1
|
Watson SS, Zomer A, Fournier N, Lourenco J, Quadroni M, Chryplewicz A, Nassiri S, Aubel P, Avanthay S, Croci D, Abels E, Broekman MLD, Hanahan D, Huse JT, Daniel RT, Hegi ME, Homicsko K, Cossu G, Hottinger AF, Joyce JA. Fibrotic response to anti-CSF-1R therapy potentiates glioblastoma recurrence. Cancer Cell 2024; 42:1507-1527.e11. [PMID: 39255775 DOI: 10.1016/j.ccell.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
Glioblastoma recurrence is currently inevitable despite extensive standard-of-care treatment. In preclinical studies, an alternative strategy of targeting tumor-associated macrophages and microglia through CSF-1R inhibition was previously found to regress established tumors and significantly increase overall survival. However, recurrences developed in ∼50% of mice in long-term studies, which were consistently associated with fibrotic scars. This fibrotic response is observed following multiple anti-glioma therapies in different preclinical models herein and in patient recurrence samples. Multi-omics analyses of the post-treatment tumor microenvironment identified fibrotic areas as pro-tumor survival niches that encapsulated surviving glioma cells, promoted dormancy, and inhibited immune surveillance. The fibrotic treatment response was mediated by perivascular-derived fibroblast-like cells via activation by transforming growth factor β (TGF-β) signaling and neuroinflammation. Concordantly, combinatorial inhibition of these pathways inhibited treatment-associated fibrosis, and significantly improved survival in preclinical trials of anti-colony-stimulating factor-1 receptor (CSF-1R) therapy.
Collapse
Affiliation(s)
- Spencer S Watson
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Anoek Zomer
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Translational Data Science Facility, SIB Swiss Institute of Bioinformatics, Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland
| | - Joao Lourenco
- Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Translational Data Science Facility, SIB Swiss Institute of Bioinformatics, Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland
| | - Manfredo Quadroni
- Proteomics Core Facility, University of Lausanne, 1011 Lausanne, Switzerland
| | - Agnieszka Chryplewicz
- Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Sina Nassiri
- Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Translational Data Science Facility, SIB Swiss Institute of Bioinformatics, Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland
| | - Pauline Aubel
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Simona Avanthay
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Davide Croci
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Erik Abels
- Department of Neurosurgery, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, 2597 The Hague, the Netherlands
| | - Marike L D Broekman
- Department of Neurosurgery, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, 2597 The Hague, the Netherlands
| | - Douglas Hanahan
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Geneva, Switzerland
| | - Jason T Huse
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roy T Daniel
- Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Neurosurgery, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Monika E Hegi
- Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Clinical Neurosciences, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Krisztian Homicsko
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Giulia Cossu
- Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Geneva, Switzerland.
| |
Collapse
|
2
|
Jiang X, You H, Niu Y, Ding Y, Chen Z, Wang H, Xu Y, Zhou P, Wei L, Deng D, Xue L, Peng Y, Yang Y, Fan L, Shao N. E2F1-regulated USP5 contributes to the tumorigenic capacity of glioma stem cells through the maintenance of OCT4 stability. Cancer Lett 2024; 593:216875. [PMID: 38643837 DOI: 10.1016/j.canlet.2024.216875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024]
Abstract
Mesenchymal glioma stem cells (MES GSCs) are a subpopulation of cells in glioblastoma (GBM) that contribute to a worse prognosis owing to their highly aggressive nature and resistance to radiation therapy. Here, OCT4 is characterized as a critical factor in sustaining the stemness phenotype of MES GSC. We find that OCT4 is expressed intensively in MES GSC and is intimately associated with poor prognosis, moreover, OCT4 depletion leads to diminished invasive capacity and impairment of the stem phenotype in MES GSC. Subsequently, we demonstrated that USP5 is a deubiquitinating enzyme which directly interacts with OCT4 and preserves OCT4 stability through its deubiquitination. USP5 was additionally proven to be aberrantly over-expressed in MES GSCs, and its depletion resulted in a noticeable diminution of OCT4 and consequently a reduced self-renewal and tumorigenic capacity of MES GSCs, which can be substantially restored by ectopic expression of OCT4. In addition, we detected the dominant molecule that regulates USP5 transcription, E2F1, with dual luciferase reporter gene analysis. In combination, targeting the E2F1-USP5-OCT4 axis is a potentially emerging strategy for the therapy of GBM.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Hongtao You
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Yixuan Niu
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Yudan Ding
- Translational Medicine Research Center, Zhujiang Hospital of Southern Medical University, 510280, Guangdong Province, China.
| | - Zhengxin Chen
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Huibo Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Yuan Xu
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Peng Zhou
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Li Wei
- Department of Blood Transfusion, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Danni Deng
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Lian Xue
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Ya Peng
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Yilin Yang
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Ligang Fan
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Naiyuan Shao
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
3
|
Rajan RG, Fernandez-Vega V, Sperry J, Nakashima J, Do LH, Andrews W, Boca S, Islam R, Chowdhary SA, Seldin J, Souza GR, Scampavia L, Hanafy KA, Vrionis FD, Spicer TP. In Vitro and In Vivo Drug-Response Profiling Using Patient-Derived High-Grade Glioma. Cancers (Basel) 2023; 15:3289. [PMID: 37444398 PMCID: PMC10339991 DOI: 10.3390/cancers15133289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Genomic profiling cannot solely predict the complexity of how tumor cells behave in their in vivo microenvironment and their susceptibility to therapies. The aim of the study was to establish a functional drug prediction model utilizing patient-derived GBM tumor samples for in vitro testing of drug efficacy followed by in vivo validation to overcome the disadvantages of a strict pharmacogenomics approach. METHODS High-throughput in vitro pharmacologic testing of patient-derived GBM tumors cultured as 3D organoids offered a cost-effective, clinically and phenotypically relevant model, inclusive of tumor plasticity and stroma. RNAseq analysis supplemented this 128-compound screening to predict more efficacious and patient-specific drug combinations with additional tumor stemness evaluated using flow cytometry. In vivo PDX mouse models rapidly validated (50 days) and determined mutational influence alongside of drug efficacy. We present a representative GBM case of three tumors resected at initial presentation, at first recurrence without any treatment, and at a second recurrence following radiation and chemotherapy, all from the same patient. RESULTS Molecular and in vitro screening helped identify effective drug targets against several pathways as well as synergistic drug combinations of cobimetinib and vemurafenib for this patient, supported in part by in vivo tumor growth assessment. Each tumor iteration showed significantly varying stemness and drug resistance. CONCLUSIONS Our integrative model utilizing molecular, in vitro, and in vivo approaches provides direct evidence of a patient's tumor response drifting with treatment and time, as demonstrated by dynamic changes in their tumor profile, which may affect how one would address that drift pharmacologically.
Collapse
Affiliation(s)
- Robin G. Rajan
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, Boca Raton Regional Hospital, 800 Meadows Road, Boca Raton, FL 33486, USA; (R.G.R.); (S.A.C.); (K.A.H.)
| | - Virneliz Fernandez-Vega
- The Herbert Wertheim UF Scripps Institute Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, USA; (V.F.-V.); (L.S.)
| | - Jantzen Sperry
- Certis Oncology, 5626 Oberlin Dr. Suite 110, San Diego, CA 92121, USA; (J.S.); (J.N.); (L.H.D.); (W.A.)
| | - Jonathan Nakashima
- Certis Oncology, 5626 Oberlin Dr. Suite 110, San Diego, CA 92121, USA; (J.S.); (J.N.); (L.H.D.); (W.A.)
| | - Long H. Do
- Certis Oncology, 5626 Oberlin Dr. Suite 110, San Diego, CA 92121, USA; (J.S.); (J.N.); (L.H.D.); (W.A.)
| | - Warren Andrews
- Certis Oncology, 5626 Oberlin Dr. Suite 110, San Diego, CA 92121, USA; (J.S.); (J.N.); (L.H.D.); (W.A.)
| | - Simina Boca
- Innovation Center for Biomedical Informatics (ICBI), Departments of Oncology and Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, 2115 Wisconsin Ave NW, Suite G100, Washington, DC 20007, USA;
| | - Rezwanul Islam
- Florida Atlantic University College of Medicine, 777 Glades Road, Boca Raton, FL 33431, USA;
| | - Sajeel A. Chowdhary
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, Boca Raton Regional Hospital, 800 Meadows Road, Boca Raton, FL 33486, USA; (R.G.R.); (S.A.C.); (K.A.H.)
| | - Jan Seldin
- Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC 28110, USA; (J.S.); (G.R.S.)
| | - Glauco R. Souza
- Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC 28110, USA; (J.S.); (G.R.S.)
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, USA; (V.F.-V.); (L.S.)
| | - Khalid A. Hanafy
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, Boca Raton Regional Hospital, 800 Meadows Road, Boca Raton, FL 33486, USA; (R.G.R.); (S.A.C.); (K.A.H.)
- Florida Atlantic University College of Medicine, 777 Glades Road, Boca Raton, FL 33431, USA;
| | - Frank D. Vrionis
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, Boca Raton Regional Hospital, 800 Meadows Road, Boca Raton, FL 33486, USA; (R.G.R.); (S.A.C.); (K.A.H.)
- Florida Atlantic University College of Medicine, 777 Glades Road, Boca Raton, FL 33431, USA;
| | - Timothy P. Spicer
- The Herbert Wertheim UF Scripps Institute Molecular Screening Center, Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, USA; (V.F.-V.); (L.S.)
| |
Collapse
|
4
|
He Y, Alejo S, Johnson JD, Jayamohan S, Sareddy GR. Reticulocalbin 3 Is a Novel Mediator of Glioblastoma Progression. Cancers (Basel) 2023; 15:2008. [PMID: 37046668 PMCID: PMC10093618 DOI: 10.3390/cancers15072008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Molecular mechanisms underlying the pathobiology of glioblastoma are incompletely understood, emphasizing an unmet need for the identification of new therapeutic candidates. Reticulocalbin 3 (RCN3), an ER lumen-residing Ca2+ binding protein, plays an essential role in protein biosynthesis processes via the secretory pathway. Emerging studies demonstrated that RCN3 is a target for therapeutic intervention in various diseases. However, a knowledge gap exists about whether RCN3 plays a role in glioblastoma. Publicly available datasets suggest RCN3 is overexpressed in glioblastoma and portends poor survival rates. The knockdown or knockout of RCN3 using shRNA or CRISPR/Cas9 gRNA, respectively, significantly reduced proliferation, neurosphere formation, and self-renewal of GSCs. The RNA-seq studies showed downregulation of genes related to translation, ribosome, and cytokine signaling and upregulation of genes related to immune response, stem cell differentiation, and extracellular matrix (ECM) in RCN3 knockdown cells. Mechanistic studies using qRT-PCR showed decreased expression of ribosomal and increased expression of ER stress genes. Further, in silico analysis of glioblastoma patient datasets showed RCN3 expression correlated with the ribosome, ECM, and immune response pathway genes. Importantly, the knockdown of RCN3 using shRNA significantly enhanced the survival of tumor-bearing mice in orthotopic glioblastoma models. Our study suggests that RCN3 could be a potential target for the development of a therapeutic intervention in glioblastoma.
Collapse
Affiliation(s)
- Yi He
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
| | - Jessica D. Johnson
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Lo HW, Tapinos N. Editorial: Epigenetics and cellular plasticity in glioblastoma. Front Oncol 2023; 13:1179214. [PMID: 37020873 PMCID: PMC10068962 DOI: 10.3389/fonc.2023.1179214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/22/2023] Open
Affiliation(s)
- Hui-Wen Lo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, United States
| | - Nikos Tapinos
- Department of Neuroscience, Brown University, Providence, RI, United States
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neuroscience, Brown University, Providence, RI, United States
- *Correspondence: Nikos Tapinos,
| |
Collapse
|
6
|
Yang DY, Cheng X, Bu XY, Yan ZY, Qu MQ, Zhao YW, Kong LF, Wang YW, Luo JC. Granulocyte-macrophage colony stimulating factor enhances efficacy of nimustine rendezvousing with temozolomide plus irradiation in patients with glioblastoma. Technol Health Care 2023; 31:635-645. [PMID: 36314174 DOI: 10.3233/thc-220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glioblastoma is the most common and most aggressive type of primary brain tumor. OBJECTIVE The aim of this study was to investigate the efficacy and safety of intranasal granulocyte-macrophage colony stimulating factor (GM-CSF) administration combined with chemoradiotherapy in patients with glioblastoma who underwent surgery. METHODS Ninety-two patients were randomly divided into two groups: a control group (n= 46), who received radiotherapy with adjuvant local delivery of nimustine hydrochloride (ACNU) and systemic administration of temozolomide, and an intervention group (n= 46), who received intranasal GM-CSF prior to each cycle of adjuvant chemotherapy in addition to the treatment of the control group. Karnofsky performance status (KPS) scores, progression-free survival (PFS), overall survival (OS), and adverse effects were calculated and compared between the two groups. RESULTS Compared with the control group, the intervention group had longer PFS (7.8 vs. 6.9 months, P= 0.016) and OS (19.2 vs. 17.1 months, P= 0.045, without adjustment for interim analyses). The KPS scores were also higher in the intervention group than in the control group after 6 months (84.35 ± 8.86 vs. 80.65 ± 7.72; t= 4.552, P= 0.036). Furthermore, the patients in the intervention group had lower incidence of neutropenia and thrombocytopenia (8.7% vs. 29.5%, P= 0.012; 8.7% vs. 18.2%, P= 0.186). Other adverse events were similar in both groups, and most adverse events were grade I/II and resolved spontaneously. CONCLUSION Intranasal GM-CSF enhances the efficacy of the local ACNU administration combined with oral temozolomide chemotherapy. The survival and performance status were significantly improved in patients with glioblastoma after surgery. Additionally, the GM-CSF therapy was able to reduce the occurrence of chemotherapy-related neutropenia and thrombocytopenia.
Collapse
Affiliation(s)
- Dong-Yi Yang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xue Cheng
- Rehabilitation Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Xing-Yao Bu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhao-Yue Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Ming-Qi Qu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yue-Wu Zhao
- Department of Pathology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Ling-Fei Kong
- Department of Pathology, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Yao-Wei Wang
- Department of Radiotherapy, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Jian-Chao Luo
- Department of Radiotherapy, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Hu R, Hameed UFS, Sun X, Moorthy BS, Zhang W, Jeffrey PD, Zhou L, Ma X, Chen F, Pei J, Giri PK, Mou Y, Swaminathan K, Yuan P. A NR2E1-interacting peptide of LSD1 inhibits the proliferation of brain tumour initiating cells. Cell Prolif 2023; 56:e13350. [PMID: 36321378 DOI: 10.1111/cpr.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Elimination of brain tumour initiating cells (BTICs) is important for the good prognosis of malignant brain tumour treatment. To develop a novel strategy targeting BTICs, we studied NR2E1(TLX) involved self-renewal mechanism of BTICs and explored the intervention means. MATERIALS AND METHODS NR2E1 and its interacting protein-LSD1 in BTICs were studied by gene interference combined with cell growth, tumour sphere formation, co-immunoprecipitation and chromatin immunoprecipitation assays. NR2E1 interacting peptide of LSD1 was identified by Amide Hydrogen/Deuterium Exchange and Mass Spectrometry (HDX-MS) and analysed by in vitro functional assays. The in vivo function of the peptide was examined with intracranial mouse model by transplanting patient-derived BTICs. RESULTS We found NR2E1 recruits LSD1, a lysine demethylase, to demethylate mono- and di-methylated histone 3 Lys4 (H3K4me/me2) at the Pten promoter and repress its expression, thereby promoting BTIC proliferation. Using Amide Hydrogen/Deuterium Exchange and Mass Spectrometry (HDX-MS) method, we identified four LSD1 peptides that may interact with NR2E1. One of the peptides, LSD1-197-211 that locates at the LSD1 SWIRM domain, strongly inhibited BTIC proliferation by promoting Pten expression through interfering NR2E1 and LSD1 function. Furthermore, overexpression of this peptide in human BTICs can inhibit intracranial tumour formation. CONCLUSION Peptide LSD1-197-211 can repress BTICs by interfering the synergistic function of NR2E1 and LSD1 and may be a promising lead peptide for brain tumour therapy in future.
Collapse
Affiliation(s)
- Rong Hu
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Xiang Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | | | - Wen Zhang
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Li Zhou
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin Ma
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fangjin Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Pankaj K Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | | | - Ping Yuan
- Guangdong Institute of Gastroenterology, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Gimple RC, Yang K, Halbert ME, Agnihotri S, Rich JN. Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nat Rev Cancer 2022; 22:497-514. [PMID: 35710946 DOI: 10.1038/s41568-022-00486-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Malignant brain tumours are complex ecosystems containing neoplastic and stromal components that generate adaptive and evolutionarily driven aberrant tissues in the central nervous system. Brain cancers are cultivated by a dynamic population of stem-like cells that enforce intratumoural heterogeneity and respond to intrinsic microenvironment or therapeutically guided insults through proliferation, plasticity and restructuring of neoplastic and stromal components. Far from a rigid hierarchy, heterogeneous neoplastic populations transition between cellular states with differential self-renewal capacities, endowing them with powerful resilience. Here we review the biological machinery used by brain tumour stem cells to commandeer tissues in the intracranial space, evade immune responses and resist chemoradiotherapy. Through recent advances in single-cell sequencing, improved models to investigate the role of the tumour microenvironment and a deeper understanding of the fundamental role of the immune system in cancer biology, we are now better equipped to explore mechanisms by which these processes can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Lineage Tracing and Molecular Real-Time Imaging of Cancer Stem Cells. BIOSENSORS 2022; 12:bios12090703. [PMID: 36140088 PMCID: PMC9496355 DOI: 10.3390/bios12090703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
The cancer stem cells (CSC) are the roots of cancer. The CSC hypothesis may provide a model to explain the tumor cell heterogeneity. Understand the biological mechanism of CSC will help the early detection and cure of cancer. The discovery of the dynamic changes in CSC will be possible by the using of bio-engineering techniques-lineage tracing. However, it is difficult to obtain real-time, continuous, and dynamic live-imaging information using the traditional approaches that take snapshots of time points from different animals. The goal of molecular imaging is to monitor the in situ, continuous molecular changes of cells in vivo. Therefore, the most advanced bioengineering lineage tracing approach, while using a variety of molecular detection methods, will maximize the presentation of CSC. In this review, we first introduce the method of lineage tracing, and then introduce the various components of molecular images to dynamic detect the CSC. Finally, we analyze the current situation and look forward the future of CSC detection.
Collapse
|
10
|
A slow-cycling/quiescent cells subpopulation is involved in glioma invasiveness. Nat Commun 2022; 13:4767. [PMID: 35970913 PMCID: PMC9378633 DOI: 10.1038/s41467-022-32448-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
Pediatric and adult high-grade gliomas are the most common primary malignant brain tumors, with poor prognosis due to recurrence and tumor infiltration after therapy. Quiescent cells have been implicated in tumor recurrence and treatment resistance, but their direct visualization and targeting remain challenging, precluding their mechanistic study. Here, we identify a population of malignant cells expressing Prominin-1 in a non-proliferating state in pediatric high-grade glioma patients. Using a genetic tool to visualize and ablate quiescent cells in mouse brain cancer and human cancer organoids, we reveal their localization at both the core and the edge of the tumors, and we demonstrate that quiescent cells are involved in infiltration of brain cancer cells. Finally, we find that Harmine, a DYRK1A/B inhibitor, partially decreases the number of quiescent and infiltrating cancer cells. Our data point to a subpopulation of quiescent cells as partially responsible of tumor invasiveness, one of the major causes of brain cancer morbidity. Quiescent cancer stem cells have been particularly associated to chemoresistance. Here, the authors show that a slowcycling subpopulation in high-grade glioma patients can invade the brain to promote tumourigenesis.
Collapse
|
11
|
Chalcones as Anti-Glioblastoma Stem Cell Agent Alone or as Nanoparticle Formulation Using Carbon Dots as Nanocarrier. Pharmaceutics 2022; 14:pharmaceutics14071465. [PMID: 35890360 PMCID: PMC9316063 DOI: 10.3390/pharmaceutics14071465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
The current prognosis for glioblastoma is dismal. Treatment-resistant glioblastoma stem cells (GSCs) and the failure of most drugs to reach therapeutic levels within the tumor remain formidable obstacles to successful treatment. Chalcones are aromatic ketones demonstrated to reduce malignant properties in cancers including glioblastoma. Nanomedicines can increase drug accumulation and tumor cell death. Carbon-dots are promising nanocarriers that can be easily functionalized with tumor-targeting ligands and anti-cancer drugs. Therefore, we synthesized a series of 4′-amino chalcones with the rationale that the amino group would serve as a “handle” to facilitate covalent attachment to carbon-dots and tested their cytotoxicity toward GSCs. We generated 31 chalcones (22 4′-amino and 9 4′ derivatives) including 5 novel chalcones, and found that 13 had an IC50 below 10 µM in all GSC lines. After confirming that the 4-amino group was not part of the active pharmacophore, chalcones were attached to transferrin-conjugated carbon-dots. These conjugates were significantly more cytotoxic than the free chalcones, with the C-dot-transferrin-2,5, dimethoxy chalcone conjugate inducing up to 100-fold more GSC death. Several of the tested chalcones represent promising lead compounds for the development of novel anti-GSC drugs. Furthermore, designing amino chalcones for carbon-dot mediated drug delivery is a rational and effective methodology.
Collapse
|
12
|
Adeberg S, Knoll M, Koelsche C, Bernhardt D, Schrimpf D, Sahm F, König L, Harrabi SB, Hörner-Rieber J, Verma V, Bewerunge-Hudler M, Unterberg A, Sturm D, Jungk C, Herold-Mende C, Wick W, von Deimling A, Debus J, Rieken S, Abdollahi A. DNA-methylome-assisted classification of patients with poor prognostic subventricular zone associated IDH-wildtype glioblastoma. Acta Neuropathol 2022; 144:129-142. [PMID: 35660939 PMCID: PMC9217840 DOI: 10.1007/s00401-022-02443-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 11/25/2022]
Abstract
Glioblastoma (GBM) derived from the “stem cell” rich subventricular zone (SVZ) may constitute a therapy-refractory subgroup of tumors associated with poor prognosis. Risk stratification for these cases is necessary but is curtailed by error prone imaging-based evaluation. Therefore, we aimed to establish a robust DNA methylome-based classification of SVZ GBM and subsequently decipher underlying molecular characteristics. MRI assessment of SVZ association was performed in a retrospective training set of IDH-wildtype GBM patients (n = 54) uniformly treated with postoperative chemoradiotherapy. DNA isolated from FFPE samples was subject to methylome and copy number variation (CNV) analysis using Illumina Platform and cnAnalysis450k package. Deep next-generation sequencing (NGS) of a panel of 130 GBM-related genes was conducted (Agilent SureSelect/Illumina). Methylome, transcriptome, CNV, MRI, and mutational profiles of SVZ GBM were further evaluated in a confirmatory cohort of 132 patients (TCGA/TCIA). A 15 CpG SVZ methylation signature (SVZM) was discovered based on clustering and random forest analysis. One third of CpG in the SVZM were associated with MAB21L2/LRBA. There was a 14.8% (n = 8) discordance between SVZM vs. MRI classification. Re-analysis of these patients favored SVZM classification with a hazard ratio (HR) for OS of 2.48 [95% CI 1.35–4.58], p = 0.004 vs. 1.83 [1.0–3.35], p = 0.049 for MRI classification. In the validation cohort, consensus MRI based assignment was achieved in 62% of patients with an intraclass correlation (ICC) of 0.51 and non-significant HR for OS (2.03 [0.81–5.09], p = 0.133). In contrast, SVZM identified two prognostically distinct subgroups (HR 3.08 [1.24–7.66], p = 0.016). CNV alterations revealed loss of chromosome 10 in SVZM– and gains on chromosome 19 in SVZM– tumors. SVZM– tumors were also enriched for differentially mutated genes (p < 0.001). In summary, SVZM classification provides a novel means for stratifying GBM patients with poor prognosis and deciphering molecular mechanisms governing aggressive tumor phenotypes.
Collapse
Affiliation(s)
- Sebastian Adeberg
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Maximilian Knoll
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Christian Koelsche
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Denise Bernhardt
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Radiation Oncology, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Laila König
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Semi Ben Harrabi
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Vivek Verma
- Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center Houston, Houston, TX, USA
| | - Melanie Bewerunge-Hudler
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Andreas Unterberg
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Dominik Sturm
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Angelika Lautenschläger Children's Hospital, University Medical Center for Children and Adolescents, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Christine Jungk
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christel Herold-Mende
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Wolfgang Wick
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurooncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Andreas von Deimling
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Juergen Debus
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Rieken
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
14
|
Neurogenesis in the adult brain functionally contributes to the maintenance of chronic neuropathic pain. Sci Rep 2021; 11:18549. [PMID: 34535707 PMCID: PMC8448753 DOI: 10.1038/s41598-021-97093-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Maladaptive adult neurogenesis in the mammalian brain has been associated with diverse behaviors including disrupted learning, negative mood disorders and psychiatric conditions. However, its functional role in the generation and maintenance of chronic pathological pain has not yet been elucidated. Using an inducible genetic deletion in vivo mouse model, different behavioural paradigms and home cage monitoring systems, we show that an absence of adult neurogenesis does not impact the development of neuropathic injury-induced peripheral nociceptive hypersensitivity, but rather promotes the recovery of pathological pain as well as improves parameters associated with the state of well-being of the injured mice. These results provide a mechanistic insight into the mechanisms of chronic pain and implicate neurogenic processes as a potential therapeutic target for reducing pain and improving the quality of life for patients.
Collapse
|
15
|
Gil-Ranedo J, Gallego-García C, Almendral JM. Viral targeting of glioblastoma stem cells with patient-specific genetic and post-translational p53 deregulations. Cell Rep 2021; 36:109673. [PMID: 34496248 DOI: 10.1016/j.celrep.2021.109673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/05/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022] Open
Abstract
Cancer therapy urges targeting of malignant subsets within self-renewing heterogeneous stem cell populations. We dissect the genetic and functional heterogeneity of human glioblastoma stem cells (GSCs) within patients by their innate responses to non-pathogenic mouse parvoviruses that are tightly restrained by cellular physiology. GSC neurospheres accumulate assembled capsids but restrict viral NS1 cytotoxic protein expression by an innate PKR/eIF2α-P response counteractable by electric pulses. NS1 triggers a comprehensive DNA damage response involving cell-cycle arrest, neurosphere disorganization, and bystander disruption of GSC-derived brain tumor architecture in rodent models. GSCs and cancer cell lines permissive to parvovirus genome replication require p53-Ser15 phosphorylation (Pp53S15). NS1 expression is enhanced by exogeneous Pp53S15 induction but repressed by wtp53. Consistently, patient-specific GSC subpopulations harboring p53 gain-of-function mutants and/or Pp53S15 are selective viral targets. This study provides a molecular foundation for personalized biosafe viral therapies against devastating glioblastoma and other cancers with deregulated p53 signaling.
Collapse
Affiliation(s)
- Jon Gil-Ranedo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - Carlos Gallego-García
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - José M Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| |
Collapse
|
16
|
Wang Y, Li B, Dong L, Duan W, Neuerburg A, Zhang H, Jiang X, Shao R, Zhu Y, Bock D, Liu E, Wang H, Zhang Y, Dai Y, Yang H, Wang Y. Impaired generation of mature neurons due to extended expression of Tlx by repressing Sox2 transcriptional activity. STEM CELLS (DAYTON, OHIO) 2021; 39:1520-1531. [PMID: 34269496 DOI: 10.1002/stem.3435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
As a master regulator of the dynamic process of adult neurogenesis, timely expression and regulation of the orphan nuclear receptor Tailless (Tlx) is essential. However, there is no study yet to directly investigate the essential role of precise spatiotemporal expressed Tlx. Here, we generated a conditional gain of Tlx expression transgenic mouse model, which allowed the extended Tlx expression in neural stem cells (NSCs) and their progeny by mating with a TlxCreERT2 mouse line. We demonstrate that extended expression of Tlx induced the impaired generation of mature neurons in adult subventricular zone and subgranular zone. Furthermore, we elucidated for the first time that this mutation decreased the endogenous expression of Sox2 by directly binding to its promoter. Restoration experiments further confirmed that Sox2 partially rescued these neuron maturation defects. Together, these findings not only highlight the importance of shutting-off Tlx on time in controlling NSC behavior, but also provide insights for further understanding adult neurogenesis and developing treatment strategies for neurological disorders.
Collapse
Affiliation(s)
- Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Bin Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lianwei Dong
- Department of Cardiovascular Medicine, The People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China
| | - Weibing Duan
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, People's Republic of China.,Jian Central People's Hospital, Jian, Jiangxi, People's Republic of China
| | - Anna Neuerburg
- Division of Molecular Biology of the Cell I, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Han Zhang
- Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Rui Shao
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, People's Republic of China
| | - Yan Zhu
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, People's Republic of China
| | - Dagmar Bock
- Division of Molecular Biology of the Cell I, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Erwei Liu
- Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Hong Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Xie R, Kessler T, Grosch J, Hai L, Venkataramani V, Huang L, Hoffmann DC, Solecki G, Ratliff M, Schlesner M, Wick W, Winkler F. Tumor cell network integration in glioma represents a stemness feature. Neuro Oncol 2021; 23:757-769. [PMID: 33320195 DOI: 10.1093/neuonc/noaa275] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Malignant gliomas including glioblastomas are characterized by a striking cellular heterogeneity, which includes a subpopulation of glioma cells that becomes highly resistant by integration into tumor microtube (TM)-connected multicellular networks. METHODS A novel functional approach to detect, isolate, and characterize glioma cell subpopulations with respect to in vivo network integration is established, combining a dye staining method with intravital two-photon microscopy, Fluorescence-Activated Cell Sorting (FACS), molecular profiling, and gene reporter studies. RESULTS Glioblastoma cells that are part of the TM-connected tumor network show activated neurodevelopmental and glioma progression gene expression pathways. Importantly, many of them revealed profiles indicative of increased cellular stemness, including high expression of nestin. TM-connected glioblastoma cells also had a higher potential for reinitiation of brain tumor growth. Long-term tracking of tumor cell nestin expression in vivo revealed a stronger TM network integration and higher radioresistance of the nestin-high subpopulation. Glioblastoma cells that were both nestin-high and network-integrated were particularly able to adapt to radiotherapy with increased TM formation. CONCLUSION Multiple stem-like features are strongly enriched in a fraction of network-integrated glioma cells, explaining their particular resilience.
Collapse
Affiliation(s)
- Ruifan Xie
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tobias Kessler
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University; Heidelberg, Germany
| | - Julia Grosch
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ling Hai
- Faculty of Biosciences, Heidelberg University; Heidelberg, Germany.,Bioinformatics and Omics Data Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Varun Venkataramani
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Lulu Huang
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk C Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gergely Solecki
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Ratliff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurosurgery Clinic, University Hospital Mannheim, Mannheim, Germany
| | | | - Wolfgang Wick
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Zhou J, Pei X, Yang Y, Wang Z, Gao W, Ye R, Zhang X, Liu J, Liu Z, Yang X, Tao J, Gu C, Hu W, Chan FL, Li X, Mao J, Wu D. Orphan nuclear receptor TLX promotes immunosuppression via its transcriptional activation of PD-L1 in glioma. J Immunother Cancer 2021; 9:e001937. [PMID: 33858847 PMCID: PMC8055120 DOI: 10.1136/jitc-2020-001937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High-grade gliomas are rapidly progressing tumors of the central nervous system, and are associated with poor prognosis and highly immunosuppressive microenvironments. Meanwhile, a better understanding of PD-L1, a major prognostic biomarker for checkpoint immune therapy, regulation may provide insights for developing novel immunotherapeutic strategies for treating gliomas. In the present study, we elucidate the functional significance of the orphan nuclear receptor TLX in human glioma, and its functional role in immune suppression through regulation of PD-L1/PD-1 axis. METHODS TLX and PD-L1 expression patterns, and their association with clinicopathological parameters and immune phenotypes of glioma were analysed using CIBERSORT algorithm and single-sample gene-set enrichment analysis from The Cancer Genome Atlas (n=695) and Chinese Glioma Genome Atlas (n=1018) databases. Protein expression and cellular localization of TLX, PD-L1, and PD-1, as well as the prevalence of cytotoxic tumor-infiltrating lymphocytes (TILs), and tumor-associated macrophages (TAMs), in the glioma immune microenvironment were analyzed via tissue microarray by immunohistochemistry and multiplex immunofluorescence. Glioma allografts and xenografts with TLX manipulation (knockdown/knockout or reverse agonist) were inoculated subcutaneously, or orthotopically into the brains of immunodeficient and immunocompetent mice to assess tumor growth by imaging, and the immune microenvironment by flow cytometry. PD-L1 transcriptional regulation by TLX was analyzed by chromatin immunoprecipitation and luciferase reporter assays. RESULTS TLX and PD-L1 expression was positively associated with macrophage-mediated immunosuppressive phenotypes in gliomas. TLX showed significant upregulation and positive correlation with PD-L1. Meanwhile, suppression of TLX significantly inhibited in vivo growth of glioma allografts and xenografts (p<0.05), rescued the antitumoral immune response, significantly decreased the PD-L1+, and glioma-associated macrophage population, and increased cytotoxic lymphocyte infiltration (p<0.05). Mechanistically, TLX binds directly to CD274 (PD-L1) gene promoter and activates CD274 transcription. CONCLUSIONS TLX contributes to glioma malignancy and immunosuppression through transcriptional activation of PD-L1 ligands that bind to PD-1 expressed on both TILs and TAMs. Thus, targeting the druggable TLX may have potential therapeutic significance in glioma immune therapy.
Collapse
Affiliation(s)
- Jiayi Zhou
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaojuan Pei
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guandong, China
| | - Yingui Yang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhu Wang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong, China
| | - Weijie Gao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hongkong, China
| | - Ran Ye
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiantong Zhang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Jiangang Liu
- Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhuohao Liu
- Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xinzhi Yang
- Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jingli Tao
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guandong, China
| | - Chunshan Gu
- Hospital Management & performance Office, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Franky Lueng Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hongkong, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Jie Mao
- Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Dinglan Wu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
19
|
The adaptive transition of glioblastoma stem cells and its implications on treatments. Signal Transduct Target Ther 2021; 6:124. [PMID: 33753720 PMCID: PMC7985200 DOI: 10.1038/s41392-021-00491-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most malignant tumor occurring in the human central nervous system with overall median survival time <14.6 months. Current treatments such as chemotherapy and radiotherapy cannot reach an optimal remission since tumor resistance to therapy remains a challenge. Glioblastoma stem cells are considered to be responsible for tumor resistance in treating glioblastoma. Previous studies reported two subtypes, proneural and mesenchymal, of glioblastoma stem cells manifesting different sensitivity to radiotherapy or chemotherapy. Mesenchymal glioblastoma stem cells, as well as tumor cells generate from which, showed resistance to radiochemotherapies. Besides, two metabolic patterns, glutamine or glucose dependent, of mesenchymal glioblastoma stem cells also manifested different sensitivity to radiochemotherapies. Glutamine dependent mesenchymal glioblastoma stem cells are more sensitive to radiotherapy than glucose-dependent ones. Therefore, the transition between proneural and mesenchymal subtypes, or between glutamine-dependent and glucose-dependent, might lead to tumor resistance to radiochemotherapies. Moreover, neural stem cells were also hypothesized to participate in glioblastoma stem cells mediated tumor resistance to radiochemotherapies. In this review, we summarized the basic characteristics, adaptive transition and implications of glioblastoma stem cells in glioblastoma therapy.
Collapse
|
20
|
Osuka S, Zhu D, Zhang Z, Li C, Stackhouse CT, Sampetrean O, Olson JJ, Gillespie GY, Saya H, Willey CD, Van Meir EG. N-cadherin upregulation mediates adaptive radioresistance in glioblastoma. J Clin Invest 2021; 131:136098. [PMID: 33720050 PMCID: PMC7954595 DOI: 10.1172/jci136098] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of β-catenin at the cell surface, which suppressed Wnt/β-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.
Collapse
Affiliation(s)
- Satoru Osuka
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Dan Zhu
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Zhaobin Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Chaoxi Li
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christian T. Stackhouse
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, USA
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Jeffrey J. Olson
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - G. Yancey Gillespie
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, USA
| | - Erwin G. Van Meir
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Nie Z, Cai S, Wei Z, Li Y, Bian L, Wang C, Wang C. SH3BGRL2 functions as a crucial tumor suppressor in glioblastoma tumorigenesis. Biochem Biophys Res Commun 2021; 547:148-154. [PMID: 33610914 DOI: 10.1016/j.bbrc.2021.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma is the most common and severe primary intrinsic tumor of the central nervous system. Glioblastoma harbors glioma stem cells (GSCs) as it not only possesses self-renewal and differentiation properties but also accounts for significant chemotherapy resistance and recurrence. Thus, targeting GSCs may be essential in overcoming the resistance and recurrence thereby improving GBM treatment. However, the underlying mechanism to sustain GSCs remains largely unknown. Here, we report that SH3 domain binding glutamate-rich protein like 2 (SH3BGRL2) is weakly expressed in glioblastoma multiforme (GBM) and isocitrate dehydrogenase1 (IDH1) wildtype GBM and correlated with glioma patients' poor prognosis. Moreover, ectopic expression of SH3BGRL2 significantly inhibited GBM cell growth, migration, and GSCs self-renewal in vitro as well as tumor growth in vivo. Additionally, we found that SH3BGRL2 suppressed SOX2 and CD133 expression, which are key regulators involved in GSCs self-renewal. Collectively, our findings shed additional light on SH3BGRL2 has potential to serve as a biomarker and a potent therapeutic target for patients with glioma.
Collapse
Affiliation(s)
- Zhi Nie
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Shan Cai
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zhimin Wei
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yanxi Li
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Li Bian
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Chenyang Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
22
|
Song H, Wang Y, Shi C, Lu J, Yuan T, Wang X. SH3KBP1 Promotes Glioblastoma Tumorigenesis by Activating EGFR Signaling. Front Oncol 2021; 10:583984. [PMID: 33643898 PMCID: PMC7905166 DOI: 10.3389/fonc.2020.583984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Overexpression or activation of epidermal growth factor receptor (EGFR) occurs commonly in multiple human cancers and promotes tumorigenesis. However, the underlying molecular mechanism of EGFR aberrant activation and the downstream signaling pathways remains largely unknown. In this study, we report that both SH3-domain kinase binding protein 1 (SH3KBP1) mRNA and protein levels are highly expressed in GBM and its high expression is associated with worse survival of glioma patients. In addition, we provide evidence that SH3KBP1 is prominently expressed in GBM stem cells (GSCs) and have potential to serve as a novel GSCs marker. Moreover, silencing SH3KBP1 dramatically impairs GBM cell proliferation, migration and GSCs self-renewal ability in vitro and xenograft tumors growth in vivo. Most importantly, we found that SH3KBP1 directly interacts with EGFR and may act as an adaptor protein to transduce EGFR signaling. Together, our work uncovers SH3KBP1 as a novel regulator of oncogenic EGFR signaling and also as a potential therapeutic target for GBM patients with EGFR activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangpeng Wang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
23
|
Sareddy GR, Pratap UP, Venkata PP, Zhou M, Alejo S, Viswanadhapalli S, Tekmal RR, Brenner AJ, Vadlamudi RK. Activation of estrogen receptor beta signaling reduces stemness of glioma stem cells. Stem Cells 2021; 39:536-550. [PMID: 33470499 DOI: 10.1002/stem.3337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/08/2022]
Abstract
Glioblastoma (GBM) is the most common and deadliest tumor of the central nervous system. GBM has poor prognosis and glioma stem cells (GSCs) are implicated in tumor initiation and therapy resistance. Estrogen receptor β (ERβ) is expressed in GBM and exhibit tumor suppressive function. However, the role of ERβ in GSCs and the therapeutic potential of ERβ agonists on GSCs remain largely unknown. Here, we examined whether ERβ modulates GSCs stemness and tested the utility of two ERβ selective agonists (LY500307 and Liquiritigenin) to reduce the stemness of GSCs. The efficacy of ERβ agonists was examined on GSCs isolated from established and patient derived GBMs. Our results suggested that knockout of ERβ increased the proportion of CD133+ and SSEA+ positive GSCs and overexpression of ERβ reduced the proportion of GSCs in GBM cells. Overexpression of ERβ or treatment with ERβ agonists significantly inhibited the GSCs cell viability, neurosphere formation, self-renewal ability, induced the apoptosis and reduced expression of stemness markers in GSCs. RNA sequencing analysis revealed that ERβ agonist modulate pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that ERβ overexpression or agonist treatment reduced glutamate receptor signaling pathway and induced apoptotic pathways. In orthotopic models, ERβ overexpression or ERβ agonists treatment significantly reduced the GSCs mediated tumor growth and improved the mice overall survival. Immunohistochemical studies demonstrated that ERβ overexpression decreased SOX2 and GRM3 expression and increased expression of GFAP in tumors. These results suggest that ERβ activation could be a promising therapeutic strategy to eradicate GSCs.
Collapse
Affiliation(s)
- Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Mei Zhou
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha Shi, Hunan, People's Republic of China
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA.,Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
24
|
Richards LM, Whitley OKN, MacLeod G, Cavalli FMG, Coutinho FJ, Jaramillo JE, Svergun N, Riverin M, Croucher DC, Kushida M, Yu K, Guilhamon P, Rastegar N, Ahmadi M, Bhatti JK, Bozek DA, Li N, Lee L, Che C, Luis E, Park NI, Xu Z, Ketela T, Moore RA, Marra MA, Spears J, Cusimano MD, Das S, Bernstein M, Haibe-Kains B, Lupien M, Luchman HA, Weiss S, Angers S, Dirks PB, Bader GD, Pugh TJ. Gradient of Developmental and Injury Response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity. NATURE CANCER 2021; 2:157-173. [PMID: 35122077 DOI: 10.1038/s43018-020-00154-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022]
Abstract
Glioblastomas harbor diverse cell populations, including rare glioblastoma stem cells (GSCs) that drive tumorigenesis. To characterize functional diversity within this population, we performed single-cell RNA sequencing on >69,000 GSCs cultured from the tumors of 26 patients. We observed a high degree of inter- and intra-GSC transcriptional heterogeneity that could not be fully explained by DNA somatic alterations. Instead, we found that GSCs mapped along a transcriptional gradient spanning two cellular states reminiscent of normal neural development and inflammatory wound response. Genome-wide CRISPR-Cas9 dropout screens independently recapitulated this observation, with each state characterized by unique essential genes. Further single-cell RNA sequencing of >56,000 malignant cells from primary tumors found that the majority organize along an orthogonal astrocyte maturation gradient yet retain expression of founder GSC transcriptional programs. We propose that glioblastomas grow out of a fundamental GSC-based neural wound response transcriptional program, which is a promising target for new therapy development.
Collapse
Affiliation(s)
- Laura M Richards
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Owen K N Whitley
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Graham MacLeod
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Florence M G Cavalli
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fiona J Coutinho
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julia E Jaramillo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nataliia Svergun
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mazdak Riverin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Danielle C Croucher
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michelle Kushida
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kenny Yu
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Naghmeh Rastegar
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Moloud Ahmadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jasmine K Bhatti
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Danielle A Bozek
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Naijin Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Clare Che
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Erika Luis
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicole I Park
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zhiyu Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Spears
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Cusimano
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Sunit Das
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - H Artee Luchman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Nie Z, Cai S, Wei Z, Li Y, Bian L, Wang C, Wang X, Wang C. SH3GL3 acts as a novel tumor suppressor in glioblastoma tumorigenesis by inhibiting STAT3 signaling. Biochem Biophys Res Commun 2021; 544:73-80. [PMID: 33524871 DOI: 10.1016/j.bbrc.2021.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is the most severe malignant tumors of the central nervous system. Glioblastoma stem cells (GSCs) are considered to account for tumor initiation, therapeutic resistance, and tumor relapse. Yet the underlying mechanisms of GSC stemness maintenance remain largely unknown. Abnormal activation of STAT3 signaling is required for GBM tumorigenesis and GSC self-renewal. In this study, we provide evidence that SH3GL3 was weakly expressed in GBM and its high expression correlated with a favorable prognosis for GBM patients. Ectopic of SH3GL3 expression considerably inhibits GBM cell malignant behaviors, including GBM cell proliferation, migration as well as GSCs self-renewal ability. Mechanistically, we first found that SH3GL3 interacts with STAT3, which thereby inhibiting STAT3 nuclear localization. Overexpression of constitutively activated (STAT3-C) restored the growth, migration and self-renewal ability impaired by overexpression of SH3GL3. Together, our work shed insight on a critical regulatory mechanism mediated by SH3GL3 to decrease the stem cell-like property and tumorigenic potential.
Collapse
Affiliation(s)
- Zhi Nie
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Shan Cai
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zhimin Wei
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yanxi Li
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Li Bian
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Chenyang Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xiangpeng Wang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
26
|
GDF15 promotes glioma stem cell-like phenotype via regulation of ERK1/2-c-Fos-LIF signaling. Cell Death Discov 2021; 7:3. [PMID: 33431816 PMCID: PMC7801449 DOI: 10.1038/s41420-020-00395-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Growth differentiation factor 15 (GDF15), a member of the transforming growth factor β family, is associated with tumor progression, metastasis, and cell apoptosis. However, controversy persists regarding the role of GDF15 in different tumor types, and its function in glioma stem cells (GSCs) remains unknown. Here, we report that GDF15 promotes the GSC-like phenotype in GSC-like cells (GSCLCs) through the activation of leukemia inhibitor factor (LIF)–STAT3 signaling. Mechanistically, GDF15 was found to upregulate expression of the transcription factor c-Fos, which binds to the LIF promoter, leading to enhanced transcription of LIF in GSCLCs. Furthermore, GDF15 may activate the ERK1/2 signaling pathway in GSCLCs, and the upregulation of LIF expression and the GSC-like phenotype was dependent on ERK1/2 signaling. In addition, the small immunomodulator imiquimod induced GDF15 expression, which in turn activated the LIF–STAT3 pathway and subsequently promoted the GSC-like phenotype in GSCLCs. Thus, our results demonstrate that GDF15 can act as a proliferative and pro-stemness factor for GSCs, and therefore, it may represent a potential therapeutic target in glioma treatment.
Collapse
|
27
|
Wang X, Zhou R, Xiong Y, Zhou L, Yan X, Wang M, Li F, Xie C, Zhang Y, Huang Z, Ding C, Shi K, Li W, Liu Y, Cao Z, Zhang ZN, Zhou S, Chen C, Zhang Y, Chen L, Wang Y. Sequential fate-switches in stem-like cells drive the tumorigenic trajectory from human neural stem cells to malignant glioma. Cell Res 2021; 31:684-702. [PMID: 33390587 PMCID: PMC8169837 DOI: 10.1038/s41422-020-00451-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/19/2020] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an incurable and highly heterogeneous brain tumor, originating from human neural stem/progenitor cells (hNSCs/hNPCs) years ahead of diagnosis. Despite extensive efforts to characterize hNSCs and end-stage GBM at bulk and single-cell levels, the de novo gliomagenic path from hNSCs is largely unknown due to technical difficulties in early-stage sampling and preclinical modeling. Here, we established two highly penetrant hNSC-derived malignant glioma models, which resemble the histopathology and transcriptional heterogeneity of human GBM. Integrating time-series analyses of whole-exome sequencing, bulk and single-cell RNA-seq, we reconstructed gliomagenic trajectories, and identified a persistent NSC-like population at all stages of tumorigenesis. Through trajectory analyses and lineage tracing, we showed that tumor progression is primarily driven by multi-step transcriptional reprogramming and fate-switches in the NSC-like cells, which sequentially generate malignant heterogeneity and induce tumor phenotype transitions. We further uncovered stage-specific oncogenic cascades, and among the candidate genes we functionally validated C1QL1 as a new glioma-promoting factor. Importantly, the neurogenic-to-gliogenic switch in NSC-like cells marks an early stage characterized by a burst of oncogenic alterations, during which transient AP-1 inhibition is sufficient to inhibit gliomagenesis. Together, our results reveal previously undercharacterized molecular dynamics and fate choices driving de novo gliomagenesis from hNSCs, and provide a blueprint for potential early-stage treatment/diagnosis for GBM.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Ran Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanzhen Xiong
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China.,National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lingling Zhou
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Xiang Yan
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Manli Wang
- Department of Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fan Li
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Chuanxing Xie
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Yiming Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zongyao Huang
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Chaoqiong Ding
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Kaidou Shi
- Department of Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weida Li
- Institute of Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Yu Liu
- Department of Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhen-Ning Zhang
- Institute of Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Shengtao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chong Chen
- Department of Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yuan Wang
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
28
|
Parris TZ, Vizlin-Hodzic D, Salmela S, Funa K. Tumorigenic effects of TLX overexpression in HEK 293T cells. Cancer Rep (Hoboken) 2020; 2:e1204. [PMID: 32721119 DOI: 10.1002/cnr2.1204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The human orphan receptor TLX (NR2E1) is a key regulator of neurogenesis, adult stem cell maintenance, and tumorigenesis. However, little is known about the genetic and transcriptomic events that occur following TLX overexpression in human cell lines. AIMS Here, we used cytogenetics and RNA sequencing to investigate the effect of TLX overexpression with an inducible vector system in the HEK 293T cell line. METHODS AND RESULTS Conventional spectral karyotyping was used to identify chromosomal abnormalities, followed by fluorescence in situ hybridization (FISH) analysis on chromosome spreads to assess TLX DNA copy number. Illumina paired-end whole transcriptome sequencing was then performed to characterize recurrent genetic variants (single nucleotide polymorphisms (SNPs) and indels), expressed gene fusions, and gene expression profiles. Lastly, flow cytometry was used to analyze cell cycle distribution. Intriguingly, we show that upon transfection with a vector containing the human TLX gene (eGFP-hTLX), an isochromosome forms on the long arm of chromosome 6, thereby resulting in DNA gain of the TLX locus (6q21) and upregulation of TLX. Induction of the eGFP-hTLX vector further increased TLX expression levels, leading to G0-G1 cell cycle arrest, genetic aberrations, modulation of gene expression patterns, and crosstalk with other nuclear receptors (AR, ESR1, ESR2, NR1H4, and NR3C2). We identified a 49-gene signature associated with central nervous system (CNS) development and carcinogenesis, in addition to potentially cancer-driving gene fusions (LARP1-CNOT8 and NSL1-ZDBF2) and deleterious genetic variants (frameshift insertions in the CTSH, DBF4, POSTN, and WDR78 genes). CONCLUSION Taken together, these findings illustrate that TLX may play a pivotal role in tumorigenesis via genomic instability and perturbation of cancer-related processes.
Collapse
Affiliation(s)
- Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Dzeneta Vizlin-Hodzic
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Susanne Salmela
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Keiko Funa
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Vora P, Venugopal C, Salim SK, Tatari N, Bakhshinyan D, Singh M, Seyfrid M, Upreti D, Rentas S, Wong N, Williams R, Qazi MA, Chokshi C, Ding A, Subapanditha M, Savage N, Mahendram S, Ford E, Adile AA, McKenna D, McFarlane N, Huynh V, Wylie RG, Pan J, Bramson J, Hope K, Moffat J, Singh S. The Rational Development of CD133-Targeting Immunotherapies for Glioblastoma. Cell Stem Cell 2020; 26:832-844.e6. [PMID: 32464096 DOI: 10.1016/j.stem.2020.04.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/16/2019] [Accepted: 04/14/2020] [Indexed: 01/01/2023]
Abstract
CD133 marks self-renewing cancer stem cells (CSCs) in a variety of solid tumors, and CD133+ tumor-initiating cells are known markers of chemo- and radio-resistance in multiple aggressive cancers, including glioblastoma (GBM), that may drive intra-tumoral heterogeneity. Here, we report three immunotherapeutic modalities based on a human anti-CD133 antibody fragment that targets a unique epitope present in glycosylated and non-glycosylated CD133 and studied their effects on targeting CD133+ cells in patient-derived models of GBM. We generated an immunoglobulin G (IgG) (RW03-IgG), a dual-antigen T cell engager (DATE), and a CD133-specific chimeric antigen receptor T cell (CAR-T): CART133. All three showed activity against patient-derived CD133+ GBM cells, and CART133 cells demonstrated superior efficacy in patient-derived GBM xenograft models without causing adverse effects on normal CD133+ hematopoietic stem cells in humanized CD34+ mice. Thus, CART133 cells may be a therapeutically tractable strategy to target CD133+ CSCs in human GBM or other treatment-resistant primary cancers.
Collapse
Affiliation(s)
- Parvez Vora
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Sabra Khalid Salim
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Nazanin Tatari
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Mohini Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Mathieu Seyfrid
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Deepak Upreti
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Stefan Rentas
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Nicholas Wong
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Rashida Williams
- Donnelly Centre, Department of Molecular Genetics, Institute of Biomolecular Engineering, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Maleeha Ahmad Qazi
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Chirayu Chokshi
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Avrilynn Ding
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Minomi Subapanditha
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Neil Savage
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Sujeivan Mahendram
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Emily Ford
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Ashley Ann Adile
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Dillon McKenna
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Nicole McFarlane
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Vince Huynh
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S 4M1, Canada
| | - Ryan Gavin Wylie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S 4M1, Canada
| | - James Pan
- Donnelly Centre, Department of Molecular Genetics, Institute of Biomolecular Engineering, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Jonathan Bramson
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Kristin Hope
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Jason Moffat
- Donnelly Centre, Department of Molecular Genetics, Institute of Biomolecular Engineering, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Sheila Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada; Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
30
|
Kalimuthu S, Gangadaran P, Oh JM, Rajendran RL, Lee HW, Gopal A, Hong CM, Jeon YH, Jeong SY, Lee SW, Lee J, Ahn BC. A new tyrosine kinase inhibitor K905-0266 inhibits proliferation and sphere formation of glioblastoma cancer cells. J Drug Target 2020; 28:933-938. [PMID: 32191139 DOI: 10.1080/1061186x.2020.1745817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glioblastoma (GBM) is the most prevalent malignant tumour of the central nervous system and carries a poor prognosis; average survival time after diagnosis is 14 months. Because of its unfavourable prognosis, novel therapies are needed. The aim of this study was to assess whether inhibition of GBM and GBM-derived cancer stem cells (CSCs) by a new tyrosine kinase inhibitor (TKI), K905-0266, is possible. To do this, we generated GBM (D54 and U87MG) cells expressing luciferase and characterised the inhibitory effects of the TKI with bioluminescent imaging (BLI) and western blot (WB). The effect of the TKI was then evaluated in CSCs. BLI showed significant inhibition of D54 and U87MG cells by TKI treatment. WB showed that the TKI decreased pERK and Bcl-2 level and increased cleaved caspase-3 level. Sphere formation was significantly reduced by the TKI in CSCs. Our results showed that a new TKI, K905-0266, effectively inhibited GBM and CSCs, making this a candidate for GBM therapy.
Collapse
Affiliation(s)
- Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Arunnehru Gopal
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.,Leading‑Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
31
|
Hakes AE, Brand AH. Tailless/TLX reverts intermediate neural progenitors to stem cells driving tumourigenesis via repression of asense/ASCL1. eLife 2020; 9:e53377. [PMID: 32073402 PMCID: PMC7058384 DOI: 10.7554/elife.53377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the sequence of events leading to cancer relies in large part upon identifying the tumour cell of origin. Glioblastoma is the most malignant brain cancer but the early stages of disease progression remain elusive. Neural lineages have been implicated as cells of origin, as have glia. Interestingly, high levels of the neural stem cell regulator TLX correlate with poor patient prognosis. Here we show that high levels of the Drosophila TLX homologue, Tailless, initiate tumourigenesis by reverting intermediate neural progenitors to a stem cell state. Strikingly, we could block tumour formation completely by re-expressing Asense (homologue of human ASCL1), which we show is a direct target of Tailless. Our results predict that expression of TLX and ASCL1 should be mutually exclusive in glioblastoma, which was verified in single-cell RNA-seq of human glioblastoma samples. Counteracting high TLX is a potential therapeutic strategy for suppressing tumours originating from intermediate progenitor cells.
Collapse
Affiliation(s)
- Anna E Hakes
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
32
|
Sareddy GR, Pratap UP, Viswanadhapalli S, Venkata PP, Nair BC, Krishnan SR, Zheng S, Gilbert AR, Brenner AJ, Brann DW, Vadlamudi RK. PELP1 promotes glioblastoma progression by enhancing Wnt/β-catenin signaling. Neurooncol Adv 2019; 1:vdz042. [PMID: 32309805 PMCID: PMC7147719 DOI: 10.1093/noajnl/vdz042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Glioblastoma (GBM) is a deadly neoplasm of the central nervous system. The molecular mechanisms and players that contribute to GBM development is incompletely understood. Methods The expression of PELP1 in different grades of glioma and normal brain tissues was analyzed using immunohistochemistry on a tumor tissue array. PELP1 expression in established and primary GBM cell lines was analyzed by Western blotting. The effect of PELP1 knockdown was studied using cell proliferation, colony formation, migration, and invasion assays. Mechanistic studies were conducted using RNA-seq, RT-qPCR, immunoprecipitation, reporter gene assays, and signaling analysis. Mouse orthotopic models were used for preclinical evaluation of PELP1 knock down. Results Nuclear receptor coregulator PELP1 is highly expressed in gliomas compared to normal brain tissues, with the highest expression in GBM. PELP1 expression was elevated in established and patient-derived GBM cell lines compared to normal astrocytes. Knockdown of PELP1 resulted in a significant decrease in cell viability, survival, migration, and invasion. Global RNA-sequencing studies demonstrated that PELP1 knockdown significantly reduced the expression of genes involved in the Wnt/β-catenin pathway. Mechanistic studies demonstrated that PELP1 interacts with and functions as a coactivator of β-catenin. Knockdown of PELP1 resulted in a significant increase in survival of mice implanted with U87 and GBM PDX models. Conclusions PELP1 expression is upregulated in GBM and PELP1 signaling via β-catenin axis contributes to GBM progression. Thus, PELP1 could be a potential target for the development of therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Binoj C Nair
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrew J Brenner
- Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
33
|
Daniel PM, Filiz G, Brown DV, Christie M, Waring PM, Zhang Y, Haynes JM, Pouton C, Flanagan D, Vincan E, Johns TG, Montgomery K, Phillips WA, Mantamadiotis T. PI3K activation in neural stem cells drives tumorigenesis which can be ameliorated by targeting the cAMP response element binding protein. Neuro Oncol 2019; 20:1344-1355. [PMID: 29718345 DOI: 10.1093/neuonc/noy068] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Hyperactivation of phosphoinositide 3-kinase (PI3K) signaling is common in cancers, but the precise role of the pathway in glioma biology remains to be determined. Some understanding of PI3K signaling mechanisms in brain cancer comes from studies on neural stem/progenitor cells (NSPCs), where signals transmitted via the PI3K pathway cooperate with other intracellular pathways and downstream transcription factors to regulate critical cell functions. Methods To investigate the role of the PI3K pathway in glioma initiation and development, we generated a mouse model targeting the inducible expression of a PIK3CAH1047A oncogenic mutant and deletion of the PI3K negative regulator, phosphatase and tensin homolog (PTEN), to NSPCs. Results Expression of a Pik3caH1047A was sufficient to generate tumors with oligodendroglial features, but simultaneous loss of PTEN was required for the development of invasive, high-grade glioma. Pik3caH1047A-PTEN mutant NSPCs exhibited enhanced neurosphere formation which correlated with increased Wnt signaling, while loss of cAMP response element binding protein (CREB) in Pik3caH1047A-Pten mutant tumors led to longer symptom-free survival in mice. Conclusion Taken together, our findings present a novel mouse model for glioma demonstrating that the PI3K pathway is important for initiation of tumorigenesis and that disruption of downstream CREB signaling attenuates tumor expansion.
Collapse
Affiliation(s)
- Paul M Daniel
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gulay Filiz
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel V Brown
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Christie
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul M Waring
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yi Zhang
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - John M Haynes
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Colin Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dustin Flanagan
- Molecular Oncology Laboratory, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Vincan
- Molecular Oncology Laboratory, The University of Melbourne, Parkville, Victoria, Australia.,Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Melbourne, Victoria, Australia.,School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Terrance G Johns
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Subiaco, Western Australia, Australia
| | - Karen Montgomery
- Cancer Biology and Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Wayne A Phillips
- Cancer Biology and Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Theo Mantamadiotis
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Surgery (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, Körber C, Kardorff M, Ratliff M, Xie R, Horstmann H, Messer M, Paik SP, Knabbe J, Sahm F, Kurz FT, Acikgöz AA, Herrmannsdörfer F, Agarwal A, Bergles DE, Chalmers A, Miletic H, Turcan S, Mawrin C, Hänggi D, Liu HK, Wick W, Winkler F, Kuner T. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 2019; 573:532-538. [DOI: 10.1038/s41586-019-1564-x] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 08/09/2019] [Indexed: 01/03/2023]
|
35
|
Chen J, Chen T, Zhu Y, Li Y, Zhang Y, Wang Y, Li X, Xie X, Wang J, Huang M, Sun X, Ke Y. circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:398. [PMID: 31511040 PMCID: PMC6737709 DOI: 10.1186/s13046-019-1376-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/11/2019] [Indexed: 01/06/2023]
Abstract
Background Growing evidences indicate that circular RNAs (circRNAs) play an important role in the regulation of biological behavior of tumor. We aim to explore the role of circRNA in glioma and elucidate how circRNA acts. Methods Real-time PCR was used to examine the expression of circPTN in glioma tissues and normal brain tissues (NBT). Assays of dual- luciferase reporter system, biotin label RNA pull-down and FISH were used to determine that circPTN could sponge miR-145-5p and miR-330-5p. Tumor sphere formation assay was performed to determine self- renewal of glioma stem cell (GSCs). Cell counting Kit-8 (CCK8), EdU assay and flow cytometry were used to investigate proliferation and cell cycle. Intracranial xenograft was established to determine how circPTN impacts in vivo. Tumor sphere formation assay was performed to determine self- renewal of glioma stem cell (GSCs). Results We demonstrated circPTN was significantly higher expression in glioma tissues and glioma cell lines, compared with NBT and HEB (human astrocyte). In gain- and loss-of-function experiments, circPTN significantly promoted glioma growth in vitro and in vivo. Furthermore, we performed dual-luciferase reporter assays and RNA pull-down assays to verify that circPTN acts through sponging miR-145-5p and miR-330-5p. Increasing expression of circPTN rescued the inhibition of proliferation and downregulation of SOX9/ITGA5 in glioma cells by miR-145-5p/miR-330-5p. In addition, we found that circPTN promoted self-renewal and increased the expression of stemness markers (Nestin, CD133, SOX9, and SOX2) via sponging miR-145-5p. Moreover, this regulation was disappeared when circPTN binding sites in miR-145-5p were mutated. Conclusions Our results suggest that circPTN is an oncogenic factor that acts by sponging miR-145-5p/miR-330-5p in glioma. Electronic supplementary material The online version of this article (10.1186/s13046-019-1376-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiansheng Chen
- The National Key Clinical Specialty; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Industrial Road No.253, Guangzhou, 510282, Guangdong, China.,Department of Neurosurgery, Huizhou Municipal Central Hospital, Huizhou Shi, China
| | - Taoliang Chen
- The National Key Clinical Specialty; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Industrial Road No.253, Guangzhou, 510282, Guangdong, China
| | - Yubo Zhu
- The National Key Clinical Specialty; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Industrial Road No.253, Guangzhou, 510282, Guangdong, China
| | - Yan Li
- The National Key Clinical Specialty; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Industrial Road No.253, Guangzhou, 510282, Guangdong, China
| | - Yuxuan Zhang
- The National Key Clinical Specialty; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Industrial Road No.253, Guangzhou, 510282, Guangdong, China
| | - Yun Wang
- The National Key Clinical Specialty; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Industrial Road No.253, Guangzhou, 510282, Guangdong, China
| | - Xiao Li
- The National Key Clinical Specialty; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Industrial Road No.253, Guangzhou, 510282, Guangdong, China
| | - Xiaomi Xie
- The National Key Clinical Specialty; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Industrial Road No.253, Guangzhou, 510282, Guangdong, China
| | - Jihui Wang
- The National Key Clinical Specialty; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Industrial Road No.253, Guangzhou, 510282, Guangdong, China
| | - Min Huang
- The National Key Clinical Specialty; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Industrial Road No.253, Guangzhou, 510282, Guangdong, China.
| | - Xinlin Sun
- The National Key Clinical Specialty; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Industrial Road No.253, Guangzhou, 510282, Guangdong, China
| | - Yiquan Ke
- The National Key Clinical Specialty; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Industrial Road No.253, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
36
|
Abstract
For newly diagnosed patients, the standard has remained largely unchanged for the past decade and concept-driven approaches like anti-angiogenic therapies or use of molecularly targeted drugs in all-comers populations have failed. Tumor-treating fields appear as a new option. Most current immunotherapy or molecularly targeted, precision medicine trials are also focusing on this newly diagnosed patient population. At progression, no standard exists and most treatments offer little beyond supportive care. Past trials lacked target precision and all-comers approaches have produced false negative results. Molecular precision approaches at progression need workup of recent rather than archival tissue.
Collapse
Affiliation(s)
- Wolfgang Wick
- Neurology Clinic, University of Heidelberg, INF 400, 69120 Heidelberg, Germany; Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Michael Platten
- Department of Neurology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
37
|
Duman C, Yaqubi K, Hoffmann A, Acikgöz AA, Korshunov A, Bendszus M, Herold-Mende C, Liu HK, Alfonso J. Acyl-CoA-Binding Protein Drives Glioblastoma Tumorigenesis by Sustaining Fatty Acid Oxidation. Cell Metab 2019; 30:274-289.e5. [PMID: 31056285 DOI: 10.1016/j.cmet.2019.04.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme (GBM) undergoes metabolic reprogramming to meet the high ATP and anabolic demands of the tumor cells. However, the role of fatty acid oxidation (FAO) and its regulators in the GBM context has been largely unknown. Here, we show that the neural stem cell pro-proliferative factor acyl-CoA-binding protein (ACBP, also known as DBI) is highly expressed in GBM, and by binding to acyl-CoAs, it cell-autonomously maintains high proliferation rates, promoting tumor growth and poor survival in several preclinical models. Mechanistic experiments using ACBP-acyl-CoA binding affinity variants and pharmacological FAO modulators suggest that ACBP supports tumor growth by controlling the availability of long-chain fatty acyl-CoAs to mitochondria, promoting FAO in GBM. Thus, our findings uncover a critical link between lipid metabolism and GBM progression established by ACBP and offer a potential therapeutic strategy for an effective anti-proliferative metabolic management of GBM.
Collapse
Affiliation(s)
- Ceren Duman
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Kaneschka Yaqubi
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Azer Aylin Acikgöz
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Heidelberg University Hospital, Im Neuenheimer Feld 220, Heidelberg 69120, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
38
|
GPD1 Specifically Marks Dormant Glioma Stem Cells with a Distinct Metabolic Profile. Cell Stem Cell 2019; 25:241-257.e8. [DOI: 10.1016/j.stem.2019.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022]
|
39
|
Chen Z, Wang HW, Wang S, Fan L, Feng S, Cai X, Peng C, Wu X, Lu J, Chen D, Chen Y, Wu W, Lu D, Liu N, You Y, Wang H. USP9X deubiquitinates ALDH1A3 and maintains mesenchymal identity in glioblastoma stem cells. J Clin Invest 2019; 129:2043-2055. [PMID: 30958800 PMCID: PMC6486342 DOI: 10.1172/jci126414] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/01/2019] [Indexed: 12/29/2022] Open
Abstract
The mesenchymal (MES) subtype of glioblastoma (GBM) stem cells (GSCs) represents a subpopulation of cancer cells that are notorious for their highly aggressive nature and resistance to conventional therapy. Aldehyde dehydrogenase 1A3 (ALDH1A3) has been recently suggested as a key determinant for the maintenance of MES features of GSCs. However, the mechanisms underpinning aberrant ALDH1A3 expression remain elusive. Here, we identified ubiquitin-specific protease 9X (USP9X) as a bona fide deubiquitinase of ALDH1A3 in MES GSCs. USP9X interacted with, depolyubiquitylated, and stabilized ALDH1A3. Moreover, we showed that FACS-sorted USP9Xhi cells were enriched for MES GSCs with high ALDH1A3 activity and potent tumorigenic capacity. Depletion of USP9X markedly downregulated ALDH1A3, resulting in a loss of self-renewal and tumorigenic capacity of MES GSCs, which could be largely rescued by ectopic expression of ALDH1A3. Furthermore, we demonstrated that the USP9X inhibitor WP1130 induced ALDH1A3 degradation and showed marked therapeutic efficacy in MES GSC-derived orthotopic xenograft models. Additionally, USP9X strongly correlated with ALDH1A3 expression in primary human GBM samples and had a prognostic value for patients with the MES subgroup. Collectively, our findings unveil USP9X as a key deubiquitinase for ALDH1A3 protein stabilization and a potential target for GSC-directed therapy.
Collapse
Affiliation(s)
- Zhengxin Chen
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong-Wei Wang
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | - Ligang Fan
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuang Feng
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaomin Cai
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenghao Peng
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoting Wu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiacheng Lu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan Chen
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Chen
- Division of Molecular Thoracic Oncology, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Wenting Wu
- Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Liu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huibo Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Mack SC, Singh I, Wang X, Hirsch R, Wu Q, Villagomez R, Bernatchez JA, Zhu Z, Gimple RC, Kim LJY, Morton A, Lai S, Qiu Z, Prager BC, Bertrand KC, Mah C, Zhou W, Lee C, Barnett GH, Vogelbaum MA, Sloan AE, Chavez L, Bao S, Scacheri PC, Siqueira-Neto JL, Lin CY, Rich JN. Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma. J Exp Med 2019; 216:1071-1090. [PMID: 30948495 PMCID: PMC6504206 DOI: 10.1084/jem.20190196] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/22/2022] Open
Abstract
Mack et al. defined active chromatin landscapes of glioblastoma stem cells (GSCs) and primary tumor specimens, revealing novel transcriptional regulatory circuits and therapeutic targets. Super-enhancers identified essential transcription factors that underlie GSC identity and intertumoral diversity, potentially informing precision medicine. Glioblastoma is an incurable brain cancer characterized by high genetic and pathological heterogeneity. Here, we mapped active chromatin landscapes with gene expression, whole exomes, copy number profiles, and DNA methylomes across 44 patient-derived glioblastoma stem cells (GSCs), 50 primary tumors, and 10 neural stem cells (NSCs) to identify essential super-enhancer (SE)–associated genes and the core transcription factors that establish SEs and maintain GSC identity. GSCs segregate into two groups dominated by distinct enhancer profiles and unique developmental core transcription factor regulatory programs. Group-specific transcription factors enforce GSC identity; they exhibit higher activity in glioblastomas versus NSCs, are associated with poor clinical outcomes, and are required for glioblastoma growth in vivo. Although transcription factors are commonly considered undruggable, group-specific enhancer regulation of the MAPK/ERK pathway predicts sensitivity to MEK inhibition. These data demonstrate that transcriptional identity can be leveraged to identify novel dependencies and therapeutic approaches.
Collapse
Affiliation(s)
- Stephen C Mack
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | - Irtisha Singh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA
| | - Rachel Hirsch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Quilian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA
| | - Rosie Villagomez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA.,Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, La Jolla, CA
| | - Zhe Zhu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA.,Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA.,Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Andrew Morton
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Sisi Lai
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA.,Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Kelsey C Bertrand
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | - Clarence Mah
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, San Diego, CA
| | - Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Christine Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Gene H Barnett
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH
| | - Michael A Vogelbaum
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH
| | - Andrew E Sloan
- Department of Neurological Surgery, Seidman Cancer Center & University Hospitals - Cleveland Medical Center, Cleveland, OH
| | - Lukas Chavez
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, San Diego, CA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA.,Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, La Jolla, CA
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX .,Therapeutic Innovation Center, Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA
| |
Collapse
|
41
|
Tejero R, Huang Y, Katsyv I, Kluge M, Lin JY, Tome-Garcia J, Daviaud N, Wang Y, Zhang B, Tsankova NM, Friedel CC, Zou H, Friedel RH. Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment. EBioMedicine 2019; 42:252-269. [PMID: 30952620 PMCID: PMC6491796 DOI: 10.1016/j.ebiom.2019.03.064] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022] Open
Abstract
Background Glioblastoma (GBM), a highly malignant brain tumor, invariably recurs after therapy. Quiescent GBM cells represent a potential source of tumor recurrence, but little is known about their molecular underpinnings. Methods Patient-derived GBM cells were engineered by CRISPR/Cas9-assisted knock-in of an inducible histone2B-GFP (iH2B-GFP) reporter to track cell division history. We utilized an in vitro 3D GBM organoid approach to isolate live quiescent GBM (qGBM) cells and their proliferative counterparts (pGBM) to compare stem cell properties and therapy resistance. Gene expression programs of qGBM and pGBM cells were analyzed by RNA-Seq and NanoString platforms. Findings H2B-GFP-retaining qGBM cells exhibited comparable self-renewal capacity but higher therapy resistance relative to pGBM. Quiescent GBM cells expressed distinct gene programs that affect cell cycle control, metabolic adaptation, and extracellular matrix (ECM) interactions. Transcriptome analysis also revealed a mesenchymal shift in qGBM cells of both proneural and mesenchymal GBM subtypes. Bioinformatic analyses and functional assays in GBM organoids established hypoxia and TGFβ signaling as potential niche factors that promote quiescence in GBM. Finally, network co-expression analysis of TCGA glioma patient data identified gene modules that are enriched for qGBM signatures and also associated with survival rate. Interpretation Our in vitro study in 3D GBM organoids supports the presence of a quiescent cell population that displays self-renewal capacity, high therapy resistance, and mesenchymal gene signatures. It also sheds light on how GBM cells may acquire and maintain quiescence through ECM organization and interaction with niche factors such as TGFβ and hypoxia. Our findings provide a starting point for developing strategies to tackle the quiescent population of GBM. Fund National Institutes of Health (NIH) and Deutsche Forschungsgemeinschaft (DFG).
Collapse
Affiliation(s)
- Rut Tejero
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yong Huang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Igor Katsyv
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Kluge
- Institut für Informatik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jung-Yi Lin
- Tisch Cancer Institute, Biostatistics Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Tome-Garcia
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Daviaud
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanshuo Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nadejda M Tsankova
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caroline C Friedel
- Institut für Informatik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
42
|
Sugimori M, Hayakawa Y, Tamura R, Kuroda S. The combined efficacy of OTS964 and temozolomide for reducing the size of power-law coded heterogeneous glioma stem cell populations. Oncotarget 2019; 10:2397-2415. [PMID: 31040930 PMCID: PMC6481323 DOI: 10.18632/oncotarget.26800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/04/2019] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma resists chemotherapy then recurs as a fatal space-occupying lesion. To improve the prognosis, the issues of chemoresistance and tumor size should be addressed. Glioma stem cell (GSC) populations, a heterogeneous power-law coded population in glioblastoma, are believed to be responsible for the recurrence and progressive expansion of tumors. Thus, we propose a therapeutic strategy of reducing the initial size and controlling the regrowth of GSC populations which directly facilitates initial and long-term control of glioblastoma recurrence. In this study, we administered an anti-glioma/GSC drug temozolomide (TMZ) and OTS964, an inhibitor for T-Lak cell originated protein kinase, in combination (T&O), investigating whether together they efficiently and substantially shrink the initial size of power-law coded GSC populations and slow the long-term re-growth of drug-resistant GSC populations. We employed a detailed quantitative approach using clonal glioma sphere (GS) cultures, measuring sphere survivability and changes to growth during the self-renewal. T&O eliminated self-renewing GS clones and suppressed their growth. We also addressed whether T&O reduced the size of self-renewed GS populations. T&O quickly reduced the size of GS populations via efficient elimination of GS clones. The growth of the surviving T&O-resistant GS populations was continuously disturbed, leading to substantial long-term shrinkage of the self-renewed GS populations. Thus, T&O reduced the initial size of GS populations and suppressed their later regrowth. A combination therapy of TMZ and OTS964 would represent a novel therapeutic paradigm with the potential for long-term control of glioblastoma recurrence via immediate and sustained shrinkage of power-law coded heterogeneous GSC populations.
Collapse
Affiliation(s)
- Michiya Sugimori
- Department of Integrative Neuroscience, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Yumiko Hayakawa
- Department of Neurosurgery, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Ryoi Tamura
- Department of Integrative Neuroscience, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, University of Toyama, Toyama, Toyama 930-0194, Japan
| |
Collapse
|
43
|
Wang C, Zheng W, Yao D, Chen Q, Zhu L, Zhang J, Pan Y, Zhang J, Shao C. Upregulation of DNA Metabolism-Related Genes Contributes to Radioresistance of Glioblastoma. HUM GENE THER CL DEV 2019; 30:74-87. [PMID: 30746964 DOI: 10.1089/humc.2018.251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glioblastomas (GBMs) are the most prevalent brain tumor and exhibit poor prognosis. Radiotherapy is an important strategy for GBMs patients; however, this care remains palliative because of GBMs' radioresistance. Glioma stem cells (GSCs), as a subpopulation residing at the apex of the hierarchy, have been believed to be a pivotal population in radioresistance and recurrence of GBMs. To know the key genes involved in radioresistance of GSCs, the gene expression profiles of GSE54660 and GSE60921 were downloaded from Gene Expression Omnibus for genetic and transcriptomic analysis to identify the potential biomarker genes differentially expressed between GSCs and GBMs. These candidate genes were then filtered by the GSCs gene profile responding to radiation and the radioresistant biomarker genes including DNAJC9, GINS2, STAT1, CHAC2, MT1M, and ZNF226 were screened. The differentially expressed genes in GSCs post-irradiation were submitted to Gene Ontology (GO) for further enrichment analysis and protein-protein interaction (PPI) network analysis. A significant module correlated with GINS2 was finally chosen and a series of genes participating in DNA metabolism were identified. In conclusion, this study propounds a set of novel genes that are differentially expressed in the radioresistant subpopulation within GBMs and could serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Wang Zheng
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Dan Yao
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Qianping Chen
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Lin Zhu
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Junlin Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Breckwoldt MO, Bode J, Sahm F, Krüwel T, Solecki G, Hahn A, Wirthschaft P, Berghoff AS, Haas M, Venkataramani V, von Deimling A, Wick W, Herold-Mende C, Heiland S, Platten M, Bendszus M, Kurz FT, Winkler F, Tews B. Correlated MRI and Ultramicroscopy (MR-UM) of Brain Tumors Reveals Vast Heterogeneity of Tumor Infiltration and Neoangiogenesis in Preclinical Models and Human Disease. Front Neurosci 2019; 12:1004. [PMID: 30686972 PMCID: PMC6335617 DOI: 10.3389/fnins.2018.01004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
Diffuse tumor infiltration into the adjacent parenchyma is an effective dissemination mechanism of brain tumors. We have previously developed correlated high field magnetic resonance imaging and ultramicroscopy (MR-UM) to study neonangiogenesis in a glioma model. In the present study we used MR-UM to investigate tumor infiltration and neoangiogenesis in a translational approach. We compare infiltration and neoangiogenesis patterns in four brain tumor models and the human disease: whereas the U87MG glioma model resembles brain metastases with an encapsulated growth and extensive neoangiogenesis, S24 experimental gliomas mimic IDH1 wildtype glioblastomas, exhibiting infiltration into the adjacent parenchyma and along white matter tracts to the contralateral hemisphere. MR-UM resolves tumor infiltration and neoangiogenesis longitudinally based on the expression of fluorescent proteins, intravital dyes or endogenous contrasts. Our study demonstrates the huge morphological diversity of brain tumor models regarding their infiltrative and neoangiogenic capacities and further establishes MR-UM as a platform for translational neuroimaging.
Collapse
Affiliation(s)
- Michael O Breckwoldt
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Bode
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Krüwel
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Gergely Solecki
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany
| | - Artur Hahn
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Wirthschaft
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| | - Anna S Berghoff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany
| | - Maximilian Haas
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Varun Venkataramani
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany.,Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Sabine Heiland
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Bendszus
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T Kurz
- Neuroradiology Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) Within the DKFZ, Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Molecular Mechanisms of Tumor Invasion, Heidelberg, Germany
| |
Collapse
|
45
|
Sharif T, Dai C, Martell E, Ghassemi-Rad MS, Hanes MR, Murphy PJ, Kennedy BE, Venugopal C, Subapanditha M, Giacomantonio CA, Marcato P, Singh SK, Gujar S. TAp73 Modifies Metabolism and Positively Regulates Growth of Cancer Stem-Like Cells in a Redox-Sensitive Manner. Clin Cancer Res 2018; 25:2001-2017. [PMID: 30593514 DOI: 10.1158/1078-0432.ccr-17-3177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/14/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Stem-like cancer cells, with characteristic self-renewal abilities, remain highly refractory to various clinical interventions. As such, stemness-inhibiting entities, such as tumor suppressor p53, are therapeutically pursued for their anticancer activities. Interestingly, similar implications for tumor suppressor TAp73 in regulating stemness features within stem-like cancer cells remain unknown.Experimental Design: This study utilizes various in vitro molecular biology techniques, including immunoblotting, qRT-PCR, and mass spectrometry-based proteomics, and metabolomics approaches to study the role of TAp73 in human and murine embryonal carcinoma stem-like cells (ECSLC) as well as human breast cancer stem-like cells (BCSLC). These findings were confirmed using patient-derived brain tumor-initiating cells (BTIC) and in vivo xenograft models. RESULTS TAp73 inhibition decreases the expression of stem cell transcription factors Oct4, Nanog, and Sox-2, as well as tumorsphere formation capacity in ECSLCs. In vivo, TAp73-deficient ECSLCs and BCSLCs demonstrate decreased tumorigenic potential when xenografted in mice. Mechanistically, TAp73 modifies the proline regulatory axis through regulation of enzymes GLS, OAT, and PYCR1 involved in the interconversion of proline-glutamine-ornithine. Further, TAp73 deficiency exacerbates glutamine dependency, enhances accumulation of reactive oxygen species through reduced superoxide dismutase 1 (SOD1) expression, and promotes differentiation by arresting cell cycle and elevating autophagy. Most importantly, the knockdown of TAp73 in CD133HI BTICs, separated from three different glioblastoma patients, strongly decreases the expression of prosurvival factors Sox-2, BMI-1, and SOD1, and profoundly decreases their self-renewal capacity as evidenced through their reduced tumorsphere formation ability. CONCLUSIONS Collectively, we reveal a clinically relevant aspect of cancer cell growth and stemness regulation through TAp73-mediated redox-sensitive metabolic reprogramming.
Collapse
Affiliation(s)
- Tanveer Sharif
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cathleen Dai
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emma Martell
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Mark Robert Hanes
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Patrick J Murphy
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Barry E Kennedy
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Minomi Subapanditha
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Carman A Giacomantonio
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada. .,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre, Halifax, Nova Scotia, Canada
| |
Collapse
|
46
|
Testa U, Castelli G, Pelosi E. Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors. Med Sci (Basel) 2018; 6:E85. [PMID: 30279357 PMCID: PMC6313628 DOI: 10.3390/medsci6040085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Brain tumors are highly heterogeneous and have been classified by the World Health Organization in various histological and molecular subtypes. Gliomas have been classified as ranging from low-grade astrocytomas and oligodendrogliomas to high-grade astrocytomas or glioblastomas. These tumors are characterized by a peculiar pattern of genetic alterations. Pediatric high-grade gliomas are histologically indistinguishable from adult glioblastomas, but they are considered distinct from adult glioblastomas because they possess a different spectrum of driver mutations (genes encoding histones H3.3 and H3.1). Medulloblastomas, the most frequent pediatric brain tumors, are considered to be of embryonic derivation and are currently subdivided into distinct subgroups depending on histological features and genetic profiling. There is emerging evidence that brain tumors are maintained by a special neural or glial stem cell-like population that self-renews and gives rise to differentiated progeny. In many instances, the prognosis of the majority of brain tumors remains negative and there is hope that the new acquisition of information on the molecular and cellular bases of these tumors will be translated in the development of new, more active treatments.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
47
|
Phosphoglycerate dehydrogenase inhibition induces p-mTOR-independent autophagy and promotes multilineage differentiation in embryonal carcinoma stem-like cells. Cell Death Dis 2018; 9:990. [PMID: 30250195 PMCID: PMC6155240 DOI: 10.1038/s41419-018-0997-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022]
Abstract
Cancer cells with a less differentiated stem-like phenotype are more resistant to therapeutic manipulations than their differentiated counterparts, and are considered as one of the main causes of cancer persistence and relapse. As such, induction of differentiation in cancer stem-like cells (CSLCs) has emerged as an alternative strategy to enhance the efficacy of anticancer therapies. CSLCs are metabolically distinct from differentiated cells, and any aberration from the intrinsic metabolic state can induce differentiation of CSLCs. Therefore, metabolism-related molecular targets, with a capacity to promote differentiation within CSLCs, are of therapeutic importance. Here, we demonstrate that phosphoglycerate dehydrogenase (PHGDH), an essential enzyme catalyzing the synthesis of amino acid serine, is important for maintaining the poorly differentiated, stem-like state of CSLCs. Our data shows that PHGDH deficiency impairs the tumorsphere formation capacity in embryonal carcinoma stem-like cells (ECSLCs), breast cancer stem-like cells (BCSLCs) and patient-derived brain tumor-initiating cells (BTICs), which is accompanied by the reduced expression of characteristic stemness-promoting factors, such as Oct4, Nanog, Sox-2, and Bmi-1. Mechanistically, PHGDH deficiency in ECSLCs promotes differentiation to various lineages via degradation of Oct4 and by increasing the stability of differentiation marker β3-tubulin. Furthermore, PHGDH inhibition promotes p-mTOR independent but Beclin-1-dependent autophagy, independent of apoptosis. When studied in combination, the inhibition of both PHGDH and p-mTOR in ECSLCs causes further augmentation of autophagy, and additionally promotes apoptosis, demonstrating the clinical applicability of PHGDH-based manipulations in cancer therapies. Recapitulating these in vitro findings in CSLC models, the intratumoral PHGDH expression in patient-derived tumors is positively correlated with the mRNA levels of stemness factors, especially Oct4, and cancer patients co-expressing high levels of PHGDH and Oct4 display significantly lower survival than those with low PHGDH/Oct4 co-expression. Altogether, this study identifies a clinically-relevant role for PHGDH in the regulation of stemness-differentiation axis within CSLCs.
Collapse
|
48
|
Kong Y, Ai C, Dong F, Xia X, Zhao X, Yang C, Kang C, Zhou Y, Zhao Q, Sun X, Wu X. Targeting of BMI-1 with PTC-209 inhibits glioblastoma development. Cell Cycle 2018; 17:1199-1211. [PMID: 29886801 DOI: 10.1080/15384101.2018.1469872] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor and refractory to existing therapies. The oncogene BMI-1, a member of Polycomb Repressive Complex 1 (PRC1) plays essential roles in various human cancers and becomes an attractive therapeutic target. Here we showed that BMI-1 is highly expressed in GBM and especially enriched in glioblastoma stem cells (GSCs). Then we comprehensively investigated the anti-GBM effects of PTC-209, a novel specific inhibitor of BMI-1. We found that PTC-209 efficiently downregulates BMI-1 expression and the histone H2AK119ub1 levels at microM concentrations. In vitro, PTC-209 effectively inhibits glioblastoma cell proliferation and migration, and GSC self-renewal. Transcriptomic analyses of TCGA datasets of glioblastoma and PTC-209-treated GBM cells demonstrate that PTC-209 reverses the altered transcriptional program associated with BMI-1 overexpression. And Chromatin Immunoprecipitation assay confirms that the derepressed tumor suppressor genes belong to BMI-1 targets and the enrichment levels of H2AK119ub1 at their promoters is decreased upon PTC-209 treatment. Strikingly, the glioblastoma growth is significantly attenuated by PTC-209 in a murine orthotopic xenograft model. Therefore our study provides proof-of-concept for inhibitors targeting BMI-1 in potential applications as an anti-GBM therapy.
Collapse
Affiliation(s)
- Yu Kong
- a Department of Cell Biology , Tianjin Medical University , Tianjin , China.,b Departments of Pediatric Oncology and Hematology/Pediatrics , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Chunbo Ai
- a Department of Cell Biology , Tianjin Medical University , Tianjin , China
| | - Feng Dong
- a Department of Cell Biology , Tianjin Medical University , Tianjin , China
| | - Xianyou Xia
- a Department of Cell Biology , Tianjin Medical University , Tianjin , China
| | - Xiujuan Zhao
- a Department of Cell Biology , Tianjin Medical University , Tianjin , China
| | - Chao Yang
- c Department of Neurosurgery , Tianjin Medical University General Hospital , Tianjin , China.,d Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System , Ministry of Education and Tianjin City , Tianjin , China
| | - Chunsheng Kang
- c Department of Neurosurgery , Tianjin Medical University General Hospital , Tianjin , China.,d Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System , Ministry of Education and Tianjin City , Tianjin , China
| | - Yan Zhou
- e Hubei Key Laboratory of Cell Homeostasis , College of Life Sciences at Wuhan University , Wuhan , China
| | - Qian Zhao
- a Department of Cell Biology , Tianjin Medical University , Tianjin , China
| | - Xiujing Sun
- f Department of Gastroenterology , Beijing Friendship Hospital, Capital Medical University , Beijing, China.,g Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases , National Clinical Research Center for Digestive Diseases , Beijing, China
| | - Xudong Wu
- a Department of Cell Biology , Tianjin Medical University , Tianjin , China.,c Department of Neurosurgery , Tianjin Medical University General Hospital , Tianjin , China
| |
Collapse
|
49
|
Ren YM, Duan YH, Sun YB, Yang T, Zhao WJ, Zhang DL, Tian ZW, Tian MQ. Exploring the key genes and pathways of side population cells in human osteosarcoma using gene expression array analysis. J Orthop Surg Res 2018; 13:153. [PMID: 29921292 PMCID: PMC6006685 DOI: 10.1186/s13018-018-0860-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human osteosarcoma (OS) is one of the most common primary bone sarcoma, because of early metastasis and few treatment strategies. It has been reported that the tumorigenicity and self-renewal capacity of side population (SP) cells play roles in human OS via regulating of target genes. This study aims to complement the differentially expressed genes (DEGs) that regulated between the SP cells and the non-SP cells from primary human OS and identify their functions and molecular pathways associated with OS. METHODS The gene expression profile GSE63390 was downloaded, and bioinformatics analysis was made. RESULTS One hundred forty-one DEGs totally were identified. Among them, 72 DEGs (51.06%) were overexpressed, and the remaining 69 DEGs (48.94%) were underexpressed. Gene ontology (GO) and pathway enrichment analysis of target genes were performed. We furthermore identified some relevant core genes using gene-gene interaction network analysis such as EIF4E, FAU, HSPD1, IL-6, and KISS1, which may have a relationship with the development process of OS. We also discovered that EIF4E/mTOR signaling pathway could be a potential research target for therapy and tumorigenesis of OS. CONCLUSION This analysis provides a comprehensive understanding of the roles of DEGs coming from SP cells in the development of OS. However, these predictions need further experimental validation in future studies.
Collapse
Affiliation(s)
- Yi-Ming Ren
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Yuan-Hui Duan
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Yun-Bo Sun
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Tao Yang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Wen-Jun Zhao
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Dong-Liang Zhang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Zheng-Wei Tian
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| | - Meng-Qiang Tian
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
50
|
Li Y, Wang W, Wang F, Wu Q, Li W, Zhong X, Tian K, Zeng T, Gao L, Liu Y, Li S, Jiang X, Du G, Zhou Y. Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells. J Mol Cell Biol 2018; 9:302-314. [PMID: 28486630 DOI: 10.1093/jmcb/mjx017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain tumor with limited therapeutic means and poor prognosis. Recent studies indicate that glioma-initiating cells/glioma stem cells (GICs/GSCs) may be responsible for tumor initiation, infiltration, and recurrence. GICs could aberrantly employ molecular machinery balancing self-renewal and differentiation of embryonic neural precursors. Here, we find that paired related homeobox 1 (PRRX1), a homeodomain transcription factor that was previously reported to control skeletal development, is expressed in cortical neural progenitors and is required for their self-renewal and proper differentiation. Further, PRRX1 is overrepresented in glioma samples and labels GICs. Glioma cells and GICs depleted with PRRX1 could not propagate in vitro or form tumors in the xenograft mouse model. The GIC self-renewal function regulated by PRRX1 is mediated by dopamine D2 receptor (DRD2). PRRX1 directly binds to the DRD2 promoter and transactivates its expression in GICs. Blockage of the DRD2 signaling hampers GIC self-renewal, whereas its overexpression restores the propagating and tumorigenic potential of PRRX1-depleted GICs. Finally, PRRX1 potentiates GICs via DRD2-mediated extracellular signal-related kinase (ERK) and AKT activation. Thus, our study suggests that therapeutic targeting the PRRX1-DRD2-ERK/AKT axis in GICs is a promising strategy for treating GBMs.
Collapse
Affiliation(s)
- Yamu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Wen Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Fangyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Qiushuang Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Wei Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Xiaoling Zhong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Kuan Tian
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Tao Zeng
- Department of Neurosurgery, The Tenth Affiliated Hospital, Tongji University, Shanghai 200072, China.,Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Liang Gao
- Department of Neurosurgery, The Tenth Affiliated Hospital, Tongji University, Shanghai 200072, China
| | - Ying Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Yan Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| |
Collapse
|