1
|
Li A, Zhang J, Zhan L, Liu X, Zeng X, Zhu Q, Wang Z, Li J. TOX2 nuclear-cytosol translocation is linked to leukemogenesis of acute T-cell leukemia by repressing TIM3 transcription. Cell Death Differ 2024; 31:1506-1518. [PMID: 39080376 PMCID: PMC11519604 DOI: 10.1038/s41418-024-01352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 10/30/2024] Open
Abstract
Nuclear factors TOX and TOX2 upregulate TIM3 expression and lead to T-cell exhaustion in malignancies. Here, we demonstrate two distinct TIM3 expression patterns (high & low) with high TOX and TOX2 levels in T-cell acute lymphoblastic leukemia (T-ALL) specimens and cell lines. However, the mechanisms regulated by TOX and TIM3 signaling in leukemogenesis are unclear. We found that TOX and TOX2 proteins each directly upregulated HAVCR2 transcription, while the cellular localization of TOX2 was different in Jurkat and MOLT3 cells (nucleus) and lymphoblastic cell T2 and normal T cells (cytoplasm). Nuclear TOX and TOX2 formed a protein complex and repressed HAVCR2 promoter activity by recruiting transcriptional corepressor LCOR and deacetylase HDAC3. The nuclear-cytosol translocation of TOX2 was deacetylation-dependent and cooperatively mediated by deacetylase Sirt1 and kinase TBK1. Radiation damage induced TOX2 nuclear translocation and decreased Sirt1, TIM3, and caspase 1 expression in normal T cells. Accordingly, knockdown of TOX, TOX2 or LCOR; HDAC3 inhibition; or TIM3 overexpression induced Jurkat cell apoptosis in vitro and slow growth in vivo. Thus, our findings demonstrate a novel regulatory mechanism involving TOX-TOX2 and the TIM3 pathway in the leukemogenesis of T-ALL.
Collapse
Affiliation(s)
- Anzhou Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
| | - Junbao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Zhan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiufeng Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiliang Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China
| | - Jiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangdong, China.
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
2
|
Pednekar K, Minnee J, de Vries IJM, Prakash J. Targeted nanomedicine for reprogramming the tumor innate immune system: From bench to bedside. Eur J Pharm Biopharm 2024; 204:114510. [PMID: 39307440 DOI: 10.1016/j.ejpb.2024.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Tumor-associated innate immune cells such as tumor-associated macrophages, neutrophils, dendritic cells play a crucial role in tumor progression, angiogenesis and metastasis. These cells also control the efficacy of chemotherapy and immunotherapy by inducing drug resistance and immunosuppression, leading to therapeutic failures. Therefore, targeting the tumor-associated innate immune cells has gained high attention for the development of effective cancer therapy. Nanomedicine based strategies to target these cells are highly relevant and can be used to reprogram these cells. In this review, we discuss the fundamental roles of the tumor-associated innate immune cells in the tumor microenvironment and different strategies to modulate them. Then, nanomedicine-based strategies to target different tumor innate immune cells are explained in detail. While the clinical development of the targeted nanomedicine remains a great challenge in practice, we have provided our perspectives on various factors such as pharmaceutical aspects, preclinical testing and biological aspects which are crucial to consider before translating these targeting strategies to clinics.
Collapse
Affiliation(s)
- Kunal Pednekar
- Engineered Therapeutics, Department of Advanced Organ bioengineering and Therapeutics, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Julia Minnee
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jai Prakash
- Engineered Therapeutics, Department of Advanced Organ bioengineering and Therapeutics, Technical Medical Centre, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
3
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024:1-22. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
4
|
Gayen S, Mukherjee S, Dasgupta S, Roy S. Emerging druggable targets for immune checkpoint modulation in cancer immunotherapy: the iceberg lies beneath the surface. Apoptosis 2024:10.1007/s10495-024-02022-8. [PMID: 39354213 DOI: 10.1007/s10495-024-02022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
The immune system serves as a fundamental defender against the initiation and progression of cancer. Failure of the immune system augments immunosuppressive action that leading to cancer manifestation. This immunosuppressive effect causes from significant alterations in immune checkpoint expression associated with tumoral progression. The tumor microenvironment promotes immune escape mechanisms that further amplifying immunosuppressive actions. Notably, substantial targeting of immune checkpoints has been pragmatic in the advancement of cancer research. This study highlights a comprehensive review of emerging druggable targets aimed at modulating immune checkpoint co-inhibitory as well as co-stimulatory molecules in response to immune system activation. This modulation has prompted to the development of newer therapeutic insights, eventually inducing immunogenic cell death through immunomodulatory actions. The study emphasizes the role of immune checkpoints in immunogenic regulation of cancer pathogenesis and explores potential therapeutic avenues in cancer immunotherapy.Modulation of Immunosuppressive and Immunostimulatory pathways of immune checkpoints in cancer immunotherapy.
Collapse
Affiliation(s)
- Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 741249, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
5
|
Musil J, Ptacek A, Vanikova S. OMIP-106: A 30-color panel for analysis of check-point inhibitory networks in the bone marrow of acute myeloid leukemia patients. Cytometry A 2024; 105:729-736. [PMID: 39192598 DOI: 10.1002/cyto.a.24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia diagnosed in adults. Despite advances in medical care, the treatment of AML still faces many challenges, such as treatment-related toxicities, that limit the use of high-intensity chemotherapy, especially in elderly patients. Currently, various immunotherapeutic approaches, that is, CAR-T cells, BiTEs, and immune checkpoint inhibitors, are being tested in clinical trials to prolong remission and improve the overall survival of AML patients. However, early reports show only limited benefits of these interventions and only in a subset of patients, showing the need for better patient stratification based on immunological markers. We have therefore developed and optimized a 30-color panel for evaluation of effector immune cell (NK cells, γδ T cells, NKT-like T cells, and classical T cells) infiltration into the bone marrow and analysis of their phenotype with regard to their differentiation, expression of inhibitory (PD-1, TIGIT, Tim3, NKG2A) and activating receptors (DNAM-1, NKG2D). We also evaluate the immune evasive phenotype of CD33+ myeloid cells, CD34+CD38-, and CD34+CD38+ hematopoietic stem and progenitor cells by analyzing the expression of inhibitory ligands such as PD-L1, CD112, CD155, and CD200. Our panel can be a valuable tool for patient stratification in clinical trials and can also be used to broaden our understanding of check-point inhibitory networks in AML.
Collapse
Affiliation(s)
- Jan Musil
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Antonin Ptacek
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| | - Sarka Vanikova
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| |
Collapse
|
6
|
Tsukamoto T. The expression of Galectin-9 correlates with mTOR and AMPK in murine colony-forming erythroid progenitors. Eur J Haematol 2024; 113:416-425. [PMID: 38853593 DOI: 10.1111/ejh.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVES Galectin-9 (Gal-9) is an immune checkpoint ligand for T-cell immunoglobulin and mucin domain 3. Although the roles of Gal-9 in regulating immune responses have been well investigated, their biological roles have yet to be fully documented. This study aimed to analyse the expression of Gal-9 bone marrow (BM) cells in C57BL/6J (B6) mice. Furthermore, the co-expression of Gal-9 with the mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) was investigated. METHODS The BM cells in adult C57BL/6J (B6) mice were collected and analysed in vitro. RESULTS In a flow cytometric analysis of BM cells, Gal-9 was highly expressed in c-KithiSca-1-CD34-CD71+ erythroid progenitors (EPs), whereas it was downregulated in more differentiated c-KitloCD71+TER119+ cells. Subsequently, a negative selection of CD3-B220-Sca-1-CD34-CD41-CD16/32- EPs was performed. This resulted in substantial enrichment of KithiCD71+Gal-9+ cells and erythroid colony-forming units (CFU-Es), suggesting that the colony-forming subset of EPs are included in the KithiCD71+Gal-9+ population. Furthermore, we found that EPs had lower mTOR and AMPK expression levels in Gal-9 knockout B6 mice than in wild-type B6 mice. CONCLUSIONS These results may stimulate further investigation of the role of Gal-9 in haematopoiesis.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- Department of Health Informatics, Niigata University of Health of Welfare, Niigata, Japan
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
7
|
Shil RK, Mohammed NBB, Dimitroff CJ. Galectin-9 - ligand axis: an emerging therapeutic target for multiple myeloma. Front Immunol 2024; 15:1469794. [PMID: 39386209 PMCID: PMC11461229 DOI: 10.3389/fimmu.2024.1469794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Galectin-9 (Gal-9) is a tandem-repeat galectin with diverse roles in immune homeostasis, inflammation, malignancy, and autoimmune diseases. In cancer, Gal-9 displays variable expression patterns across different tumor types. Its interactions with multiple binding partners, both intracellularly and extracellularly, influence key cellular processes, including immune cell modulation and tumor microenvironment dynamics. Notably, Gal-9 binding to cell-specific glycoconjugate ligands has been implicated in both promoting and suppressing tumor progression. Here, we provide insights into Gal-9 and its involvement in immune homeostasis and cancer biology with an emphasis on multiple myeloma (MM) pathophysiology, highlighting its complex and context-dependent dual functions as a pro- and anti-tumorigenic molecule and its potential implications for therapy in MM patients.
Collapse
Affiliation(s)
- Rajib K. Shil
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
8
|
Sabile JMG, Swords R, Tyner JW. Evaluating targeted therapies in older patients with TP53-mutated AML. Leuk Lymphoma 2024; 65:1201-1218. [PMID: 38646877 DOI: 10.1080/10428194.2024.2344057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Mutation of thetumor suppressor gene, TP53 (tumor protein 53), occurs in up to 15% of all patients with acute myeloid leukemia (AML) and is enriched within specific clinical subsets, most notably in older adults, and including secondary AML cases arising from preceding myeloproliferative neoplasm (MPN), myelodysplastic syndrome (MDS), patients exposed to prior DNA-damaging, cytotoxic therapies. In all cases, these tumors have remained difficult to effectively treat with conventional therapeutic regimens. Newer approaches fortreatmentofTP53-mutated AML have shifted to interventions that maymodulateTP53 function, target downstream molecular vulnerabilities, target non-p53 dependent molecular pathways, and/or elicit immunogenic responses. This review will describe the basic biology of TP53, the clinical and biological patterns of TP53 within myeloid neoplasms with a focus on elderly AML patients and will summarize newer therapeutic strategies and current clinical trials.
Collapse
Affiliation(s)
- Jean M G Sabile
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ronan Swords
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
9
|
Chang X, Miao J. Role of TIM-3 in ovarian cancer: the forsaken cop or a new noble. Front Immunol 2024; 15:1407403. [PMID: 39206199 PMCID: PMC11350557 DOI: 10.3389/fimmu.2024.1407403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
T cell immunoglobulin and mucin domain-3 (TIM-3), a crucial immune checkpoint following PD1 and CTLA4, is widely found in several immune cells. Nonetheless, its performance in recent clinical trials appears disappointing. Ovarian cancer (OC), a malignant tumor with a high mortality rate in gynecology, faces significant hurdles in immunotherapy. The broad presence of TIM-3 offers a new opportunity for immunotherapy in OC. This study reviews the role of TIM-3 in OC and assesses its potential as a target for immunotherapy. The regulatory effects of TIM-3 on the immune microenvironment in OC are discussed, with a focus on preclinical studies that demonstrate TIM-3's modulation of various immune cells in OC. Additionally, the potential therapeutic advantages and challenges of targeting TIM-3 in OC are examined.
Collapse
Affiliation(s)
| | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Chandra DJ, Alber B, Saultz JN. The Immune Resistance Signature of Acute Myeloid Leukemia and Current Immunotherapy Strategies. Cancers (Basel) 2024; 16:2615. [PMID: 39123343 PMCID: PMC11311077 DOI: 10.3390/cancers16152615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex hematopoietic clonal disorder with limited curative options beyond stem cell transplantation. The success of transplant is intimately linked with the graft versus leukemia effect from the alloreactive donor immune cells including, T and NK cells. The immune system plays a dynamic role in leukemia survival and resistance. Despite our growing understanding of the immune microenvironment, responses to immune-based therapies differ greatly between patients. Herein, we review the biology of immune evasion mechanisms in AML, discuss the current landscape of immunotherapeutic strategies, and discuss the implications of therapeutic targets. This review focuses on T and NK cell-based therapy, including modified and non-modified NK cells, CAR-T and CAR-NK cells, antibodies, and checkpoint blockades. Understanding the complex interchange between immune tolerance and the emergence of tumor resistance will improve patient outcomes.
Collapse
Affiliation(s)
- Daniel J. Chandra
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Bernhard Alber
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Jennifer N. Saultz
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| |
Collapse
|
11
|
Talvard-Balland N, Braun LM, Dixon KO, Zwick M, Engel H, Hartmann A, Duquesne S, Penter L, Andrieux G, Rindlisbacher L, Acerbis A, Ehmann J, Köllerer C, Ansuinelli M, Rettig A, Moschallski K, Apostolova P, Brummer T, Illert AL, Schramm MA, Cheng Y, Köttgen A, Duyster J, Menssen HD, Ritz J, Blazar BR, Boerries M, Schmitt-Gräff A, Sariipek N, Van Galen P, Buescher JM, Cabezas-Wallscheid N, Pahl HL, Pearce EL, Soiffer RJ, Wu CJ, Vago L, Becher B, Köhler N, Wertheimer T, Kuchroo VK, Zeiser R. Oncogene-induced TIM-3 ligand expression dictates susceptibility to anti-TIM-3 therapy in mice. J Clin Invest 2024; 134:e177460. [PMID: 38916965 PMCID: PMC11324309 DOI: 10.1172/jci177460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting T cell (Tc) immunoglobulin and mucin-containing molecule 3 (TIM-3) for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti-TIM-3 Ab treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti-TIM-3 treatment resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ Tc enhanced Tc activation, proliferation, and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion, and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti-TIM-3 treatment-mediated GVL effects are Tc induced. In contrast to anti-programmed cell death protein 1 (anti-PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) treatment, anti-TIM-3-treatment did not enhance acute graft-versus-host disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post-allo-HCT relapse. We decipher the connections between oncogenic mutations found in AML and TIM-3 ligand expression and identify anti-TIM-3 treatment as a strategy for enhancing GVL effects via metabolic and transcriptional Tc reprogramming without exacerbation of aGVHD. Our findings support clinical testing of anti-TIM-3 Ab in patients with AML relapse after allo-HCT.
Collapse
MESH Headings
- Animals
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Mice
- Hematopoietic Stem Cell Transplantation
- Graft vs Leukemia Effect/immunology
- Graft vs Leukemia Effect/genetics
- Humans
- Allografts
- Ligands
- Oncogenes
- CD8-Positive T-Lymphocytes/immunology
- Mice, Knockout
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Nana Talvard-Balland
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Lukas M. Braun
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Karen O. Dixon
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Melissa Zwick
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Helena Engel
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Alina Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Sandra Duquesne
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andrea Acerbis
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Jule Ehmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Christoph Köllerer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Michela Ansuinelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Andres Rettig
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Kevin Moschallski
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Petya Apostolova
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tilman Brummer
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Freiburg, Germany
| | - Anna L. Illert
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Internal Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | | | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Blazar
- University of Minnesota, Department of Pediatrics, Division of Blood and Marrow Transplant & Cellular Therapy, Minneapolis, Minnesota, USA
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Nurefsan Sariipek
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Peter Van Galen
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joerg M. Buescher
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Heike L. Pahl
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Erika L. Pearce
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Natalie Köhler
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Tobias Wertheimer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Vijay K. Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Zeiser
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Li Y, Sang Y, Chang Y, Xu C, Lin Y, Zhang Y, Chiu PCN, Yeung WSB, Zhou H, Dong N, Xu L, Chen J, Zhao W, Liu L, Yu D, Zang X, Ye J, Yang J, Wu Q, Li D, Wu L, Du M. A Galectin-9-Driven CD11c high Decidual Macrophage Subset Suppresses Uterine Vascular Remodeling in Preeclampsia. Circulation 2024; 149:1670-1688. [PMID: 38314577 DOI: 10.1161/circulationaha.123.064391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.
Collapse
Affiliation(s)
- Yanhong Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, China (Y. Li, M.D.)
| | - Yifei Sang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Chunfang Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yikong Lin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Philip C N Chiu
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, China (P.C.N.C., W.S.B.Y.)
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China (P.C.N.C., W.S.B.Y.)
| | - William S B Yeung
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, China (P.C.N.C., W.S.B.Y.)
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China (P.C.N.C., W.S.B.Y.)
| | - Haisheng Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China (N.D., Q.W.)
| | - Ling Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Jiajia Chen
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Weijie Zhao
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
| | - Lu Liu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Di Yu
- The University of Queensland Diamantina Institute (D.Y.), Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre (D.Y.), Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY (X.Z.)
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore City, Singapore (J. Ye)
| | - Jinying Yang
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
| | - Qingyu Wu
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China (N.D., Q.W.)
| | - Dajin Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, China (Y. Li, M.D.)
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China (M.D.)
| |
Collapse
|
13
|
Corradi G, Forte D, Cristiano G, Polimeno A, Ciciarello M, Salvestrini V, Bandini L, Robustelli V, Ottaviani E, Cavo M, Ocadlikova D, Curti A. Ex vivo characterization of acute myeloid leukemia patients undergoing hypomethylating agents and venetoclax regimen reveals a venetoclax-specific effect on non-suppressive regulatory T cells and bona fide PD-1 +TIM3 + exhausted CD8 + T cells. Front Immunol 2024; 15:1386517. [PMID: 38812504 PMCID: PMC11133521 DOI: 10.3389/fimmu.2024.1386517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive heterogeneous disease characterized by several alterations of the immune system prompting disease progression and treatment response. The therapies available for AML can affect lymphocyte function, limiting the efficacy of immunotherapy while hindering leukemia-specific immune reactions. Recently, the treatment based on Venetoclax (VEN), a specific B-cell lymphoma 2 (BCL-2) inhibitor, in combination with hypomethylating agents (HMAs) or low-dose cytarabine, has emerged as a promising clinical strategy in AML. To better understand the immunological effect of VEN treatment, we characterized the phenotype and immune checkpoint (IC) receptors' expression on CD4+ and CD8+ T cells from AML patients after the first and second cycle of HMA in combination with VEN. HMA and VEN treatment significantly increased the percentage of naïve CD8+ T cells and TIM-3+ CD4+ and CD8+ T cells and reduced cytokine-secreting non-suppressive T regulatory cells (Tregs). Of note, a comparison between AML patients treated with HMA only and HMA in combination with VEN revealed the specific contribution of VEN in modulating the immune cell repertoire. Indeed, the reduction of cytokine-secreting non-suppressive Tregs, the increased TIM-3 expression on CD8+ T cells, and the reduced co-expression of PD-1 and TIM-3 on both CD4+ and CD8+ T cells are all VEN-specific. Collectively, our study shed light on immune modulation induced by VEN treatment, providing the rationale for a novel therapeutic combination of VEN and IC inhibitors in AML patients.
Collapse
Affiliation(s)
- Giulia Corradi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Department of Oncology Hematology, Pescara Hospital, Pescara, Italy
| | - Dorian Forte
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Gianluca Cristiano
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Andrea Polimeno
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Marilena Ciciarello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Valentina Salvestrini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Lorenza Bandini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Valentina Robustelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Emanuela Ottaviani
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Michele Cavo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Darina Ocadlikova
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Antonio Curti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|
14
|
Dobaño-López C, Valero JG, Araujo-Ayala F, Nadeu F, Gava F, Faria C, Norlund M, Morin R, Bernes-Lasserre P, Arenas F, Grau M, López C, López-Oreja I, Serrat N, Martínez-Farran A, Hernández L, Playa-Albinyana H, Giménez R, Beà S, Campo E, Lagarde JM, López-Guillermo A, Magnano L, Colomer D, Bezombes C, Pérez-Galán P. Patient-derived follicular lymphoma spheroids recapitulate lymph node signaling and immune profile uncovering galectin-9 as a novel immunotherapeutic target. Blood Cancer J 2024; 14:75. [PMID: 38697976 DOI: 10.1038/s41408-024-01041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Follicular lymphoma (FL), the most common indolent non-Hodgkin lymphoma, constitutes a paradigm of immune tumor microenvironment (TME) contribution to disease onset, progression, and heterogenous clinical outcome. Here we present the first FL-Patient Derived Lymphoma Spheroid (FL-PDLS), including fundamental immune actors and features of TME in FL lymph nodes (LNs). FL-PDLS is organized in disc-shaped 3D structures composed of proliferating B and T cells, together with macrophages with an intermediate M1/M2 phenotype. FL-PDLS recapitulates the most relevant B-cell transcriptional pathways present in FL-LN (proliferation, epigenetic regulation, mTOR, adaptive immune system, among others). The T cell compartment in the FL-PDLS preserves CD4 subsets (follicular helper, regulatory, and follicular regulatory), also encompassing the spectrum of activation/exhaustion phenotypes in CD4 and CD8 populations. Moreover, this system is suitable for chemo and immunotherapy testing, recapitulating results obtained in the clinic. FL-PDLS allowed uncovering that soluble galectin-9 limits rituximab, rituximab, plus nivolumab/TIM-3 antitumoral activities. Blocking galectin-9 improves rituximab efficacy, highlighting galectin-9 as a novel immunotherapeutic target in FL. In conclusion, FL-PDLS maintains the crosstalk between malignant B cells and the immune LN-TME and constitutes a robust and multiplexed pre-clinical tool to perform drug screening in a patient-derived system, advancing toward personalized therapeutic approaches.
Collapse
Affiliation(s)
- Cèlia Dobaño-López
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Juan García Valero
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Ferran Araujo-Ayala
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Ferran Nadeu
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Fabien Gava
- Université de Toulouse, INSERM, CNRS, Université de Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Carla Faria
- Université de Toulouse, INSERM, CNRS, Université de Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | | | | | - Fabian Arenas
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Marta Grau
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Cristina López
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
| | - Irene López-Oreja
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | - Neus Serrat
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ares Martínez-Farran
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Lluís Hernández
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Heribert Playa-Albinyana
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Rubén Giménez
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Silvia Beà
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | - Elías Campo
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | | | - Armando López-Guillermo
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Servei Hematologia, Hospital Clínic, Barcelona, Spain
| | - Laura Magnano
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- IMACTIV-3D, Toulouse, France
- University of Barcelona, Medical School, Barcelona, Spain
- Servei Hematologia, Hospital Clínic, Barcelona, Spain
| | - Dolors Colomer
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
- University of Barcelona, Medical School, Barcelona, Spain
- Secció Hematopatologia, Servei d'Anatomia Patològica, Hospital Clínic, Barcelona, Spain
| | - Christine Bezombes
- Université de Toulouse, INSERM, CNRS, Université de Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| | - Patricia Pérez-Galán
- Fundació de Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.
| |
Collapse
|
15
|
Xiao Z, Wang S, Chen J, Li Y, Jiang Y, Tin VP, Liu J, Hu H, Wong MP, Pan Y, Yam JWP. The Dual Role of the NFATc2/galectin-9 Axis in Modulating Tumor-Initiating Cell Phenotypes and Immune Suppression in Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306059. [PMID: 38528665 PMCID: PMC11132051 DOI: 10.1002/advs.202306059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Tumor-initiating cells (TICs) resilience and an immunosuppressive microenvironment are aggressive oncogenic phenotypes that contribute to unsatisfactory long-term outcomes in lung adenocarcinoma (LUAD) patients. The molecular mechanisms mediating the interaction between TICs and immune tolerance have not been elucidated. The role of Galectin-9 in oncogenesis and immunosuppressive microenvironment is still unknown. This study explored the potential role of galectin-9 in TIC regulation and immune modulation in LUAD. The results show that galectin-9 supports TIC properties in LUAD. Co-culture of patient-derived organoids and matched peripheral blood mononuclear cells showed that tumor-secreted galectin-9 suppressed T cell cytotoxicity and induced regulatory T cells (Tregs). Clinically, galectin-9 is upregulated in human LUAD. High expression of galectin-9 predicted poor recurrence-free survival and correlated with high levels of Treg infiltration. LGALS9, the gene encoding galectin-9, is found to be transcriptionally regulated by the nuclear factor of activated T cells 2 (NFATc2), a previously reported TIC regulator, via in silico prediction and luciferase reporter assays. Overall, the results suggest that the NFATc2/galectin-9 axis plays a dual role in TIC regulation and immune suppression.
Collapse
Affiliation(s)
- Zhi‐Jie Xiao
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational ResearchThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Si‐Qi Wang
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Jun‐Jiang Chen
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510000China
| | - Yun Li
- Department of Thoracic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
| | - Yuchen Jiang
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Vicky Pui‐Chi Tin
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Jia Liu
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Huiyi Hu
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Maria Pik Wong
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Yihang Pan
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| |
Collapse
|
16
|
Yıldırım C. Galectin-9, a pro-survival factor inducing immunosuppression, leukemic cell transformation and expansion. Mol Biol Rep 2024; 51:571. [PMID: 38662155 DOI: 10.1007/s11033-024-09563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Leukemia is a malignancy of the bone marrow and blood originating from self-renewing cancerous immature blast cells or transformed leukocytes. Despite improvements in treatments, leukemia remains still a serious disease with poor prognosis because of disease heterogeneity, drug resistance and relapse. There is emerging evidence that differentially expression of co-signaling molecules play a critical role in tumor immune evasion. Galectin-9 (Gal-9) is one of the key proteins that leukemic cells express, secrete, and use to proliferate, self-renew, and survive. It also suppresses host immune responses controlled by T and NK cells, enabling leukemic cells to evade immune surveillance. The present review provides the molecular mechanisms of Gal-9-induced immune evasion in leukemia. Understanding the complex immune evasion machinery driven by Gal-9 expressing leukemic cells will enable the identification of novel therapeutic strategies for efficient immunotherapy in leukemic patients. Combined treatment approaches targeting T-cell immunoglobulin and mucin domain-3 (Tim-3)/Gal-9 and other immune checkpoint pathways can be considered, which may enhance the efficacy of host effector cells to attack leukemic cells.
Collapse
Affiliation(s)
- Cansu Yıldırım
- Atatürk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| |
Collapse
|
17
|
Mendes M, Monteiro AC, Neto E, Barrias CC, Sobrinho-Simões MA, Duarte D, Caires HR. Transforming the Niche: The Emerging Role of Extracellular Vesicles in Acute Myeloid Leukaemia Progression. Int J Mol Sci 2024; 25:4430. [PMID: 38674015 PMCID: PMC11050723 DOI: 10.3390/ijms25084430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Acute myeloid leukaemia (AML) management remains a significant challenge in oncology due to its low survival rates and high post-treatment relapse rates, mainly attributed to treatment-resistant leukaemic stem cells (LSCs) residing in bone marrow (BM) niches. This review offers an in-depth analysis of AML progression, highlighting the pivotal role of extracellular vesicles (EVs) in the dynamic remodelling of BM niche intercellular communication. We explore recent advancements elucidating the mechanisms through which EVs facilitate complex crosstalk, effectively promoting AML hallmarks and drug resistance. Adopting a temporal view, we chart the evolving landscape of EV-mediated interactions within the AML niche, underscoring the transformative potential of these insights for therapeutic intervention. Furthermore, the review discusses the emerging understanding of endothelial cell subsets' impact across BM niches in shaping AML disease progression, adding another layer of complexity to the disease progression and treatment resistance. We highlight the potential of cutting-edge methodologies, such as organ-on-chip (OoC) and single-EV analysis technologies, to provide unprecedented insights into AML-niche interactions in a human setting. Leveraging accumulated insights into AML EV signalling to reconfigure BM niches and pioneer novel approaches to decipher the EV signalling networks that fuel AML within the human context could revolutionise the development of niche-targeted therapy for leukaemia eradication.
Collapse
Affiliation(s)
- Manuel Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana C. Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cristina C. Barrias
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Manuel A. Sobrinho-Simões
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Clinical Haematology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
- Clinical Haematology, Department of Medicine, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Delfim Duarte
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- Unit of Biochemistry, Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, Instituto Português de Oncologia (IPO)-Porto, 4200-072 Porto, Portugal
| | - Hugo R. Caires
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
| |
Collapse
|
18
|
Torres NI, Baudou FG, Scheidegger MA, Dalotto-Moreno T, Rabinovich GA. Do galectins serve as soluble ligands for immune checkpoint receptors? J Immunother Cancer 2024; 12:e008984. [PMID: 38599662 PMCID: PMC11015282 DOI: 10.1136/jitc-2024-008984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Nicolas I Torres
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Instituto de Tecnología, Universidad Argentina de la Empresa, Ciudad de Buenos Aires, Argentina
| | - Federico G Baudou
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Provincia de Buenos Aires, Argentina
| | - Marco A Scheidegger
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Tomás Dalotto-Moreno
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Programa de Glicociencias, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
19
|
Dixon KO, Lahore GF, Kuchroo VK. Beyond T cell exhaustion: TIM-3 regulation of myeloid cells. Sci Immunol 2024; 9:eadf2223. [PMID: 38457514 DOI: 10.1126/sciimmunol.adf2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) is an important immune checkpoint molecule initially identified as a marker of IFN-γ-producing CD4+ and CD8+ T cells. Since then, our understanding of its role in immune responses has significantly expanded. Here, we review emerging evidence demonstrating unexpected roles for TIM-3 as a key regulator of myeloid cell function, in addition to recent work establishing TIM-3 as a delineator of terminal T cell exhaustion, thereby positioning TIM-3 at the interface between fatigued immune responses and reinvigoration. We share our perspective on the antagonism between TIM-3 and T cell stemness, discussing both cell-intrinsic and cell-extrinsic mechanisms underlying this relationship. Looking forward, we discuss approaches to decipher the underlying mechanisms by which TIM-3 regulates stemness, which has remarkable potential for the treatment of cancer, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Karen O Dixon
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Gonzalo Fernandez Lahore
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Ebrahimi N, Abdulwahid AHRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, Adelian S, Khorram R, Vafadar R, Hamblin MR, Aref AR. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci 2024; 81:106. [PMID: 38418707 PMCID: PMC10902086 DOI: 10.1007/s00018-023-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 03/02/2024]
Abstract
Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T‑lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Karimi
- Department of Biology, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | | | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Stafylidis C, Vlachopoulou D, Kontandreopoulou CN, Diamantopoulos PΤ. Unmet Horizons: Assessing the Challenges in the Treatment of TP53-Mutated Acute Myeloid Leukemia. J Clin Med 2024; 13:1082. [PMID: 38398394 PMCID: PMC10889132 DOI: 10.3390/jcm13041082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Acute myeloid leukemia (AML) remains a challenging hematologic malignancy. The presence of TP53 mutations in AML poses a therapeutic challenge, considering that standard treatments face significant setbacks in achieving meaningful responses. There is a pressing need for the development of innovative treatment modalities to overcome resistance to conventional treatments attributable to the unique biology of TP53-mutated (TP53mut) AML. This review underscores the role of TP53 mutations in AML, examines the current landscape of treatment options, and highlights novel therapeutic approaches, including targeted therapies, combination regimens, and emerging immunotherapies, as well as agents being explored in preclinical studies according to their potential to address the unique hurdles posed by TP53mut AML.
Collapse
Affiliation(s)
| | | | | | - Panagiotis Τ. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.S.); (D.V.); (C.-N.K.)
| |
Collapse
|
22
|
Hatakeyama K, Kikushige Y, Ishihara D, Yamamoto S, Kawano G, Tochigi T, Miyamoto T, Sakoda T, Christoforou A, Kunisaki Y, Fukata M, Kato K, Ito T, Handa H, Akashi K. Thrombospondin-1 is an endogenous substrate of cereblon responsible for immunomodulatory drug-induced thromboembolism. Blood Adv 2024; 8:785-796. [PMID: 38163319 PMCID: PMC10847748 DOI: 10.1182/bloodadvances.2023010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
ABSTRACT Immunomodulatory drugs (IMiDs) are key drugs for treating multiple myeloma and myelodysplastic syndrome with chromosome 5q deletion. IMiDs exert their pleiotropic effects through the interaction between cell-specific substrates and cereblon, a substrate receptor of the E3 ubiquitin ligase complex. Thus, identification of cell-specific substrates is important for understanding the effects of IMiDs. IMiDs increase the risk of thromboembolism, which sometimes results in fatal clinical outcomes. In this study, we sought to clarify the molecular mechanisms underlying IMiDs-induced thrombosis. We investigated cereblon substrates in human megakaryocytes using liquid chromatography-mass spectrometry and found that thrombospondin-1 (THBS-1), which is an inhibitor of a disintegrin-like and metalloproteinase with thrombospondin type 1 motifs 13, functions as an endogenous substrate in human megakaryocytes. IMiDs inhibited the proteasomal degradation of THBS-1 by impairing the recruitment of cereblon to THBS-1, leading to aberrant accumulation of THBS-1. We observed a significant increase in THBS-1 in peripheral blood mononuclear cells as well as larger von Willebrand factor multimers in the plasma of patients with myeloma, who were treated with IMiDs. These results collectively suggest that THBS-1 represents an endogenous substrate of cereblon. This pairing is disrupted by IMiDs, and the aberrant accumulation of THBS-1 plays an important role in the pathogenesis of IMiDs-induced thromboembolism.
Collapse
Affiliation(s)
- Kiwamu Hatakeyama
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Daisuke Ishihara
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Shunsuke Yamamoto
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Gentaro Kawano
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Taro Tochigi
- Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan
| | - Toshihiro Miyamoto
- Haematology/Respiratory Medicine, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University Hospital, Ishikawa, Japan
| | - Teppei Sakoda
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | | | - Yuya Kunisaki
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Mitsuhiro Fukata
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Takumi Ito
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Handa
- Center for Future Medical Research Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| |
Collapse
|
23
|
Brunner AM, Esteve J, Porkka K, Knapper S, Traer E, Scholl S, Garcia-Manero G, Vey N, Wermke M, Janssen JJWM, Narayan R, Fleming S, Loo S, Tovar N, Kontro M, Ottmann OG, Naidu P, Sun H, Han M, White R, Zhang N, Mohammed A, Sabatos-Peyton CA, Steensma DP, Rinne ML, Borate UM, Wei AH. Phase Ib study of sabatolimab (MBG453), a novel immunotherapy targeting TIM-3 antibody, in combination with decitabine or azacitidine in high- or very high-risk myelodysplastic syndromes. Am J Hematol 2024; 99:E32-E36. [PMID: 37994196 DOI: 10.1002/ajh.27161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023]
Abstract
The safety and efficacy of sabatolimab, a novel immunotherapy targeting T-cell immunoglobulin domain and mucin domain-3 (TIM-3), was assessed in combination with hypomethylating agents (HMAs) in patients with HMA-naive revised International Prognostic System Score (IPSS-R) high- or very high-risk myelodysplastic syndromes (HR/vHR-MDS) or chronic myelomonocytic leukemia (CMML). Sabatolimab + HMA had a safety profile similar to that reported for HMA alone and demonstrated durable clinical responses in patients with HR/vHR-MDS. These results support the ongoing evaluation of sabatolimab-based combination therapy in MDS, CMML, and acute myeloid leukemia.
Collapse
Affiliation(s)
| | | | - Kimmo Porkka
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | - Elie Traer
- Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | | - Martin Wermke
- TU Dresden, NCT/UCC Early Clinical Trial Unit, Dresden, Germany
| | | | - Rupa Narayan
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Sun Loo
- The Alfred Hospital, Melbourne, Victoria, Australia
| | | | - Mika Kontro
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | | | - Haiying Sun
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - May Han
- Cure Ventures, Boston, Massachusetts, USA
| | | | - Na Zhang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Anisa Mohammed
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - David P Steensma
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | | | - Uma M Borate
- Oregon Health & Science University, Portland, Oregon, USA
| | - Andrew H Wei
- The Peter MacCallum Cancer Centre and Royal Melbourne Hospital Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Wu Y, Li Y, Gao Y, Zhang P, Jing Q, Zhang Y, Jin W, Wang Y, Du J, Wu G. Immunotherapies of acute myeloid leukemia: Rationale, clinical evidence and perspective. Biomed Pharmacother 2024; 171:116132. [PMID: 38198961 DOI: 10.1016/j.biopha.2024.116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is a prevalent hematological malignancy that exhibits a wide array of molecular abnormalities. Although traditional treatment modalities such as chemotherapy and allogeneic stem cell transplantation (HSCT) have become standard therapeutic approaches, a considerable number of patients continue to face relapse and encounter a bleak prognosis. The emergence of immune escape, immunosuppression, minimal residual disease (MRD), and other contributing factors collectively contribute to this challenge. Recent research has increasingly highlighted the notable distinctions between AML tumor microenvironments and those of healthy individuals. In order to investigate the potential therapeutic mechanisms, this study examines the intricate transformations occurring between leukemic cells and their surrounding cells within the tumor microenvironment (TME) of AML. This review classifies immunotherapies into four distinct categories: cancer vaccines, immune checkpoint inhibitors (ICIs), antibody-based immunotherapies, and adoptive T-cell therapies. The results of numerous clinical trials strongly indicate that the identification of optimal combinations of novel agents, either in conjunction with each other or with chemotherapy, represents a crucial advancement in this field. In this review, we aim to explore the current and emerging immunotherapeutic methodologies applicable to AML patients, identify promising targets, and emphasize the crucial requirement to augment patient outcomes. The application of these strategies presents substantial therapeutic prospects within the realm of precision medicine for AML, encompassing the potential to ameliorate patient outcomes.
Collapse
Affiliation(s)
- Yunyi Wu
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinhao Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Gongqiang Wu
- Department of Hematology, Dongyang Hospitai Affiliated to Wenzhou Medical University, Dongyang People's Hospital, Dongyang, Zhejiang, China.
| |
Collapse
|
25
|
Shapourian H, Ghanadian M, Eskandari N, Shokouhi A, Demirel GY, Bazhin AV, Ganjalikhani-Hakemi M. TIM-3/Galectin-9 interaction and glutamine metabolism in AML cell lines, HL-60 and THP-1. BMC Cancer 2024; 24:125. [PMID: 38267906 PMCID: PMC10809689 DOI: 10.1186/s12885-024-11898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is a cell surface molecule that was first discovered on T cells. However, recent studies revealed that it is also highly expressed in acute myeloid leukemia (AML) cells and it is related to AML progression. As, Glutamine appears to play a prominent role in malignant tumor progression, especially in their myeloid group, therefore, in this study we aimed to evaluate the relation between TIM-3/Galectin-9 axis and glutamine metabolism in two types of AML cell lines, HL-60 and THP-1. METHODS Cell lines were cultured in RPMI 1640 which supplemented with 10% FBS and 1% antibiotics. 24, 48, and 72 h after addition of recombinant Galectin-9 (Gal-9), RT-qPCR analysis, RP-HPLC and gas chromatography techniques were performed to evaluate the expression of glutaminase (GLS), glutamate dehydrogenase (GDH) enzymes, concentration of metabolites; Glutamate (Glu) and alpha-ketoglutarate (α-KG) in glutaminolysis pathway, respectively. Western blotting and MTT assay were used to detect expression of mammalian target of rapamycin complex (mTORC) as signaling factor, GLS protein and cell proliferation rate, respectively. RESULTS The most mRNA expression of GLS and GDH in HL-60 cells was seen at 72 h after Gal-9 treatment (p = 0.001, p = 0.0001) and in THP-1 cell line was observed at 24 h after Gal-9 addition (p = 0.001, p = 0.0001). The most mTORC and GLS protein expression in HL-60 and THP-1 cells was observed at 72 and 24 h after Gal-9 treatment (p = 0.0001), respectively. MTT assay revealed that Gal-9 could promote cell proliferation rate in both cell lines (p = 0.001). Glu concentration in HL-60 and α-KG concentration in both HL-60 (p = 0.03) and THP-1 (p = 0.0001) cell lines had a decreasing trend. But, Glu concentration had an increasing trend in THP-1 cell line (p = 0.0001). CONCLUSION Taken together, this study suggests TIM-3/Gal-9 interaction could promote glutamine metabolism in HL-60 and THP-1 cells and resulting in AML development.
Collapse
Affiliation(s)
- Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolfazl Shokouhi
- Department of Endocrine and metabolism research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alexandr V Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
26
|
Zhang M, Liu C, Li Y, Li H, Zhang W, Liu J, Wang L, Sun C. Galectin-9 in cancer therapy: from immune checkpoint ligand to promising therapeutic target. Front Cell Dev Biol 2024; 11:1332205. [PMID: 38264357 PMCID: PMC10803597 DOI: 10.3389/fcell.2023.1332205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Galectin-9 (Gal-9) is a vital member of the galectin family, functioning as a multi-subtype galactose lectin with diverse biological roles. Recent research has revealed that Gal-9's interaction with tumors is an independent factor that influences tumor progression. Furthermore, Gal-9 in the immune microenvironment cross-talks with tumor-associated immune cells, informing the clarification of Gal-9's identity as an immune checkpoint. A thorough investigation into Gal-9's role in various cancer types and its interaction with the immune microenvironment could yield novel strategies for subsequent targeted immunotherapy. This review focuses on the latest advances in understanding the direct and indirect cross-talk between Gal-9 and hematologic malignancies, in addition to solid tumors. In addition, we discuss the prospects of Gal-9 in tumor immunotherapy, including its cross-talk with the ligand TIM-3 and its potential in immune-combination therapy.
Collapse
Affiliation(s)
- Minpu Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Wenfeng Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Liquan Wang
- Department of Thyroid and Breast Surgery, Weifang People’s Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
27
|
Wang H, Sica RA, Kaur G, Galbo PM, Jing Z, Nishimura CD, Ren X, Tanwar A, Etemad-Gilbertson B, Will B, Zheng D, Fooksman D, Zang X. TMIGD2 is an orchestrator and therapeutic target on human acute myeloid leukemia stem cells. Nat Commun 2024; 15:11. [PMID: 38167704 PMCID: PMC10761673 DOI: 10.1038/s41467-023-43843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
Acute myeloid leukemia (AML) is initiated and sustained by a hierarchy of leukemia stem cells (LSCs), and elimination of this cell population is required for curative therapies. Here we show that transmembrane and immunoglobulin domain containing 2 (TMIGD2), a recently discovered co-stimulatory immune receptor, is aberrantly expressed by human AML cells, and can be used to identify and enrich functional LSCs. We demonstrate that TMIGD2 is required for the development and maintenance of AML and self-renewal of LSCs but is not essential for normal hematopoiesis. Mechanistically, TMIGD2 promotes proliferation, blocks myeloid differentiation and increases cell-cycle of AML cells via an ERK1/2-p90RSK-CREB signaling axis. Targeting TMIGD2 signaling with anti-TMIGD2 monoclonal antibodies attenuates LSC self-renewal and reduces leukemia burden in AML patient-derived xenograft models but has negligible effect on normal hematopoietic stem/progenitor cells. Thus, our studies reveal the function of TMIGD2 in LSCs and provide a promising therapeutic strategy for AML.
Collapse
Affiliation(s)
- Hao Wang
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - R Alejandro Sica
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gurbakhash Kaur
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Phillip M Galbo
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Zhixin Jing
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christopher D Nishimura
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xiaoxin Ren
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ankit Tanwar
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Britta Will
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - David Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xingxing Zang
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
28
|
Chen Z, Zeng L, Chen Z, Xu J, Zhang X, Ying H, Zeng Y, Yu F. Combined OLA1 and CLEC3B Gene Is a Prognostic Signature for Hepatocellular Carcinoma and Impact Tumor Progression. Technol Cancer Res Treat 2024; 23:15330338241241935. [PMID: 38564315 PMCID: PMC11007312 DOI: 10.1177/15330338241241935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC), partly because of its complexity and high heterogeneity, has a poor prognosis and an extremely high mortality rate. In this study, mRNA sequencing expression profiles and relevant clinical data of HCC patients were gathered from different public databases. Kaplan-Meier survival curves as well as ROC curves validated that OLA1|CLEC3B was an independent predictor with better predictive capability of HCC prognosis compared to OLA1 and CLEC3B separately. Further, the cell transfection experiment verified that knockdown of OLA1 inhibited cell proliferation, facilitated apoptosis, and improved sensitivity of HCC cells to gemcitabine. In this study, the prognostic model of HCC composed of OLA1/CLEC3B genes was constructed and verified, and the prediction ability was favorable. A higher level of OLA1 along with a lower level of CEC3B is a sign of poor prognosis in HCC. We revealed a novel gene pair OLA1|CLEC3B overexpressed in HCC patients, which may serve as a promising independent predictor of HCC survival and an approach for innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zhoufeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuwei Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiya Ying
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Troncoso MF, Elola MT, Blidner AG, Sarrias L, Espelt MV, Rabinovich GA. The universe of galectin-binding partners and their functions in health and disease. J Biol Chem 2023; 299:105400. [PMID: 37898403 PMCID: PMC10696404 DOI: 10.1016/j.jbc.2023.105400] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
Galectins, a family of evolutionarily conserved glycan-binding proteins, play key roles in diverse biological processes including tissue repair, adipogenesis, immune cell homeostasis, angiogenesis, and pathogen recognition. Dysregulation of galectins and their ligands has been observed in a wide range of pathologic conditions including cancer, autoimmune inflammation, infection, fibrosis, and metabolic disorders. Through protein-glycan or protein-protein interactions, these endogenous lectins can shape the initiation, perpetuation, and resolution of these processes, suggesting their potential roles in disease monitoring and treatment. However, despite considerable progress, a full understanding of the biology and therapeutic potential of galectins has not been reached due to their diversity, multiplicity of cell targets, and receptor promiscuity. In this article, we discuss the multiple galectin-binding partners present in different cell types, focusing on their contributions to selected physiologic and pathologic settings. Understanding the molecular bases of galectin-ligand interactions, particularly their glycan-dependency, the biochemical nature of selected receptors, and underlying signaling events, might contribute to designing rational therapeutic strategies to control a broad range of pathologic conditions.
Collapse
Affiliation(s)
- María F Troncoso
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María T Elola
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ada G Blidner
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Luciana Sarrias
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María V Espelt
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
30
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
31
|
Rezaei M, Ghanadian M, Ghezelbash B, Shokouhi A, Bazhin AV, Zamyatnin AA, Ganjalikhani-Hakemi M. TIM-3/Gal-9 interaction affects glucose and lipid metabolism in acute myeloid leukemia cell lines. Front Immunol 2023; 14:1267578. [PMID: 38022614 PMCID: PMC10667689 DOI: 10.3389/fimmu.2023.1267578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction T-cell immunoglobulin and mucin domain-3 (TIM-3) is a transmembrane molecule first identified as an immunoregulator. This molecule is also expressed on leukemic cells in acute myeloid leukemia and master cell survival and proliferation. In this study, we aimed to explore the effect of TIM-3 interaction with its ligand galectin-9 (Gal-9) on glucose and lipid metabolism in AML cell lines. Methods HL-60 and THP-1 cell lines, representing M3 and M5 AML subtypes, respectively, were cultured under appropriate conditions. The expression of TIM-3 on the cell surface was ascertained by flow cytometric assay. We used real-time PCR to examine the mRNA expression of GLUT-1, HK-2, PFKFB-3, G6PD, ACC-1, ATGL, and CPT-1A; colorimetric assays to measure the concentration of glucose, lactate, GSH, and the enzymatic activity of G6PD; MTT assay to determine cellular proliferation; and gas chromatography-mass spectrometry (GC-MS) to designate FFAs. Results We observed the significant upregulated expression of GLUT-1, HK-2, PFKFB-3, ACC-1, CPT-1A, and G6PD and the enzymatic activity of G6PD in a time-dependent manner in the presence of Gal-9 compared to the PMA and control groups in both HL-60 and THP-1 cell lines (p > 0.05). Moreover, the elevation of extracellular free fatty acids, glucose consumption, lactate release, the concentration of cellular glutathione (GSH) and cell proliferation were significantly higher in the presence of Gal-9 compared to the PMA and control groups in both cell lines (p < 0.05). Conclusion TIM-3/Gal-9 ligation on AML cell lines results in aerobic glycolysis and altered lipid metabolism and also protects cells from oxidative stress, all in favor of leukemic cell survival and proliferation.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolfazl Shokouhi
- Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig Maximilians University of Munich, Munich, Germany
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
32
|
Xu S, Zhang N, Rinne ML, Sun H, Stein AM. Sabatolimab (MBG453) model-informed drug development for dose selection in patients with myelodysplastic syndrome/acute myeloid leukemia and solid tumors. CPT Pharmacometrics Syst Pharmacol 2023; 12:1653-1665. [PMID: 37186155 PMCID: PMC10681456 DOI: 10.1002/psp4.12962] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023] Open
Abstract
Sabatolimab is a novel immunotherapy with immuno-myeloid activity that targets T-cell immunoglobulin domain and mucin domain-3 (TIM-3) on immune cells and leukemic blasts. It is being evaluated for the treatment of myeloid malignancies in the STIMULUS clinical trial program. The objective of this analysis was to support the sabatolimab dose-regimen selection in hematologic malignancies. A population pharmacokinetic (PopPK) model was fit to patients with solid tumors and hematologic malignancies, which included acute myeloid leukemia, myelodysplastic syndrome (including intermediate-, high-, and very high-risk per Revised International Prognostic Scoring System), and chronic myelomonocytic leukemia. The PopPK model, together with a predictive model of sabatolimab distribution to the bone marrow and binding to TIM-3 was used to predict membrane-bound TIM-3 bone marrow occupancy. In addition, the total soluble TIM-3 (sTIM-3) kinetics and the pharmacokinetic (PK) exposure-response relationship in patients with hematologic malignancies were examined. At intravenous doses above 240 mg Q2w and 800 mg Q4w, we observed linear PK, a plateau in the accumulation of total sTIM-3, and a flat exposure-response relationship for both safety and efficacy. In addition, the model predicted membrane-bound TIM-3 occupancy in the bone marrow was above 95% in over 95% of patients. Therefore, these results support the selection of the 400 mg Q2w and 800 mg Q4w dosing regimens for the STIMULUS clinical trial program.
Collapse
Affiliation(s)
- Siyan Xu
- Novartis Institutes for BioMedical ResearchCambridgeMassachusettsUSA
| | - Na Zhang
- Novartis Institutes for BioMedical ResearchCambridgeMassachusettsUSA
| | | | - Haiying Sun
- Novartis Institutes for BioMedical ResearchCambridgeMassachusettsUSA
| | - Andrew M. Stein
- Novartis Institutes for BioMedical ResearchCambridgeMassachusettsUSA
| |
Collapse
|
33
|
Ning Q, Jian T, Cui S, Shi L, Jian X, He X, Zhang X, Li X. Tim-3 facilitates immune escape in benzene-induced acute myeloid leukemia mouse model by promoting macrophage M2 polarization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115532. [PMID: 37806131 DOI: 10.1016/j.ecoenv.2023.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Benzene poisoning can cause acute myeloid leukemia (AML) through a variety of passways. Tim-3 has gained prominence as a potential candidate in mediating immunosuppression in tumor microenvironments. The macrophage polarization is also related to immune escape. Herein, we reported that Tim-3 and macrophage M2 polarization play a vital role in benzene-induced AML. First, the benzene-induced AML C3H/He mouse model was constructed by subcutaneously injecting 250 mg/kg of benzene. After six months, macrophage phenotype, cytokines, and Tim-3 expression levels were investigated. Flow cytometry assay revealed that the T-cell inhibitory receptor Tim-3 was significantly upregulated in both bone marrow and spleen of the benzene-induced AML mouse model. Elisa's results displayed a decreased serum level of IL-12 while increased TGF-β1. Mechanistically, changes in cytokine secretion promote the growth of M2-type macrophages in the bone marrow and spleen, as determined by immunofluorescence assay. The increased levels of PI3K, AKT, and mTOR in the benzene-exposure group further proved the crucial role of Tim-3 in regulating the functional status of macrophages in the AML microenvironment. These results demonstrate that Tim-3 and macrophage polarization may play a vital role during the immune escape of the benzene-induced AML. This study provides a new potential intervention site for immune checkpoint-based AML therapeutic strategy.
Collapse
Affiliation(s)
- Qiong Ning
- Department of Occupational Diseases, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250002, China
| | - Tianzi Jian
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Siqi Cui
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Longke Shi
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaopeng He
- Department of Thoracic surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangxing Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangxin Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
34
|
Lv Y, Ma X, Ma Y, Du Y, Feng J. A new emerging target in cancer immunotherapy: Galectin-9 (LGALS9). Genes Dis 2023; 10:2366-2382. [PMID: 37554219 PMCID: PMC10404877 DOI: 10.1016/j.gendis.2022.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022] Open
Abstract
Over the past few decades, advances in immunological knowledge have led to the identification of novel immune checkpoints, reinvigorating cancer immunotherapy. Immunotherapy, represented by immune checkpoint inhibitors, has become the leader in the precision treatment of cancer, bringing a new dawn to the treatment of most cancer patients. Galectin-9 (LGALS9), a member of the galectin family, is a widely expressed protein involved in immune regulation and tumor pathogenesis, and affects the prognosis of various types of cancer. Galectin-9 regulates immune homeostasis and tumor cell survival through its interaction with its receptor Tim-3. In the review, based on a brief description of the signaling mechanisms and immunomodulatory activities of galectin-9 and Tim-3, we summarize the targeted expression patterns of galectin-9 in a variety of malignancies and the promising mechanisms of anti-galectin-9 therapy in stimulating anti-tumor immune responses.
Collapse
Affiliation(s)
- Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Xiao Ma
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuxin Ma
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| |
Collapse
|
35
|
Santinelli E, Pascale MR, Xie Z, Badar T, Stahl MF, Bewersdorf JP, Gurnari C, Zeidan AM. Targeting apoptosis dysregulation in myeloid malignancies - The promise of a therapeutic revolution. Blood Rev 2023; 62:101130. [PMID: 37679263 DOI: 10.1016/j.blre.2023.101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
In recent years, the therapeutic landscape of myeloid malignancies has been completely revolutionized by the introduction of several new drugs, targeting molecular alterations or pathways crucial for leukemia cells survival. Particularly, many agents targeting apoptosis have been investigated in both pre-clinical and clinical studies. For instance, venetoclax, a pro-apoptotic agent active on BCL-2 signaling, has been successfully used in the treatment of acute myeloid leukemia (AML). The impressive results achieved in this context have made the apoptotic pathway an attractive target also in other myeloid neoplasms, translating the experience of AML. Therefore, several drugs are now under investigation either as single or in combination strategies, due to their synergistic efficacy and capacity to overcome resistance. In this paper, we will review the mechanisms of apoptosis and the specific drugs currently used and under investigation for the treatment of myeloid neoplasia, identifying critical research necessities for the upcoming years.
Collapse
Affiliation(s)
- Enrico Santinelli
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Maria Rosaria Pascale
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Talha Badar
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Maximilian F Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jan P Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
36
|
Harada T, Kikushige Y, Miyamoto T, Uno K, Niiro H, Kawakami A, Koga T, Akashi K, Yoshizaki K. Peripheral helper-T-cell-derived CXCL13 is a crucial pathogenic factor in idiopathic multicentric Castleman disease. Nat Commun 2023; 14:6959. [PMID: 37907518 PMCID: PMC10618253 DOI: 10.1038/s41467-023-42718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Castleman disease (CD) is a rare lymphoproliferative disorder. Among subtypes of CD, idiopathic multicentric CD-not otherwise specified (iMCD-NOS) has a poor prognosis and its pathogenesis is largely unknown. Here we present a xenotransplantation model of iMCD-NOS pathogenesis. Immunodeficient mice, transplanted with lymph node (LN) cells from iMCD-NOS patients, develop iMCD-like lethal inflammation, while mice transplanted with LN cells from non-iMCD patients without inflammation serve as negative control. Grafts depleted of human CD3+ T cells fail to induce inflammation in vivo. Upon engraftment, peripheral helper T (Tph) cells expand and levels of human CXCL13 substantially increase in the sera of mice. A neutralizing antibody against human CXCL13 blocks development of inflammation and improves survival in the recipient mice. Our study thus indicates that Tph cells, producing CXCL13 play a critical role in the pathogenesis of iMCD-NOS, and establishes iMCD-NOS as an immunoregulatory disorder.
Collapse
Affiliation(s)
- Takuya Harada
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Kazuko Uno
- Luis Pasteur Center for Medical Research, Kyoto, Japan
| | - Hiroaki Niiro
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan.
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan.
| | - Kazuyuki Yoshizaki
- The Institute of Scientific and Industrial Research, SANKEN, Osaka University, Osaka, Japan.
- Medical corporation of Tokushukai, Osaka, Japan.
| |
Collapse
|
37
|
Noraldeen SAM, Rasulova I, Lalitha R, Hussin F, Alsaab HO, Alawadi AH, Alsaalamy A, Sayyid NH, Alkhafaji AT, Mustafa YF, Shayan SK. Involving stemness factors to improve CAR T-cell-based cancer immunotherapy. Med Oncol 2023; 40:313. [PMID: 37779152 DOI: 10.1007/s12032-023-02191-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Treatment with chimeric antigen receptor (CAR) T cells indicated remarkable clinical responses with liquid cancers such as hematological malignancies; however, their therapeutic efficacy faced with many challenges in solid tumors due to severe toxicities, antigen evasion, restricted and limited tumor tissue trafficking and infiltration, and, more importantly, immunosuppressive tumor microenvironment (TME) factors that impair the CAR T-cell function adds support survival of cancer stem cells (CSCs), responsible for tumor recurrence and resistance to current cancer therapies. Therefore, in-depth identification of TME and development of more potent CAR platform targeting CSCs may overcome the raised challenges, as presented in this review. We also discuss recent stemness-based innovations in CAR T-cell production and engineering to improve their efficacy in vivo, and finally, we propose solutions and strategies such as oncolytic virus-based therapy and combination therapy to revive the function of CAR T-cell therapy, especially in TME of solid tumors in future.
Collapse
Affiliation(s)
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., 100007, Tashkent, Uzbekistan
| | - Repudi Lalitha
- Department of Pharmaceutical Analysis, Chaitanya Deemed to be University, Hyderabad, Telangana, India.
| | - Farah Hussin
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, 21944, Taif, Saudi Arabia
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Nidhal Hassan Sayyid
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sepideh Karkon Shayan
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
38
|
Huang W, Zheng S, Wang Q, Zhao N, Long Z. Identification and validation of a prognostic risk-scoring model based on the level of TIM-3 expression in acute myeloid leukemia. Sci Rep 2023; 13:15658. [PMID: 37730831 PMCID: PMC10511414 DOI: 10.1038/s41598-023-42700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by an unfavorable prognosis due to the presence of self-renewing leukemic stem cells (LSCs). The presence of T-cell immunoglobulin mucin-3 (TIM-3) on the surface of LSCs has been observed in various types of human AML, exerting an impact on the prognostic outcome. Exploring the hub genes associated with varying levels of TIM-3 expression offers a valuable approach to enhance our understanding of the underlying mechanisms involving TIM-3 and to identify potential prognostic indicators in AML. Nevertheless, to date, no research studies have reported a prognostic model that relies on the level of TIM-3 expression. In our study, we screen the hub-genes based on different expression level of TIM-3 through WGCNA. The prognostic risk-scoring model was constructed based on hub-genes. The results show the risk prognostic model has extraordinary ability to predict prognosis in both the training and validation sets. The high-risk group present poor prognosis with mutation of NPM1, TP53 (Multiple Hit) and FLT3(multiple hit), while IDH2 (Missense Mutation), MUC16 (Multiple Hit/Missense Mutation) occur mutation in low-risk group presenting favorite prognosis than high-risk group. Leukocyte cell-cell adhesion, regulation of T cell activation and I-κB kinase/NF-κB signaling enriched in high-risk group, involving in HSCs or LSCs anchoring to BM, which implicated in LSCs survival and chemotherapy resistance. B7-H3 (CD276) and CD276 would be the potential immune targets in high-risk group. The risk score model may help in distinguishing immune and molecular characteristics, predicting patient outcomes.
Collapse
Affiliation(s)
- Wanxue Huang
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China
| | - Shasha Zheng
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Wang
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China
| | - Na Zhao
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China.
| | - Zhiguo Long
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China.
| |
Collapse
|
39
|
Cai L, Li Y, Tan J, Xu L, Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J Hematol Oncol 2023; 16:101. [PMID: 37670328 PMCID: PMC10478462 DOI: 10.1186/s13045-023-01499-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
In one decade, immunotherapy based on immune checkpoint blockades (ICBs) has become a new pillar of cancer treatment following surgery, radiation, chemotherapy, and targeted therapies. However, not all cancer patients benefit from single or combination therapy with anti-CTLA-4 and anti-PD-1/PD-L1 monoclonal antibodies. Thus, an increasing number of immune checkpoint proteins (ICPs) have been screened and their effectiveness evaluated in preclinical and clinical trials. Lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin-domain-containing-3 (TIM-3), and T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) constitute the second wave of immunotherapy targets that show great promise for use in the treatment of solid tumors and leukemia. To promote the research and clinical application of ICBs directed at these targets, we summarize their discovery, immunotherapy mechanism, preclinical efficiency, and clinical trial results in this review.
Collapse
Affiliation(s)
- Letong Cai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuchen Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiaxiong Tan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| |
Collapse
|
40
|
Choukrani G, Visser N, Ustyanovska Avtenyuk N, Olthuis M, Marsman G, Ammatuna E, Lourens HJ, Niki T, Huls G, Bremer E, Wiersma VR. Galectin-9 has non-apoptotic cytotoxic activity toward acute myeloid leukemia independent of cytarabine resistance. Cell Death Discov 2023; 9:228. [PMID: 37407572 DOI: 10.1038/s41420-023-01515-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy still associated with poor survival rates, among others, due to frequent occurrence of therapy-resistant relapse after standard-of-care treatment with cytarabine (AraC). AraC triggers apoptotic cell death, a type of cell death to which AML cells often become resistant. Therefore, therapeutic options that trigger an alternate type of cell death are of particular interest. We previously identified that the glycan-binding protein Galectin-9 (Gal-9) has tumor-selective and non-apoptotic cytotoxicity towards various types of cancer, which depended on autophagy inhibition. Thus, Gal-9 could be of therapeutic interest for (AraC-resistant) AML. In the current study, treatment with Gal-9 was cytotoxic for AML cells, including for CD34+ patient-derived AML stem cells, but not for healthy cord blood-derived CD34+ stem cells. This Gal-9-mediated cytotoxicity did not rely on apoptosis but was negatively associated with autophagic flux. Importantly, both AraC-sensitive and -resistant AML cell lines, as well as AML patient samples, were sensitive to single-agent treatment with Gal-9. Additionally, Gal-9 potentiated the cytotoxic effect of DNA demethylase inhibitor Azacytidine (Aza), a drug that is clinically used for patients that are not eligible for intensive AraC treatment. Thus, Gal-9 is a potential therapeutic agent for the treatment of AML, including AraC-resistant AML, by inducing caspase-independent cell death.
Collapse
Affiliation(s)
- Ghizlane Choukrani
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nienke Visser
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Natasha Ustyanovska Avtenyuk
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Surflay Nanotec GmbH, Berlin, Germany
| | - Mirjam Olthuis
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Glenn Marsman
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm Jan Lourens
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valerie R Wiersma
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
41
|
Testa U, Castelli G, Pelosi E. TP53-Mutated Myelodysplasia and Acute Myeloid Leukemia. Mediterr J Hematol Infect Dis 2023; 15:e2023038. [PMID: 37435040 PMCID: PMC10332352 DOI: 10.4084/mjhid.2023.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) form a distinct and heterogeneous group of myeloid malignancies associated with poor outcomes. Studies carried out in the last years have in part elucidated the complex role played by TP53 mutations in the pathogenesis of these myeloid disorders and in the mechanisms of drug resistance. A consistent number of studies has shown that some molecular parameters, such as the presence of a single or multiple TP53 mutations, the presence of concomitant TP53 deletions, the association with co-occurring mutations, the clonal size of TP53 mutations, the involvement of a single (monoallelic) or of both TP53 alleles (biallelic) and the cytogenetic architecture of concomitant chromosome abnormalities are major determinants of outcomes of patients. The limited response of these patients to standard treatments, including induction chemotherapy, hypomethylating agents and venetoclax-based therapies and the discovery of an immune dysregulation have induced a shift to new emerging therapies, some of which being associated with promising efficacy. The main aim of these novel immune and nonimmune strategies consists in improving survival and in increasing the number of TP53-mutated MDS/AML patients in remission amenable to allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| |
Collapse
|
42
|
Bewersdorf JP, Xie Z, Bejar R, Borate U, Boultwood J, Brunner AM, Buckstein R, Carraway HE, Churpek JE, Daver NG, Porta MGD, DeZern AE, Fenaux P, Figueroa ME, Gore SD, Griffiths EA, Halene S, Hasserjian RP, Hourigan CS, Kim TK, Komrokji R, Kuchroo VK, List AF, Loghavi S, Majeti R, Odenike O, Patnaik MM, Platzbecker U, Roboz GJ, Sallman DA, Santini V, Sanz G, Sekeres MA, Stahl M, Starczynowski DT, Steensma DP, Taylor J, Abdel-Wahab O, Xu ML, Savona MR, Wei AH, Zeidan AM. Current landscape of translational and clinical research in myelodysplastic syndromes/neoplasms (MDS): Proceedings from the 1 st International Workshop on MDS (iwMDS) Of the International Consortium for MDS (icMDS). Blood Rev 2023; 60:101072. [PMID: 36934059 DOI: 10.1016/j.blre.2023.101072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Biological events that contribute to the pathogenesis of myelodysplastic syndromes/neoplasms (MDS) are becoming increasingly characterized and are being translated into rationally designed therapeutic strategies. Herein, we provide updates from the first International Workshop on MDS (iwMDS) of the International Consortium for MDS (icMDS) detailing recent advances in understanding the genetic landscape of MDS, including germline predisposition, epigenetic and immune dysregulation, the complexities of clonal hematopoiesis progression to MDS, as well as novel animal models of the disease. Connected to this progress is the development of novel therapies targeting specific molecular alterations, the innate immune system, and immune checkpoint inhibitors. While some of these agents have entered clinical trials (e.g., splicing modulators, IRAK1/4 inhibitors, anti-CD47 and anti-TIM3 antibodies, and cellular therapies), none have been approved for MDS. Additional preclinical and clinical work is needed to develop a truly individualized approach to the care of MDS patients.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Uma Borate
- Ohio State University Comprehensive Cancer/ James Cancer Hospital, Ohio State University, Columbus, OH, USA
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew M Brunner
- Leukemia Program, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Rena Buckstein
- Department of Medical Oncology/Hematology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hetty E Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jane E Churpek
- Department of Hematology, Oncology, and Palliative Care, Carbone Cancer Center, The University of Wisconsin-Madison, Madison, WI, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Giovanni Della Porta
- IRCCS Humanitas Clinical and Research Center & Humanitas University, Department of Biomedical Sciences, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Amy E DeZern
- Division of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Pierre Fenaux
- Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris and Paris Cité University, Paris, France
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven D Gore
- National Cancer Institute, Cancer Therapy Evaluation Program, Bethesda, MD, USA
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | | | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, and Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, USA
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Alan F List
- Precision BioSciences, Inc., Durham, NC, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Olatoyosi Odenike
- Leukemia Program, University of Chicago Medicine and University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gail J Roboz
- Weill Cornell Medical College, New York, NY, USA
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Guillermo Sanz
- Health Research Institute La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain; CIBERONC, IS Carlos III, Madrid, Spain
| | - Mikkael A Sekeres
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omar Abdel-Wahab
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mina L Xu
- Departments of Pathology & Laboratory Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Michael R Savona
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew H Wei
- Department of Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research and University of Melbourne, Victoria, Australia
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
43
|
Pophali P, Desai SR, Shastri A. Therapeutic Targets in Myelodysplastic Neoplasms: Beyond Hypomethylating Agents. Curr Hematol Malig Rep 2023; 18:56-67. [PMID: 37052811 DOI: 10.1007/s11899-023-00693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW To discuss novel targeted therapies under investigation for treatment of myelodysplastic neoplasms (MDS). RECENT FINDINGS Over the last few years, results of phase 3 trials assessing novel therapies for high-risk MDS have been largely disappointing. Pevonedistat (NEDD-8 inhibitor) and APR-246 (TP53 reactivator) both did not meet trial endpoints. However, early phase trials of BCL-2, TIM3, and CD47 inhibitors have shown exciting data and are currently under phase 3 investigation. Moreover, combination of hypomethylating agents (HMA) with novel therapies targeting the mutational (IDH, FLT3, spliceosome complex) or immune (PD-1/PDL-1, TIM-3, IRAK-4) pathways are being investigated in early phase clinical trials and have shown adequate safety and promising efficacy. Myelodysplastic neoplasms (MDS) are a group of hematopoietic neoplasms defined by cytopenias and morphological dysplasia. They are characterized by clonal proliferation of aberrant hematopoietic stem cells caused by recurrent genetic abnormalities. This leads to ineffective erythropoiesis, peripheral blood cytopenias, abnormal cell maturation, and a high risk of transformation into acute myeloid leukemia (AML). Allogeneic hematopoietic stem cell transplantation is the only curative therapy; however, it is not a suitable option for majority patients due to their age, comorbidities, and the high rate of treatment-related complications. HMAs remain the only FDA-approved treatment option for high-risk MDS. Due to intolerance, primary, and secondary resistance to HMA, there is a large unmet need to develop new safe and effective therapies for patients with MDS. In this review, we focus on the current management strategies and novel therapies in development for treatment of high-risk MDS.
Collapse
Affiliation(s)
- Prateek Pophali
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sudhamsh Reddy Desai
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aditi Shastri
- Department of Oncology, Department of Developmental & Molecular Biology, Montefiore Medical Center & Albert Einstein College of Medicine, Chanin 302A, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
44
|
Zeidan AM, Giagounidis A, Sekeres MA, Xiao Z, Sanz GF, Hoef MV, Ma F, Hertle S, Santini V. STIMULUS-MDS2 design and rationale: a phase III trial with the anti-TIM-3 sabatolimab (MBG453) + azacitidine in higher risk MDS and CMML-2. Future Oncol 2023; 19:631-642. [PMID: 37083373 DOI: 10.2217/fon-2022-1237] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Patients with higher-risk myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) unfit for hematopoietic stem cell transplantation have poor outcomes. Novel therapies that provide durable benefit with favorable tolerability and clinically meaningful improvement in survival are needed. T-cell immunoglobulin domain and mucin domain-3 (TIM-3) is an immuno-myeloid regulator expressed on immune and leukemic stem cells in myeloid malignancies. Sabatolimab is a novel immunotherapy targeting TIM-3 with a potential dual mechanism of reactivating the immune system and directly targeting TIM-3+ leukemic blasts suppressing the growth of cancer cells. Here, we describe the aims and design of the phase III STIMULUS-MDS2 trial, which aims to demonstrate the potential for sabatolimab plus azacitidine to improve survival for patients with higher-risk MDS and CMML-2 (NCT04266301). Clinical Trial Registration: NCT04266301 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Amer M Zeidan
- Yale University & Yale Cancer Center, New Haven, CT 06510, USA
| | | | - Mikkael A Sekeres
- Division of Hematology, Sylvester Cancer Center, University of Miami, Miami, FL 33065, USA
| | - Zhijian Xiao
- Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, 300020, China
| | - Guillermo F Sanz
- Hospital Universitario y Politécnico La Fe, Valencia, 46026, Spain
- Health Research Institute La Fe (IIS La Fe), Valencia, 46026, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | | | - Fei Ma
- Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| | | | - Valeria Santini
- MDS Unit, Hematology, University of Florence, Florence, 50121, Italy
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Therapies that target the immune system are increasingly used across oncology, including in hematologic malignancies such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). While allogeneic transplant has been a key therapy in these cancers, new approaches that target the immune system are being explored including immune checkpoint therapies, antibody-drug conjugates, and cellular therapies. RECENT FINDINGS This review outlines updates in the preclinical rationale for immune directed therapies in MDS and AML, as well as recent clinical trials exploring these therapies. This manuscript summarizes the development of therapies targeting T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) and CD47, which are being evaluated in late phase studies in MDS and AML. It also reviews the landscape of other immune based therapies including antibody-drug conjugates, chimeric antigen receptor-T cells, bispecific antibodies, and tumor vaccines. SUMMARY The treatment landscape in MDS and AML is rapidly changing; with a goal of improving the quality and duration of responses, a number of immune based therapies are under investigation. This review outlines recent advances with these therapies as well as some of the challenges that remain to incorporate them into leukemia care.
Collapse
Affiliation(s)
- Andrew M Brunner
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 2023; 22:38. [PMID: 36810098 PMCID: PMC9942413 DOI: 10.1186/s12943-023-01748-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Ongoing research has revealed that the existence of cancer stem cells (CSCs) is one of the biggest obstacles in the current cancer therapy. CSCs make an influential function in tumor progression, recurrence and chemoresistance due to their typical stemness characteristics. CSCs are preferentially distributed in niches, and those niche sites exhibit characteristics typical of the tumor microenvironment (TME). The complex interactions between CSCs and TME illustrate these synergistic effects. The phenotypic heterogeneity within CSCs and the spatial interactions with the surrounding tumor microenvironment led to increased therapeutic challenges. CSCs interact with immune cells to protect themselves against immune clearance by exploiting the immunosuppressive function of multiple immune checkpoint molecules. CSCs also can protect themselves against immune surveillance by excreting extracellular vesicles (EVs), growth factors, metabolites and cytokines into the TME, thereby modulating the composition of the TME. Therefore, these interactions are also being considered for the therapeutic development of anti-tumor agents. We discuss here the immune molecular mechanisms of CSCs and comprehensively review the interplay between CSCs and the immune system. Thus, studies on this topic seem to provide novel ideas for reinvigorating therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Bo Wu
- grid.459742.90000 0004 1798 5889Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Xiang Shi
- grid.459742.90000 0004 1798 5889Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Meixi Jiang
- grid.412644.10000 0004 5909 0696Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
47
|
Galectin-9 Facilitates Epstein-Barr Virus Latent Infection and Lymphomagenesis in Human B Cells. Microbiol Spectr 2023; 11:e0493222. [PMID: 36622166 PMCID: PMC9927364 DOI: 10.1128/spectrum.04932-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The immune regulator galectin-9 (Gal-9) is commonly involved in the regulation of cell proliferation, but with various impacts depending on the cell type. Here, we revealed that Gal-9 expression was persistently increased in Epstein-Barr virus (EBV)-infected primary B cells from the stage of early infection to the stage of mature lymphoblastoid cell lines (LCLs). This sustained upregulation paralleled that of gene sets related to cell proliferation, such as oxidative phosphorylation, cell cycle activation, and DNA replication. Knocking down or blocking Gal-9 expression obstructed the establishment of latent infection and outgrowth of EBV-infected B cells, while exogenous Gal-9 protein promoted EBV acute and latent infection and outgrowth of EBV-infected B cells at the early infection stage. Mechanically, stimulator of interferon gene (STING) activation or signal transducer and activator of transcription 3 (STAT3) inhibition impeded the outgrowth of EBV-infected B cells and promotion of Gal-9-induced lymphoblastoid cell line (LCL) transformation. Accordingly, Gal-9 expression was upregulated by forced EBV nuclear antigen 1 (EBNA1) expression in 293T cells in vitro. Clinical data showed that Gal-9 expression in B-cell lymphomas (BCLs) correlated positively with EBNA1 and disease stage. Targeting Gal-9 slowed LCL tumor growth and metastasis in xenografted immunodeficient mice. These findings highlight an oncogenic role of Gal-9 in EBV-associated BCLs, indicating that Gal-9 boosts the transformation of EBV-infected B cells. IMPORTANCE The cross talk between Epstein-Barr virus (EBV) and the host cell transcriptome assumes important roles in the oncogenesis of EBV-associated malignancies. Here, we first observed that endogenous Gal-9 expression was persistently increased along with an overturned V-type change in antivirus signaling during the immortalization of EBV-transformed B cells. Upregulation of Gal-9 promoted the outgrowth and latent infection of EBV-infected B cells, which was linked to B-cell-origin tumors by suppressing STING signaling and subsequently promoting STAT3 phosphorylation. EBV nuclear antigen EBNA1 induced Gal-9 expression and formed a positive feedback loop with Gal-9 in EBV-infected B cells. Tumor Gal-9 levels were positively correlated with disease stage and EBNA1 expression in patients with B-cell lymphomas (BCLs). Targeting Gal-9 slowed the growth and metastases of LCL tumors in immunodeficient mice. Altogether, our findings indicate that Gal-9 is involved in the lymphomagenesis of EBV-positive BCLs through cross talk with EBNA1 and STING signals.
Collapse
|
48
|
Kapetanakis NI, Busson P. Galectins as pivotal components in oncogenesis and immune exclusion in human malignancies. Front Immunol 2023; 14:1145268. [PMID: 36817445 PMCID: PMC9935586 DOI: 10.3389/fimmu.2023.1145268] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Galectins are galactoside-binding proteins, exerting numerous functions inside and outside the cell, particularly conferring adaptation to stress factors. For most of them, aberrant expression profiles have been reported in the context of cancer. Albeit not being oncogenic drivers, galectins can be harnessed to exacerbate the malignant phenotype. Their impact on disease establishment and progression is not limited to making cancer cells resistant to apoptosis, but is prominent in the context of the tumor microenvironment, where it fosters angiogenesis, immune escape and exclusion. This review focuses mainly on Gal-1, Gal-3 and Gal-9 for which the involvement in cancer biology is best known. It presents the types of galectin dysregulations, attempts to explain the mechanisms behind them and analyzes the different ways in which they favor tumour growth. In an era where tumour resistance to immunotherapy appears as a major challenge, we highlight the crucial immunosuppressive roles of galectins and the potential therapeutic benefits of combinatorial approaches including galectin inhibition.
Collapse
Affiliation(s)
| | - Pierre Busson
- Host-Tumor Interactions in Head and Neck Carcinoma: Exploration and Therapeutic Modulations, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche(UMR) 9018 - METabolic and SYstemic aspects of oncogenesis for new therapeutic approaches (METSY), Gustave Roussy and Université Paris-Saclay, Villejuif, France
| |
Collapse
|
49
|
Yu S, Ren X, Meng F, Guo X, Tao J, Zhang W, Liu Z, Fu R, Li L. TIM3/CEACAM1 pathway involves in myeloid-derived suppressor cells induced CD8 + T cells exhaustion and bone marrow inflammatory microenvironment in myelodysplastic syndrome. Immunology 2023; 168:273-289. [PMID: 35470423 DOI: 10.1111/imm.13488] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/24/2022] [Indexed: 01/21/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) induced cellular immune deficiency and bone marrow inflammatory microenvironment play an important role in the pathogenesis and progression of myelodysplastic syndrome (MDS), but the underlying mechanism remains unclear. Here, we revealed that immune checkpoint protein TIM3 and CEACAM1 were highly demonstrated on MDSC and CD8+ T cells in MDS patients. CD8+ T cells were reduced in number and function and presented a exhaustion state. The levels of pro-inflammatory cytokines (IL-1β, IL-18) and CEACAM1 were raised in bone marrow supernatants and MDSC culture supernatants. Blocking or neutralizing TIM3/CEACAM1 and IL-1β/IL-18 partially reversed exhaustion of CD8+ T cells. Moreover, TIM3 correlated with NF-κB /NLRP3 inflammatory pathway. The levels of NF-κB/NLRP3/Caspase-1/IL-1β and IL-18 were all increased in MDSC of MDS. Co-culturing MDSC from MDS patients with rhCEACAM1 enhanced NF-κB/NLRP3/Caspase-1/IL-1β and IL-18 levels, whereas blocking TIM3 could partially reverse the above manifestations. These results indicated that TIM3/CEACAM1 pathway involved in CD8+ T cells exhaustion and might activate the NF-κB/NLRP3/Caspase-1 pathway in MDSC, increasing pro-inflammatory cytokines secretion in MDS bone marrow microenvironment. This study provided a basis for applying immune checkpoint inhibitors that could simultaneously modulate pro-inflammatory cytokine secretion and enhance anti-tumour immune function in the treatment of MDS.
Collapse
Affiliation(s)
- Shunjie Yu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Fanqiao Meng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Xinyu Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Jinglian Tao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Wei Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| |
Collapse
|
50
|
Bazinet A, Kantarjian HM. Moving toward individualized target-based therapies in acute myeloid leukemia. Ann Oncol 2023; 34:141-151. [PMID: 36423744 DOI: 10.1016/j.annonc.2022.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease at the genetic level. The field of AML therapy is increasingly shifting away from uniform approaches based solely on intensive chemotherapy (such as '7 + 3') toward personalized therapy. The treatment of AML can now be individualized based on patient characteristics and cytogenetic/molecular disease features. In this review, we provide a comprehensive updated summary of personalized, target-directed therapy in AML. We first discuss the selection of intensive versus low-intensity treatment approaches based on the patient's age and/or comorbidities. We follow with a detailed review of specific molecularly defined AML subtypes that benefit from the addition of targeted agents. In this context, we highlight the urgent need for novel therapies in tumor protein p53 (TP53)-mutated AML. We then propose approaches to optimize AML therapy in patients without directly actionable mutations. We conclude with a discussion on the emerging role of using measurable residual disease to modify therapy based on the quality of response.
Collapse
Affiliation(s)
- A Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - H M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|