Collapse
|
21
|
Yuan R, Xu ZJ, Zhang SK, Cao XY, Dai AG, Song L. New evidence for a role of DANCR in cancers: a comprehensive review. J Transl Med 2024; 22:569. [PMID: 38877534 PMCID: PMC11177382 DOI: 10.1186/s12967-024-05246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/28/2024] [Indexed: 06/16/2024] Open
Abstract
Cancer remains a leading cause of mortality and poses a substantial threat to public health. Studies have revealed that Long noncoding RNA DANCR is a cytoplasmic lncRNA whose aberrant expression plays a pivotal role in various cancer types. Within tumour biology, DANCR exerts regulatory control over crucial processes such as proliferation, invasion, metastasis, angiogenesis, inflammatory responses, cellular energy metabolism reprogramming, and apoptosis. By acting as a competitive endogenous RNA for miRNAs and by interacting with proteins and mRNAs at the molecular level, DANCR contributes significantly to cancer progression. Elevated DANCR levels have also been linked to heightened resistance to anticancer drugs. Moreover, the detection of circulating DANCR holds promise as a valuable biomarker for aiding in the clinical differentiation of different cancer types. This article offers a comprehensive review and elucidation of the primary functions and molecular mechanisms through which DANCR influences tumours.
Collapse
Affiliation(s)
- Rong Yuan
- School of Medicine, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
| | - Zhao-Jun Xu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Hunan University of Chinese Medicine, 97 Shaoshan Road, Changsha, 410007, Hunan, China
| | - Sheng-Kang Zhang
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Hunan University of Chinese Medicine, 97 Shaoshan Road, Changsha, 410007, Hunan, China
| | - Xian-Ya Cao
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ai-Guo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China.
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China.
| | - Lan Song
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, 300 Xueshi Road, Hanpu Science and Teaching Park, Changsha, 410208, Hunan, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
22
|
Raju R R, AlSawaftah NM, Husseini GA. Modeling of brain tumors using in vitro, in vivo, and microfluidic models: A review of the current developments. Heliyon 2024; 10:e31402. [PMID: 38807869 PMCID: PMC11130649 DOI: 10.1016/j.heliyon.2024.e31402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Brain cancers are some of the most complex diseases to treat, despite the numerous advances science has made in cancer chemotherapy and research. One of the key obstacles to identifying potential cures for this disease is the difficulty in emulating the complexity of the brain and the surrounding microenvironment to understand potential therapeutic approaches. This paper discusses some of the most important in vitro, in vivo, and microfluidic brain tumor models that aim to address these challenges.
Collapse
Affiliation(s)
- Richu Raju R
- Biosciences and Bioengineering PhD Program at the American University of Sharjah, Sharjah, United Arab Emirates
| | - Nour M. AlSawaftah
- Material Science and Engineering Program at the American University of Sharjah, Sharjah, United Arab Emirates
| | - Ghaleb A. Husseini
- Biosciences and Bioengineering PhD Program at the American University of Sharjah, Sharjah, United Arab Emirates
- Material Science and Engineering Program at the American University of Sharjah, Sharjah, United Arab Emirates
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
23
|
Yang W, Yu H, Lei Q, Pu C, Guo Y, Lin L. Identification and clinical validation of diverse cell-death patterns-associated prognostic features among low-grade gliomas. Sci Rep 2024; 14:11874. [PMID: 38789729 PMCID: PMC11126566 DOI: 10.1038/s41598-024-62869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
Low-grade glioma (LGG) is heterogeneous at biological and transcriptomic levels, and it is still controversial for the definition and typing of LGG. Therefore, there is an urgent need for specific and practical molecular signatures for accurate diagnosis, individualized therapy, and prognostic evaluation of LGG. Cell death is essential for maintaining homeostasis, developing and preventing hyperproliferative malignancies. Based on diverse programmed cell death (PCD) related genes and prognostic characteristics of LGG, this study constructed a model to explore the mechanism and treatment strategies for LGG cell metastasis and invasion. We screened 1161 genes associated with PCD and divided 512 LGG samples into C1 and C2 subtypes by consistent cluster analysis. We analyzed the two subtypes' differentially expressed genes (DEGs) and performed functional enrichment analysis. Using R packages such as ESTIMATE, CIBERSOTR, and MCPcounter, we assessed immune cell scores for both subtypes. Compared with C1, the C2 subtype has a poor prognosis and a higher immune score, and patients in the C2 subtype are more strongly associated with tumor progression. LASSO and COX regression analysis screened four characteristic genes (CLU, FHL3, GIMAP2, and HVCN1). Using data sets from different platforms to validate the four-gene feature, we found that the expression and prognostic correlation of the four-gene feature had a high degree of stability, showing stable predictive effects. Besides, we found downregulation of CLU, FHL3, and GIMAP2 significantly impairs the growth, migration, and invasive potential of LGG cells. Take together, the four-gene feature constructed based on PCD-related genes provides valuable information for further study of the pathogenesis and clinical treatment of LGG.
Collapse
Affiliation(s)
- Wenyong Yang
- Medical Research Center, Department of Neurosurgery, Department of Urology, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| | - Hui Yu
- Medical Research Center, Department of Neurosurgery, Department of Urology, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| | - Qingqiang Lei
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Chunlan Pu
- Medical Research Center, Department of Neurosurgery, Department of Urology, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| | - Yuanbiao Guo
- Medical Research Center, Department of Neurosurgery, Department of Urology, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China.
| | - Liangbin Lin
- Medical Research Center, Department of Neurosurgery, Department of Urology, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China.
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
24
|
Wang J, Yin L. CNN-based glioma detection in MRI: A deep learning approach. Technol Health Care 2024:THC240158. [PMID: 39031408 DOI: 10.3233/thc-240158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
BACKGROUND More than a million people are affected by brain tumors each year; high-grade gliomas (HGGs) and low-grade gliomas (LGGs) present serious diagnostic and treatment hurdles, resulting in shortened life expectancies. Glioma segmentation is still a significant difficulty in clinical settings, despite improvements in Magnetic Resonance Imaging (MRI) and diagnostic tools. Convolutional neural networks (CNNs) have seen recent advancements that offer promise for increasing segmentation accuracy, addressing the pressing need for improved diagnostic and therapeutic approaches. OBJECTIVE The study intended to develop an automated glioma segmentation algorithm using CNN to accurately identify tumor components in MRI images. The goal was to match the accuracy of experienced radiologists with commercial instruments, hence improving diagnostic precision and quantification. METHODS 285 MRI scans of high-grade gliomas (HGGs) and low-grade gliomas (LGGs) were analyzed in the study. T1-weighted sequences were utilised for segmentation both pre-and post-contrast agent administration, along with T2-weighted sequences (with and without Fluid Attenuation by Inversion Recovery [FAIRE]). The segmentation performance was assessed with a U-Net network, renowned for its efficacy in medical image segmentation. DICE coefficients were computed for the tumour core with contrast enhancement, the entire tumour, and the tumour nucleus without contrast enhancement. RESULTS The U-Net network produced DICE values of 0.7331 for the tumour core with contrast enhancement, 0.8624 for the total tumour, and 0.7267 for the tumour nucleus without contrast enhancement. The results align with previous studies, demonstrating segmentation accuracy on par with professional radiologists and commercially accessible segmentation tools. CONCLUSION The study developed a CNN-based automated segmentation system for gliomas, achieving high accuracy in recognising glioma components in MRI images. The results confirm the ability of CNNs to enhance the accuracy of brain tumour diagnoses, suggesting a promising avenue for future research in medical imaging and diagnostics. This advancement is expected to improve diagnostic processes for clinicians and patients by providing more precise and quantitative results.
Collapse
|
25
|
Hu B, Chen S. The role of UBR5 in tumor proliferation and oncotherapy. Gene 2024; 906:148258. [PMID: 38331119 DOI: 10.1016/j.gene.2024.148258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Ubiquitin (Ub) protein ligase E3 component n-recognin 5 (UBR5), as a crucial Ub ligase, plays a pivotal role in the field of cell biology, attracting significant attention for its functions in regulating protein degradation and signaling pathways. This review delves into the fundamental characteristics and structure of UBR5. UBR5, through ubiquitination, regulates various key proteins, directly or indirectly participating in cell cycle control, thereby exerting a direct impact on the proliferation of tumor cells. Meanwhile, we comprehensively review the expression levels of UBR5 in different types of tumors and its relationship with tumor development, providing key clues for the role of UBR5 in cancer. Furthermore, we summarize the current research status of UBR5 in cancer treatment. Through literature review, we find that UBR5 may play a crucial role in the sensitivity of tumor cells to radiotherapy chemotherapy, and other anti-tumor treatment, providing new insights for optimizing cancer treatment strategies. Finally, we discuss the challenges faced by UBR5 in cancer treatment, and looks forward to the future research directions. With the continuous breakthroughs in technology and in-depth research, we hope to further study the biological functions of UBR5 and lay the foundation for its anti-tumor treatment.
Collapse
Affiliation(s)
- Bin Hu
- Department of Geriatrics, Beilun District People's Hospital, Ningbo 315800, China
| | - Shiyuan Chen
- Department of Geriatrics, Beilun District People's Hospital, Ningbo 315800, China.
| |
Collapse
|
26
|
Lv K, Hu Y, Cao X, Xie Y, Fu J, Chen H, Xiong J, Zhu L, Geng D, Zhang J. Altered whole-brain functional network in patients with frontal low-grade gliomas: a resting-state functional MRI study. Neuroradiology 2024; 66:775-784. [PMID: 38294728 DOI: 10.1007/s00234-024-03300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE Gliomas are the most common primary brain tumor. Currently, topological alterations of whole-brain functional network caused by gliomas are not fully understood. The work here clarified the topological reorganization of the functional network in patients with unilateral frontal low-grade gliomas (LGGs). METHODS A total of 45 patients with left frontal LGGs, 19 with right frontal LGGs, and 25 healthy controls (HCs) were enrolled. All the resting-state functional MRI (rs-fMRI) images of the subjects were preprocessed to construct the functional network matrix, which was used for graph theoretical analysis. A two-sample t-test was conducted to clarify the differences in global and nodal network metrics between patients and HCs. A network-based statistic approach was used to identify the altered specific pairs of regions in which functional connectivity in patients with LGGs. RESULTS The local efficiency, clustering coefficient, characteristic path length, and normalized characteristic path length of patients with unilateral frontal LGGs were significantly lower than HCs, while there were no significant differences of global efficiency and small-worldness between patients and HCs. Compared with the HCs, betweenness centrality, degree centrality, and nodal efficiency of several brain nodes were changed significantly in patients. Around the tumor and its adjacent areas, the inter- and intra-hemispheric connections were significantly decreased in patients with left frontal LGGs. CONCLUSION The patients with unilateral frontal LGGs have altered global and nodal network metrics and decreased inter- and intra-hemispheric connectivity. These topological alterations may be involved in functional impairment and compensation of patients.
Collapse
Affiliation(s)
- Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Yue Hu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Yongsheng Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Junyan Fu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Hongyi Chen
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ji Xiong
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai, China.
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, China.
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.
- Academy for Engineering and Technology, Fudan University, Shanghai, China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, China.
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.
- Academy for Engineering and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Huang C, Aghaei-Zarch SM. From molecular pathogenesis to therapy: Unraveling non-coding RNAs/DNMT3A axis in human cancers. Biochem Pharmacol 2024; 222:116107. [PMID: 38438051 DOI: 10.1016/j.bcp.2024.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Cancer is a comprehensive classification encompassing more than 100 forms of malignancies that manifest in diverse tissues within the human body. Recent studies have provided evidence that aberrant epigenetic modifications are pivotal indicators of cancer. Epigenetics encapsulates DNA methyltransferases as a crucial class of modifiers. DNMTs, including DNMT3A, assume central roles in DNA methylation processes that orchestrate normal biological functions, such as gene transcription, predominantly in mammals. Typically, deviations in DNMT3A function engender distortions in factors that drive tumor growth and progression, thereby exacerbating the malignant phenotype of tumors. Consequently, such abnormalities pose significant challenges in cancer therapy because they impede treatment efficacy. Non-coding RNAs (ncRNAs) represent a group of RNA molecules that cannot encode functional proteins. Recent investigation attests to the crucial significance of regulatory ncRNAs in epigenetic regulation. Notably, recent reports have illuminated the complex interplay between ncRNA expression and epigenetic regulatory machinery, including DNMT3A, particularly in cancer. Recent findings have demonstrated that miRNAs, namely miR-770-5p, miR-101, and miR-145 exhibit the capability to target DNMT3A directly, and their aberration is implicated in diverse cellular abnormalities that predispose to cancer development. This review aims to articulate the interplay between DNMT3A and the ncRNAs, focusing on its impact on the development and progression of cancer, cancer therapy resistance, cancer stem cells, and prognosis. Importantly, the emergence of such reports that suggest a connection between DNMT3A and ncRNAs in several cancers indicates that this connecting axis offers a valuable target with significant therapeutic potential that might be exploited for cancer management.
Collapse
Affiliation(s)
- Chunjie Huang
- School of Medicine, Nantong University, Nantong 226001, China
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Tripathy S, Singh S, Banerjee M, Modi DR, Prakash A. Coagulation proteases and neurotransmitters in pathogenicity of glioblastoma multiforme. Int J Neurosci 2024; 134:398-408. [PMID: 35896309 DOI: 10.1080/00207454.2022.2107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Glioblastoma is an aggressive type of cancer that begins in cells called astrocytes that support nerve cells that can occur in the brain or spinal cord. It can form in the brain or spinal cord. Despite the variety of modern therapies against GBM, it is still a deadly disease. Patients usually have a median survival of approximately 14 to 15 months from the diagnosis. Glioblastoma is also known as glioblastoma multiforme. The pathogenesis contributing to the proliferation and metastasis of cancer involves aberrations of multiple signalling pathways through multiple genetic mutations and altered gene expression. The coagulant factors like thrombin and tissue factor play a noteworthy role in cancer invasion. They are produced in the microenvironment of glioma through activation of protease-activated receptors (PARs) which are activated by coagulation proteases. PARs are members of family G-protein-coupled receptors (GPCRs) that are activated by coagulation proteases. These components play a key role in tumour cell angiogenesis, migration, invasion, and interactions with host vascular cells. Further, the release of neurotransmitters is also found to regulate malignancy in gliomas. Exploration of the interplay between malignant neural circuitry with the normal conditions is also decisive in finding effective therapies for these apparently invasive tumours. The present review discusses the molecular classification of gliomas, activation of PARs by coagulation protease, and its role in metastasis of gliomas. Further, the differential involvement of neurotransmitters in the pathogenesis of gliomas has also been discussed. Targeting these molecules may present a potential therapeutic approach for the treatment of gliomas.
Collapse
Affiliation(s)
- Sukanya Tripathy
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sanjay Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Monisha Banerjee
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Dinesh Raj Modi
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
29
|
Aebisher D, Przygórzewska A, Myśliwiec A, Dynarowicz K, Krupka-Olek M, Bożek A, Kawczyk-Krupka A, Bartusik-Aebisher D. Current Photodynamic Therapy for Glioma Treatment: An Update. Biomedicines 2024; 12:375. [PMID: 38397977 PMCID: PMC10886821 DOI: 10.3390/biomedicines12020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Research on the development of photodynamic therapy for the treatment of brain tumors has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits, such as an improved median rate of survival. The use of photodynamic therapy is characterized by relatively few side effects, which is a significant advantage compared to conventional treatment methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy. Continued research in this area could bring significant advances, influencing future standards of treatment for this difficult and deadly disease.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Magdalena Krupka-Olek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Andrzej Bożek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
30
|
Wang B, Wang Z, Li Y, Shang Z, Liu Z, Fan H, Zhan R, Xin T. TRIM56: a promising prognostic immune biomarker for glioma revealed by pan-cancer and single-cell analysis. Front Immunol 2024; 15:1327898. [PMID: 38348047 PMCID: PMC10859405 DOI: 10.3389/fimmu.2024.1327898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Tripartite-motif 56 (TRIM56) is a member of the TRIM family, and was shown to be an interferon-inducible E3 ubiquitin ligase that can be overexpressed upon stimulation with double-stranded DNA to regulate stimulator of interferon genes (STING) to produce type I interferon and thus mediate innate immune responses. Its role in tumors remains unclear. In this study, we investigated the relationship between the expression of the TRIM56 gene and its prognostic value in pan-cancer, identifying TRIM56 expression as an adverse prognostic factor in glioma patients. Therefore, glioma was selected as the primary focus of our investigation. We explored the differential expression of TRIM56 in various glioma subtypes and verified its role as an independent prognostic factor in gliomas. Our research revealed that TRIM56 is associated with malignant biological behaviors in gliomas, such as proliferation, migration, and invasion. Additionally, it can mediate M2 polarization of macrophages in gliomas. The results were validated in vitro and in vivo. Furthermore, we utilized single-cell analysis to investigate the impact of TRIM56 expression on cell communication between glioma cells and non-tumor cells. We constructed a multi-gene signature based on cell markers of tumor cells with high TRIM56 expression to enhance the prediction of cancer patient prognosis. In conclusion, our study demonstrates that TRIM56 serves as a reliable immune-related prognostic biomarker in glioma.
Collapse
Affiliation(s)
- Bingcheng Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhihai Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yuchen Li
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zehan Shang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Hao Fan
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Rucai Zhan
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, China
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
31
|
Yang Y, Teng H, Zhang Y, Wang F, Tang L, Zhang C, Hu Z, Chen Y, Ge Y, Wang Z, Yu Y. A glycosylation-related gene signature predicts prognosis, immune microenvironment infiltration, and drug sensitivity in glioma. Front Pharmacol 2024; 14:1259051. [PMID: 38293671 PMCID: PMC10824914 DOI: 10.3389/fphar.2023.1259051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Glioma represents the most common primary cancer of the central nervous system in adults. Glycosylation is a prevalent post-translational modification that occurs in eukaryotic cells, leading to a wide array of modifications on proteins. We obtained the clinical information, bulk RNA-seq data, and single-cell RNA sequencing (scRNA-seq) from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Gene Expression Omnibus (GEO), and Repository of Molecular Brain Neoplasia Data (Rembrandt) databases. RNA sequencing data for normal brain tissues were accessed from the Genotype-Tissue Expression (GTEx) database. Then, the glycosylation genes that were differentially expressed were identified and further subjected to variable selection using a least absolute shrinkage and selection operator (LASSO)-regularized Cox model. We further conducted enrichment analysis, qPCR, nomogram, and single-cell transcriptome to detect the glycosylation signature. Drug sensitivity analysis was also conducted. A five-gene glycosylation signature (CHPF2, PYGL, GALNT13, EXT2, and COLGALT2) classified patients into low- or high-risk groups. Survival analysis, qPCR, ROC curves, and stratified analysis revealed worse outcomes in the high-risk group. Furthermore, GSEA and immune infiltration analysis indicated that the glycosylation signature has the potential to predict the immune response in glioma. In addition, four drugs (crizotinib, lapatinib, nilotinib, and topotecan) showed different responses between the two risk groups. Glioma cells had been classified into seven lines based on single-cell expression profiles. The five-gene glycosylation signature can accurately predict the prognosis of glioma and may offer additional guidance for immunotherapy.
Collapse
Affiliation(s)
- Yanbo Yang
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiying Teng
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Fei Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Liyan Tang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chuanpeng Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Ziyi Hu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yuxuan Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yi Ge
- The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanbing Yu
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Wu M, Luan J, Zhang D, Fan H, Qiao L, Zhang C. Development and validation of a clinical prediction model for glioma grade using machine learning. Technol Health Care 2024; 32:1977-1990. [PMID: 38306068 DOI: 10.3233/thc-231645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
BACKGROUND Histopathological evaluation is currently the gold standard for grading gliomas; however, this technique is invasive. OBJECTIVE This study aimed to develop and validate a diagnostic prediction model for glioma by employing multiple machine learning algorithms to identify risk factors associated with high-grade glioma, facilitating the prediction of glioma grading. METHODS Data from 1114 eligible glioma patients were obtained from The Cancer Genome Atlas (TCGA) database, which was divided into a training set (n= 781) and a test set (n= 333). Fifty machine learning algorithms were employed, and the optimal algorithm was selected to construct a prediction model. The performance of the machine learning prediction model was compared to the clinical prediction model in terms of discrimination, calibration, and clinical validity to assess the performance of the prediction model. RESULTS The area under the curve (AUC) values of the machine learning prediction models (training set: 0.870 vs. 0.740, test set: 0.863 vs. 0.718) were significantly improved from the clinical prediction models. Furthermore, significant improvement in discrimination was observed for the Integrated Discrimination Improvement (IDI) (training set: 0.230, test set: 0.270) and Net Reclassification Index (NRI) (training set: 0.170, test set: 0.170) from the clinical prognostic model. Both models showed a high goodness of fit and an increased net benefit. CONCLUSION A strong prediction accuracy model can be developed using machine learning algorithms to screen for high-grade glioma risk predictors, which can serve as a non-invasive prediction tool for preoperative diagnostic grading of glioma.
Collapse
Affiliation(s)
- Mingzhen Wu
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Di Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Hua Fan
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Lishan Qiao
- School of Mathematics, Liaocheng University, Shandong, China
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| |
Collapse
|
33
|
Shi L, Wang Z, Rong J, Fei X, Li X, He B, Gong W, Qian J. Inhibition of TGF-β1-induced epithelial-mesenchymal transition in gliomas by DMC-HA. Aging (Albany NY) 2023; 15:15183-15195. [PMID: 38154100 PMCID: PMC10781457 DOI: 10.18632/aging.205340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/13/2023] [Indexed: 12/30/2023]
Abstract
DMC-HA, a novel HDAC inhibitor, has previously demonstrated antiproliferative activity against various cancers, including gliomas. However, the role of DMC-HA in the regulation of EMT and its underlying mechanisms remain unknown. This study aimed to explore the effects of DMC-HA on TGF-β1-induced EMT in human gliomas and the underlying mechanisms involved. Our results showed that TGF-β1 induced EMT of U87 and U251 cells, leading to a decrease in epithelial marker ZO-1 and an increase in mesenchymal markers N-cadherin and Vimentin. Moreover, TGF-β1 treatment resulted in a significant increase in the migratory and invasive abilities of the cells. However, treatment with DMC-HA effectively inhibited the augmented migration and invasion of glioma cells induced by TGF-β1. Additionally, DMC-HA inhibits TGF-β1-induced EMT by suppressing canonical Smad pathway and non-canonical TGF-β/Akt and Erk signalling pathways. These findings suggest that DMC-HA has potential therapeutic implications for gliomas by inhibiting EMT progression.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, P.R. China
| | - Zhimin Wang
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215300, P.R. China
| | - Jun Rong
- Department of Neurosurgery, Xuancheng People’s Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Anhui 242099, P.R. China
| | - Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou 215028, P.R. China
| | - Xuetao Li
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215300, P.R. China
| | - Bao He
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, P.R. China
| | - Weiyi Gong
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, P.R. China
| | - Jin Qian
- Department of Neurosurgery, Xuancheng People’s Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Anhui 242099, P.R. China
| |
Collapse
|
34
|
Xiang Z, Xie Q, Yu Z. Exosomal DNA: Role in Reflecting Tumor Genetic Heterogeneity, Diagnosis, and Disease Monitoring. Cancers (Basel) 2023; 16:57. [PMID: 38201485 PMCID: PMC10778000 DOI: 10.3390/cancers16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs), with exosomes at the forefront, are key in transferring cellular information and assorted biological materials, including nucleic acids. While exosomal RNA has been thoroughly examined, exploration into exosomal DNA (exoDNA)-which is stable and promising for cancer diagnostics-lags behind. This hybrid genetic material, combining contributions from both nuclear and mitochondrial DNA (mtDNA), is rooted in the cytoplasm. The enigmatic process concerning its cytoplasmic encapsulation continues to captivate researchers. Covering the entire genetic landscape, exoDNA encases significant oncogenic alterations in genes like TP53, ALK, and IDH1, which is vital for clinical assessment. This review delves into exosomal origins, the ins and outs of DNA encapsulation, and exoDNA's link to tumor biology, underscoring its superiority to circulating tumor DNA in the biomarker arena for both detection and therapy. Amidst scientific progress, there are complexities in the comprehension and practical application of the exoDNA surface. Reflecting on these nuances, we chart the prospective research terrain and potential pitfalls, forging a path for future inquiry. By illuminating both the known and unknown facets of exoDNA, the objective of this review is to provide guidance to the field of liquid biopsy (LB) while minimizing the occurrence of avoidable blind spots and detours.
Collapse
Affiliation(s)
- Ziyi Xiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Qihui Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Zili Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
35
|
Michelucci A, Sforna L, Franciolini F, Catacuzzeno L. Hypoxia, Ion Channels and Glioblastoma Malignancy. Biomolecules 2023; 13:1742. [PMID: 38136613 PMCID: PMC10742235 DOI: 10.3390/biom13121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The malignancy of glioblastoma (GBM), the most aggressive type of human brain tumor, strongly correlates with the presence of hypoxic areas within the tumor mass. Oxygen levels have been shown to control several critical aspects of tumor aggressiveness, such as migration/invasion and cell death resistance, but the underlying mechanisms are still unclear. GBM cells express abundant K+ and Cl- channels, whose activity supports cell volume and membrane potential changes, critical for cell proliferation, migration and death. Volume-regulated anion channels (VRAC), which mediate the swelling-activated Cl- current, and the large-conductance Ca2+-activated K+ channels (BK) are both functionally upregulated in GBM cells, where they control different aspects underlying GBM malignancy/aggressiveness. The functional expression/activity of both VRAC and BK channels are under the control of the oxygen levels, and these regulations are involved in the hypoxia-induced GBM cell aggressiveness. The present review will provide a comprehensive overview of the literature supporting the role of these two channels in the hypoxia-mediated GBM malignancy, suggesting them as potential therapeutic targets in the treatment of GBM.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (L.S.); (F.F.)
| | | | | | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (L.S.); (F.F.)
| |
Collapse
|
36
|
Zhang N, Yang F, Zhao P, Jin N, Wu H, Liu T, Geng Q, Yang X, Cheng L. MrGPS: an m6A-related gene pair signature to predict the prognosis and immunological impact of glioma patients. Brief Bioinform 2023; 25:bbad498. [PMID: 38171932 PMCID: PMC10782913 DOI: 10.1093/bib/bbad498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is the predominant epigenetic modification for mRNAs that regulates various cancer-related pathways. However, the prognostic significance of m6A modification regulators remains unclear in glioma. By integrating the TCGA lower-grade glioma (LGG) and glioblastoma multiforme (GBM) gene expression data, we demonstrated that both the m6A regulators and m6A-target genes were associated with glioma prognosis and activated various cancer-related pathways. Then, we paired m6A regulators and their target genes as m6A-related gene pairs (MGPs) using the iPAGE algorithm, among which 122 MGPs were significantly reversed in expression between LGG and GBM. Subsequently, we employed LASSO Cox regression analysis to construct an MGP signature (MrGPS) to evaluate glioma prognosis. MrGPS was independently validated in CGGA and GEO glioma cohorts with high accuracy in predicting overall survival. The average area under the receiver operating characteristic curve (AUC) at 1-, 3- and 5-year intervals were 0.752, 0.853 and 0.831, respectively. Combining clinical factors of age and radiotherapy, the AUC of MrGPS was much improved to around 0.90. Furthermore, CIBERSORT and TIDE algorithms revealed that MrGPS is indicative for the immune infiltration level and the response to immune checkpoint inhibitor therapy in glioma patients. In conclusion, our study demonstrated that m6A methylation is a prognostic factor for glioma and the developed prognostic model MrGPS holds potential as a valuable tool for enhancing patient management and facilitating accurate prognosis assessment in cases of glioma.
Collapse
Affiliation(s)
- Ning Zhang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Fengxia Yang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Pengfei Zhao
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Nana Jin
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Haonan Wu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Tao Liu
- International Digital Economy Academy, Shenzhen, China
| | - Qingshan Geng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| | - Xiaojun Yang
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Lixin Cheng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University
| |
Collapse
|
37
|
Zhao J, Zang F, Huo X, Zheng S. Novel approaches targeting ferroptosis in treatment of glioma. Front Neurol 2023; 14:1292160. [PMID: 38020609 PMCID: PMC10659054 DOI: 10.3389/fneur.2023.1292160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Glioma is a malignant brain tumor with a high mortality rate; hence novel treatment approaches are being explored to improve patient outcomes. Ferroptosis, a newly described form of regulated cell death, is emerging as a potential therapeutic target in glioma. Ferroptosis is characterized by the accumulation of lipid peroxides due to a loss of intracellular antioxidant systems represented by the depletion of glutathione and decreased activity of glutathione peroxidase 4 (GPX4). Since glioma cells have a high demand for iron and lipid metabolism, modulation of ferroptosis may represent a promising therapeutic approach for this malignancy. Recent studies indicate that ferroptosis inducers like erastin and RSL3 display potent anticancer activity in a glioma model. In addition, therapeutic strategies, including GPX4 targeting, lipid metabolism modulation, inhibition of amino acid transporters, and ferroptosis targeting natural compounds, have shown positive results in preclinical studies. This review will provide an overview of the functions of ferroptosis in glioma and its potential as a suitable target for glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Shengzhe Zheng
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanbian Korean Autonomous Prefecture, Jilin, China
| |
Collapse
|
38
|
Delobel T, Ayala-Hernández LE, Bosque JJ, Pérez-Beteta J, Chulián S, García-Ferrer M, Piñero P, Schucht P, Murek M, Pérez-García VM. Overcoming chemotherapy resistance in low-grade gliomas: A computational approach. PLoS Comput Biol 2023; 19:e1011208. [PMID: 37983271 PMCID: PMC10695391 DOI: 10.1371/journal.pcbi.1011208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/04/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Low-grade gliomas are primary brain tumors that arise from glial cells and are usually treated with temozolomide (TMZ) as a chemotherapeutic option. They are often incurable, but patients have a prolonged survival. One of the shortcomings of the treatment is that patients eventually develop drug resistance. Recent findings show that persisters, cells that enter a dormancy state to resist treatment, play an important role in the development of resistance to TMZ. In this study we constructed a mathematical model of low-grade glioma response to TMZ incorporating a persister population. The model was able to describe the volumetric longitudinal dynamics, observed in routine FLAIR 3D sequences, of low-grade glioma patients acquiring TMZ resistance. We used the model to explore different TMZ administration protocols, first on virtual clones of real patients and afterwards on virtual patients preserving the relationships between parameters of real patients. In silico clinical trials showed that resistance development was deferred by protocols in which individual doses are administered after rest periods, rather than the 28-days cycle standard protocol. This led to median survival gains in virtual patients of more than 15 months when using resting periods between two and three weeks and agreed with recent experimental observations in animal models. Additionally, we tested adaptive variations of these new protocols, what showed a potential reduction in toxicity, but no survival gain. Our computational results highlight the need of further clinical trials that could obtain better results from treatment with TMZ in low grade gliomas.
Collapse
Affiliation(s)
- Thibault Delobel
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
- Sorbonne Université, Paris, France
| | - Luis E. Ayala-Hernández
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
- Departamento de Ciencias Exactas y Tecnología Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico
| | - Jesús J. Bosque
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Julián Pérez-Beteta
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Salvador Chulián
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
- Department of Mathematics, Universidad de Cádiz, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | | | - Pilar Piñero
- Department of Radiology, Virgen del Rocío University Hospital, Seville, Spain
| | - Philippe Schucht
- Department of Neurosurgery, Inselspital Bern and University Hospital, Bern, Switzerland
| | - Michael Murek
- Department of Neurosurgery, Inselspital Bern and University Hospital, Bern, Switzerland
| | - Víctor M. Pérez-García
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
39
|
Chen J, Rodriguez AS, Morales MA, Fang X. Autophagy Modulation and Its Implications on Glioblastoma Treatment. Curr Issues Mol Biol 2023; 45:8687-8703. [PMID: 37998723 PMCID: PMC10670099 DOI: 10.3390/cimb45110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Autophagy is a vital cellular process that functions to degrade and recycle damaged organelles into basic metabolites. This allows a cell to adapt to a diverse range of challenging conditions. Autophagy assists in maintaining homeostasis, and it is tightly regulated by the cell. The disruption of autophagy has been associated with many diseases, such as neurodegenerative disorders and cancer. This review will center its discussion on providing an in-depth analysis of the current molecular understanding of autophagy and its relevance to brain tumors. We will delve into the current literature regarding the role of autophagy in glioma pathogenesis by exploring the major pathways of JAK2/STAT3 and PI3K/AKT/mTOR and summarizing the current therapeutic interventions and strategies for glioma treatment. These treatments will be evaluated on their potential for autophagy induction and the challenges associated with their utilization. By understanding the mechanism of autophagy, clinical applications for future therapeutics in treating gliomas can be better targeted.
Collapse
Affiliation(s)
- Johnny Chen
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Andrea Salinas Rodriguez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Maximiliano Arath Morales
- Department of Biology, College of Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Xiaoqian Fang
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| |
Collapse
|
40
|
Wang C, Liu X, Guo S. Network pharmacology-based strategy to investigate the effect and mechanism of α-solanine against glioma. BMC Complement Med Ther 2023; 23:371. [PMID: 37865727 PMCID: PMC10589944 DOI: 10.1186/s12906-023-04215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND An anti-tumour activity has been demonstrated for α-solanine, a bioactive compound extracted from the traditional Chinese herb Solanum nigrum L. However, its efficacy in the treatment of gliomas and the underlying mechanisms remain unclear. The aim of this study was to investigate the inhibitory effects of α-solanine on glioma and elucidate its mechanisms and targets using network pharmacology, molecular docking, and molecular biology experiments. METHODS Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was utilized to predict the potential targets of α-solanine. GeneCards was used to gather glioma-related targets, and the STRING online database was used to analyze protein-protein interaction (PPI) networks for the shared targets. Hub genes were identified from the resulting PPI network and further investigated using Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Additionally, prognostic and gene set enrichment analyses (GSEA) were carried out to identify potential therapeutic targets and their underlying mechanisms of action in relation to the prognosis of gliomas. In vitro experiments were conducted to verify the findings from the network pharmacology analysis. RESULTS A total of 289 α-solanine targets and 1149 glioma-related targets were screened, of which 78 were common targets. 11 hub genes were obtained, including SRC, HRAS, HSP90AA1, IGF1, MAPK1, MAPK14, KDR, STAT1, JAK2, MAP2K1, and IGF1R. The GO and KEGG pathway analyses unveiled that α-solanine was strongly associated with several signaling pathways, including positive regulation of MAP kinase activity and PI3K-Akt. Moreover, α-solanine (10 µM and 15 µM) inhibited the proliferation and migration but promoted the apoptosis of glioma cells. Finally, STAT1 was identified as a potential mediator of the effect of α-solanine on glioma prognosis. CONCLUSION α-Solanine can inhibit the proliferation and migration of gliomas by regulating multiple targets and signalling pathways. These findings lay the foundation for the creation of innovative clinical anti-glioma agents.
Collapse
Affiliation(s)
- ChunPeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - XiaoHui Liu
- Department of Medical Oncology, Anyang Cancer Hospital, An Yang, 455000, China
| | - ShiWen Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
41
|
Xu X, Hou Y, Long N, Jiang L, Yan Z, Xu Y, Lv Y, Xiang X, Yang H, Liu J, Qi X, Chu L. TPPP3 promote epithelial-mesenchymal transition via Snail1 in glioblastoma. Sci Rep 2023; 13:17960. [PMID: 37863960 PMCID: PMC10589222 DOI: 10.1038/s41598-023-45233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023] Open
Abstract
Tubulin polymerization promoting protein 3 (TPPP3), a member of the tubulin polymerization family, participates in cell progressions in several human cancers, its biological function and the underlying mechanisms in glioblastoma multiforme (GBM) remain unclear. Here, we investigated the role and application value of TPPP3 in gliomas and found that the expression of TPPP3 in glioma was higher than that in normal brain tissue (NBT), and increased with the grade of glioma. Up-regulation of TPPP3 expression in glioblastoma cells confer stronger ability of migration, invasion, proliferation and lower apoptosis in vitro. Inhibition of TPPP3 expression in GBM could reduce the migration, invasion, proliferation and induce the apoptosis of glioblastoma cells. TPPP3 affected the process of EMT by regulating the expression of Snail 1 protein. In clinical data analysis, we found a positive correlation between TPPP3 and Snail1 protein expression levels in glioblastomas. Low TPPP3 expression leads to better survival expectations in glioblastomas patients. The content of this study paves the way for further in-depth exploration of the role of TPPP3 in glioblastoma in the future, and provides new treatment and research directions.
Collapse
Affiliation(s)
- Xu Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yunan Hou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Niya Long
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lishi Jiang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhangwei Yan
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuan Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Lv
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin Xiang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Liu
- Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
42
|
Luo H, Huang K, Cheng M, Long X, Zhu X, Wu M. The HNF4A-CHPF pathway promotes proliferation and invasion through interactions with MAD1L1 in glioma. Aging (Albany NY) 2023; 15:11052-11066. [PMID: 37851364 PMCID: PMC10637790 DOI: 10.18632/aging.205076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/22/2023] [Indexed: 10/19/2023]
Abstract
Chondroitin polymerizing factor (CHPF) is an important glycosyltransferases that participates in the biosynthesis of chondroitin sulfate (CS). Our previous study showed that silencing CHPF expression inhibited glioma cell proliferation in vitro, but the molecular mechanisms by which CHPF contributes to development of glioma have not been characterized. In this study, we found that CHPF was up-regulated in glioma tissues and was positively correlated with malignant clinical pathological characteristics of patients with glioma. Silencing CHPF expression inhibited proliferation, colony formation, migration, and cell cycle of glioma cells. Moreover, silencing CHPF suppressed glioma malignance in vivo. Immunoprecipitation, co-immunoprecipitation, GST pulldown, and liquid chromatography-mass spectrometry (LC-MS/MS) assays were used to verify the interaction between CHPF and Mitotic arrest deficient 1-like 1 (MAD1L1). In addition, Chromatin Immunoprecipitation (ChIP)-PCR analysis showed that HNF4A bound to the CHPF promoter region, which indicated that the transcription factor hepatocyte nuclear factor 4A (HNF4A) could regulate the expression of CHPF in glioma cells.
Collapse
Affiliation(s)
- Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Mengqi Cheng
- Department of Health Management Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoyan Long
- Science Research Center, East China Institute of Digital Medical Engineering, Shangrao, Jiangxi Province, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
43
|
Tang Q, Mao X, Chen Z, Ma C, Tu Y, Zhu Q, Lu J, Wang Z, Zhang Q, Wu W. Liquid-liquid phase separation-related gene in gliomas: FABP5 is a potential prognostic marker. J Gene Med 2023; 25:e3517. [PMID: 37114595 DOI: 10.1002/jgm.3517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The glioma is the most malignant human brain tumor. Early glioma detection and treatment are still difficult. New biomarkers are desperately required to aid in the evaluation of diagnosis and prognosis. METHODS The single cell sequencing dataset scRNA-6148 for glioblastoma was obtained from the Chinese Glioma Genome Atlas database. Data were gathered for the transcriptome sequencing project. Genes involved in liquid-liquid phase separation (LLPS) were taken out of the DrLLPS database. To find the modules connected to LLPS, the weighted co-expression network was analyzed. Differential expression analysis was used to identify the differentially expressed genes (DEGs) in gliomas. Pseudo-time series analysis, gene set enrichment analysis (GSEA) and immune cell infiltration analysis were used to investigate the role of important genes in the immunological microenvironment. We examined the function of key glioma genes using polymerase chain reaction (PCR) testing, CCK-8 assays, clone generation assays, transwell assays and wound healing assays. RESULTS FABP5 was identified as a key gene in glioblastoma by multiomics research. Pseudo-time series analysis showed that FABP5 was highly linked with the differentiation of many different types of cells. GSEA revealed that FABP5 was strongly linked to several hallmark pathways in glioblastoma. We looked at immune cell infiltration and discovered a significant link between FABP5, macrophages and T cell follicular helpers. The PCR experiment results demonstrated that FABP5 expression was elevated in glioma samples. Cell experiments showed that FABP5 knockdown dramatically decreased the viability, proliferation, invasion and migration of the LN229 and U87 glioma cell lines. CONCLUSIONS Our study provides a new biomarker, FABP5, for glioma diagnosis and treatment.
Collapse
Affiliation(s)
- Qikai Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xiaoman Mao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Neurosurgery, Pukou Branch of Jiangsu People's Hospital, Nanjing Pukou District Central Hospital, Nanjing, China
| | - Zhengxin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Chenfeng Ma
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Qianmiao Zhu
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Jiacheng Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Zhen Wang
- Department of Orthopaedics, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Qixiang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
44
|
Liu X, Zhao J, Dong P, Du X, Lu W, Feng Y, Wang L. TRIM6 silencing for inhibiting growth and angiogenesis of gliomas by regulating VEGFA. J Chem Neuroanat 2023; 132:102291. [PMID: 37236551 DOI: 10.1016/j.jchemneu.2023.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Gliomas are the highest prevalent primary central nervous system (CNS) cancers with poor overall survival rate. There is an urgent need to conduct more research into molecular therapies targeting critical elements of gliomas. This study herein targeted to assess the impact of tripartite motif protein 6 (TRIM6) on gliomas. Using public databases, we found the increased TRIM6 expression in tissues of glioma which was linked with worst overall survival. Silencing TRIM6 promoted glioma cell proliferation, migration and angiogenesis, suggesting the promoting effects of TRIM6 on gliomas. Knockdown of TRIM6 expression downregulated the expression levels of Forkhead box M1 (FOXM1) and vascular endothelial growth factor A (VEGFA) in glioma cells. Afterwards, impact of TRIM6 on VEGFA expression was regulated by FOXM1. VEGFA overexpression reversed the decreased abilities of glioma cell proliferation, migration and angiogenesis caused by silencing TRIM6. Furthermore, we also found that TRIM6 promoted the growth of gliomas in the xenograft mouse model. In summary, the expression of TRIM6 was increased which was related to poor prognosis of glioma patients. TRIM6 promoted glioma cell proliferation, migration and angiogenesis through the FOXM1-VEGFA pathway. Therefore, TRIM6 carries capacity to be explored as a novel therapeutic target in clinical.
Collapse
Affiliation(s)
- Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Junling Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - PengFei Dong
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xinyuan Du
- Department of Neurosurgery, JingXing Chinese Medicne Hospital, Shijiazhuang, Hebei 050000, China
| | - Wenpeng Lu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Liqun Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
45
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
46
|
Shan E, Cao YN, Zhang Y, Chen W, Ren X, Zhu S, Xi X, Mu S, Ma M, Zhi T, Li X. Integrated profiling identifies CACNG3 as a prognostic biomarker for patients with glioma. BMC Cancer 2023; 23:846. [PMID: 37697240 PMCID: PMC10494363 DOI: 10.1186/s12885-023-10896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/27/2023] [Indexed: 09/13/2023] Open
Abstract
Gliomas are the most common malignant primary brain tumors in adults with poor prognoses. The purpose of this study is to explore CACNG3 as a prognostic factor that is closely related to the progression and survival outcome of gliomas and to provide a potential new molecular target for the diagnosis and treatment of glioma patients. CACNG3 expression and related clinical data were collected from three major databases of The Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO). The CGGA dataset was used as a training set, and TCGA and GEO datasets obtained from the GEO database were used for validation. CACNG3 was expressed at low levels in the tumor group, and the overall survival (OS) in patients with low CACNG3 expression is shorter. Furthermore, CACNG3 expression was negatively associated with glioma grades, which was confirmed in the IHC results of clinical samples. The expression level of CACNG3 in the IDH1 wide-type group, 1p/19q non-codel group, and mesenchymal subtype group was significantly reduced, and the results showed that CACNG3 could serve as a biomarker for the mesenchymal molecular subtype. In addition, the univariate and multivariate analysis verified the prognostic value of CACNG3 in predicting the OS of gliomas of all grades. The results of functional annotation and pathway enrichment analysis of differently expressed genes(DEGs), showed that CACNG3 might affect the development of glioma by interfering with synaptic transmission. Moreover, temozolomide (TMZ), commonly used in the treatment of glioma, increased CACNG3 expression in a dose and time-dependent manner. Therefore, CACNG3 plays a vital role in the occurrence and development of gliomas and can serve as a potential biomarker for targeted therapy and further investigation in the future.
Collapse
Affiliation(s)
- Enfang Shan
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu Province, 210000, China
| | - Yi-Nan Cao
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu Province, 210000, China
- Department of Medical Imaging, Nanjing Vocational Health School, No. 40, Xiaozhuang, Qixia District, Nanjing, Jiangsu Province, 210046, China
| | - Yang Zhang
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu Province, 210000, China
| | - Wen Chen
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu Province, 210000, China
| | - Xurui Ren
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu Province, 210000, China
| | - Shanjie Zhu
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu Province, 210000, China
| | - Xueru Xi
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu Province, 210000, China
| | - Shuai Mu
- Department of Oncology, Senior Department of Oncology, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100039, China
| | - Mian Ma
- Department of Neurosurgery, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, No.242 Guangji road, Suzhou, Jiangsu Province, 215008, China
| | - Tongle Zhi
- The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, 224006, China.
| | - Xianwen Li
- School of Nursing, Nanjing Medical University, No.140 Hanzhong Road, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
47
|
Michelucci A, Sforna L, Di Battista A, Franciolini F, Catacuzzeno L. Ca 2+ -activated K + channels regulate cell volume in human glioblastoma cells. J Cell Physiol 2023; 238:2120-2134. [PMID: 37431808 DOI: 10.1002/jcp.31072] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
Glioblastoma (GBM), the most lethal form of brain tumors, bases its malignancy on the strong ability of its cells to migrate and invade the narrow spaces of healthy brain parenchyma. Cell migration and invasion are both critically dependent on changes in cell volume and shape driven by the transmembrane transport of osmotically important ions such as K+ and Cl- . However, while the Cl- channels participating in cell volume regulation have been clearly identified, the precise nature of the K+ channels involved is still uncertain. Using a combination of electrophysiological and imaging approaches in GBM U87-MG cells, we found that hypotonic-induced cell swelling triggered the opening of Ca2+ -activated K+ (KCa ) channels of large and intermediate conductance (BKCa and IKCa , respectively), both highly expressed in GBM cells. The influx of Ca2+ mediated by the hypotonic-induced activation of mechanosensitive channels was found to be a key step for opening both the BKCa and the IKCa channels. Finally, the activation of both KCa channels mediated by mechanosensitive channels was found to be essential for the development of the regulatory volume decrease following hypotonic shock. Taken together, these data indicate that KCa channels are the main K+ channels responsible for the volume regulation in U87-MG cells.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Angela Di Battista
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
48
|
Liu C, Zhang N, Xu Z, Wang X, Yang Y, Bu J, Cao H, Xiao J, Xie Y. Nuclear mitochondria-related genes-based molecular classification and prognostic signature reveal immune landscape, somatic mutation, and prognosis for glioma. Heliyon 2023; 9:e19856. [PMID: 37809472 PMCID: PMC10559255 DOI: 10.1016/j.heliyon.2023.e19856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background Glioma is the most frequent malignant primary brain tumor, and mitochondria may influence the progression of glioma. The aim of this study was to analyze the role of nuclear mitochondria related genes (MTRGs) in glioma, identify subtypes and construct a prognostic model based on nuclear MTRGs and machine learning algorithms. Methods Samples containing both gene expression profiles and clinical information were retrieved from the TCGA database, CGGA database, and GEO database. We selected 16 nuclear MTRGs and identified two clusters of glioma. Prognostic features, microenvironment, mutation landscape, and drug sensitivity were compared between the clusters. A prognostic model based on multiple machine learning algorithms was then constructed and validated by multiple datasets. Results We observed significant discrepancies between the two clusters. Cluster One had higher nuclear MTRG expression, a lower survival rate, and higher immune infiltration than Cluster Two. For the two clusters, we found distinct predictive drug sensitivities and responses to immune therapy, and the infiltration of immune cells was significantly different. Among the 22 combinations of machine learning algorithms we tested, LASSO was the most effective in constructing the prognostic model. The model's accuracy was further verified in three independent glioma datasets. We identified MGME1 as a vital gene associated with infiltrating immune cells in multiple types of tumors. Conclusion In short, our research identified two clusters of glioma and developed a dependable prognostic model based on machine learning methods. MGME1 was identified as a potential biomarker for multiple tumors. Our results will contribute to precise medicine and glioma management.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhihao Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xiaofeng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yang Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junming Bu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jin Xiao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yinyin Xie
- College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
49
|
Tluli O, Al-Maadhadi M, Al-Khulaifi AA, Akomolafe AF, Al-Kuwari SY, Al-Khayarin R, Maccalli C, Pedersen S. Exploring the Role of microRNAs in Glioma Progression, Prognosis, and Therapeutic Strategies. Cancers (Basel) 2023; 15:4213. [PMID: 37686489 PMCID: PMC10486509 DOI: 10.3390/cancers15174213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023] Open
Abstract
Gliomas, which arise from glial cells in the brain, remain a significant challenge due to their location and resistance to traditional treatments. Despite research efforts and advancements in healthcare, the incidence of gliomas has risen dramatically over the past two decades. The dysregulation of microRNAs (miRNAs) has prompted the creation of therapeutic agents that specially target them. However, it has been reported that they are involved in complex signaling pathways that contribute to the loss of expression of tumor suppressor genes and the upregulation of the expression of oncogenes. In addition, numerous miRNAs promote the development, progression, and recurrence of gliomas by targeting crucial proteins and enzymes involved in metabolic pathways such as glycolysis and oxidative phosphorylation. However, the complex interplay among these pathways along with other obstacles hinders the ability to apply miRNA targeting in clinical practice. This highlights the importance of identifying specific miRNAs to be targeted for therapy and having a complete understanding of the diverse pathways they are involved in. Therefore, the aim of this review is to provide an overview of the role of miRNAs in the progression and prognosis of gliomas, emphasizing the different pathways involved and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Omar Tluli
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Mazyona Al-Maadhadi
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Aisha Abdulla Al-Khulaifi
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Aishat F. Akomolafe
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Shaikha Y. Al-Kuwari
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Roudha Al-Khayarin
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | | | - Shona Pedersen
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| |
Collapse
|
50
|
Ye LJ, Xu KM, Bai G, Yuan J, Ran FM. SRSF1 induces glioma progression and has a potential diagnostic application in grading primary glioma. Oncol Lett 2023; 26:348. [PMID: 37427339 PMCID: PMC10326825 DOI: 10.3892/ol.2023.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Glioma is the most common intracranial tumor of the central nervous system in adults; however, the diagnosis of glioma, and its grading and histological subtyping, is challenging for pathologists. The present study assessed serine and arginine rich splicing factor 1 (SRSF1) expression in 224 glioma cases in the Chinese Glioma Genome Atlas (CGGA) database, and verified its expression by immunohistochemical analysis of specimens from 70 clinical patients. In addition, the prognostic potential of SRSF1 concerning the survival status of patients was evaluated. In vitro, the biological role of SRSF1 was assessed using MTT, colony formation, wound healing and Transwell assays. The results revealed that SRSF1 expression was significantly associated with the grading and the histopathological subtype of glioma. As determined using a receiver operating characteristic curve analysis, the specificity of SRSF1 for glioblastoma (GBM) and World Health Organization (WHO) grade 3 astrocytoma was 40 and 48%, respectively, whereas the sensitivity was 100 and 85%. By contrast, pilocytic astrocytoma tumors exhibited negative immunoexpression of SRSF1. Additionally, Kaplan-Meier survival analysis indicated that high SRSF1 expression predicted a worse prognosis for patients with glioma in both the CGGA and clinical cohorts. In vitro, the results demonstrated that SRSF1 promoted the proliferation, invasion and migration of U87MG and U251 cells. These data suggested that immunohistochemical analysis of SRSF1 expression is highly sensitive and specific in the diagnosis of GBM and WHO grade 3 astrocytoma, and may have an important role in glioma grading. Furthermore, the lack of SRSF1 is a potential diagnostic biomarker for pilocytic astrocytoma. However, neither in oligodendroglioma and astrocytoma, nor in GBM was an association detected between SRSF1 expression and IDH1 mutations or 1p/19q co-deletion. These findings indicated that SRSF1 may serve as a prognostic factor in glioma cases and could have an active role in promoting glioma progression.
Collapse
Affiliation(s)
- Li-Juan Ye
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan 650118, P.R. China
| | - Kai-Min Xu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan 650118, P.R. China
| | - Gang Bai
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan 650118, P.R. China
| | - Jing Yuan
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan 650118, P.R. China
| | - Feng-Ming Ran
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan 650118, P.R. China
| |
Collapse
|