1
|
Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell 2024; 31:1398-1418. [PMID: 39366361 DOI: 10.1016/j.stem.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
The use of stem cells to model the early human embryo promises to transform our understanding of developmental biology and human reproduction. In this review, we present our current knowledge of the first 2 weeks of human embryo development. We first focus on the distinct cell lineages of the embryo and the derivation of stem cell lines. We then discuss the intercellular crosstalk that guides early embryo development and how this crosstalk is recapitulated in vitro to generate stem cell-based embryo models. We highlight advances in this fast-developing field, discuss current limitations, and provide a vision for the future.
Collapse
Affiliation(s)
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Leuven Stem Cell Institute & Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium.
| |
Collapse
|
2
|
Magro-Lopez E, Vazquez-Alejo E, Espinar-Buitrago MDLS, Muñoz-Fernández MÁ. Optimizing Nodal, Wnt and BMP signaling pathways for robust and efficient differentiation of human induced pluripotent stem cells to intermediate mesoderm cells. Front Cell Dev Biol 2024; 12:1395723. [PMID: 38887514 PMCID: PMC11182123 DOI: 10.3389/fcell.2024.1395723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Several differentiation protocols have enabled the generation of intermediate mesoderm (IM)-derived cells from human pluripotent stem cells (hPSC). However, the substantial variability between existing protocols for generating IM cells compromises their efficiency, reproducibility, and overall success, potentially hindering the utility of urogenital system organoids. Here, we examined the role of high levels of Nodal signaling and BMP activity, as well as WNT signaling in the specification of IM cells derived from a UCSD167i-99-1 human induced pluripotent stem cells (hiPSC) line. We demonstrate that precise modulation of WNT and BMP signaling significantly enhances IM differentiation efficiency. Treatment of hPSC with 3 μM CHIR99021 induced TBXT+/MIXL1+ mesoderm progenitor (MP) cells after 48 h of differentiation. Further treatment with a combination of 3 μM CHIR99021 and 4 ng/mL BMP4 resulted in the generation of OSR1+/GATA3+/PAX2+ IM cells within a subsequent 48 h period. Molecular characterization of differentiated cells was confirmed through immunofluorescence staining and RT-qPCR. Hence, this study establishes a consistent and reproducible protocol for differentiating hiPSC into IM cells that faithfully recapitulates the molecular signatures of IM development. This protocol holds promise for improving the success of protocols designed to generate urogenital system organoids in vitro, with potential applications in regenerative medicine, drug discovery, and disease modeling.
Collapse
Affiliation(s)
- Esmeralda Magro-Lopez
- Molecular Immuno-Biology Laboratory, Immunology Section, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Elena Vazquez-Alejo
- Molecular Immuno-Biology Laboratory, Immunology Section, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María de la Sierra Espinar-Buitrago
- Molecular Immuno-Biology Laboratory, Immunology Section, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Molecular Immuno-Biology Laboratory, Immunology Section, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
3
|
Thanaskody K, Natashah FN, Nordin F, Kamarul Zaman WSW, Tye GJ. Designing molecules: directing stem cell differentiation. Front Bioeng Biotechnol 2024; 12:1396405. [PMID: 38803845 PMCID: PMC11129639 DOI: 10.3389/fbioe.2024.1396405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Stem cells have been widely applied in regenerative and therapeutic medicine for their unique regenerative properties. Although much research has shown their potential, it remains tricky in directing stem cell differentiation. The advancement of genetic and therapeutic technologies, however, has facilitated this issue through development of design molecules. These molecules are designed to overcome the drawbacks previously faced, such as unexpected differentiation outcomes and insufficient migration of endogenous or exogenous MSCs. Here, we introduced aptamer, bacteriophage, and biological vectors as design molecules and described their characteristics. The methods of designing/developing discussed include various Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedures, in silico approaches, and non-SELEX methods for aptamers, and genetic engineering methods such as homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), Bacteriophage Recombineering with Infectious Particles (BRIP), and genome rebooting for bacteriophage. For biological vectors, methods such as alternate splicing, multiple promoters, internal ribosomal entry site, CRISPR-Cas9 system and Cre recombinase mediated recombination were used to design viral vectors, while non-viral vectors like exosomes are generated through parental cell-based direct engineering. Besides that, we also discussed the pros and cons, and applications of each design molecule in directing stem cell differentiation to illustrate their great potential in stem cells research. Finally, we highlighted some safety and efficacy concerns to be considered for future studies.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fajriyah Nur Natashah
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
4
|
Yanagihara K, Hayashi Y, Liu Y, Yamaguchi T, Hemmi Y, Kokunugi M, Yamada KU, Fukumoto K, Suga M, Terada S, Nikawa H, Kawabata K, Furue M. Trisomy 12 compromises the mesendodermal differentiation propensity of human pluripotent stem cells. In Vitro Cell Dev Biol Anim 2024; 60:521-534. [PMID: 38169039 PMCID: PMC11126453 DOI: 10.1007/s11626-023-00824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/08/2023] [Indexed: 01/05/2024]
Abstract
Trisomy 12 is one of the most frequent chromosomal abnormalities in cultured human pluripotent stem cells (hPSCs). Although potential oncogenic properties and augmented cell cycle caused by trisomy 12 have been reported, the consequences of trisomy 12 in terms of cell differentiation, which is the basis for regenerative medicine, drug development, and developmental biology studies, have not yet been investigated. Here, we report that trisomy 12 compromises the mesendodermal differentiation of hPSCs. We identified sublines of hPSCs carrying trisomy 12 after their prolonged culture. Transcriptome analysis revealed that these hPSC sublines carried abnormal gene expression patterns in specific signaling pathways in addition to cancer-related cell cycle pathways. These hPSC sublines showed a lower propensity for mesendodermal differentiation in embryoid bodies cultured in a serum-free medium. BMP4-induced exit from the self-renewal state was impaired in the trisomy 12 hPSC sublines, with less upregulation of key transcription factor gene expression. As a consequence, the differentiation efficiency of hematopoietic and hepatic lineages was also impaired in the trisomy 12 hPSC sublines. We reveal that trisomy 12 disrupts the genome-wide expression patterns that are required for proper mesendodermal differentiation.
Collapse
Affiliation(s)
- Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN Bioresource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Yujung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Tomoko Yamaguchi
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Yasuko Hemmi
- iPS Cell Advanced Characterization and Development Team, RIKEN Bioresource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Minako Kokunugi
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
- Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kozue Uchio Yamada
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Ken Fukumoto
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
- Department of Applied Chemistry and Biotechnology, University of Fukui, Fukui City, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Satoshi Terada
- Department of Applied Chemistry and Biotechnology, University of Fukui, Fukui City, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Hiroki Nikawa
- Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Kawabata
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Miho Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan.
- Cel-MiM, Ltd., Tokyo, Japan.
| |
Collapse
|
5
|
Loh KM, Ang LT. Building human artery and vein endothelial cells from pluripotent stem cells, and enduring mysteries surrounding arteriovenous development. Semin Cell Dev Biol 2024; 155:62-75. [PMID: 37393122 DOI: 10.1016/j.semcdb.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Owing to their manifold roles in health and disease, there have been intense efforts to synthetically generate blood vessels in vitro from human pluripotent stem cells (hPSCs). However, there are multiple types of blood vessel, including arteries and veins, which are molecularly and functionally different. How can we specifically generate either arterial or venous endothelial cells (ECs) from hPSCs in vitro? Here, we summarize how arterial or venous ECs arise during embryonic development. VEGF and NOTCH arbitrate the bifurcation of arterial vs. venous ECs in vivo. While manipulating these two signaling pathways biases hPSC differentiation towards arterial and venous identities, efficiently generating these two subtypes of ECs has remained challenging until recently. Numerous questions remain to be fully addressed. What is the complete identity, timing and combination of extracellular signals that specify arterial vs. venous identities? How do these extracellular signals intersect with fluid flow to modulate arteriovenous fate? What is a unified definition for endothelial progenitors or angioblasts, and when do arterial vs. venous potentials segregate? How can we regulate hPSC-derived arterial and venous ECs in vitro, and generate organ-specific ECs? In turn, answers to these questions could avail the production of arterial and venous ECs from hPSCs, accelerating vascular research, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Perera M, Brickman JM. In vitro models of human hypoblast and mouse primitive endoderm. Curr Opin Genet Dev 2023; 83:102115. [PMID: 37783145 DOI: 10.1016/j.gde.2023.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
The primitive endoderm (PrE, also named hypoblast), a predominantly extraembryonic epithelium that arises from the inner cell mass (ICM) of the mammalian pre-implantation blastocyst, plays a fundamental role in embryonic development, giving rise to the yolk sac, establishing the anterior-posterior axis and contributing to the gut. PrE is specified from the ICM at the same time as the epiblast (Epi) that will form the embryo proper. While in vitro cell lines resembling the pluripotent Epi have been derived from a variety of conditions, only one model system currently exists for the PrE, naïve extraembryonic endoderm (nEnd). As a result, considerably more is known about the gene regulatory networks and signalling requirements of pluripotent stem cells than nEnd. In this review, we describe the ontogeny and differentiation of the PrE or hypoblast in mouse and primate and then discuss in vitro cell culture models for different extraembryonic endodermal cell types.
Collapse
Affiliation(s)
- Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark. https://twitter.com/@MartaPrera
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
7
|
Kuo CY, Hsu YC, Liu CL, Li YS, Chang SC, Cheng SP. SOX4 is a pivotal regulator of tumorigenesis in differentiated thyroid cancer. Mol Cell Endocrinol 2023; 578:112062. [PMID: 37673293 DOI: 10.1016/j.mce.2023.112062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The SOX family consists of about 20 transcription factors involved in embryonic development, reprogramming, and cell fate determination. In this study, we demonstrated that SOX4 was significantly upregulated in differentiated thyroid cancer. Immunohistochemical analysis revealed that high SOX4 expression was associated with papillary histology, extrathyroidal extension, lymph node metastasis, and advanced disease stage. Patients whose tumors exhibited high SOX4 expression had a shorter recurrence-free survival, though significance was lost in multivariate Cox regression analysis. SOX4 silencing in thyroid cancer cells slowed cell growth, attenuated clonogenicity, and suppressed anoikis resistance. Additionally, SOX4 knockdown impeded xenograft tumor growth in nude mice. Knockdown of SOX4 expression was accompanied by reduced phosphorylation of AKT and ERK. Furthermore, CRABP2 expression correlated with SOX4 expression, and SOX4 silencing decreased CRABP2 expression and its downstream effectors such as integrin β1 and β4. These results indicate that SOX4 has both prognostic and therapeutic implications in differentiated thyroid cancer, and targeting SOX4 may modulate tumorigenic processes in the thyroid.
Collapse
Affiliation(s)
- Chi-Yu Kuo
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ying-Syuan Li
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shao-Chiang Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Pulver C, Grun D, Duc J, Sheppard S, Planet E, Coudray A, de Fondeville R, Pontis J, Trono D. Statistical learning quantifies transposable element-mediated cis-regulation. Genome Biol 2023; 24:258. [PMID: 37950299 PMCID: PMC10637000 DOI: 10.1186/s13059-023-03085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/09/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Transposable elements (TEs) have colonized the genomes of most metazoans, and many TE-embedded sequences function as cis-regulatory elements (CREs) for genes involved in a wide range of biological processes from early embryogenesis to innate immune responses. Because of their repetitive nature, TEs have the potential to form CRE platforms enabling the coordinated and genome-wide regulation of protein-coding genes by only a handful of trans-acting transcription factors (TFs). RESULTS Here, we directly test this hypothesis through mathematical modeling and demonstrate that differences in expression at protein-coding genes alone are sufficient to estimate the magnitude and significance of TE-contributed cis-regulatory activities, even in contexts where TE-derived transcription fails to do so. We leverage hundreds of overexpression experiments and estimate that, overall, gene expression is influenced by TE-embedded CREs situated within approximately 500 kb of promoters. Focusing on the cis-regulatory potential of TEs within the gene regulatory network of human embryonic stem cells, we find that pluripotency-specific and evolutionarily young TE subfamilies can be reactivated by TFs involved in post-implantation embryogenesis. Finally, we show that TE subfamilies can be split into truly regulatorily active versus inactive fractions based on additional information such as matched epigenomic data, observing that TF binding may better predict TE cis-regulatory activity than differences in histone marks. CONCLUSION Our results suggest that TE-embedded CREs contribute to gene regulation during and beyond gastrulation. On a methodological level, we provide a statistical tool that infers TE-dependent cis-regulation from RNA-seq data alone, thus facilitating the study of TEs in the next-generation sequencing era.
Collapse
Affiliation(s)
- Cyril Pulver
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Delphine Grun
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Shaoline Sheppard
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Alexandre Coudray
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Raphaël de Fondeville
- Swiss Data Science Center, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Julien Pontis
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- SOPHiA GENETICS SA, La Pièce 12, CH-1180, Rolle, Switzerland.
| | - Didier Trono
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Kubiura-Ichimaru M, Penfold C, Kojima K, Dollet C, Yabukami H, Semi K, Takashima Y, Boroviak T, Kawaji H, Woltjen K, Minoda A, Sasaki E, Watanabe T. mRNA-based generation of marmoset PGCLCs capable of differentiation into gonocyte-like cells. Stem Cell Reports 2023; 18:1987-2002. [PMID: 37683645 PMCID: PMC10656353 DOI: 10.1016/j.stemcr.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
Primate germ cell development remains largely unexplored due to limitations in sample collection and the long duration of development. In mice, primordial germ cell-like cells (PGCLCs) derived from pluripotent stem cells (PSCs) can develop into functional gametes by in vitro culture or in vivo transplantation. Such PGCLC-mediated induction of mature gametes in primates is highly useful for understanding human germ cell development. Since marmosets generate functional sperm earlier than other species, recapitulating the whole male germ cell development process is technically more feasible. Here, we induced the differentiation of iPSCs into gonocyte-like cells via PGCLCs in marmosets. First, we developed an mRNA transfection-based method to efficiently generate PGCLCs. Subsequently, to promote PGCLC differentiation, xenoreconstituted testes (xrtestes) were generated in the mouse kidney capsule. PGCLCs show progressive DNA demethylation and stepwise expression of developmental marker genes. This study provides an efficient platform for the study of marmoset germ cell development.
Collapse
Affiliation(s)
- Musashi Kubiura-Ichimaru
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Division of Molecular Genetics & Epigenetics, Department of Biomolecular Science, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, UK; Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Kazuaki Kojima
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Constance Dollet
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Haruka Yabukami
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Katsunori Semi
- Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Thorsten Boroviak
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Erika Sasaki
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Toshiaki Watanabe
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; National Center for Child Health and Development, Tokyo 157-8535, Japan.
| |
Collapse
|
10
|
Steinhart MR, van der Valk WH, Osorio D, Serdy SA, Zhang J, Nist-Lund C, Kim J, Moncada-Reid C, Sun L, Lee J, Koehler KR. Mapping oto-pharyngeal development in a human inner ear organoid model. Development 2023; 150:dev201871. [PMID: 37796037 PMCID: PMC10698753 DOI: 10.1242/dev.201871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Inner ear development requires the coordination of cell types from distinct epithelial, mesenchymal and neuronal lineages. Although we have learned much from animal models, many details about human inner ear development remain elusive. We recently developed an in vitro model of human inner ear organogenesis using pluripotent stem cells in a 3D culture, fostering the growth of a sensorineural circuit, including hair cells and neurons. Despite previously characterizing some cell types, many remain undefined. This study aimed to chart the in vitro development timeline of the inner ear organoid to understand the mechanisms at play. Using single-cell RNA sequencing at ten stages during the first 36 days of differentiation, we tracked the evolution from pluripotency to various ear cell types after exposure to specific signaling modulators. Our findings showcase gene expression that influences differentiation, identifying a plethora of ectodermal and mesenchymal cell types. We also discern aspects of the organoid model consistent with in vivo development, while highlighting potential discrepancies. Our study establishes the Inner Ear Organoid Developmental Atlas (IODA), offering deeper insights into human biology and improving inner ear tissue differentiation.
Collapse
Affiliation(s)
- Matthew R. Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wouter H. van der Valk
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery; Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW); Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - Daniel Osorio
- Research Computing, Department of Information Technology; Boston Children's Hospital, Boston, MA 02115, USA
| | - Sara A. Serdy
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Carl Nist-Lund
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Kim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cynthia Moncada-Reid
- Speech and Hearing Bioscience and Technology (SHBT) Graduate Program, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology; Boston Children's Hospital, Boston, MA 02115, USA
| | - Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
11
|
Weatherbee BAT, Gantner CW, Iwamoto-Stohl LK, Daza RM, Hamazaki N, Shendure J, Zernicka-Goetz M. Pluripotent stem cell-derived model of the post-implantation human embryo. Nature 2023; 622:584-593. [PMID: 37369347 PMCID: PMC10584688 DOI: 10.1038/s41586-023-06368-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
The human embryo undergoes morphogenetic transformations following implantation into the uterus, but our knowledge of this crucial stage is limited by the inability to observe the embryo in vivo. Models of the embryo derived from stem cells are important tools for interrogating developmental events and tissue-tissue crosstalk during these stages1. Here we establish a model of the human post-implantation embryo, a human embryoid, comprising embryonic and extraembryonic tissues. We combine two types of extraembryonic-like cell generated by overexpression of transcription factors with wild-type embryonic stem cells and promote their self-organization into structures that mimic several aspects of the post-implantation human embryo. These self-organized aggregates contain a pluripotent epiblast-like domain surrounded by extraembryonic-like tissues. Our functional studies demonstrate that the epiblast-like domain robustly differentiates into amnion, extraembryonic mesenchyme and primordial germ cell-like cells in response to bone morphogenetic protein cues. In addition, we identify an inhibitory role for SOX17 in the specification of anterior hypoblast-like cells2. Modulation of the subpopulations in the hypoblast-like compartment demonstrates that extraembryonic-like cells influence epiblast-like domain differentiation, highlighting functional tissue-tissue crosstalk. In conclusion, we present a modular, tractable, integrated3 model of the human embryo that will enable us to probe key questions of human post-implantation development, a critical window during which substantial numbers of pregnancies fail.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Carlos W Gantner
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Lisa K Iwamoto-Stohl
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Riza M Daza
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
12
|
Abel A, Sozen B. Shifting early embryology paradigms: Applications of stem cell-based embryo models in bioengineering. Curr Opin Genet Dev 2023; 81:102069. [PMID: 37392541 PMCID: PMC10530566 DOI: 10.1016/j.gde.2023.102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
Technologies to reproduce specific aspects of early mammalian embryogenesis in vitro using stem cells have skyrocketed over the last several years. With these advances, we have gained new perspectives on how embryonic and extraembryonic cells self-organize to form the embryo. These reductionist approaches hold promise for the future implementation of precise environmental and genetic controls to understand variables affecting embryo development. Our review discusses recent progress in cellular models of early mammalian embryo development and bioengineering advancements that can be leveraged to study the embryo-maternal interface. We summarize current gaps in the field, emphasizing the importance of understanding how intercellular interactions at this interface contribute to reproductive and developmental health.
Collapse
Affiliation(s)
- Ashley Abel
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520, USA. https://twitter.com/@caitrionacunn
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Trinh LT, Osipovich AB, Liu B, Shrestha S, Cartailler JP, Wright CVE, Magnuson MA. Single-Cell RNA Sequencing of Sox17-Expressing Lineages Reveals Distinct Gene Regulatory Networks and Dynamic Developmental Trajectories. Stem Cells 2023; 41:643-657. [PMID: 37085274 PMCID: PMC10465087 DOI: 10.1093/stmcls/sxad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
During early embryogenesis, the transcription factor SOX17 contributes to hepato-pancreato-biliary system formation and vascular-hematopoietic emergence. To better understand Sox17 function in the developing endoderm and endothelium, we developed a dual-color temporal lineage-tracing strategy in mice combined with single-cell RNA sequencing to analyze 6934 cells from Sox17-expressing lineages at embryonic days 9.0-9.5. Our analyses showed 19 distinct cellular clusters combined from all 3 germ layers. Differential gene expression, trajectory and RNA-velocity analyses of endothelial cells revealed a heterogenous population of uncommitted and specialized endothelial subtypes, including 2 hemogenic populations that arise from different origins. Similarly, analyses of posterior foregut endoderm revealed subsets of hepatic, pancreatic, and biliary progenitors with overlapping developmental potency. Calculated gene-regulatory networks predict gene regulons that are dominated by cell type-specific transcription factors unique to each lineage. Vastly different Sox17 regulons found in endoderm versus endothelial cells support the differential interactions of SOX17 with other regulatory factors thereby enabling lineage-specific regulatory actions.
Collapse
Affiliation(s)
- Linh T Trinh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Bryan Liu
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, USA
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
14
|
Srivastava P, Romanazzo S, Kopecky C, Nemec S, Ireland J, Molley TG, Lin K, Jayathilaka PB, Pandzic E, Yeola A, Chandrakanthan V, Pimanda J, Kilian K. Defined Microenvironments Trigger In Vitro Gastrulation in Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203614. [PMID: 36519269 PMCID: PMC9929265 DOI: 10.1002/advs.202203614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Gastrulation is a stage in embryo development where three germ layers arise to dictate the human body plan. In vitro models of gastrulation have been demonstrated by treating pluripotent stem cells with soluble morphogens to trigger differentiation. However, in vivo gastrulation is a multistage process coordinated through feedback between soluble gradients and biophysical forces, with the multipotent epiblast transforming to the primitive streak followed by germ layer segregation. Here, the authors show how constraining pluripotent stem cells to hydrogel islands triggers morphogenesis that mirrors the stages preceding in vivo gastrulation, without the need for exogenous supplements. Within hours of initial seeding, cells display a contractile phenotype at the boundary, which leads to enhanced proliferation, yes-associated protein (YAP) translocation, epithelial to mesenchymal transition, and emergence of SRY-box transcription factor 17 (SOX17)+ T/BRACHYURY+ cells. Molecular profiling and pathway analysis reveals a role for mechanotransduction-coupled wingless-type (WNT) signaling in orchestrating differentiation, which bears similarities to processes observed in whole organism models of development. After two days, the colonies form multilayered aggregates, which can be removed for further growth and differentiation. This approach demonstrates how materials alone can initiate gastrulation, thereby providing in vitro models of development and a tool to support organoid bioengineering efforts.
Collapse
Affiliation(s)
- Pallavi Srivastava
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Sara Romanazzo
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Chantal Kopecky
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Stephanie Nemec
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jake Ireland
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Thomas G. Molley
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Kang Lin
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Pavithra B. Jayathilaka
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy FacilityMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Avani Yeola
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Vashe Chandrakanthan
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - John Pimanda
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- Department of HaematologyPrince of Wales HospitalRandwickNSW2031Australia
| | - Kristopher Kilian
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
15
|
Landshammer A, Bolondi A, Kretzmer H, Much C, Buschow R, Rose A, Wu HJ, Mackowiak SD, Braendl B, Giesselmann P, Tornisiello R, Parsi KM, Huey J, Mielke T, Meierhofer D, Maehr R, Hnisz D, Michor F, Rinn JL, Meissner A. T-REX17 is a transiently expressed non-coding RNA essential for human endoderm formation. eLife 2023; 12:e83077. [PMID: 36719724 PMCID: PMC9889090 DOI: 10.7554/elife.83077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as fundamental regulators in various biological processes, including embryonic development and cellular differentiation. Despite much progress over the past decade, the genome-wide annotation of lncRNAs remains incomplete and many known non-coding loci are still poorly characterized. Here, we report the discovery of a previously unannotated lncRNA that is transcribed 230 kb upstream of the SOX17 gene and located within the same topologically associating domain. We termed it T-REX17 (Transcript Regulating Endoderm and activated by soX17) and show that it is induced following SOX17 activation but its expression is more tightly restricted to early definitive endoderm. Loss of T-REX17 affects crucial functions independent of SOX17 and leads to an aberrant endodermal transcriptome, signaling pathway deregulation and epithelial to mesenchymal transition defects. Consequently, cells lacking the lncRNA cannot further differentiate into more mature endodermal cell types. Taken together, our study identified and characterized T-REX17 as a transiently expressed and essential non-coding regulator in early human endoderm differentiation.
Collapse
Affiliation(s)
- Alexandro Landshammer
- Department of Genome Regulation, Max Planck Institute for Molecular GeneticsBerlinGermany
- Institute of Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular GeneticsBerlinGermany
- Institute of Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Christian Much
- Department of Biochemistry, University of Colorado Boulder and BioFrontiers InstituteBoulderUnited States
| | - René Buschow
- Max Planck Institute for Molecular Genetics, Microscopy Core FacilityBerlinGermany
| | - Alina Rose
- Helmholtz Institute for Metabolic, Obesity and Vascular ResearchLeipzigGermany
| | - Hua-Jun Wu
- Department of Data Science, Dana-Farber Cancer Institute, Department of Biostatistics, Harvard T. H. Chan School of Public HealthBostonUnited States
- Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center and Peking University Cancer Hospital and InstituteBeijingChina
| | - Sebastian D Mackowiak
- Department of Genome Regulation, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Bjoern Braendl
- Department of Genome Regulation, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Pay Giesselmann
- Department of Genome Regulation, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Rosaria Tornisiello
- Department of Genome Regulation, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Krishna Mohan Parsi
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Jack Huey
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Microscopy Core FacilityBerlinGermany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Core FacilityBerlinGermany
| | - René Maehr
- Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center and Peking University Cancer Hospital and InstituteBeijingChina
- Diabetes Center of Excellence, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Franziska Michor
- Department of Stem Cell and Regenerative Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Data Science, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T. H. Chan School of Public HealthBostonUnited States
- The Ludwig Center at Harvard, Boston, MA 02215, USA, and Center for Cancer Evolution, Dana-Farber Cancer InstituteBostonUnited States
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder and BioFrontiers InstituteBoulderUnited States
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular GeneticsBerlinGermany
- Institute of Chemistry and Biochemistry, Freie Universität BerlinBerlinGermany
- Department of Stem Cell and Regenerative Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| |
Collapse
|
16
|
Madrigal P, Deng S, Feng Y, Militi S, Goh KJ, Nibhani R, Grandy R, Osnato A, Ortmann D, Brown S, Pauklin S. Epigenetic and transcriptional regulations prime cell fate before division during human pluripotent stem cell differentiation. Nat Commun 2023; 14:405. [PMID: 36697417 PMCID: PMC9876972 DOI: 10.1038/s41467-023-36116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Stem cells undergo cellular division during their differentiation to produce daughter cells with a new cellular identity. However, the epigenetic events and molecular mechanisms occurring between consecutive cell divisions have been insufficiently studied due to technical limitations. Here, using the FUCCI reporter we developed a cell-cycle synchronised human pluripotent stem cell (hPSC) differentiation system for uncovering epigenome and transcriptome dynamics during the first two divisions leading to definitive endoderm. We observed that transcription of key differentiation markers occurs before cell division, while chromatin accessibility analyses revealed the early inhibition of alternative cell fates. We found that Activator protein-1 members controlled by p38/MAPK signalling are necessary for inducing endoderm while blocking cell fate shifting toward mesoderm, and that enhancers are rapidly established and decommissioned between different cell divisions. Our study has practical biomedical utility for producing hPSC-derived patient-specific cell types since p38/MAPK induction increased the differentiation efficiency of insulin-producing pancreatic beta-cells.
Collapse
Affiliation(s)
- Pedro Madrigal
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Siwei Deng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Kim Jee Goh
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Rodrigo Grandy
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anna Osnato
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniel Ortmann
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephanie Brown
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
17
|
Chowdhary S, Hadjantonakis AK. Journey of the mouse primitive endoderm: from specification to maturation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210252. [PMID: 36252215 PMCID: PMC9574636 DOI: 10.1098/rstb.2021.0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
The blastocyst is a conserved stage and distinct milestone in the development of the mammalian embryo. Blastocyst stage embryos comprise three cell lineages which arise through two sequential binary cell fate specification steps. In the first, extra-embryonic trophectoderm (TE) cells segregate from inner cell mass (ICM) cells. Subsequently, ICM cells acquire a pluripotent epiblast (Epi) or extra-embryonic primitive endoderm (PrE, also referred to as hypoblast) identity. In the mouse, nascent Epi and PrE cells emerge in a salt-and-pepper distribution in the early blastocyst and are subsequently sorted into adjacent tissue layers by the late blastocyst stage. Epi cells cluster at the interior of the ICM, while PrE cells are positioned on its surface interfacing the blastocyst cavity, where they display apicobasal polarity. As the embryo implants into the maternal uterus, cells at the periphery of the PrE epithelium, at the intersection with the TE, break away and migrate along the TE as they mature into parietal endoderm (ParE). PrE cells remaining in association with the Epi mature into visceral endoderm. In this review, we discuss our current understanding of the PrE from its specification to its maturation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
18
|
Sequential enhancer state remodelling defines human germline competence and specification. Nat Cell Biol 2022; 24:448-460. [PMID: 35411086 PMCID: PMC7612729 DOI: 10.1038/s41556-022-00878-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/28/2022] [Indexed: 12/26/2022]
|
19
|
Abdulhasan M, Ruden X, Rappolee B, Dutta S, Gurdziel K, Ruden DM, Awonuga AO, Korzeniewski SJ, Puscheck EE, Rappolee DA. Stress Decreases Host Viral Resistance and Increases Covid Susceptibility in Embryonic Stem Cells. Stem Cell Rev Rep 2021; 17:2164-2177. [PMID: 34155611 PMCID: PMC8216586 DOI: 10.1007/s12015-021-10188-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Stress-induced changes in viral receptor and susceptibility gene expression were measured in embryonic stem cells (ESC) and differentiated progeny. Rex1 promoter-Red Fluorescence Protein reporter ESC were tested by RNAseq after 72hr exposures to control stress hyperosmotic sorbitol under stemness culture (NS) to quantify stress-forced differentiation (SFD) transcriptomic programs. Control ESC cultured with stemness factor removal produced normal differentiation (ND). Bulk RNAseq transcriptomic analysis showed significant upregulation of two genes involved in Covid-19 cell uptake, Vimentin (VIM) and Transmembrane Serine Protease 2 (TMPRSS2). SFD increased the hepatitis A virus receptor (Havcr1) and the transplacental Herpes simplex 1 (HSV1) virus receptor (Pvrl1) compared with ESC undergoing ND. Several other coronavirus receptors, Glutamyl Aminopeptidase (ENPEP) and Dipeptidyl Peptidase 4 (DPP4) were upregulated significantly in SFD>ND. Although stressed ESC are more susceptible to infection due to increased expression of viral receptors and decreased resistance, the necessary Covid-19 receptor, angiotensin converting enzyme (ACE)2, was not expressed in our experiments. TMPRSS2, ENPEP, and DPP4 mediate Coronavirus uptake, but are also markers of extra-embryonic endoderm (XEN), which arise from ESC undergoing ND or SFD. Mouse and human ESCs differentiated to XEN increase TMPRSS2 and other Covid-19 uptake-mediating gene expression, but only some lines express ACE2. Covid-19 susceptibility appears to be genotype-specific and not ubiquitous. Of the 30 gene ontology (GO) groups for viral susceptibility, 15 underwent significant stress-forced changes. Of these, 4 GO groups mediated negative viral regulation and most genes in these increase in ND and decrease with SFD, thus suggesting that stress increases ESC viral susceptibility. Taken together, the data suggest that a control hyperosmotic stress can increase Covid-19 susceptibility and decrease viral host resistance in mouse ESC. However, this limited pilot study should be followed with studies in human ESC, tests of environmental, hormonal, and pharmaceutical stressors and direct tests for infection of stressed, cultured ESC and embryos by Covid-19.
Collapse
Affiliation(s)
- Mohammed Abdulhasan
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Reproductive Stress 3M Inc, Grosse Pointe Farms, MI, 48236, USA
| | - Ximena Ruden
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
| | | | - Sudipta Dutta
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Reproductive Endocrinology and Cell Signaling LaboratoryDepartment of Integrative BiosciencesCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, USA
| | - Katherine Gurdziel
- Genome Sciences Center, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Douglas M Ruden
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, 48202, USA
| | - Awoniyi O Awonuga
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
| | - Steve J Korzeniewski
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, 48202, USA
| | - Elizabeth E Puscheck
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Reproductive Stress 3M Inc, Grosse Pointe Farms, MI, 48236, USA
- Invia Fertility Clinics, Hoffman Estates, Illinois, 60169, USA
| | - Daniel A Rappolee
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA.
- Reproductive Stress 3M Inc, Grosse Pointe Farms, MI, 48236, USA.
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, 48202, USA.
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
| |
Collapse
|
20
|
Mennen RH, Oldenburger MM, Piersma AH. Endoderm and mesoderm derivatives in embryonic stem cell differentiation and their use in developmental toxicity testing. Reprod Toxicol 2021; 107:44-59. [PMID: 34861400 DOI: 10.1016/j.reprotox.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell differentiation models have increasingly been applied in non-animal test systems for developmental toxicity. After the initial focus on cardiac differentiation, attention has also included an array of neuro-ectodermal differentiation routes. Alternative differentiation routes in the mesodermal and endodermal germ lines have received less attention. This review provides an inventory of achievements in the latter areas of embryonic stem cell differentiation, with a view to possibilities for their use in non-animal test systems in developmental toxicology. This includes murine and human stem cell differentiation models, and also gains information from the field of stem cell use in regenerative medicine. Endodermal stem cell derivatives produced in vitro include hepatocytes, pancreatic cells, lung epithelium, and intestinal epithelium, and mesodermal derivatives include cardiac muscle, osteogenic, vascular and hemopoietic cells. This inventory provides an overview of studies on the different cell types together with biomarkers and culture conditions that stimulate these differentiation routes from embryonic stem cells. These models may be used to expand the spectrum of embryonic stem cell based new approach methodologies in non-animal developmental toxicity testing.
Collapse
Affiliation(s)
- R H Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | | | - A H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
21
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
22
|
Mackinlay KML, Weatherbee BAT, Souza Rosa V, Handford CE, Hudson G, Coorens T, Pereira LV, Behjati S, Vallier L, Shahbazi MN, Zernicka-Goetz M. An in vitro stem cell model of human epiblast and yolk sac interaction. eLife 2021; 10:e63930. [PMID: 34403333 PMCID: PMC8370770 DOI: 10.7554/elife.63930] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Human embryogenesis entails complex signalling interactions between embryonic and extra-embryonic cells. However, how extra-embryonic cells direct morphogenesis within the human embryo remains largely unknown due to a lack of relevant stem cell models. Here, we have established conditions to differentiate human pluripotent stem cells (hPSCs) into yolk sac-like cells (YSLCs) that resemble the post-implantation human hypoblast molecularly and functionally. YSLCs induce the expression of pluripotency and anterior ectoderm markers in human embryonic stem cells (hESCs) at the expense of mesoderm and endoderm markers. This activity is mediated by the release of BMP and WNT signalling pathway inhibitors, and, therefore, resembles the functioning of the anterior visceral endoderm signalling centre of the mouse embryo, which establishes the anterior-posterior axis. Our results implicate the yolk sac in epiblast cell fate specification in the human embryo and propose YSLCs as a tool for studying post-implantation human embryo development in vitro.
Collapse
Affiliation(s)
- Kirsty ML Mackinlay
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
| | - Bailey AT Weatherbee
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
| | - Viviane Souza Rosa
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São PauloSão PauloBrazil
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Charlotte E Handford
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
- Centre for Trophoblast Research, University of CambridgeCambridgeUnited Kingdom
| | - George Hudson
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
| | - Tim Coorens
- Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Lygia V Pereira
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São PauloSão PauloBrazil
| | - Sam Behjati
- Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Ludovic Vallier
- Wellcome – MRC Cambridge Stem Cell Institute, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Marta N Shahbazi
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and NeuroscienceCambridgeUnited Kingdom
- Synthetic Mouse and Human Embryology Group, California Institute of Technology (Caltech), Division of Biology and Biological EngineeringPasadenaUnited States
| |
Collapse
|
23
|
Weatherbee BAT, Cui T, Zernicka-Goetz M. Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev Biol 2021; 474:91-99. [PMID: 33333069 PMCID: PMC8232073 DOI: 10.1016/j.ydbio.2020.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022]
Abstract
Early human post-implantation development involves extensive growth combined with a series of complex morphogenetic events. The lack of precise spatial and temporal control over these processes leads to pregnancy loss. Given the ethical and technical limitations in studying the natural human embryo, alternative approaches are needed to investigate mechanisms underlying this critical stage of human development. Here, we present an overview of the different stem cells and stem cell-derived models which serve as useful, albeit imperfect, tools in understanding human embryogenesis. Current models include stem cells that represent each of the three earliest lineages: human embryonic stem cells corresponding to the epiblast, hypoblast-like stem cells and trophoblast stem cells. We also review the use of human embryonic stem cells to model complex aspects of epiblast morphogenesis and differentiation. Additionally, we propose that the combination of both embryonic and extra-embryonic stem cells to form three-dimensional embryo models will provide valuable insights into cell-cell chemical and mechanical interactions that are essential for natural embryogenesis.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Mouse and Human Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Tongtong Cui
- Plasticity and Synthetic Embryology Group, California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Magdalena Zernicka-Goetz
- Mouse and Human Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK; Plasticity and Synthetic Embryology Group, California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA.
| |
Collapse
|
24
|
Posfai E, Lanner F, Mulas C, Leitch HG. All models are wrong, but some are useful: Establishing standards for stem cell-based embryo models. Stem Cell Reports 2021; 16:1117-1141. [PMID: 33979598 PMCID: PMC8185978 DOI: 10.1016/j.stemcr.2021.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Detailed studies of the embryo allow an increasingly mechanistic understanding of development, which has proved of profound relevance to human disease. The last decade has seen in vitro cultured stem cell-based models of embryo development flourish, which provide an alternative to the embryo for accessible experimentation. However, the usefulness of any stem cell-based embryo model will be determined by how accurately it reflects in vivo embryonic development, and/or the extent to which it facilitates new discoveries. Stringent benchmarking of embryo models is thus an important consideration for this growing field. Here we provide an overview of means to evaluate both the properties of stem cells, the building blocks of most embryo models, as well as the usefulness of current and future in vitro embryo models.
Collapse
Affiliation(s)
- Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden; Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carla Mulas
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
25
|
Figiel DM, Elsayed R, Nelson AC. Investigating the molecular guts of endoderm formation using zebrafish. Brief Funct Genomics 2021:elab013. [PMID: 33754635 DOI: 10.1093/bfgp/elab013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The vertebrate endoderm makes major contributions to the respiratory and gastrointestinal tracts and all associated organs. Zebrafish and humans share a high degree of genetic homology and strikingly similar endodermal organ systems. Combined with a multitude of experimental advantages, zebrafish are an attractive model organism to study endoderm development and disease. Recent functional genomics studies have shed considerable light on the gene regulatory programs governing early zebrafish endoderm development, while advances in biological and technological approaches stand to further revolutionize our ability to investigate endoderm formation, function and disease. Here, we discuss the present understanding of endoderm specification in zebrafish compared to other vertebrates, how current and emerging methods will allow refined and enhanced analysis of endoderm formation, and how integration with human data will allow modeling of the link between non-coding sequence variants and human disease.
Collapse
Affiliation(s)
- Daniela M Figiel
- Medical Research Council Doctoral Training Partnership in Interdisciplinary Biomedical Research at Warwick Medical School
| | - Randa Elsayed
- Medical Research Council Doctoral Training Partnership in Interdisciplinary Biomedical Research at Warwick Medical School
| | | |
Collapse
|
26
|
Reid JC, Golubeva D, Boyd AL, Hollands CG, Henly C, Orlando L, Leber A, Hébert J, Morabito F, Cutrona G, Agnelli L, Gentile M, Ferrarini M, Neri A, Leber B, Bhatia M. Human pluripotent stem cells identify molecular targets of trisomy 12 in chronic lymphocytic leukemia patients. Cell Rep 2021; 34:108845. [PMID: 33730576 DOI: 10.1016/j.celrep.2021.108845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/13/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022] Open
Abstract
Identifying precise targets of individual cancers remains challenging. Chronic lymphocytic leukemia (CLL) represents the most common adult hematologic malignancy, and trisomy 12 (tri12) represents a quarter of CLL patients. We report that tri12 human pluripotent stem cells (hPSCs) allow for the identification of gene networks and targets specific to tri12, which are controlled by comparative normal PSCs. Identified targets are upregulated in tri12 leukemic cells from a cohort of 159 patients with monoclonal B cell lymphocytosis and CLL. tri12 signaling patterns significantly influence progression-free survival. Actionable targets are identified using high-content drug testing and functionally validated in an additional 44 CLL patient samples. Using xenograft models, interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitor is potent and selective against human tri12 CLL versus healthy patient-derived xenografts. Our study uses hPSCs to uncover targets from genetic aberrations and apply them to cancer. These findings provide immediate translational potential as biomarkers and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer C Reid
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Diana Golubeva
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Allison L Boyd
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Cameron G Hollands
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Charisa Henly
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Luca Orlando
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew Leber
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Josée Hébert
- Department of Medicine, Université de Montréal, Montreal, QC, Canada; Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Fortunato Morabito
- Department of Onco-Hematology, Biotechnology Research Unit, AO of Cosenza, Cosenza, Italy; Hematology and Bone Marrow Transplant Unit, Augusta Victoria Hospital, Jerusalem, Israel
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Agnelli
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Department of Onco-Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy; Pathobiology Unit 2, IRCCS National Cancer Institute, Milan, Italy
| | - Massimo Gentile
- Department of Onco-Hematology, Biotechnology Research Unit, AO of Cosenza, Cosenza, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Department of Onco-Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Brian Leber
- Department of Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Mickie Bhatia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
27
|
Wu Y, Wharton J, Walters R, Vasilaki E, Aman J, Zhao L, Wilkins MR, Rhodes CJ. The pathophysiological role of novel pulmonary arterial hypertension gene SOX17. Eur Respir J 2021; 58:13993003.04172-2020. [PMID: 33632800 DOI: 10.1183/13993003.04172-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/08/2021] [Indexed: 11/05/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease predominantly targeting pre-capillary blood vessels. Adverse structural remodelling and increased pulmonary vascular resistance result in cardiac hypertrophy and ultimately failure of the right ventricle. Recent whole-genome and whole-exome sequencing studies have identified SOX17 as a novel risk gene in PAH, with a dominant mode of inheritance and incomplete penetrance. Rare deleterious variants in the gene and more common variants in upstream enhancer sites have both been associated with the disease, and a deficiency of SOX17 expression may predispose to PAH. This review aims to consolidate the evidence linking genetic variants in SOX17 to PAH, and explores the numerous targets and effects of the transcription factor, focusing on the pulmonary vasculature and the pathobiology of PAH.
Collapse
Affiliation(s)
- Yukyee Wu
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rachel Walters
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Eleni Vasilaki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jurjan Aman
- National Heart and Lung Institute, Imperial College London, London, UK.,VUmc, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Lan Zhao
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
28
|
Toyooka Y. Pluripotent stem cells in the research for extraembryonic cell differentiation. Dev Growth Differ 2021; 63:127-139. [PMID: 33583019 DOI: 10.1111/dgd.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Mouse embryonic stem cells (mESCs) are pluripotent stem cell populations derived from the preimplantation embryo and are used to study the differentiation of many types of somatic and germ cells in developing embryos. They are also used to study cell lineages of extraembryonic tissues, such as the trophectoderm (TE) and the primitive endoderm (PrE). mESC cultures are suitable systems for reproducing cellular and molecular events occurring during the differentiation of these cell types, such as changes in gene expression patterns, signaling events, and genome rearrangements although the consistency between the results obtained using mESCs and those of in vivo studies on embryos should be carefully taken into account. Since TE and PrE cells can be induced from mESCs in vitro, mESC cultures are useful systems to study differentiation of these cell lineages during development, if used appropriately. In addition, human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), are capable of generating extraembryonic lineages in vitro and are promising tools to study the differentiation of these lineages in the human embryo.
Collapse
Affiliation(s)
- Yayoi Toyooka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Park CH, Jeoung YH, Uh KJ, Park KE, Bridge J, Powell A, Li J, Pence L, Zhang L, Liu T, Sun HX, Gu Y, Shen Y, Wu J, Izpisua Belmonte JC, Telugu BP. Extraembryonic Endoderm (XEN) Cells Capable of Contributing to Embryonic Chimeras Established from Pig Embryos. Stem Cell Reports 2020; 16:212-223. [PMID: 33338433 PMCID: PMC7897585 DOI: 10.1016/j.stemcr.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Most of our current knowledge regarding early lineage specification and embryo-derived stem cells comes from studies in rodent models. However, key gaps remain in our understanding of these developmental processes from nonrodent species. Here, we report the detailed characterization of pig extraembryonic endoderm (pXEN) cells, which can be reliably and reproducibly generated from primitive endoderm (PrE) of blastocyst. Highly expandable pXEN cells express canonical PrE markers and transcriptionally resemble rodent XENs. The pXEN cells contribute both to extraembryonic tissues including visceral yolk sac as well as embryonic gut when injected into host blastocysts, and generate live offspring when used as a nuclear donor in somatic cell nuclear transfer (SCNT). The pXEN cell lines provide a novel model for studying lineage segregation, as well as a source for genome editing in livestock. Primitive endoderm (PrE) is the predominant lineage emerging from pig blastocyst outgrowths pXEN cells exhibit key features of PrE-progenitors and resemble rodent XEN cells pXEN cells contribute to extraembryonic and embryonic (gut) endoderm in vivo pXEN cells can support full-term development via somatic cell nuclear transfer
Collapse
Affiliation(s)
- Chi-Hun Park
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA.
| | - Young-Hee Jeoung
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA
| | - Kyung-Jun Uh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ki-Eun Park
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA; RenOVAte Biosciences Inc, Reisterstown, MD 21136, USA
| | - Jessica Bridge
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA
| | - Anne Powell
- Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA; RenOVAte Biosciences Inc, Reisterstown, MD 21136, USA
| | - Jie Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen, 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Guangdong, China
| | - Laramie Pence
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA
| | - Luhui Zhang
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Tianbin Liu
- BGI-Shenzhen, Shenzhen, 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Guangdong, China
| | - Hai-Xi Sun
- BGI-Shenzhen, Shenzhen, 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Guangdong, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen, 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Guangdong, China
| | - Yue Shen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen, 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, 518120, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Guangdong, China; Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Shenzhen, 518120, China
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Bhanu P Telugu
- Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, MD 20705, USA; RenOVAte Biosciences Inc, Reisterstown, MD 21136, USA.
| |
Collapse
|
30
|
Tan DS, Holzner M, Weng M, Srivastava Y, Jauch R. SOX17 in cellular reprogramming and cancer. Semin Cancer Biol 2020; 67:65-73. [DOI: 10.1016/j.semcancer.2019.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/19/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
|
31
|
Chlebanowska P, Sułkowski M, Skrzypek K, Tejchman A, Muszyńska A, Noroozi R, Majka M. Origin of the Induced Pluripotent Stem Cells Affects Their Differentiation into Dopaminergic Neurons. Int J Mol Sci 2020; 21:ijms21165705. [PMID: 32784894 PMCID: PMC7460973 DOI: 10.3390/ijms21165705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Neuronal differentiation of human induced pluripotent stem (iPS) cells, both in 2D models and 3D systems in vitro, allows for the study of disease pathomechanisms and the development of novel therapies. To verify if the origin of donor cells used for reprogramming to iPS cells can influence the differentiation abilities of iPS cells, peripheral blood mononuclear cells (PBMC) and keratinocytes were reprogrammed to iPS cells using the Sendai viral vector and were subsequently checked for pluripotency markers and the ability to form teratomas in vivo. Then, iPS cells were differentiated into dopaminergic neurons in 2D and 3D cultures. Both PBMC and keratinocyte-derived iPS cells were similarly reprogrammed to iPS cells, but they displayed differences in gene expression profiles and in teratoma compositions in vivo. During 3D organoid formation, the origin of iPS cells affected the levels of FOXA2 and LMX1A only in the first stages of neural differentiation, whereas in the 2D model, differences were detected at the levels of both early and late neural markers FOXA2, LMX1A, NURR1, TUBB and TH. To conclude, the origin of iPS cells may significantly affect iPS differentiation abilities in teratomas, as well as exerting effects on 2D differentiation into dopaminergic neurons and the early stages of 3D midbrain organoid formation.
Collapse
Affiliation(s)
- Paula Chlebanowska
- Jagiellonian University Medical College, Sw. Anny 12, 31-008 Kraków, Poland; (P.C.); (M.S.); (K.S.); (A.T.)
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Maciej Sułkowski
- Jagiellonian University Medical College, Sw. Anny 12, 31-008 Kraków, Poland; (P.C.); (M.S.); (K.S.); (A.T.)
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Klaudia Skrzypek
- Jagiellonian University Medical College, Sw. Anny 12, 31-008 Kraków, Poland; (P.C.); (M.S.); (K.S.); (A.T.)
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Anna Tejchman
- Jagiellonian University Medical College, Sw. Anny 12, 31-008 Kraków, Poland; (P.C.); (M.S.); (K.S.); (A.T.)
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Agata Muszyńska
- Bioinformatics Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland;
- Institute of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Rezvan Noroozi
- Human Genome Variation Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland;
| | - Marcin Majka
- Jagiellonian University Medical College, Sw. Anny 12, 31-008 Kraków, Poland; (P.C.); (M.S.); (K.S.); (A.T.)
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
- Correspondence: ; Tel.: +48-12-659-15-93
| |
Collapse
|
32
|
Sybirna A, Tang WWC, Pierson Smela M, Dietmann S, Gruhn WH, Brosh R, Surani MA. A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons. Nat Commun 2020; 11:1282. [PMID: 32152282 PMCID: PMC7062732 DOI: 10.1038/s41467-020-15042-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/31/2019] [Indexed: 11/09/2022] Open
Abstract
PRDM14 is a crucial regulator of mouse primordial germ cells (mPGCs), epigenetic reprogramming and pluripotency, but its role in the evolutionarily divergent regulatory network of human PGCs (hPGCs) remains unclear. Besides, a previous knockdown study indicated that PRDM14 might be dispensable for human germ cell fate. Here, we decided to use inducible degrons for a more rapid and comprehensive PRDM14 depletion. We show that PRDM14 loss results in significantly reduced specification efficiency and an aberrant transcriptome of hPGC-like cells (hPGCLCs) obtained in vitro from human embryonic stem cells (hESCs). Chromatin immunoprecipitation and transcriptomic analyses suggest that PRDM14 cooperates with TFAP2C and BLIMP1 to upregulate germ cell and pluripotency genes, while repressing WNT signalling and somatic markers. Notably, PRDM14 targets are not conserved between mouse and human, emphasising the divergent molecular mechanisms of PGC specification. The effectiveness of degrons for acute protein depletion is widely applicable in various developmental contexts.
Collapse
Affiliation(s)
- Anastasiya Sybirna
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, CB2 3EL, UK
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Walfred W C Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Merrick Pierson Smela
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Sabine Dietmann
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Wolfram H Gruhn
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, CB2 3EL, UK.
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK.
| |
Collapse
|
33
|
Laughney AM, Hu J, Campbell NR, Bakhoum SF, Setty M, Lavallée VP, Xie Y, Masilionis I, Carr AJ, Kottapalli S, Allaj V, Mattar M, Rekhtman N, Xavier JB, Mazutis L, Poirier JT, Rudin CM, Pe'er D, Massagué J. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat Med 2020; 26:259-269. [PMID: 32042191 PMCID: PMC7021003 DOI: 10.1038/s41591-019-0750-6] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
Developmental processes underlying normal tissue regeneration have been implicated in cancer, but the degree of their enactment during tumor progression and under the selective pressures of immune surveillance, remain unknown. Here, we show that human primary lung adenocarcinomas are characterized by the emergence of regenerative cell types typically seen in response to lung injury, and by striking infidelity amongst transcription factors specifying most alveolar and bronchial epithelial lineages. In contrast, metastases are enriched for key endoderm and lung-specifying transcription factors, SOX2 and SOX9, and recapitulate more primitive transcriptional programs spanning stem-like to regenerative pulmonary epithelial progenitor states. This developmental continuum mirrors the progressive stages of spontaneous outbreak from metastatic dormancy in a mouse model and exhibits SOX9-dependent resistance to Natural Killer (NK) cells. Loss of developmental stage-specific constraint in macrometastases triggered by NK cell depletion suggests a dynamic interplay between developmental plasticity and immune-mediated pruning during metastasis.
Collapse
Affiliation(s)
- Ashley M Laughney
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jing Hu
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathaniel R Campbell
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tri-Institutional MD-PhD Program, Weill Cornell/Rockefeller University/Sloan Kettering Institute, New York, NY, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manu Setty
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vincent-Philippe Lavallée
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yubin Xie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell/Rockefeller University/Sloan Kettering Institute, New York, NY, USA
| | - Ignas Masilionis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ambrose J Carr
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanjay Kottapalli
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viola Allaj
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marissa Mattar
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joao B Xavier
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Charles M Rudin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
34
|
Yan S, Wong KC. GESgnExt: Gene Expression Signature Extraction and Meta-Analysis on Gene Expression Omnibus. IEEE J Biomed Health Inform 2020; 24:311-318. [DOI: 10.1109/jbhi.2019.2896144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Linneberg-Agerholm M, Wong YF, Romero Herrera JA, Monteiro RS, Anderson KGV, Brickman JM. Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development 2019; 146:dev.180620. [PMID: 31740534 DOI: 10.1242/dev.180620] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
Embryonic stem cells (ESCs) exist in at least two states that transcriptionally resemble different stages of embryonic development. Naïve ESCs resemble peri-implantation stages and primed ESCs the pre-gastrulation epiblast. In mouse, primed ESCs give rise to definitive endoderm in response to the pathways downstream of Nodal and Wnt signalling. However, when these pathways are activated in naïve ESCs, they differentiate to a cell type resembling early primitive endoderm (PrE), the blastocyst-stage progenitor of the extra-embryonic endoderm. Here, we apply this context dependency to human ESCs, showing that activation of Nodal and Wnt signalling drives the differentiation of naïve pluripotent cells toward extra-embryonic PrE, or hypoblast, and these can be expanded as an in vitro model for naïve extra-embryonic endoderm (nEnd). Consistent with observations made in mouse, human PrE differentiation is dependent on FGF signalling in vitro, and we show that, by inhibiting FGF receptor signalling, we can simplify naïve pluripotent culture conditions, such that the inhibitor requirements closer resemble those used in mouse. The expandable nEnd cultures reported here represent stable extra-embryonic endoderm, or human hypoblast, cell lines.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Madeleine Linneberg-Agerholm
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Yan Fung Wong
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Jose Alejandro Romero Herrera
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Rita S Monteiro
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Kathryn G V Anderson
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
36
|
Zheng Y, Xue X, Shao Y, Wang S, Esfahani SN, Li Z, Muncie JM, Lakins JN, Weaver VM, Gumucio DL, Fu J. Controlled modelling of human epiblast and amnion development using stem cells. Nature 2019; 573:421-425. [PMID: 31511693 PMCID: PMC8106232 DOI: 10.1038/s41586-019-1535-2] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/06/2019] [Indexed: 11/09/2022]
Abstract
Early human embryonic development involves extensive lineage diversification, cell-fate specification and tissue patterning1. Despite its basic and clinical importance, early human embryonic development remains relatively unexplained owing to interspecies divergence2,3 and limited accessibility to human embryo samples. Here we report that human pluripotent stem cells (hPSCs) in a microfluidic device recapitulate, in a highly controllable and scalable fashion, landmarks of the development of the epiblast and amniotic ectoderm parts of the conceptus, including lumenogenesis of the epiblast and the resultant pro-amniotic cavity, formation of a bipolar embryonic sac, and specification of primordial germ cells and primitive streak cells. We further show that amniotic ectoderm-like cells function as a signalling centre to trigger the onset of gastrulation-like events in hPSCs. Given its controllability and scalability, the microfluidic model provides a powerful experimental system to advance knowledge of human embryology and reproduction. This model could assist in the rational design of differentiation protocols of hPSCs for disease modelling and cell therapy, and in high-throughput drug and toxicity screens to prevent pregnancy failure and birth defects.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yue Shao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sicong Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Zida Li
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathon M Muncie
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, San Francisco, CA, USA
| | - Johnathon N Lakins
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Novel role of sex-determining region Y-box 7 (SOX7) in tumor biology and cardiovascular developmental biology. Semin Cancer Biol 2019; 67:49-56. [PMID: 31473269 DOI: 10.1016/j.semcancer.2019.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
The sex-determining region Y-box 7 (Sox7) is an important member of the SOX F family, which is characterized by a high-mobility-group DNA-binding domain. Previous studies have demonstrated the role of SOX7 in cardiovascular development. SOX7 expression could be detected in normal adult tissues. Furthermore, the expression levels of SOX7 were different in different tumors. Most studies showed the downregulation of SOX7 in tumors, while some studies reported its upregulation in tumors. In this review, we first summarized the upstream regulators (including transcription factors, microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and some exogenous regulators) and downstream molecules (including factors in the Wnt/β-catenin signaling pathway and some other signaling pathways) of SOX7. Then, the roles of SOX7 in multiple tumors were presented. Finally, the significance of divergent SOX7 expression during cardiovascular development was briefly discussed. The information compiled in this study characterized SOX7 during tumorigenesis and cardiovascular development, which should facilitate the design of future research and promote SOX7 as a therapeutic target.
Collapse
|
38
|
Angelozzi M, Lefebvre V. SOXopathies: Growing Family of Developmental Disorders Due to SOX Mutations. Trends Genet 2019; 35:658-671. [PMID: 31288943 DOI: 10.1016/j.tig.2019.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
The SRY-related (SOX) transcription factor family pivotally contributes to determining cell fate and identity in many lineages. Since the original discovery that SRY deletions cause sex reversal, mutations in half of the 20 human SOX genes have been associated with rare congenital disorders, henceforward called SOXopathies. Mutations are generally de novo, heterozygous, and inactivating, revealing gene haploinsufficiency, but other types, including duplications, have been reported too. Missense variants primarily target the HMG domain, the SOX hallmark that mediates DNA binding and bending, nuclear trafficking, and protein-protein interactions. We here review key clinical and molecular features of SOXopathies and discuss the prospect that the disease family likely involves more SOX genes and larger clinical and genetic spectrums than currently appreciated.
Collapse
Affiliation(s)
- Marco Angelozzi
- Department of Surgery/Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Wang Y, Zhao B, Wang L, Bu W, Liu S, Sun B. Nanoparticles based on retinoic acid caped with ferrocenium: a novel synthesized targetable nanoparticle both with anti-cancer effect and drug loading capacity. RSC Adv 2019; 9:16208-16214. [PMID: 35521379 PMCID: PMC9064344 DOI: 10.1039/c9ra02472g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
To date, there is an urgent need for cancer treatment to improve in many ways in order to successfully cure all cancers. Retinoic acid (RA) is a promising anti-cancer drug through influencing cancer stem cells (CSCs). Taxol is a chemotherapy drug for many cancers. To increase the anti-cancer effects of RA and taxol, we created a novel RA nanoparticle, FCRAN, which has the ability of carrying a second anti-cancer drug, taxol, using nanotechnological methods. The results of this study demonstrated that this RA nanoparticle was water-soluble and retained the same effects as RA on cancer cells, such as inhibiting the proliferation of CSCs, inducing the differentiation of CSCs, and enhancing the sensitivity of CSCs to chemotherapeutic drugs. In addition, this RA nanoparticle can be used to carry a second anticancer drug, taxol, to become FCRAN/T and synergistically enhance the anti-cancer effects of both drugs in vivo. Interestingly, the FCRAN/T is a targetable anti-cancer nanoparticle in the presence of higher levels of glutathione (GSH) in cancer cells. Our results demonstrate that our novel synthesized nanoparticles not only retain the RA functions, but can also carry a second anticancer drug to play a synergistic anticancer role with good water solubility, in particular FCRAN/T can target cancer cells. Therefore, our novel synthesized targetable anti-cancer nanoparticles have a better application prospect than that of RA or taxol alone. A retinoic acid nanoparticle with the ability of carrying a second anti-cancer drug, taxol, was developed. The anti-cancer nanoparticles were shown to have a better application prospect than that of RA or taxol alone.![]()
Collapse
Affiliation(s)
- Yibo Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 People's Republic of China
| | - Bin Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 People's Republic of China.,Department of Periodontosis, School and Hospital of Stomatology, Jilin University Changchun 130041 People's Republic of China
| | - Lu Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 People's Republic of China
| | - Wenhuan Bu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 People's Republic of China
| | - Shuwei Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 People's Republic of China
| | - Bin Sun
- Department of Oral and Maxilloficial Surgery, School and Hospital of Stomatology, Jilin University Changchun 130041 People's Republic of China .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 People's Republic of China
| |
Collapse
|
40
|
Sybirna A, Wong FCK, Surani MA. Genetic basis for primordial germ cells specification in mouse and human: Conserved and divergent roles of PRDM and SOX transcription factors. Curr Top Dev Biol 2019; 135:35-89. [PMID: 31155363 DOI: 10.1016/bs.ctdb.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primordial germ cells (PGCs) are embryonic precursors of sperm and egg that pass on genetic and epigenetic information from one generation to the next. In mammals, they are induced from a subset of cells in peri-implantation epiblast by BMP signaling from the surrounding tissues. PGCs then initiate a unique developmental program that involves comprehensive epigenetic resetting and repression of somatic genes. This is orchestrated by a set of signaling molecules and transcription factors that promote germ cell identity. Here we review significant findings on mammalian PGC biology, in particular, the genetic basis for PGC specification in mice and human, which has revealed an evolutionary divergence between the two species. We discuss the importance and potential basis for these differences and focus on several examples to illustrate the conserved and divergent roles of critical transcription factors in mouse and human germline.
Collapse
Affiliation(s)
- Anastasiya Sybirna
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom; Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Frederick C K Wong
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom; Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
41
|
Zhang S, Chen X, Wang M, Zhang W, Pan J, Qin Q, Zhong L, Shao J, Sun M, Jiang H, Bian W. Genome-wide identification, phylogeny and expressional profile of the Sox gene family in channel catfish (Ictalurus punctatus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:17-26. [DOI: 10.1016/j.cbd.2018.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/11/2017] [Accepted: 03/05/2018] [Indexed: 01/10/2023]
|
42
|
Impact of Three-Dimentional Culture Systems on Hepatic Differentiation of Puripotent Stem Cells and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30357683 DOI: 10.1007/978-981-13-0947-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Generation of functional hepatocytes from human pluripotent stem cells (hPSCs) is a vital tool to produce large amounts of human hepatocytes, which hold a great promise for biomedical and regenerative medicine applications. Despite a tremendous progress in developing the differentiation protocols recapitulating the developmental signalling and stages, these resulting hepatocytes from hPSCs yet achieve maturation and functionality comparable to those primary hepatocytes. The absence of 3D milieu in the culture and differentiation of these hepatocytes may account for this, at least partly, thus developing an optimal 3D culture could be a step forward to achieve this aim. Hence, review focuses on current development of 3D culture systems for hepatic differentiation and maturation and the future perspectives of its application.
Collapse
|
43
|
Wang L, Fan Y, Zhang L, Li L, Kuang G, Luo C, Li C, Xiang T, Tao Q, Zhang Q, Ying J. Classic SRY-box protein SOX7 functions as a tumor suppressor regulating WNT signaling and is methylated in renal cell carcinoma. FASEB J 2018; 33:254-263. [PMID: 29957056 DOI: 10.1096/fj.201701453rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SOX7 (SRY-related high mobility group box 7), a high mobility group protein, is reported to be down-regulated in several cancer types, which indicates an important role in tumorigenesis; however, its biologic role in renal cell carcinoma (RCC) pathogenesis remains unknown. We studied the alterations and functions of SOX7 in RCC. We detected its broad expression in multiple human normal tissues, including kidney, but frequent down-regulation in RCC cell lines and primary tumors. Promoter CpG methylation seems to directly mediate SOX7 silencing in RCC cells, which could be reversed by demethylation treatment. SOX7 methylation was detected in primary RCC tumors, but rarely in normal kidney tissues. Restoration of SOX7 in silenced 786-O and A498 RCC cell lines inhibited their cell growth by inducing G0/G1 arrest, whereas SOX7 knockdown promoted RCC cell proliferation. We also found that SOX7 silencing resulted in the activation of WNT signaling and the induction of epithelial to mesenchymal transition. In conclusion, the current study demonstrates that SOX7 is frequently inactivated by promoter CpG methylation in RCC and functions as a tumor suppressor by regulating WNT signaling.-Wang, L., Fan, Y., Zhang, L., Li, L., Kuang, G., Luo, C., Li, C., Xiang, T., Tao, Q., Zhang, Q., Ying, J. Classic SRY-box protein SOX7 functions as a tumor suppressor regulating WNT signaling and is methylated in renal cell carcinoma.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Yu Fan
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Lian Zhang
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Department of Clinical Oncology, Sir Y. K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and Chinese University of Hong Kong Shenzhen Research Institute, Hong Kong, China
| | - Guanyu Kuang
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Cheng Luo
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Chen Li
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Department of Clinical Oncology, Sir Y. K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and Chinese University of Hong Kong Shenzhen Research Institute, Hong Kong, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Department of Clinical Oncology, Sir Y. K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and Chinese University of Hong Kong Shenzhen Research Institute, Hong Kong, China
| | - Qian Zhang
- Department of Urology, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Alonso-Martin S, Auradé F, Mademtzoglou D, Rochat A, Zammit PS, Relaix F. SOXF factors regulate murine satellite cell self-renewal and function through inhibition of β-catenin activity. eLife 2018; 7:26039. [PMID: 29882512 PMCID: PMC6021169 DOI: 10.7554/elife.26039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/07/2018] [Indexed: 12/17/2022] Open
Abstract
Muscle satellite cells are the primary source of stem cells for postnatal skeletal muscle growth and regeneration. Understanding genetic control of satellite cell formation, maintenance, and acquisition of their stem cell properties is on-going, and we have identified SOXF (SOX7, SOX17, SOX18) transcriptional factors as being induced during satellite cell specification. We demonstrate that SOXF factors regulate satellite cell quiescence, self-renewal and differentiation. Moreover, ablation of Sox17 in the muscle lineage impairs postnatal muscle growth and regeneration. We further determine that activities of SOX7, SOX17 and SOX18 overlap during muscle regeneration, with SOXF transcriptional activity requisite. Finally, we show that SOXF factors also control satellite cell expansion and renewal by directly inhibiting the output of β-catenin activity, including inhibition of Ccnd1 and Axin2. Together, our findings identify a key regulatory function of SoxF genes in muscle stem cells via direct transcriptional control and interaction with canonical Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Sonia Alonso-Martin
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Créteil, France.,Université Paris Est, Faculté de Medecine, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Frédéric Auradé
- Sorbonne Université, INSERM U974, Center for Research in Myology, Paris, France
| | - Despoina Mademtzoglou
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Créteil, France.,Université Paris Est, Faculté de Medecine, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France
| | - Anne Rochat
- Sorbonne Université, INSERM U974, Center for Research in Myology, Paris, France
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Frédéric Relaix
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Créteil, France.,Université Paris Est, Faculté de Medecine, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Maison Alfort, France.,Etablissement Français du Sang, Creteil, France.,APHP, Hopitaux UniversitairesHenri Mondor, Centre de Référence des Maladies Neuromusculaires GNMH, Créteil, France
| |
Collapse
|
45
|
Sambathkumar R, Akkerman R, Dastidar S, Roelandt P, Kumar M, Bajaj M, Mestre Rosa AR, Helsen N, Vanslembrouck V, Kalo E, Khurana S, Laureys J, Gysemans C, Faas MM, de Vos P, Verfaillie CM. Generation of hepatocyte- and endocrine pancreatic-like cells from human induced endodermal progenitor cells. PLoS One 2018; 13:e0197046. [PMID: 29750821 PMCID: PMC5947914 DOI: 10.1371/journal.pone.0197046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/25/2018] [Indexed: 01/27/2023] Open
Abstract
Multipotent Adult Progenitor Cells (MAPCs) are one potential stem cell source to generate functional hepatocytes or β-cells. However, human MAPCs have less plasticity than pluripotent stem cells (PSCs), as their ability to generate endodermal cells is not robust. Here we studied the role of 14 transcription factors (TFs) in reprogramming MAPCs to induced endodermal progenitor cells (iENDO cells), defined as cells that can be long-term expanded and differentiated to both hepatocyte- and endocrine pancreatic-like cells. We demonstrated that 14 TF-iENDO cells can be expanded for at least 20 passages, differentiate spontaneously to hepatocyte-, endocrine pancreatic-, gut tube-like cells as well as endodermal tumor formation when grafted in immunodeficient mice. Furthermore, iENDO cells can be differentiated in vitro into hepatocyte- and endocrine pancreatic-like cells. However, the pluripotency TF OCT4, which is not silenced in iENDO cells, may contribute to the incomplete differentiation to mature cells in vitro and to endodermal tumor formation in vivo. Nevertheless, the studies presented here provide evidence that reprogramming of adult stem cells to an endodermal intermediate progenitor, which can be expanded and differentiate to multiple endodermal cell types, might be a valid alternative for the use of PSCs for creation of endodermal cell types.
Collapse
Affiliation(s)
- Rangarajan Sambathkumar
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
- * E-mail: (CMV); (RS)
| | - Renate Akkerman
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
- University of Groningen, University Medical Center Groningen (UMCG), Pathology and Medical Biology, Division of Medical Biology, Section Immunoendocrinology, Groningen, The Netherlands
| | - Sumitava Dastidar
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Philip Roelandt
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Manoj Kumar
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Manmohan Bajaj
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Ana Rita Mestre Rosa
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Nicky Helsen
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Veerle Vanslembrouck
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Eric Kalo
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Jos Laureys
- KU Leuven, Department of Clinical and Experimental Medicine, Clinical and Experimental Endocrinology unit, Leuven, Belgium
| | - Conny Gysemans
- KU Leuven, Department of Clinical and Experimental Medicine, Clinical and Experimental Endocrinology unit, Leuven, Belgium
| | - Marijke M. Faas
- University of Groningen, University Medical Center Groningen (UMCG), Pathology and Medical Biology, Division of Medical Biology, Section Immunoendocrinology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Paul de Vos
- University of Groningen, University Medical Center Groningen (UMCG), Pathology and Medical Biology, Division of Medical Biology, Section Immunoendocrinology, Groningen, The Netherlands
| | - Catherine M. Verfaillie
- KU Leuven, Interdepartmental Stem Cell Institute, Department of Development and Regeneration, Stem Cell Biology and Embryology, Leuven, Belgium
- * E-mail: (CMV); (RS)
| |
Collapse
|
46
|
Butler AM, Owens DA, Wang L, King ML. A novel role for sox7 in Xenopus early primordial germ cell development: mining the PGC transcriptome. Development 2018; 145:dev.155978. [PMID: 29158442 DOI: 10.1242/dev.155978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022]
Abstract
Xenopus primordial germ cells (PGCs) are determined by the presence of maternally derived germ plasm. Germ plasm components both protect PGCs from somatic differentiation and begin a unique gene expression program. Segregation of the germline from the endodermal lineage occurs during gastrulation, and PGCs subsequently initiate zygotic transcription. However, the gene network(s) that operate to both preserve and promote germline differentiation are poorly understood. Here, we utilized RNA-sequencing analysis to comprehensively interrogate PGC and neighboring endoderm cell mRNAs after lineage segregation. We identified 1865 transcripts enriched in PGCs compared with endoderm cells. We next compared the PGC-enriched transcripts with previously identified maternal, vegetally enriched transcripts and found that ∼38% of maternal transcripts were enriched in PGCs, including sox7 PGC-directed sox7 knockdown and overexpression studies revealed an early requirement for sox7 in germ plasm localization, zygotic transcription and PGC number. We identified pou5f3.3 as the most highly expressed and enriched POU5F1 homolog in PGCs. We compared the Xenopus PGC transcriptome with human PGC transcripts and showed that 80% of genes are conserved, underscoring the potential usefulness of Xenopus for understanding human germline specification.
Collapse
Affiliation(s)
- Amanda M Butler
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Dawn A Owens
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Lingyu Wang
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
47
|
Abstract
Fusion of sperm and egg generates a totipotent zygote that develops into a whole organism. Accordingly, the "immortal" germline transmits genetic and epigenetic information to subsequent generations with consequences for human health and disease. In mammals, primordial germ cells (PGCs) originate from peri-gastrulation embryos. While early human embryos are inaccessible for research, in vitro model systems using pluripotent stem cells have provided critical insights into human PGC specification, which differs from that in mice. This might stem from significant differences in early embryogenesis at the morphological and molecular levels, including pluripotency networks. Here, we discuss recent advances and experimental systems used to study mammalian germ cell development. We also highlight key aspects of germ cell disorders, as well as mitochondrial and potentially epigenetic inheritance in humans.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| | - Anastasiya Sybirna
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom; Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
48
|
|
49
|
XEN and the Art of Stem Cell Maintenance: Molecular Mechanisms Maintaining Cell Fate and Self-Renewal in Extraembryonic Endoderm Stem (XEN) Cell Lines. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2018; 229:69-78. [PMID: 29177765 DOI: 10.1007/978-3-319-63187-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The extraembryonic endoderm is one of the first cell types specified during mammalian development. This extraembryonic lineage is known to play multiple important roles throughout mammalian development, including guiding axial patterning and inducing formation of the first blood cells during embryogenesis. Moreover, recent studies have uncovered striking conservation between mouse and human embryos during the stages when extraembryonic endoderm cells are first specified, in terms of both gene expression and morphology. Therefore, mouse embryos serve as an excellent model for understanding the pathways that maintain extraembryonic endoderm cell fate. In addition, self-renewing multipotent stem cell lines, called XEN cells, have been derived from the extraembryonic endoderm of mouse embryos. Mouse XEN cell lines provide an additional tool for understanding the basic mechanisms that contribute to maintaining lineage potential, a resource for identifying how extraembryonic ectoderm specifies fetal cell types, and serve as a paradigm for efforts to establish human equivalents. Given the potential conservation of essential extraembryonic endoderm roles, human XEN cells would provide a considerable advance. However, XEN cell lines have not yet been successfully derived from human embryos. Given the potential utility of human XEN cell lines, this chapter focuses on reviewing the mechanisms known to govern the stem cell properties of mouse XEN, in hopes of facilitating new ways to establish human XEN cell lines.
Collapse
|
50
|
Collinson A, Collier AJ, Morgan NP, Sienerth AR, Chandra T, Andrews S, Rugg-Gunn PJ. Deletion of the Polycomb-Group Protein EZH2 Leads to Compromised Self-Renewal and Differentiation Defects in Human Embryonic Stem Cells. Cell Rep 2017; 17:2700-2714. [PMID: 27926872 PMCID: PMC5177603 DOI: 10.1016/j.celrep.2016.11.032] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/11/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Through the histone methyltransferase EZH2, the Polycomb complex PRC2 mediates H3K27me3 and is associated with transcriptional repression. PRC2 regulates cell-fate decisions in model organisms; however, its role in regulating cell differentiation during human embryogenesis is unknown. Here, we report the characterization of EZH2-deficient human embryonic stem cells (hESCs). H3K27me3 was lost upon EZH2 deletion, identifying an essential requirement for EZH2 in methylating H3K27 in hESCs, in contrast to its non-essential role in mouse ESCs. Developmental regulators were derepressed in EZH2-deficient hESCs, and single-cell analysis revealed an unexpected acquisition of lineage-restricted transcriptional programs. EZH2-deficient hESCs show strongly reduced self-renewal and proliferation, thereby identifying a more severe phenotype compared to mouse ESCs. EZH2-deficient hESCs can initiate differentiation toward developmental lineages; however, they cannot fully differentiate into mature specialized tissues. Thus, EZH2 is required for stable ESC self-renewal, regulation of transcriptional programs, and for late-stage differentiation in this model of early human development. Comprehensive examination of EZH2 function in human ESC regulation EZH2 deficiency causes lineage-restricted derepression of developmental regulators More severe self-renewal and growth defects in EZH2-deficient hESCs than in mESCs EZH2-deficient hESCs can differentiate to early lineages but cannot form mature tissues
Collapse
Affiliation(s)
- Adam Collinson
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Amanda J Collier
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Natasha P Morgan
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Arnold R Sienerth
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Tamir Chandra
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|