1
|
Hutchinson AM, Appeltant R, Burdon T, Bao Q, Bargaje R, Bodnar A, Chambers S, Comizzoli P, Cook L, Endo Y, Harman B, Hayashi K, Hildebrandt T, Korody ML, Lakshmipathy U, Loring JF, Munger C, Ng AHM, Novak B, Onuma M, Ord S, Paris M, Pask AJ, Pelegri F, Pera M, Phelan R, Rosental B, Ryder OA, Sukparangsi W, Sullivan G, Tay NL, Traylor-Knowles N, Walker S, Weberling A, Whitworth DJ, Williams SA, Wojtusik J, Wu J, Ying QL, Zwaka TP, Kohler TN. Advancing stem cell technologies for conservation of wildlife biodiversity. Development 2024; 151:dev203116. [PMID: 39382939 PMCID: PMC11491813 DOI: 10.1242/dev.203116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Wildlife biodiversity is essential for healthy, resilient and sustainable ecosystems. For biologists, this diversity also represents a treasure trove of genetic, molecular and developmental mechanisms that deepen our understanding of the origins and rules of life. However, the rapid decline in biodiversity reported recently foreshadows a potentially catastrophic collapse of many important ecosystems and the associated irreversible loss of many forms of life on our planet. Immediate action by conservationists of all stripes is required to avert this disaster. In this Spotlight, we draw together insights and proposals discussed at a recent workshop hosted by Revive & Restore, which gathered experts to discuss how stem cell technologies can support traditional conservation techniques and help protect animal biodiversity. We discuss reprogramming, in vitro gametogenesis, disease modelling and embryo modelling, and we highlight the prospects for leveraging stem cell technologies beyond mammalian species.
Collapse
Affiliation(s)
| | - Ruth Appeltant
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom Burdon
- The Roslin Institute, RDSVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Qiuye Bao
- IMCB-ESCAR, A*STAR, 61 Biopolis Drive, Proteos, 138673Singapore
| | | | - Andrea Bodnar
- Gloucester Marine Genomics Institute, 417 Main St, Gloucester, MA 01930, USA
| | - Stuart Chambers
- Brightfield Therapeutics, South San Francisco, CA 94080, USA
| | - Pierre Comizzoli
- Smithsonian National Zoo and Conservation Biology Institute, 3001 Connecticut Ave., NW Washington, DC 20008, USA
| | - Laura Cook
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Yoshinori Endo
- University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Bob Harman
- Vet-Stem Inc. & Personalized Stem Cells, Inc., 14261 Danielson Street, Poway, CA 92064, USA
| | | | - Thomas Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Marisa L. Korody
- San Diego Zoo Wildlife Alliance, 2920 Zoo Dr, San Diego, CA 92101, USA
| | - Uma Lakshmipathy
- Thermo Fisher Scientific, 168 Third Avenue, Waltham, MA 02451, USA
| | - Jeanne F. Loring
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Clara Munger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alex H. M. Ng
- GC Therapeutics, 610 Main St., North Cambridge, MA 02139, USA
| | - Ben Novak
- Revive & Restore, 1505 Bridgeway, Suite 203, Sausalito, CA 94965, USA
| | - Manabu Onuma
- National Institute for Environmental Studies, 16-2 Onogawa, City of Tsukuba, Ibaraki 305-8506, Japan
| | - Sara Ord
- Colossal Biosciences, 1401 Lavaca St, Unit #155 Austin, TX 78701, USA
| | - Monique Paris
- IBREAM (Institute for Breeding Rare and Endangered African Mammals), Edinburgh EH3 6AT, UK
| | | | - Francisco Pelegri
- University of Wisconsin-Madison, 500 Lincoln Dr, Madison, WI 53706, USA
| | - Martin Pera
- Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Ryan Phelan
- Revive & Restore, 1505 Bridgeway, Suite 203, Sausalito, CA 94965, USA
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Oliver A. Ryder
- San Diego Zoo Wildlife Alliance, 2920 Zoo Dr, San Diego, CA 92101, USA
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, 169 Long-Had Bangsaen Rd, Saen Suk, Chon Buri District, Chon Buri 20131, Thailand
| | - Gareth Sullivan
- Department of Pediatric Research, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
- School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, UK
| | | | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami,4600, Rickenbacker Cswy, Key Biscayne, FL 33149, USA
| | - Shawn Walker
- ViaGen Pets & Equine, PO Box 1119, Cedar Park, TX 78613, USA
| | | | - Deanne J. Whitworth
- University of Queensland, Sir Fred Schonell Drive, Brisbane, Queensland, 4072, Australia
| | | | - Jessye Wojtusik
- Omaha's Henry Doorly Zoo & Aquarium, 3701 S 10th St, Omaha, NE 68107, USA
| | - Jun Wu
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Qi-Long Ying
- Keck School of Medicine of University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Thomas P. Zwaka
- Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Timo N. Kohler
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
2
|
Ying QL, Nichols J. Relationship of PSC to embryos: Extending and refining capture of PSC lines from mammalian embryos. Bioessays 2024:e2400077. [PMID: 39400400 DOI: 10.1002/bies.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/07/2024] [Indexed: 10/15/2024]
Abstract
Pluripotent stem cell lines derived from preimplantation mouse embryos have opened opportunities for the study of early mammalian development and generation of genetically uncompromised material for differentiation into specific cell types. Murine embryonic stem cells are highly versatile and can be engineered and introduced into host embryos, transferred to recipient females, and gestated to investigate gene function at multiple levels as well as developmental mechanisms, including lineage segregation and cell competition. In this review, we summarize the biomedical motivation driving the incremental modification to culture regimes and analyses that have advanced stem cell research to its current state. Ongoing investigation into divergent mechanisms of early developmental processes adopted by other species, such as agriculturally beneficial mammals and birds, will continue to enrich knowledge and inform strategies for future in vitro models.
Collapse
Affiliation(s)
- Qi-Long Ying
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Cao D, Garai S, DiFrisco J, Veenvliet JV. The logic of monsters: development and morphological diversity in stem-cell-based embryo models. Interface Focus 2024; 14:20240023. [PMID: 39464644 PMCID: PMC11503023 DOI: 10.1098/rsfs.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024] Open
Abstract
Organoids and stem-cell-based embryo models (SEMs) are imperfect organ or embryo representations that explore a much larger space of possible forms, or morphospace, compared to their in vivo counterparts. Here, we discuss SEM biology in light of seminal work by Pere Alberch, a leading figure in early evo-devo, interpreting SEMs as developmental 'monstrosities' in the Alberchian sense. Alberch suggested that ordered patterns in aberrant development-i.e. 'the logic of monsters'-reveal developmental constraints on possible morphologies. In the same vein, we detail how SEMs have begun to shed light on structural features of normal development, such as developmental variability, the relative importance of internal versus external constraints, boundary conditions and design principles governing robustness and canalization. We argue that SEMs represent a powerful experimental tool to explore and expand developmental morphospace and propose that the 'monstrosity' of SEMs can be leveraged to uncover the 'hidden' rules and developmental constraints that robustly shape and pattern the embryo.
Collapse
Affiliation(s)
- Dominica Cao
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06520, USA
| | - Sumit Garai
- Theoretical Biology Lab, The Francis Crick Institute, LondonNW1 1AT, UK
- Division of Biosciences, Medical Sciences Building, University College London, Gower Street, LondonWC1E 6BT, UK
| | - James DiFrisco
- Theoretical Biology Lab, The Francis Crick Institute, LondonNW1 1AT, UK
| | - Jesse V. Veenvliet
- Stembryogenesis Lab, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden01307, Germany
| |
Collapse
|
4
|
Plöger R, Tsikolia N, Viebahn C. A network of transient domains for breaking symmetry during anterior-posterior axis formation in the porcine embryo. Dev Dyn 2024. [PMID: 39377464 DOI: 10.1002/dvdy.739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/09/2024] Open
Abstract
Breaking radial symmetry for anterior-posterior axis formation is one of the key developmental steps of vertebrate gastrulation and is established through a succession of transient domains defined by morphology or gene expression. Three such domains were interpreted recently in the rabbit to be part of a "three-anchor-point model" for axis formation. To answer the question as to whether the model is generally applicable to mammals, the dynamic expression patterns of four marker genes were analyzed in the pig, where gastrulating epiblast forms from half the inner cell mass: EOMES and PKDCC transcripts display decreasing expression intensities in the anterior hypoblast and-together with WNT3-increasing intensity in the anterior streak domain and the node; TBX6 expression changes from an initial central expression to exclusive expression in the posterior extremity of the primitive streak. The anterior streak domain has thus a molecular footprint similar to the one in the rabbit, the end node shares TBX6 between the species, while the anterior hypoblast-mirroring specific porcine epiblast derivation and fate-is marked by PKDCC instead of WNT3. The molecular similarities in transient domains point to conserved mechanisms for establishing the mammalian anterior-posterior axis and, possibly, breaking radial symmetry.
Collapse
Affiliation(s)
- Ruben Plöger
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell 2024; 31:1398-1418. [PMID: 39366361 DOI: 10.1016/j.stem.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
The use of stem cells to model the early human embryo promises to transform our understanding of developmental biology and human reproduction. In this review, we present our current knowledge of the first 2 weeks of human embryo development. We first focus on the distinct cell lineages of the embryo and the derivation of stem cell lines. We then discuss the intercellular crosstalk that guides early embryo development and how this crosstalk is recapitulated in vitro to generate stem cell-based embryo models. We highlight advances in this fast-developing field, discuss current limitations, and provide a vision for the future.
Collapse
Affiliation(s)
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Leuven Stem Cell Institute & Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium.
| |
Collapse
|
6
|
Yagi M, Horng JE, Hochedlinger K. Manipulating cell fate through reprogramming: approaches and applications. Development 2024; 151:dev203090. [PMID: 39348466 PMCID: PMC11463964 DOI: 10.1242/dev.203090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024]
Abstract
Cellular plasticity progressively declines with development and differentiation, yet these processes can be experimentally reversed by reprogramming somatic cells to induced pluripotent stem cells (iPSCs) using defined transcription factors. Advances in reprogramming technology over the past 15 years have enabled researchers to study diseases with patient-specific iPSCs, gain fundamental insights into how cell identity is maintained, recapitulate early stages of embryogenesis using various embryo models, and reverse aspects of aging in cultured cells and animals. Here, we review and compare currently available reprogramming approaches, including transcription factor-based methods and small molecule-based approaches, to derive pluripotent cells characteristic of early embryos. Additionally, we discuss our current understanding of mechanisms that resist reprogramming and their role in cell identity maintenance. Finally, we review recent efforts to rejuvenate cells and tissues with reprogramming factors, as well as the application of iPSCs in deriving novel embryo models to study pre-implantation development.
Collapse
Affiliation(s)
- Masaki Yagi
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joy E. Horng
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Xiong H, Lin B, Liu J, Lu R, Lin Z, Hang C, Liu W, Zhang L, Ding J, Guo H, Zhang M, Wang S, Gong Z, Xie D, Liu Y, Shi D, Liang D, Liu Z, Chen YH, Yang J. SALL2 regulates neural differentiation of mouse embryonic stem cells through Tuba1a. Cell Death Dis 2024; 15:710. [PMID: 39349437 PMCID: PMC11442768 DOI: 10.1038/s41419-024-07088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
The spalt (Sal) gene family has four members (Sall1-4) in vertebrates, all of which play pivotal roles in various biological processes and diseases. However, the expression and function of SALL2 in development are still less clear. Here, we first charted SALL2 protein expression pattern during mouse embryo development by immunofluorescence, which revealed its dominant expression in the developing nervous system. With the establishment of Sall2 deficient mouse embryonic stem cells (ESCs), the in vitro neural differentiation system was leveraged to interrogate the function of SALL2, which showed impaired neural differentiation of Sall2 knockout (KO) ESCs. Furthermore, neural stem cells (NSCs) could not be derived from Sall2 KO ESCs and the generation of neural tube organoids (NTOs) was greatly inhibited in the absence of SALL2. Meanwhile, transgenic expression of E1 isoform of SALL2 restored the defects of neural differentiation in Sall2 KO ESCs. By chromatin immunoprecipitation sequencing (ChIP-seq), Tuba1a was identified as downstream target of SALL2, whose function in neural differentiation was confirmed by rescuing neural phenotypes of Sall2 KO ESCs when overexpressed. In sum, by elucidating SALL2 expression dynamics during early mouse development and mechanistically characterizing its indispensable role in neural differentiation, this study offers insights into SALL2's function in human nervous system development, associated pathologies stemming from its mutations and relevant therapeutic strategy.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zheyi Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chengwen Hang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenjun Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zhang
- Department of Anatomy, Histology and Embryology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jie Ding
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Huixin Guo
- Department of Cardiology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
| | - Siyu Wang
- Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Zheng Gong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Dan Shi
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Jian Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Clinical Center for Heart Research, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
8
|
Puspita L, Juwono VB, Shim JW. Advances in human pluripotent stem cell reporter systems. iScience 2024; 27:110856. [PMID: 39290832 PMCID: PMC11407076 DOI: 10.1016/j.isci.2024.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The capability of human pluripotent stem cells (hPSCs) to self-renew and differentiate into any cell type has greatly contributed to the advancement of biomedicine. Reporter lines derived from hPSCs have played a crucial role in elucidating the mechanisms underlying human development and diseases by acting as an alternative reporter system that cannot be used in living humans. To bring hPSCs closer to clinical application in transplantation, scientists have generated reporter lines for isolating the desired cell populations, as well as improving graft quality and treatment outcomes. This review presents an overview of the applications of hPSC reporter lines and the important variables in designing a reporter system, including options for gene delivery and editing tools, design of reporter constructs, and selection of reporter genes. It also provides insights into the prospects of hPSC reporter lines and the challenges that must be overcome to maximize the potential of hPSC reporter lines.
Collapse
Affiliation(s)
- Lesly Puspita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| |
Collapse
|
9
|
Iyer DP, Khoei HH, van der Weijden VA, Kagawa H, Pradhan SJ, Novatchkova M, McCarthy A, Rayon T, Simon CS, Dunkel I, Wamaitha SE, Elder K, Snell P, Christie L, Schulz EG, Niakan KK, Rivron N, Bulut-Karslioğlu A. mTOR activity paces human blastocyst stage developmental progression. Cell 2024:S0092-8674(24)00977-2. [PMID: 39332412 DOI: 10.1016/j.cell.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Many mammals can temporally uncouple conception from parturition by pacing down their development around the blastocyst stage. In mice, this dormant state is achieved by decreasing the activity of the growth-regulating mTOR signaling pathway. It is unknown whether this ability is conserved in mammals in general and in humans in particular. Here, we show that decreasing the activity of the mTOR signaling pathway induces human pluripotent stem cells (hPSCs) and blastoids to enter a dormant state with limited proliferation, developmental progression, and capacity to attach to endometrial cells. These in vitro assays show that, similar to other species, the ability to enter dormancy is active in human cells around the blastocyst stage and is reversible at both functional and molecular levels. The pacing of human blastocyst development has potential implications for reproductive therapies.
Collapse
Affiliation(s)
- Dhanur P Iyer
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heidar Heidari Khoei
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vera A van der Weijden
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Harunobu Kagawa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Saurabh J Pradhan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Afshan McCarthy
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Teresa Rayon
- Epigenetics & Signalling Programmes, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Claire S Simon
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Ilona Dunkel
- Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sissy E Wamaitha
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Edda G Schulz
- Systems Epigenetics, Otto-Warburg-Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Kathy K Niakan
- The Human Embryo and Stem Cell Laboratory, Francis Crick Institute, London NW1 1AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
10
|
Gantner CW, Weatherbee BAT, Wang Y, Zernicka-Goetz M. Assembly of a stem cell-derived human postimplantation embryo model. Nat Protoc 2024:10.1038/s41596-024-01042-7. [PMID: 39261744 DOI: 10.1038/s41596-024-01042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/24/2024] [Indexed: 09/13/2024]
Abstract
The embryonic and extraembryonic tissue interactions underlying human embryogenesis at implantation stages are not currently understood. We have generated a pluripotent stem cell-derived model that mimics aspects of peri-implantation development, allowing tractable experimentation otherwise impossible in the human embryo. Activation of the extraembryonic lineage-specific transcription factors GATA6 and SOX17 (hypoblast factors) or GATA3 and TFAP2C (encoding AP2γ; trophoblast factors) in human embryonic stem (ES) cells drive conversion to extraembryonic-like cells. When combined with wild-type ES cells, self-organized embryo-like structures form in the absence of exogenous factors, termed human inducible embryoids (hiEmbryoids). The epiblast-like domain of hiEmbryoids polarizes and differentiates in response to extraembryonic-secreted extracellular matrix and morphogen cues. Extraembryonic mesenchyme, amnion and primordial germ cells are specified in hiEmbryoids in a stepwise fashion. After establishing stable inducible ES lines and converting ES cells to RSeT culture media, the protocol takes 7-10 d to generate hiEmbryoids. Generation of hiEmbryoids can be performed by researchers with basic expertise in stem cell culture.
Collapse
Affiliation(s)
- Carlos W Gantner
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bailey A T Weatherbee
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yuntao Wang
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Stem Cell Embryo Models Group, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
11
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024:e2400108. [PMID: 39180242 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
12
|
Tan JP, Liu X, Polo JM. Reprogramming fibroblast into human iBlastoids. Nat Protoc 2024; 19:2298-2316. [PMID: 38632379 DOI: 10.1038/s41596-024-00984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 02/12/2024] [Indexed: 04/19/2024]
Abstract
The study of early human embryogenesis has relied on the use of blastocysts donated to research or simple stem cell culture systems such as pluripotent and trophoblast stem cells, which have been seminal in shedding light on many key developmental processes. However, simple culture systems lack the necessary complexity to adequately model the spatiotemporal, cellular and molecular dynamics occurring during the early phases of embryonic development. As such, an in vitro model of the human blastocyst is advantageous in many aspects to decipher human embryogenesis. Here we describe a step-by-step protocol for the generation of induced blastoids (iBlastoids), an in vitro integrated model of the human blastocyst derived via somatic reprogramming. This protocol details the workflow for reprogramming of human dermal fibroblasts and subsequent generation of iBlastoids using the reprogramming intermediates, which together takes ~27 days (21 days for reprogramming and 6 days for iBlastoid generation). We also discuss several characterization/functional assays that can be used on the iBlastoids. We believe that a person trained in cell culture with ~1 year of experience with human somatic cell and reprogramming/cell differentiation assays would be able to perform this protocol. In short, the iBlastoids present an alternative tool as a model to the blastocyst to facilitate the scientific community in the exploration of early human development.
Collapse
Affiliation(s)
- Jia Ping Tan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Xiaodong Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
- The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
13
|
Varberg KM, Moreno-Irusta A, Novoa A, Musser B, Varberg JM, Goering JP, Saadi I, Iqbal K, Okae H, Arima T, Williams J, Pisarska MD, Soares MJ. Leveraging chorionic villus biopsies for the derivation of patient-specific trophoblast stem cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2022.12.07.22283218. [PMID: 39108523 PMCID: PMC11302605 DOI: 10.1101/2022.12.07.22283218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Human trophoblast stem (TS) cells are an informative in vitro model for the generation and testing of biologically meaningful hypotheses. The goal of this project was to derive patient-specific TS cell lines from clinically available chorionic villus sampling biopsies. Cell outgrowths were captured from human chorionic villus tissue specimens cultured in modified human TS cell medium. Cell colonies emerged early during the culture and cell lines were established and passaged for several generations. Karyotypes of the newly established chorionic villus-derived trophoblast stem (TS CV ) cell lines were determined and compared to initial genetic diagnoses from freshly isolated chorionic villi. Phenotypes of TSCV cells in the stem state and following differentiation were compared to cytotrophoblast-derived TS (TS CT ) cells. TSCV and TSCT cells uniformly exhibited similarities in the stem state and following differentiation into syncytiotrophoblast and extravillous trophoblast cells. Chorionic villus tissue specimens provide a valuable source for TS cell derivation. They expand the genetic diversity of available TS cells and are associated with defined clinical outcomes. TSCV cell lines provide a new set of experimental tools for investigating trophoblast cell lineage development.
Collapse
Affiliation(s)
- Kaela M. Varberg
- 1nstitute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ayelen Moreno-Irusta
- 1nstitute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Allynson Novoa
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Brynne Musser
- 1nstitute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | | | - Jeremy P. Goering
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Irfan Saadi
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Khursheed Iqbal
- 1nstitute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - John Williams
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA
- David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Margareta D. Pisarska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA
- David Geffen School of Medicine, University of California, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michael J. Soares
- 1nstitute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
14
|
Dattani A, Corujo-Simon E, Radley A, Heydari T, Taheriabkenar Y, Carlisle F, Lin S, Liddle C, Mill J, Zandstra PW, Nichols J, Guo G. Naive pluripotent stem cell-based models capture FGF-dependent human hypoblast lineage specification. Cell Stem Cell 2024; 31:1058-1071.e5. [PMID: 38823388 DOI: 10.1016/j.stem.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The hypoblast is an essential extraembryonic tissue set aside within the inner cell mass in the blastocyst. Research with human embryos is challenging. Thus, stem cell models that reproduce hypoblast differentiation provide valuable alternatives. We show here that human naive pluripotent stem cell (PSC) to hypoblast differentiation proceeds via reversion to a transitional ICM-like state from which the hypoblast emerges in concordance with the trajectory in human blastocysts. We identified a window when fibroblast growth factor (FGF) signaling is critical for hypoblast specification. Revisiting FGF signaling in human embryos revealed that inhibition in the early blastocyst suppresses hypoblast formation. In vitro, the induction of hypoblast is synergistically enhanced by limiting trophectoderm and epiblast fates. This finding revises previous reports and establishes a conservation in lineage specification between mice and humans. Overall, this study demonstrates the utility of human naive PSC-based models in elucidating the mechanistic features of early human embryogenesis.
Collapse
Affiliation(s)
- Anish Dattani
- Living Systems Institute, University of Exeter, Exeter, UK; Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Elena Corujo-Simon
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Arthur Radley
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Tiam Heydari
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Simeng Lin
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Corin Liddle
- Bioimaging Centre, University of Exeter, Exeter, UK
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Peter W Zandstra
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Ge Guo
- Living Systems Institute, University of Exeter, Exeter, UK; Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
15
|
Wu H, Zhai J, Wang H. Unraveling the function of FGF signaling in human hypoblast specialization. Cell Stem Cell 2024; 31:945-946. [PMID: 38971145 DOI: 10.1016/j.stem.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
Dattani et al.1 developed a method for inducing hypoblast-like cells from human naive pluripotent stem cells. They elucidated the requirement for FGF signaling in human hypoblast specialization at a specific time window, which was previously controversial.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Xiang J, Wang H, Shi B, Li J, Liu D, Wang K, Wang Z, Min Q, Zhao C, Pei D. Pig blastocyst-like structure models from embryonic stem cells. Cell Discov 2024; 10:72. [PMID: 38956027 PMCID: PMC11219778 DOI: 10.1038/s41421-024-00693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Pluripotent stem cells have the potential to generate embryo models that can recapitulate developmental processes in vitro. Large animals such as pigs may also benefit from stem-cell-based embryo models for improving breeding. Here, we report the generation of blastoids from porcine embryonic stem cells (pESCs). We first develop a culture medium 4FIXY to derive pESCs. We develop a 3D two-step differentiation strategy to generate porcine blastoids from the pESCs. The resulting blastoids exhibit similar morphology, size, cell lineage composition, and single-cell transcriptome characteristics to blastocysts. These porcine blastoids survive and expand for more than two weeks in vitro under two different culture conditions. Large animal blastoids such as those derived from pESCs may enable in vitro modeling of early embryogenesis and improve livestock species' breeding practices.
Collapse
Affiliation(s)
- Jinzhu Xiang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Hanning Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Bingbo Shi
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jiajun Li
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Dong Liu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Kaipeng Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhuangfei Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qiankun Min
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Wu J, Fu J. Toward developing human organs via embryo models and chimeras. Cell 2024; 187:3194-3219. [PMID: 38906095 PMCID: PMC11239105 DOI: 10.1016/j.cell.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.
Collapse
Affiliation(s)
- Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Li S, Yang M, Shen H, Ding L, Lyu X, Lin K, Ong J, Du P. Capturing totipotency in human cells through spliceosomal repression. Cell 2024; 187:3284-3302.e23. [PMID: 38843832 DOI: 10.1016/j.cell.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/01/2023] [Accepted: 05/03/2024] [Indexed: 06/23/2024]
Abstract
The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.
Collapse
Affiliation(s)
- Shiyu Li
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Min Yang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Li Ding
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuehui Lyu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kexin Lin
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jennie Ong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Rosner M, Hengstschläger M. Oct4 controls basement membrane development during human embryogenesis. Dev Cell 2024; 59:1439-1456.e7. [PMID: 38579716 DOI: 10.1016/j.devcel.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/02/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Basement membranes (BMs) are sheet-like structures of extracellular matrix (ECM) that provide structural support for many tissues and play a central role in signaling. They are key regulators of cell behavior and tissue functions, and defects in their assembly or composition are involved in numerous human diseases. Due to the differences between human and animal embryogenesis, ethical concerns, legal constraints, the scarcity of human tissue material, and the inaccessibility of the in vivo condition, BM regulation during human embryo development has remained elusive. Using the post-implantation amniotic sac embryoid (PASE), we delineate BM assembly upon post-implantation development and BM disassembly during primitive streak (PS) cell dissemination. Further, we show that the transcription factor Oct4 regulates the expression of BM structural components and receptors and controls BM development by regulating Akt signaling and the small GTPase Rac1. These results represent a relevant step toward a more comprehensive understanding of early human development.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
20
|
Nishimura T, Takebe T. Synthetic human gonadal tissues for toxicology. Reprod Toxicol 2024; 126:108598. [PMID: 38657700 DOI: 10.1016/j.reprotox.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The process of mammalian reproduction involves the development of fertile germ cells in the testis and ovary, supported by the surrounders. Fertilization leads to embryo development and ultimately the birth of offspring inheriting parental genome information. Any disruption in this process can result in disorders such as infertility and cancer. Chemical toxicity affecting the reproductive system and embryogenesis can impact birth rates, overall health, and fertility, highlighting the need for animal toxicity studies during drug development. However, the translation of animal data to human health remains challenging due to interspecies differences. In vitro culture systems offer a promising solution to bridge this gap, allowing the study of mammalian cells in an environment that mimics the physiology of the human body. Current advances on in vitro culture systems, such as organoids, enable the development of biomaterials that recapitulate the physiological state of reproductive organs. Application of these technologies to human gonadal cells would provide effective tools for drug screening and toxicity testing, and these models would be a powerful tool to study reproductive biology and pathology. This review focuses on the 2D/3D culture systems of human primary testicular and ovarian cells, highlighting the novel approaches for in vitro study of human reproductive toxicology, specifically in the context of testis and ovary.
Collapse
Affiliation(s)
- Toshiya Nishimura
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan.
| | - Takanori Takebe
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan; Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
21
|
Radley A, Boeing S, Smith A. Branching topology of the human embryo transcriptome revealed by Entropy Sort Feature Weighting. Development 2024; 151:dev202832. [PMID: 38691188 PMCID: PMC11213519 DOI: 10.1242/dev.202832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Analysis of single cell transcriptomics (scRNA-seq) data is typically performed after subsetting to highly variable genes (HVGs). Here, we show that Entropy Sorting provides an alternative mathematical framework for feature selection. On synthetic datasets, continuous Entropy Sort Feature Weighting (cESFW) outperforms HVG selection in distinguishing cell-state-specific genes. We apply cESFW to six merged scRNA-seq datasets spanning human early embryo development. Without smoothing or augmenting the raw counts matrices, cESFW generates a high-resolution embedding displaying coherent developmental progression from eight-cell to post-implantation stages and delineating 15 distinct cell states. The embedding highlights sequential lineage decisions during blastocyst development, while unsupervised clustering identifies branch point populations obscured in previous analyses. The first branching region, where morula cells become specified for inner cell mass or trophectoderm, includes cells previously asserted to lack a developmental trajectory. We quantify the relatedness of different pluripotent stem cell cultures to distinct embryo cell types and identify marker genes of naïve and primed pluripotency. Finally, by revealing genes with dynamic lineage-specific expression, we provide markers for staging progression from morula to blastocyst.
Collapse
Affiliation(s)
- Arthur Radley
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Stefan Boeing
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
22
|
Luijkx DG, Ak A, Guo G, van Blitterswijk CA, Giselbrecht S, Vrij EJ. Monochorionic Twinning in Bioengineered Human Embryo Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313306. [PMID: 38593372 DOI: 10.1002/adma.202313306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Monochorionic twinning of human embryos increases the risk of complications during pregnancy. The rarity of such twinning events, combined with ethical constraints in human embryo research, makes investigating the mechanisms behind twinning practically infeasible. As a result, there is a significant knowledge gap regarding the origins and early phenotypic presentation of monochorionic twin embryos. In this study, a microthermoformed-based microwell screening platform is used to identify conditions that efficiently induce monochorionic twins in human stem cell-based blastocyst models, termed "twin blastoids". These twin blastoids contain a cystic GATA3+ trophectoderm-like epithelium encasing two distinct inner cell masses (ICMs). Morphological and morphokinetic analyses reveal that twinning occurs during the cavitation phase via splitting of the OCT4+ pluripotent core. Notably, each ICM in twin blastoids contains its own NR2F2+ polar trophectoderm-like region, ready for implantation. This is functionally tested in a microfluidic chip-based implantation assay with epithelial endometrium cells. Under defined flow regimes, twin blastoids show increased adhesion capacity compared to singleton blastoids, suggestive of increased implantation potential. In conclusion, the development of technology enabling large-scale formation of twin blastoids, coupled with high-sensitivity readout capabilities, presents an unprecedented opportunity for systematically exploring monochorionic twin formation and its impact on embryonic development.
Collapse
Affiliation(s)
- Dorian G Luijkx
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| | - Asli Ak
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| | - Ge Guo
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Clemens A van Blitterswijk
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| | - Erik J Vrij
- MERLN Institute of Technology-Inspired Regenerative Medicine, Department for Instructive Biomaterials Engineering (IBE), Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
- Gynaecology, Women Mother Child Centre, Maastricht University Medical Centre+ (MUMC+), P. Debyelaan 25, Maastricht, 6202AZ, The Netherlands
- GROW - Research Institute for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, Maastricht, 6229ET, The Netherlands
| |
Collapse
|
23
|
Onfray C, Chevolleau S, Moinard E, Girard O, Mahadik K, Allsop R, Georgolopoulos G, Lavigne R, Renoult O, Aksoy I, Lemaitre E, Hulin P, Ouimette JF, Fréour T, Pecqueur C, Pineau C, Pasque V, Rougeulle C, David L. Unraveling hallmark suitability for staging pre- and post-implantation stem cell models. Cell Rep 2024; 43:114232. [PMID: 38761378 DOI: 10.1016/j.celrep.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
The advent of novel 2D and 3D models for human development, including trophoblast stem cells and blastoids, has expanded opportunities for investigating early developmental events, gradually illuminating the enigmatic realm of human development. While these innovations have ushered in new prospects, it has become essential to establish well-defined benchmarks for the cell sources of these models. We aimed to propose a comprehensive characterization of pluripotent and trophoblastic stem cell models by employing a combination of transcriptomic, proteomic, epigenetic, and metabolic approaches. Our findings reveal that extended pluripotent stem cells share many characteristics with primed pluripotent stem cells, with the exception of metabolic activity. Furthermore, our research demonstrates that DNA hypomethylation and high metabolic activity define trophoblast stem cells. These results underscore the necessity of considering multiple hallmarks of pluripotency rather than relying on a single criterion. Multiplying hallmarks alleviate stage-matching bias.
Collapse
Affiliation(s)
- Constance Onfray
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Simon Chevolleau
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Eva Moinard
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Océane Girard
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Kasturi Mahadik
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, 75013 Paris, France
| | - Ryan Allsop
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Grigorios Georgolopoulos
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Régis Lavigne
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000 Rennes, France; University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Ophélie Renoult
- Nantes Université, CNRS, Inserm, CRCI2NA, 44000 Nantes, France
| | - Irene Aksoy
- University Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Elsa Lemaitre
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France
| | - Philippe Hulin
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France
| | | | - Thomas Fréour
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France; Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, 08028 Barcelona, Spain; CHU Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Claire Pecqueur
- Nantes Université, CNRS, Inserm, CRCI2NA, 44000 Nantes, France
| | - Charles Pineau
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000 Rennes, France; University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Vincent Pasque
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Claire Rougeulle
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, 75013 Paris, France
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France.
| |
Collapse
|
24
|
Xiao Z, Cui L, Yuan Y, He N, Xie X, Lin S, Yang X, Zhang X, Shi P, Wei Z, Li Y, Wang H, Wang X, Wei Y, Guo J, Yu L. 3D reconstruction of a gastrulating human embryo. Cell 2024; 187:2855-2874.e19. [PMID: 38657603 DOI: 10.1016/j.cell.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Progress in understanding early human development has been impeded by the scarcity of reference datasets from natural embryos, particularly those with spatial information during crucial stages like gastrulation. We conducted high-resolution spatial transcriptomics profiling on 38,562 spots from 62 transverse sections of an intact Carnegie stage (CS) 8 human embryo. From this spatial transcriptomic dataset, we constructed a 3D model of the CS8 embryo, in which a range of cell subtypes are identified, based on gene expression patterns and positional register, along the anterior-posterior, medial-lateral, and dorsal-ventral axis in the embryo. We further characterized the lineage trajectories of embryonic and extra-embryonic tissues and associated regulons and the regionalization of signaling centers and signaling activities that underpin lineage progression and tissue patterning during gastrulation. Collectively, the findings of this study provide insights into gastrulation and post-gastrulation development of the human embryo.
Collapse
Affiliation(s)
- Zhenyu Xiao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lina Cui
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yang Yuan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Sirui Lin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolong Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peifu Shi
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhifeng Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoyan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Yulei Wei
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jingtao Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Leqian Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
25
|
Rossant J. Why study human embryo development? Dev Biol 2024; 509:43-50. [PMID: 38325560 DOI: 10.1016/j.ydbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Understanding the processes and mechanisms underlying early human embryo development has become an increasingly active and important area of research. It has potential for insights into important clinical issues such as early pregnancy loss, origins of congenital anomalies and developmental origins of adult disease, as well as fundamental insights into human biology. Improved culture systems for preimplantation embryos, combined with the new tools of single cell genomics and live imaging, are providing new insights into the similarities and differences between human and mouse development. However, access to human embryo material is still restricted and extended culture of early embryos has regulatory and ethical concerns. Stem cell-derived models of different phases of human development can potentially overcome these limitations and provide a scalable source of material to explore the early postimplantation stages of human development. To date, such models are clearly incomplete replicas of normal development but future technological improvements can be envisaged. The ethical and regulatory environment for such studies remains to be fully resolved.
Collapse
Affiliation(s)
- Janet Rossant
- The Gairdner Foundation and the Hospital for Sick Children, University of Toronto, MaRS Centre, Heritage Building, 101 College Street, Suite 335, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
26
|
Park Y, Hauschild AC. The effect of data transformation on low-dimensional integration of single-cell RNA-seq. BMC Bioinformatics 2024; 25:171. [PMID: 38689234 PMCID: PMC11059821 DOI: 10.1186/s12859-024-05788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Recent developments in single-cell RNA sequencing have opened up a multitude of possibilities to study tissues at the level of cellular populations. However, the heterogeneity in single-cell sequencing data necessitates appropriate procedures to adjust for technological limitations and various sources of noise when integrating datasets from different studies. While many analysis procedures employ various preprocessing steps, they often overlook the importance of selecting and optimizing the employed data transformation methods. RESULTS This work investigates data transformation approaches used in single-cell clustering analysis tools and their effects on batch integration analysis. In particular, we compare 16 transformations and their impact on the low-dimensional representations, aiming to reduce the batch effect and integrate multiple single-cell sequencing data. Our results show that data transformations strongly influence the results of single-cell clustering on low-dimensional data space, such as those generated by UMAP or PCA. Moreover, these changes in low-dimensional space significantly affect trajectory analysis using multiple datasets, as well. However, the performance of the data transformations greatly varies across datasets, and the optimal method was different for each dataset. Additionally, we explored how data transformation impacts the analysis of deep feature encodings using deep neural network-based models, including autoencoder-based models and proto-typical networks. Data transformation also strongly affects the outcome of deep neural network models. CONCLUSIONS Our findings suggest that the batch effect and noise in integrative analysis are highly influenced by data transformation. Low-dimensional features can integrate different batches well when proper data transformation is applied. Furthermore, we found that the batch mixing score on low-dimensional space can guide the selection of the optimal data transformation. In conclusion, data preprocessing is one of the most crucial analysis steps and needs to be cautiously considered in the integrative analysis of multiple scRNA-seq datasets.
Collapse
Affiliation(s)
- Youngjun Park
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
- International Max Planck Research Schools for Genome Science, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Anne-Christin Hauschild
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany.
- Campus-Institute Data Science (CIDAS), Georg-August-Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
27
|
Azagury M, Buganim Y. Unlocking trophectoderm mysteries: In vivo and in vitro perspectives on human and mouse trophoblast fate induction. Dev Cell 2024; 59:941-960. [PMID: 38653193 DOI: 10.1016/j.devcel.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.
Collapse
Affiliation(s)
- Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
28
|
Pennarossa G, Arcuri S, Gandolfi F, Brevini TAL. Generation of Artificial Blastoids Combining miR-200-Mediated Reprogramming and Mechanical Cues. Cells 2024; 13:628. [PMID: 38607067 PMCID: PMC11011911 DOI: 10.3390/cells13070628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
In vitro-generated blastocyst-like structures are of great importance since they recapitulate specific features or processes of early embryogenesis, thus avoiding ethical concerns as well as increasing scalability and accessibility compared to the use of natural embryos. Here, we combine cell reprogramming and mechanical stimuli to create 3D spherical aggregates that are phenotypically similar to those of natural embryos. Specifically, dermal fibroblasts are reprogrammed, exploiting the miR-200 family property to induce a high plasticity state in somatic cells. Subsequently, miR-200-reprogrammed cells are either driven towards the trophectoderm (TR) lineage using an ad hoc induction protocol or encapsulated into polytetrafluoroethylene micro-bioreactors to maintain and promote pluripotency, generating inner cell mass (ICM)-like spheroids. The obtained TR-like cells and ICM-like spheroids are then co-cultured in the same micro-bioreactor and, subsequently, transferred to microwells to encourage blastoid formation. Notably, the above protocol was applied to fibroblasts obtained from young as well as aged donors, with results that highlighted miR-200's ability to successfully reprogram young and aged cells with comparable blastoid rates, regardless of the donor's cell age. Overall, the approach here described represents a novel strategy for the creation of artificial blastoids to be used in the field of assisted reproduction technologies for the study of peri- and early post-implantation mechanisms.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
29
|
Mao Y, Wang S, Yu J, Li W. Engineering pluripotent stem cells with synthetic biology for regenerative medicine. MEDICAL REVIEW (2021) 2024; 4:90-109. [PMID: 38680679 PMCID: PMC11046572 DOI: 10.1515/mr-2023-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/14/2024] [Indexed: 05/01/2024]
Abstract
Pluripotent stem cells (PSCs), characterized by self-renewal and capacity of differentiating into three germ layers, are the programmable building blocks of life. PSC-derived cells and multicellular systems, particularly organoids, exhibit great potential for regenerative medicine. However, this field is still in its infancy, partly due to limited strategies to robustly and precisely control stem cell behaviors, which are tightly regulated by inner gene regulatory networks in response to stimuli from the extracellular environment. Synthetic receptors and genetic circuits are powerful tools to customize the cellular sense-and-response process, suggesting their underlying roles in precise control of cell fate decision and function reconstruction. Herein, we review the progress and challenges needed to be overcome in the fields of PSC-based cell therapy and multicellular system generation, respectively. Furthermore, we summarize several well-established synthetic biology tools and their applications in PSC engineering. Finally, we highlight the challenges and perspectives of harnessing synthetic biology to PSC engineering for regenerative medicine.
Collapse
Affiliation(s)
- Yihuan Mao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Siqi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jiazhen Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Rodriguez-Polo I, Moris N. Using embryo models to understand the development and progression of embryonic lineages: a focus on primordial germ cell development. Cells Tissues Organs 2024:000538275. [PMID: 38479364 PMCID: PMC7616515 DOI: 10.1159/000538275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Recapitulating mammalian cell type differentiation in vitro promises to improve our understanding of how these processes happen in vivo, while bringing additional prospects for biomedical applications. The establishment of stem cell-derived embryo models and embryonic organoids, which have experienced explosive growth over the last few years, open new avenues for research due to their scale, reproducibility, and accessibility. Embryo models mimic various developmental stages, exhibit different degrees of complexity, and can be established across species. Since embryo models exhibit multiple lineages organised spatially and temporally, they are likely to provide cellular niches that, to some degree, recapitulate the embryonic setting and enable "co-development" between cell types and neighbouring populations. One example where this is already apparent is in the case of primordial germ cell-like cells (PGCLCs). SUMMARY While directed differentiation protocols enable the efficient generation of high PGCLC numbers, embryo models provide an attractive alternative as they enable the study of interactions of PGCLCs with neighbouring cells, alongside the regulatory molecular and biophysical mechanisms of PGC competency. Additionally, some embryo models can recapitulate post-specification stages of PGC development (including migration or gametogenesis), mimicking the inductive signals pushing PGCLCs to mature and differentiate, and enabling the study of PGCLC development across stages. Therefore, in vitro models may allow us to address questions of cell type differentiation, and PGC development specifically, that have hitherto been out of reach with existing systems. KEY MESSAGE This review evaluates the current advances in stem cell-based embryo models, with a focus on their potential to model cell type-specific differentiation in general, and in particular to address open questions in PGC development and gametogenesis.
Collapse
|
31
|
Lodewijk GA, Kozuki S, Han C, Topacio BR, Zargari A, Lee S, Knight G, Ashton R, Qi LS, Shariati SA. Self-organization of embryonic stem cells into a reproducible embryo model through epigenome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583597. [PMID: 38496557 PMCID: PMC10942404 DOI: 10.1101/2024.03.05.583597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Embryonic stem cells (ESCs) can self-organize in vitro into developmental patterns with spatial organization and molecular similarity to that of early embryonic stages. This self-organization of ESCs requires transmission of signaling cues, via addition of small molecule chemicals or recombinant proteins, to induce distinct embryonic cellular fates and subsequent assembly into structures that can mimic aspects of early embryonic development. During natural embryonic development, different embryonic cell types co-develop together, where each cell type expresses specific fate-inducing transcription factors through activation of non-coding regulatory elements and interactions with neighboring cells. However, previous studies have not fully explored the possibility of engineering endogenous regulatory elements to shape self-organization of ESCs into spatially-ordered embryo models. Here, we hypothesized that cell-intrinsic activation of a minimum number of such endogenous regulatory elements is sufficient to self-organize ESCs into early embryonic models. Our results show that CRISPR-based activation (CRISPRa) of only two endogenous regulatory elements in the genome of pluripotent stem cells is sufficient to generate embryonic patterns that show spatial and molecular resemblance to that of pre-gastrulation mouse embryonic development. Quantitative single-cell live fluorescent imaging showed that the emergence of spatially-ordered embryonic patterns happens through the intrinsic induction of cell fate that leads to an orchestrated collective cellular motion. Based on these results, we propose a straightforward approach to efficiently form 3D embryo models through intrinsic CRISPRa-based epigenome editing and independent of external signaling cues. CRISPRa-Programmed Embryo Models (CPEMs) show highly consistent composition of major embryonic cell types that are spatially-organized, with nearly 80% of the structures forming an embryonic cavity. Single cell transcriptomics confirmed the presence of main embryonic cell types in CPEMs with transcriptional similarity to pre-gastrulation mouse embryos and revealed novel signaling communication links between different embryonic cell types. Our findings offer a programmable embryo model and demonstrate that minimum intrinsic epigenome editing is sufficient to self-organize ESCs into highly consistent pre-gastrulation embryo models.
Collapse
Affiliation(s)
- Gerrald A Lodewijk
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
- Institute for The Biology of Stem Cells, University of California, Santa Cruz, CA
- Equal contribution to this work
| | - Sayaka Kozuki
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
- Institute for The Biology of Stem Cells, University of California, Santa Cruz, CA
- Equal contribution to this work
| | - Clara Han
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
- Institute for The Biology of Stem Cells, University of California, Santa Cruz, CA
| | - Benjamin R Topacio
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
- Institute for The Biology of Stem Cells, University of California, Santa Cruz, CA
| | - Abolfazl Zargari
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA
| | - Seungho Lee
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
- Institute for The Biology of Stem Cells, University of California, Santa Cruz, CA
| | - Gavin Knight
- Neurosetta LLC, Madison, WI
- Wisconsin Institute for Discovery, Madison, WI
| | - Randolph Ashton
- Neurosetta LLC, Madison, WI
- Wisconsin Institute for Discovery, Madison, WI
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA
- Sarafan ChEM-H, Stanford University, Stanford, CA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA
| | - S Ali Shariati
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
- Institute for The Biology of Stem Cells, University of California, Santa Cruz, CA
| |
Collapse
|
32
|
Du P, Wu J. Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell 2024; 31:312-333. [PMID: 38382531 PMCID: PMC10939785 DOI: 10.1016/j.stem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Though totipotency and pluripotency are transient during early embryogenesis, they establish the foundation for the development of all mammals. Studying these in vivo has been challenging due to limited access and ethical constraints, particularly in humans. Recent progress has led to diverse culture adaptations of epiblast cells in vitro in the form of totipotent and pluripotent stem cells, which not only deepen our understanding of embryonic development but also serve as invaluable resources for animal reproduction and regenerative medicine. This review delves into the hallmarks of totipotent and pluripotent stem cells, shedding light on their key molecular and functional features.
Collapse
Affiliation(s)
- Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
33
|
Pereira Daoud AM, Dondorp WJ, Bredenoord AL, De Wert GMWR. Potentiality switches and epistemic uncertainty: the Argument from Potential in times of human embryo-like structures. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2024; 27:37-48. [PMID: 37902931 PMCID: PMC10904491 DOI: 10.1007/s11019-023-10181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/01/2023]
Abstract
Recent advancements in developmental biology enable the creation of embryo-like structures from human stem cells, which we refer to as human embryo-like structures (hELS). These structures provide promising tools to complement-and perhaps ultimately replace-the use of human embryos in clinical and fundamental research. But what if these hELS-when further improved-also have a claim to moral status? What would that imply for their research use? In this paper, we explore these questions in relation to the traditional answer as to why human embryos should be given greater protection than other (non-)human cells: the so-called Argument from Potential (AfP). According to the AfP, human embryos deserve special moral status because they have the unique potential to develop into persons. While some take the development of hELS to challenge the very foundations of the AfP, the ongoing debate suggests that its dismissal would be premature. Since the AfP is a spectrum of views with different moral implications, it does not need to imply that research with human embryos or hELS that (may) have 'active' potential should be completely off-limits. However, the problem with determining active potential in hELS is that this depends on development passing through 'potentiality switches' about the precise coordinates of which we are still in the dark. As long as this epistemic uncertainty persists, extending embryo research regulations to research with specific types of hELS would amount to a form of regulative precaution that as such would require further justification.
Collapse
Affiliation(s)
- Ana M Pereira Daoud
- Department of Health Ethics and Society, Maastricht University, Maastricht, The Netherlands.
- Department of Medical Humanities, University Medical Center Utrecht, Utrecht, The Netherlands.
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.
| | - Wybo J Dondorp
- Department of Health Ethics and Society, Maastricht University, Maastricht, The Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
- School for Care and Public Health Research (CAPHRI), Maastricht University, Maastricht, The Netherlands
- Socrates chair Ethics of Reproductive Genetics endowed by the Dutch Humanist Association, Amsterdam, The Netherlands
| | | | - Guido M W R De Wert
- Department of Health Ethics and Society, Maastricht University, Maastricht, The Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
- School for Care and Public Health Research (CAPHRI), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
34
|
Wu J, Kang Y, Luo X, Dai S, Shi Y, Li Z, Tang Z, Chen Z, Zhu R, Yang P, Li Z, Wang H, Chen X, Zhao Z, Ji W, Niu Y. Long-term in vivo chimeric cells tracking in non-human primate. Protein Cell 2024; 15:207-222. [PMID: 37758041 PMCID: PMC10903985 DOI: 10.1093/procel/pwad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Non-human primates (NHPs) are increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey. Here, we report a chemically defined, xeno-free culture system for culturing and deriving monkey PSCs in vitro. The cells display global gene expression and genome-wide hypomethylation patterns distinct from monkey-primed cells. We also found expression of signaling pathways components that may increase the potential for chimera formation. Crucially for biomedical applications, we were also able to integrate bioluminescent reporter genes into monkey PSCs and track them in chimeric embryos in vivo and in vitro. The engineered cells retained embryonic and extra-embryonic developmental potential. Meanwhile, we generated a chimeric monkey carrying bioluminescent cells, which were able to track chimeric cells for more than 2 years in living animals. Our study could have broad utility in primate stem cell engineering and in utilizing chimeric monkey models for clinical studies.
Collapse
Affiliation(s)
- Junmo Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Xiang Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Shaoxing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yuxi Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhuoyao Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zengli Tang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhenzhen Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Ran Zhu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Pengpeng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zifan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Ziyi Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
35
|
Shibata S, Endo S, Nagai LAE, H. Kobayashi E, Oike A, Kobayashi N, Kitamura A, Hori T, Nashimoto Y, Nakato R, Hamada H, Kaji H, Kikutake C, Suyama M, Saito M, Yaegashi N, Okae H, Arima T. Modeling embryo-endometrial interface recapitulating human embryo implantation. SCIENCE ADVANCES 2024; 10:eadi4819. [PMID: 38394208 PMCID: PMC10889356 DOI: 10.1126/sciadv.adi4819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The initiation of human pregnancy is marked by the implantation of an embryo into the uterine environment; however, the underlying mechanisms remain largely elusive. To address this knowledge gap, we developed hormone-responsive endometrial organoids (EMO), termed apical-out (AO)-EMO, which emulate the in vivo architecture of endometrial tissue. The AO-EMO comprise an exposed apical epithelium surface, dense stromal cells, and a self-formed endothelial network. When cocultured with human embryonic stem cell-derived blastoids, the three-dimensional feto-maternal assembloid system recapitulates critical implantation stages, including apposition, adhesion, and invasion. Endometrial epithelial cells were subsequently disrupted by syncytial cells, which invade and fuse with endometrial stromal cells. We validated this fusion of syncytiotrophoblasts and stromal cells using human blastocysts. Our model provides a foundation for investigating embryo implantation and feto-maternal interactions, offering valuable insights for advancing reproductive medicine.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Research and Development Division, Rohto Pharmaceutical Co. Ltd., Osaka 544-8666, Japan
| | - Shun Endo
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Luis A. E. Nagai
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Eri H. Kobayashi
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akira Oike
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0973, Japan
| | - Norio Kobayashi
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Akane Kitamura
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takeshi Hori
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Yuji Nashimoto
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hirotaka Hamada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
36
|
Liu X, Polo JM. Human blastoid as an in vitro model of human blastocysts. Curr Opin Genet Dev 2024; 84:102135. [PMID: 38052115 DOI: 10.1016/j.gde.2023.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Human development is a highly coordinated process, with any abnormalities during the early embryonic stages that can often have detrimental consequences. The complexity and nuances of human development underpin its significance in embryo research. However, this research is often hindered by limited availability and ethical considerations associated with the use of donated blastocysts from in vitro fertilization (IVF) surplus. Human blastoids offer promising alternatives as they can be easily generated and manipulated in the laboratory while preserving key characteristics of human blastocysts. In this way, they hold the potential to serve as a scalable and ethically permissible resource in embryology research. By utilizing such human embryo models, we can establish a transformative platform that complements the study with IVF embryos, ultimately enhancing our understanding of human embryogenesis.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Jose M Polo
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia; The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Victoria, Australia.
| |
Collapse
|
37
|
Okubo T, Rivron N, Kabata M, Masaki H, Kishimoto K, Semi K, Nakajima-Koyama M, Kunitomi H, Kaswandy B, Sato H, Nakauchi H, Woltjen K, Saitou M, Sasaki E, Yamamoto T, Takashima Y. Hypoblast from human pluripotent stem cells regulates epiblast development. Nature 2024; 626:357-366. [PMID: 38052228 PMCID: PMC10849967 DOI: 10.1038/s41586-023-06871-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.
Collapse
Affiliation(s)
- Takumi Okubo
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Mio Kabata
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hideki Masaki
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Katsunori Semi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - May Nakajima-Koyama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Haruko Kunitomi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Belinda Kaswandy
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hideyuki Sato
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Knut Woltjen
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mitinori Saitou
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| | - Yasuhiro Takashima
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
38
|
Handford CE, Junyent S, Jorgensen V, Zernicka-Goetz M. Topical section: embryonic models (2023) for Current Opinion in Genetics & Development. Curr Opin Genet Dev 2024; 84:102134. [PMID: 38052116 DOI: 10.1016/j.gde.2023.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Stem cell-based mammalian embryo models facilitate the discovery of developmental mechanisms because they are more amenable to genetic and epigenetic perturbations than natural embryos. Here, we highlight exciting recent advances that have yielded a plethora of models of embryonic development. Imperfections in these models highlight gaps in our current understanding and outline future research directions, ushering in an exciting new era for embryology.
Collapse
Affiliation(s)
- Charlotte E Handford
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. https://twitter.com/@CEHandford
| | - Sergi Junyent
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. https://twitter.com/@JunyentSergi
| | - Victoria Jorgensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Magdalena Zernicka-Goetz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Guo M, Wu J, Chen C, Wang X, Gong A, Guan W, Karvas RM, Wang K, Min M, Wang Y, Theunissen TW, Gao S, Silva JCR. Self-renewing human naïve pluripotent stem cells dedifferentiate in 3D culture and form blastoids spontaneously. Nat Commun 2024; 15:668. [PMID: 38253551 PMCID: PMC10803796 DOI: 10.1038/s41467-024-44969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Human naïve pluripotent stem cells (hnPSCs) can generate integrated models of blastocysts termed blastoids upon switch to inductive medium. However, the underlying mechanisms remain obscure. Here we report that self-renewing hnPSCs spontaneously and efficiently give rise to blastoids upon three dimensional (3D) suspension culture. The spontaneous blastoids mimic early stage human blastocysts in terms of structure, size, and transcriptome characteristics and are capable of progressing to post-implantation stages. This property is conferred by the glycogen synthase kinase-3 (GSK3) signalling inhibitor IM-12 present in 5iLAF self-renewing medium. IM-12 upregulates oxidative phosphorylation-associated genes that underly the capacity of hnPSCs to generate blastoids spontaneously. Starting from day one of self-organization, hnPSCs at the boundary of all 3D aggregates dedifferentiate into E5 embryo-like intermediates. Intermediates co-express SOX2/OCT4 and GATA6 and by day 3 specify trophoblast fate, which coincides with cavity and blastoid formation. In summary, spontaneous blastoid formation results from 3D culture triggering dedifferentiation of hnPSCs into earlier embryo-like intermediates which are then competent to segregate blastocyst fates.
Collapse
Affiliation(s)
- Mingyue Guo
- Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China.
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Jinyi Wu
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Chuanxin Chen
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinggu Wang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - An Gong
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Wei Guan
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Rowan M Karvas
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kexin Wang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Mingwei Min
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Yixuan Wang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - José C R Silva
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China.
| |
Collapse
|
40
|
Yang Y, Jia W, Luo Z, Li Y, Liu H, Fu L, Li J, Jiang Y, Lai J, Li H, Saeed BJ, Zou Y, Lv Y, Wu L, Zhou T, Shan Y, Liu C, Lai Y, Liu L, Hutchins AP, Esteban MA, Mazid MA, Li W. VGLL1 cooperates with TEAD4 to control human trophectoderm lineage specification. Nat Commun 2024; 15:583. [PMID: 38233381 PMCID: PMC10794710 DOI: 10.1038/s41467-024-44780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
In contrast to rodents, the mechanisms underlying human trophectoderm and early placenta specification are understudied due to ethical barriers and the scarcity of embryos. Recent reports have shown that human pluripotent stem cells (PSCs) can differentiate into trophectoderm (TE)-like cells (TELCs) and trophoblast stem cells (TSCs), offering a valuable in vitro model to study early placenta specification. Here, we demonstrate that the VGLL1 (vestigial-like family member 1), which is highly expressed during human and non-human primate TE specification in vivo but is negligibly expressed in mouse, is a critical regulator of cell fate determination and self-renewal in human TELCs and TSCs derived from naïve PSCs. Mechanistically, VGLL1 partners with the transcription factor TEAD4 (TEA domain transcription factor 4) to regulate chromatin accessibility at target gene loci through histone acetylation and acts in cooperation with GATA3 and TFAP2C. Our work is relevant to understand primate early embryogenesis and how it differs from other mammalian species.
Collapse
Affiliation(s)
- Yueli Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi Jia
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Luo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Lixin Fu
- University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Jinxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Yu Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junjian Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Haiwei Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Babangida Jabir Saeed
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yi Zou
- BGI Research, Shenzhen, China
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Ting Zhou
- Stem Cell Research Facility, Sloan Kettering Institute, New York, NY, USA
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Yiwei Lai
- BGI Research, Shenzhen, China
- BGI Research, Hangzhou, China
| | - Longqi Liu
- BGI Research, Shenzhen, China
- BGI Research, Hangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Miguel A Esteban
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
- BGI Research, Shenzhen, China.
- BGI Research, Hangzhou, China.
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
| |
Collapse
|
41
|
De Santis R, Rice E, Croft G, Yang M, Rosado-Olivieri EA, Brivanlou AH. The emergence of human gastrulation upon in vitro attachment. Stem Cell Reports 2024; 19:41-53. [PMID: 38101401 PMCID: PMC10828709 DOI: 10.1016/j.stemcr.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
While studied extensively in model systems, human gastrulation remains obscure. The scarcity of fetal biological material as well as ethical considerations limit our understanding of this process. In vitro attachment of natural blastocysts shed light on aspects of the second week of human development in the absence of the morphological manifestation of gastrulation. Stem cell-derived blastocyst models, blastoids, provide the opportunity to reconstitute pre- to post-implantation development in vitro. Here we show that upon in vitro attachment, human blastoids self-organize a BRA+ population and undergo gastrulation. Single-cell RNA sequencing of these models replicates the transcriptomic signature of the human gastrula. Analysis of developmental timing reveals that in both blastoid models and natural human embryos, the onset of gastrulation as defined by molecular markers, can be traced to timescales equivalent to 12 days post fertilization. In all, natural human embryos and blastoid models self-organize primitive streak and mesoderm derivatives upon in vitro attachment.
Collapse
Affiliation(s)
- Riccardo De Santis
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Eleni Rice
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Gist Croft
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Min Yang
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Edwin A Rosado-Olivieri
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
42
|
Arcuri S, Pennarossa G, Ledda S, Gandolfi F, Brevini TAL. Use of Epigenetic Cues and Mechanical Stimuli to Generate Blastocyst-Like Structures from Mammalian Skin Dermal Fibroblasts. Methods Mol Biol 2024; 2767:161-173. [PMID: 37199907 DOI: 10.1007/7651_2023_486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mammalian embryogenesis is characterized by complex interactions between embryonic and extra-embryonic tissues that coordinate morphogenesis, coupling bio-mechanical and bio-chemical cues, to regulate gene expression and influence cell fate. Deciphering such mechanisms is essential to understand early embryogenesis, as well as to harness differentiation disorders. Currently, several early developmental events remain unclear, mainly due to ethical and technical limitations related to the use of natural embryos.Here, we describe a three-step approach to generate 3D spherical structures, arbitrarily defined "epiBlastoids," whose phenotype is remarkably similar to natural embryos. In the first step, adult dermal fibroblasts are converted into trophoblast-like cells, combining the use of 5-azacytidine, to erase the original cell phenotype, with an ad hoc induction protocol, to drive erased cells into the trophoblast lineage. In the second step, once again epigenetic erasing is applied, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like spheroids. More specifically, erased cells are encapsulated in micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, chemically induced trophoblast-like cells and ICM-like spheroids are co-cultured in the same micro-bioreactors. The newly generated embryoids are then transferred to microwells, to encourage further differentiation and favor epiBlastoid formation. The procedure here described is a novel strategy for in vitro generation of 3D spherical structures, phenotypically similar to natural embryos. The use of easily accessible dermal fibroblasts and the lack of retroviral gene transfection make this protocol a promising strategy to study early embryogenesis as well as embryo disorders.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
43
|
Luo YX, Yu Y. Protocol for the Generation of Human EPS-Blastoids Using a Three-Dimensional Two-Step Induction System. Methods Mol Biol 2024; 2767:27-41. [PMID: 36749484 DOI: 10.1007/7651_2022_471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stem cell-derived embryos in vitro allow the exploration of the very early stages of human embryogenesis in vitro and are thus promising for widespread applications in developmental biology, related developmental disease modeling, and drug discovery. Several cell resources have been utilized, with different efficiencies and methods for generating human blastoids, a structure similar to natural blastocysts. Human EPS cells were reported to contribute to the embryonic and extraembryonic lineages and therefore can be a practical and efficient cell resource for constructing human blastoids. Here, we developed a three-dimensional, two-step induction system for generating human blastoids using human EPS cells. According to morphological and transcriptomic analysis, EPS-blastoids recapitulate the key developmental processes and cell lineages of human blastocysts. Moreover, in vitro extended culture for 8 and 10 days of EPS-blastoids can result in postimplantation embryonic structures. In this chapter, we describe a protocol that covers the generation, maintenance, and developmental phenocopying of human EPS blastoids.
Collapse
Affiliation(s)
- Yu-Xin Luo
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
44
|
Guo Y, Li TD, Modzelewski AJ, Siomi H. Retrotransposon renaissance in early embryos. Trends Genet 2024; 40:39-51. [PMID: 37949723 DOI: 10.1016/j.tig.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Despite being the predominant genetic elements in mammalian genomes, retrotransposons were often dismissed as genomic parasites with ambiguous biological significance. However, recent studies reveal their functional involvement in early embryogenesis, encompassing crucial processes such as zygotic genome activation (ZGA) and cell fate decision. This review underscores the paradigm shift in our understanding of retrotransposon roles during early preimplantation development, as well as their rich functional reservoir that is exploited by the host to provide cis-regulatory elements, noncoding RNAs, and functional proteins. The rapid advancement in long-read sequencing, low input multiomics profiling, advanced in vitro systems, and precise gene editing techniques encourages further dissection of retrotransposon functions that were once obscured by the intricacies of their genomic footprints.
Collapse
Affiliation(s)
- Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Ten D Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA
| | - Andrew J Modzelewski
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA.
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 160-8582, Japan.
| |
Collapse
|
45
|
Panda A, Pham TXA, Khodeer S, Pasque V. Induction of Human Extraembryonic Mesoderm Cells from Naive Pluripotent Stem Cells. Methods Mol Biol 2024; 2767:105-113. [PMID: 37243859 DOI: 10.1007/7651_2023_483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The human extraembryonic mesoderm (EXM) is an important tissue in the postimplantation embryo which is specified before gastrulation in primates but not in rodents. EXM is mesenchymal and plays an important role in embryogenesis, including early erythropoiesis, and provides mechanical support to the developing embryo. Recently, it has been shown that self-renewing extraembryonic mesoderm cells (EXMCs) can be modeled in vitro by using human naive pluripotent stem cells. Here, we present a detailed step-by-step protocol to induce EXMCs from naive pluripotent stem cells in vitro.
Collapse
Affiliation(s)
- Amitesh Panda
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Thi Xuan Ai Pham
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Sherif Khodeer
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Zhang W, Sun S, Wang Q, Li X, Xu M, Li Q, Zhao Y, Peng K, Yao C, Wang Y, Chang Y, Liu Y, Wu X, Gao Q, Shuai L. Haploid-genetic screening of trophectoderm specification identifies Dyrk1a as a repressor of totipotent-like status. SCIENCE ADVANCES 2023; 9:eadi5683. [PMID: 38117886 PMCID: PMC10732524 DOI: 10.1126/sciadv.adi5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Trophectoderm (TE) and the inner cell mass are the first two lineages in murine embryogenesis and cannot naturally transit to each other. The barriers between them are unclear and fascinating. Embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) retain the identities of inner cell mass and TE, respectively, and, thus, are ideal platforms to investigate these lineages in vitro. Here, we develop a loss-of-function genetic screening in haploid ESCs and reveal many mutations involved in the conversion of TSCs. The disruption of either Catip or Dyrk1a (candidates) in ESCs facilitates the conversion of TSCs. According to transcriptome analysis, we find that the repression of Dyrk1a activates totipotency, which is a possible reason for TE specification. Dyrk1a-null ESCs can contribute to embryonic and extraembryonic tissues in chimeras and can efficiently form blastocyst-like structures, indicating their totipotent developmental abilities. These findings provide insights into the mechanisms underlying cell fate alternation in embryogenesis.
Collapse
Affiliation(s)
- Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Shengyi Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Qing Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Xu Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mei Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Qian Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Keli Peng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Chunmeng Yao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Yuna Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Ying Chang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Yan Liu
- Department of Obstetrics, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
47
|
Brumbaugh J, Aguado BA, Lysaght T, Goldstein LSB. Human fetal tissue is critical for biomedical research. Stem Cell Reports 2023; 18:2300-2312. [PMID: 37977142 PMCID: PMC10724055 DOI: 10.1016/j.stemcr.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
Human fetal tissue and cells derived from fetal tissue are crucial for biomedical research. Fetal tissues and cells are used to study both normal development and developmental disorders. They are broadly applied in vaccine development and production. Further, research using cells from fetal tissue is instrumental for studying many infectious diseases, including a broad range of viruses. These widespread applications underscore the value of fetal tissue research and reflect an important point: cells derived from fetal tissues have capabilities that cells from other sources do not. In many cases, increased functionality of cells derived from fetal tissues arises from increased proliferative capacity, ability to survive in culture, and developmental potential that is attenuated in adult tissues. This review highlights important, representative applications of fetal tissue for science and medicine.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA; Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Brian A Aguado
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Tamra Lysaght
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lawrence S B Goldstein
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
48
|
Wilkinson AL, Zorzan I, Rugg-Gunn PJ. Epigenetic regulation of early human embryo development. Cell Stem Cell 2023; 30:1569-1584. [PMID: 37858333 DOI: 10.1016/j.stem.2023.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Studies of mammalian development have advanced our understanding of the genetic, epigenetic, and cellular processes that orchestrate embryogenesis and have uncovered new insights into the unique aspects of human embryogenesis. Recent studies have now produced the first epigenetic maps of early human embryogenesis, stimulating new ideas about epigenetic reprogramming, cell fate control, and the potential mechanisms underpinning developmental plasticity in human embryos. In this review, we discuss these new insights into the epigenetic regulation of early human development and the importance of these processes for safeguarding development. We also highlight unanswered questions and key challenges that remain to be addressed.
Collapse
Affiliation(s)
| | - Irene Zorzan
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
49
|
Turner DA, Nichols J. Modifying gastruloids to dissect mechanisms of tissue-specific induction. Curr Opin Genet Dev 2023; 83:102130. [PMID: 37897953 DOI: 10.1016/j.gde.2023.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/30/2023]
Abstract
How functional organisms arise from a single cell is a fundamental question in biology with direct relevance to understanding developmental defects and diseases. Dissecting developmental processes provides the basic, critical framework for understanding disease progression and treatment. Bottom-up approaches to recapitulate formation of various components of the embryo have been effective to probe symmetry-breaking, self-organisation, tissue patterning and morphogenesis. However, these studies have been mostly concerned with axial patterning, which is essentially longitudinal. Can these models generate the appendicular axes? If so, how far can self-organisation take these? Will experimentally induced organisers be required? This short review explores these questions, highlighting how minimal models are essential for understanding patterning and morphogenetic processes.
Collapse
Affiliation(s)
- David A Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, University of Liverpool, UK.
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, UK.
| |
Collapse
|
50
|
Perera M, Brickman JM. In vitro models of human hypoblast and mouse primitive endoderm. Curr Opin Genet Dev 2023; 83:102115. [PMID: 37783145 DOI: 10.1016/j.gde.2023.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
The primitive endoderm (PrE, also named hypoblast), a predominantly extraembryonic epithelium that arises from the inner cell mass (ICM) of the mammalian pre-implantation blastocyst, plays a fundamental role in embryonic development, giving rise to the yolk sac, establishing the anterior-posterior axis and contributing to the gut. PrE is specified from the ICM at the same time as the epiblast (Epi) that will form the embryo proper. While in vitro cell lines resembling the pluripotent Epi have been derived from a variety of conditions, only one model system currently exists for the PrE, naïve extraembryonic endoderm (nEnd). As a result, considerably more is known about the gene regulatory networks and signalling requirements of pluripotent stem cells than nEnd. In this review, we describe the ontogeny and differentiation of the PrE or hypoblast in mouse and primate and then discuss in vitro cell culture models for different extraembryonic endodermal cell types.
Collapse
Affiliation(s)
- Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark. https://twitter.com/@MartaPrera
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|