1
|
Tian TT, Chen G, Sun K, Wang XY, Liu Y, Wang FQ, Yang B, Liu J, Han JY, Tang DX. ChanLingGao alleviates intestinal mucosal barrier damage and suppresses the onset and progression of Colorectal cancer in AOM/DSS murine model. Int Immunopharmacol 2024; 143:113193. [PMID: 39368132 DOI: 10.1016/j.intimp.2024.113193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/26/2024] [Accepted: 09/14/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND The occurrence of Colorectal Cancer (CRC) is influenced by various factors, including host susceptibility, immune imbalance, and environmental triggers. Numerous studies have underscored the critical role of chronic intestinal inflammation and dysbiosis in the development of CRC. Traditional Chinese Medicine (TCM) holds unique advantages in regulating the intricate process of and comprehensive treatment for systemic disease. Previous investigations by our team have confirmed the anti-cancer properties of the TCM compound ChanLingGao (CLG), including inhibiting cancer cell migration, and alleviating bone cancer pain. However, the mechanisms underlying its efficacy in alleviating chronic intestinal inflammation, modulating the gut microbiota, and protecting the intestinal mucosal barrier remain largely unknown. PURPOSE This study aims to explore the inhibitory effects of CLG on CRC tumors in mice and its potential mechanisms. METHODS A chronic inflammation-related CRC mouse model was established using AOM/DSS. The study examined the mechanisms of intestinal inflammation and tumor cell proliferation through intestinal histological morphology. High-throughput sequencing was employed to analyze changes in gut microbiota diversity and intestinal mucosal barrier integrity in CRC mice. Based on network pharmacology target prediction and Wnt/β-catenin signaling pathway analysis, the study analyzed and discussed the potential mechanisms of CLG on CRC. RESULTS CLG significantly ameliorated weight loss and increased survival rates in CRC mice, while suppressing tumor growth in the intestinal tract. Post-CLG treatment improved intestinal inflammation in CRC mice, with a significant reduction in inflammatory factors IL-6, IL-23 and LCN2, and inhibition of tumor cell proliferation markers Proliferating Cell Nuclear Antigen (PCNA), Recombinant Ki-67 Protein (Ki-67), and CCND1. 16sV3-V4 region microbiota sequencing results indicated that CLG improved dysbiosis, and significantly increased the abundance of Akkermansia bacteria, further promoting the expression of MUC-2 protein and mucin secretion. Additionally, CLG prevented the disruption of intestinal epithelial cell junction proteins Occludin, Claudin-1, ZO-1, and E-cadherin, restored the number of goblet cells, and preserved the integrity of the intestinal mucosal barrier. Further experiments suggested that CLG inhibited abnormal activation of the Wnt/β-catenin pathway, and its potential mechanism in maintaining mucosal barrier integrity might be related to blocking Wnt/β-catenin pathway. CONCLUSIONS This study demonstrates that CLG can inhibit CRC tumor growth by regulating the gut microbiota structure, reducing intestinal inflammation, improving intestinal mucosal barrier function, and inhibiting the complex process of cancer cell proliferation. This provides new clinical insights into the "membrane-oriented" treatment of CRC with CLG.
Collapse
Affiliation(s)
- Ting-Ting Tian
- Scientific Research Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Guo Chen
- Scientific Research Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Kai Sun
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yang Liu
- Scientific Research Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Fei-Qing Wang
- Scientific Research Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Bing Yang
- Scientific Research Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Jian Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Dong-Xin Tang
- Scientific Research Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
| |
Collapse
|
2
|
Andersen GT, Ianevski A, Resell M, Pojskic N, Rabben HL, Geithus S, Kodama Y, Hiroyuki T, Kainov D, Grønbech JE, Hayakawa Y, Wang TC, Zhao CM, Chen D. Multi-bioinformatics revealed potential biomarkers and repurposed drugs for gastric adenocarcinoma-related gastric intestinal metaplasia. NPJ Syst Biol Appl 2024; 10:127. [PMID: 39496635 PMCID: PMC11535201 DOI: 10.1038/s41540-024-00455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/13/2024] [Indexed: 11/06/2024] Open
Abstract
Biomarkers associated with the progression from gastric intestinal metaplasia (GIM) to gastric adenocarcinoma (GA), i.e., GA-related GIM, could provide valuable insights into identifying patients with increased risk for GA. The aim of this study was to utilize multi-bioinformatics to reveal potential biomarkers for the GA-related GIM and predict potential drug repurposing for GA prevention in patients. The multi-bioinformatics included gene expression matrix (GEM) by microarray gene expression (MGE), ScType (a fully automated and ultra-fast cell-type identification based solely on a given scRNA-seq data), Ingenuity Pathway Analysis, PageRank centrality, GO and MSigDB enrichments, Cytoscape, Human Protein Atlas and molecular docking analysis in combination with immunohistochemistry. To identify GA-related GIM, paired surgical biopsies were collected from 16 GIM-GA patients who underwent gastrectomy, yielding 64 samples (4 biopsies per stomach x 16 patients) for MGE. Co-analysis was performed by including scRNAseq and immunohistochemistry datasets of endoscopic biopsies of 37 patients. The results of the present study showed potential biomarkers for GA-related GIM, including GEM of individual patients, individual genes (such as RBP2 and CD44), signaling pathways, network of molecules, and network of signaling pathways with key topological nodes. Accordingly, potential treatment targets with repurposed drugs were identified including epidermal growth factor receptor, proto-oncogene tyrosine-protein kinase Src, paxillin, transcription factor Jun, breast cancer type 1 susceptibility protein, cellular tumor antigen p53, mouse double minute 2, and CD44.
Collapse
Affiliation(s)
- Gøran Troseth Andersen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Surgery, St. Olav's Hospital, Trondheim, Norway
- Department of Surgery, Namsos Hospital, Namsos, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Mathilde Resell
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Naris Pojskic
- Laboratory for Bioinformatics and Biostatistics, University of Sarajevo - Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | - Hanne-Line Rabben
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Synne Geithus
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Yosuke Kodama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tomita Hiroyuki
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jon Erik Grønbech
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Surgery, St. Olav's Hospital, Trondheim, Norway
| | - Yoku Hayakawa
- Department of Gastroenterology, Tokyo University Hospital, Tokyo, Japan
| | - Timothy C Wang
- Department of Digestive and Liver Diseases and Herbert Iring Comprehensive Cancer Center, Columbia University Medical Center, New York, USA
| | - Chun-Mei Zhao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Duan Chen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
3
|
Cao L, Weng K, Li L, Lin G, Zhao Y, Gao Y, Huang X, Chen Q, Wang J, Zheng C, Huang C, Xie J, Li P. BATF2 inhibits the stem cell-like properties and chemoresistance of gastric cancer cells through PTEN/AKT/β-catenin pathway. Theranostics 2024; 14:7007-7022. [PMID: 39629124 PMCID: PMC11610130 DOI: 10.7150/thno.98389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/23/2024] [Indexed: 12/06/2024] Open
Abstract
Background: Gastric cancer (GC) ranks as the fifth leading cause of cancer mortality, with cancer stem cells (CSCs) playing a critical role in tumor progression and resistance to chemotherapy. Conventional chemotherapy often fails to effectively target these stem cells. BATF2, a tumor suppressor, is known for its role in gastric cancer, but its influence on cancer stem cell-like properties and chemotherapy response remains unclear. Methods: Single-cell RNA sequencing (scRNA-seq) analysis was performed on 9 gastric cancer samples to evaluate the expression and regulatory function of BATF2. In vitro experiments involving cell cultures, tumor cell spheroids, and organoids were conducted to assess BATF2's impact on 5-Fu sensitivity and its interaction with drug transporters and signaling pathways. In vivo studies, including subcutaneous tumor formation assays, immunohistochemistry, and immunoblotting, were used to validate findings. Results: BATF2 was confirmed as a tumor suppressor in gastric cancer through scRNA-seq analysis. Elevated BATF2 expression correlated with improved outcomes from postoperative chemotherapy in GC patients and increased sensitivity to 5-Fu. BATF2 enhanced 5-Fu responsiveness by inhibiting the ABCG2 drug transporter and promoting PTEN stability, which suppressed AKT phosphorylation. This led to reduced nuclear β-catenin levels and decreased expression of stem cell markers CD44, SOX2, and NANOG, ultimately reducing chemoresistance and stem-like properties in GC cells. Conclusions: BATF2 plays a pivotal role in regulating stem-like characteristics and chemoresistance in gastric cancer through the BATF2/PTEN/AKT/ABCG2 pathway. These findings suggest a novel therapeutic strategy targeting BATF2 to enhance chemotherapy effectiveness in gastric cancer treatment.
Collapse
Affiliation(s)
- Longlong Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Kai Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Lujie Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Guangtan Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Yuxuan Zhao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Youxin Gao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Xiaobo Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Jiabin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Chaohui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Jianwei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P. R. China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350001, P. R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P. R. China
| |
Collapse
|
4
|
Li N, Chen S, Xu X, Wang H, Zheng P, Fei X, Ke H, Lei Y, Zhou Y, Yang X, Ouyang Y, Xie C, He C, Hu Y, Cao Y, Li Z, Xie Y, Ge Z, Shu X, Lu N, Liu J, Zhu Y. Single-cell transcriptomic profiling uncovers cellular complexity and microenvironment in gastric tumorigenesis associated with Helicobacter pylori. J Adv Res 2024:S2090-1232(24)00466-1. [PMID: 39414226 DOI: 10.1016/j.jare.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) infection is the main risk for gastric cancer (GC). However, the cellular heterogeneity and underlying molecular mechanisms in H. pylori-driven gastric tumorigenesis are poorly understood. OBJECTIVE Here, we generated a single-cell atlas of gastric tumorigenesis comprising 18 specimens of gastritis, gastric intestinal metaplasia (IM) and GC with or without H. pylori infection. METHODS Single-cell RNA sequencing (scRNA-seq) was performed. Immunofluorescence, immunohistochemistry and qRT-PCR analysis were applied in a second human gastric tissues cohort for validation. Bioinformatics analyses of public TCGA and GEO datasets were applied. RESULTS Single-cell RNA profile highlights cellular heterogeneity and alterations in tissue ecology throughout the progression of gastric carcinoma. Various cell lineages exhibited unique cancer-associated expression profiles, such as tumor-like epithelial cell subset (EPC), inflammatory cancer-associated fibroblasts (iCAFs) and Tumor-associated macrophage (TAM). Notably, we revealed that the specific epithelial subset enterocytes from the precancerous lesion GIM, exhibited elevated expression of genes related to lipid metabolism, and HNF4G was predicted as its specific transcription factor. Furthermore, we identified differentially expressed genes in H. pylori-positive and negative epithelial cells, fibroblasts and myeloid cells were identified. Futhermore, H. pylori-positive specimens exhibited enriched cell-cell communication, characterized by significantly active TNF, SPP1, and THY1 signaling networks. CONCLUSIONS Our study provides a comprehensive landscape of the gastric carcinogenesis ecosystem and novel insights into the molecular mechanisms of different cell types in H. pylori-induced GC.
Collapse
Affiliation(s)
- Nianshuang Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Sihai Chen
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Pan Zheng
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Fei
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huajing Ke
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuting Lei
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanan Zhou
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyu Yang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yaobin Ouyang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Cong He
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Hu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Cao
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhengrong Li
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yong Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xu Shu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nonghua Lu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Jianping Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Yin Zhu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Huang XB, Huang Q, Jiang MC, Zhong Q, Zheng HL, Wang JB, Huang ZN, Wang HG, Liu ZY, Li YF, Xu KX, Lin M, Li P, Huang ZH, Xie JW, Lin JX, Lu J, Que JW, Zheng CH, Chen QY, Huang CM. KLHL21 suppresses gastric tumourigenesis via maintaining STAT3 signalling equilibrium in stomach homoeostasis. Gut 2024; 73:1785-1798. [PMID: 38969490 DOI: 10.1136/gutjnl-2023-331111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE Precancerous metaplasia transition to dysplasia poses a risk for subsequent intestinal-type gastric adenocarcinoma. However, the molecular basis underlying the transformation from metaplastic to cancerous cells remains poorly understood. DESIGN An integrated analysis of genes associated with metaplasia, dysplasia was conducted, verified and characterised in the gastric tissues of patients by single-cell RNA sequencing and immunostaining. Multiple mouse models, including homozygous conditional knockout Klhl21-floxed mice, were generated to investigate the role of Klhl21 deletion in stemness, DNA damage and tumour formation. Mass-spectrometry-based proteomics and ribosome sequencing were used to elucidate the underlying molecular mechanisms. RESULTS Kelch-like protein 21 (KLHL21) expression progressively decreased in metaplasia, dysplasia and cancer. Genetic deletion of Klhl21 enhances the rapid proliferation of Mist1+ cells and their descendant cells. Klhl21 loss during metaplasia facilitates the recruitment of damaged cells into the cell cycle via STAT3 signalling. Increased STAT3 activity was confirmed in cancer cells lacking KLHL21, boosting self-renewal and tumourigenicity. Mechanistically, the loss of KLHL21 promotes PIK3CB mRNA translation by stabilising the PABPC1-eIF4G complex, subsequently causing STAT3 activation. Pharmacological STAT3 inhibition by TTI-101 elicited anticancer effects, effectively impeding the transition from metaplasia to dysplasia. In patients with gastric cancer, low levels of KLHL21 had a shorter survival rate and a worse response to adjuvant chemotherapy. CONCLUSIONS Our findings highlighted that KLHL21 loss triggers STAT3 reactivation through PABPC1-mediated PIK3CB translational activation, and targeting STAT3 can reverse preneoplastic metaplasia in KLHL21-deficient stomachs.
Collapse
Affiliation(s)
- Xiao-Bo Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Qiang Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Mei-Chen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qing Zhong
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Hua-Long Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Ze-Ning Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Hua-Gen Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Zhi-Yu Liu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Yi-Fan Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Kai-Xiang Xu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Zhi-Hong Huang
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Jian-Wen Que
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fujian, China
| |
Collapse
|
6
|
Yang YC, Ho KH, Pan KF, Hua KT, Tung MC, Ku CC, Chen JQ, Hsiao M, Chen CL, Lee WJ, Chien MH. ESM1 facilitates the EGFR/HER3-triggered epithelial-to-mesenchymal transition and progression of gastric cancer via modulating interplay between Akt and angiopoietin-2 signaling. Int J Biol Sci 2024; 20:4819-4837. [PMID: 39309430 PMCID: PMC11414391 DOI: 10.7150/ijbs.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Gastric cancer (GC) poses global challenges due to its difficult early diagnosis and drug resistance, necessitating the identification of early detection markers and understanding of oncogenic pathways for effective GC therapy. Endothelial cell-specific molecule 1 (ESM1), a secreted glycoprotein, is elevated in various cancers, but its role in GC remains controversial. In our study, ESM1 was elevated in GC tissues, and its concentration was correlated with progression and poorer patient prognosis in independent cohorts. Functionally, ESM1 expression promoted proliferation, anoikis resistance, and motility of GC cells, as well as tumor growth in PDOs and in GC xenograft models. Mechanistically, ESM1 expression triggered the epithelial-to-mesenchymal transition (EMT) of GC cells by enhancing epidermal growth factor receptor (EGFR)/human EGFR 3 (HER3) association and activating the EGFR/HER3-Akt pathway. Additionally, angiopoietin-2 (ANGPT2) was found to be highly correlated with ESM1 and interplayed with Akt to induce the EMT and cancer progression. Use of a signal peptide deletion mutant (ESM1-19del) showed that the secreted form of ESM1 is crucial for its protumorigenic effects by activating the EGFR/HER3-Akt/ANGPT2 pathway to promote the EMT. Patients with high levels of both ESM1 and ANGPT2 had the poorest prognoses. Furthermore, therapeutic peptides successfully inhibited ESM1's induction of the aforementioned signals and motility of GC cells. ESM1's oncogenic role in GC involves activating the EGFR/HER3-Akt/ANGPT2 pathway, presenting a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ko-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ke-Fan Pan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Min-Che Tung
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ji-Qing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Cancer Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Long Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Taipei Medical University Hospital and College of Medicine, Taipei Medical University Taipei, Taiwan
| | - Wei-Jiunn Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taiwan
| |
Collapse
|
7
|
Arai J, Hayakawa Y, Tateno H, Fujiwara H, Kasuga M, Fujishiro M. The role of gastric mucins and mucin-related glycans in gastric cancers. Cancer Sci 2024; 115:2853-2861. [PMID: 39031976 PMCID: PMC11463072 DOI: 10.1111/cas.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
Gastric mucins serve as a protective barrier on the stomach's surface, protecting from external stimuli including gastric acid and gut microbiota. Their composition typically changes in response to the metaplastic sequence triggered by Helicobacter pylori infection. This alteration in gastric mucins is also observed in cases of gastric cancer, although the precise connection between mucin expressions and gastric carcinogenesis remains uncertain. This review first introduces the relationship between mucin expressions and gastric metaplasia or cancer observed in humans and mice. Additionally, we discuss potential pathogenic mechanisms of how aberrant mucins and their glycans affect gastric carcinogenesis. Finally, we summarize challenges to target tumor-specific glycans by utilizing lectin-drug conjugates that can bind to specific glycans. Understanding the correlation and mechanism between these mucin expressions and gastric carcinogenesis could pave the way for new strategies in gastric cancer treatment.
Collapse
Affiliation(s)
- Junya Arai
- Division of Gastroenterology, The Institute for Medical ScienceAsahi Life FoundationChuo‐ku, TokyoJapan
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Hiroaki Fujiwara
- Division of Gastroenterology, The Institute for Medical ScienceAsahi Life FoundationChuo‐ku, TokyoJapan
| | - Masato Kasuga
- The Institute for Medical ScienceAsahi Life FoundationChuo‐ku, TokyoJapan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| |
Collapse
|
8
|
Arai J, Hayakawa Y, Tateno H, Murakami K, Hayashi T, Hata M, Matsushita Y, Kinoshita H, Abe S, Kurokawa K, Oya Y, Tsuboi M, Ihara S, Niikura R, Suzuki N, Iwata Y, Shiokawa T, Shiomi C, Uekura C, Yamamoto K, Fujiwara H, Kawamura S, Nakagawa H, Mizuno S, Kudo T, Takahashi S, Ushiku T, Hirata Y, Fujii C, Nakayama J, Shibata S, Woods S, Worthley DL, Hatakeyama M, Wang TC, Fujishiro M. Impaired Glycosylation of Gastric Mucins Drives Gastric Tumorigenesis and Serves as a Novel Therapeutic Target. Gastroenterology 2024; 167:505-521.e19. [PMID: 38583723 DOI: 10.1053/j.gastro.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND & AIMS Gastric cancer is often accompanied by a loss of mucin 6 (MUC6), but its pathogenic role in gastric carcinogenesis remains unclear. METHODS Muc6 knockout (Muc6-/-) mice and Muc6-dsRED mice were newly generated. Tff1Cre, Golph3-/-, R26-Golgi-mCherry, Hes1flox/flox, Cosmcflox/flox, and A4gnt-/- mice were also used. Histology, DNA and RNA, proteins, and sugar chains were analyzed by whole-exon DNA sequence, RNA sequence, immunohistochemistry, lectin-binding assays, and liquid chromatography-mass spectrometry analysis. Gastric organoids and cell lines were used for in vitro assays and xenograft experiments. RESULTS Deletion of Muc6 in mice spontaneously causes pan-gastritis and invasive gastric cancers. Muc6-deficient tumor growth was dependent on mitogen-activated protein kinase activation, mediated by Golgi stress-induced up-regulation of Golgi phosphoprotein 3. Glycomic profiling revealed aberrant expression of mannose-rich N-linked glycans in gastric tumors, detected with banana lectin in association with lack of MUC6 expression. We identified a precursor of clusterin as a binding partner of mannose glycans. Mitogen-activated protein kinase activation, Golgi stress responses, and aberrant mannose expression are found in separate Cosmc- and A4gnt-deficient mouse models that lack normal O-glycosylation. Banana lectin-drug conjugates proved an effective treatment for mannose-rich murine and human gastric cancer. CONCLUSIONS We propose that Golgi stress responses and aberrant glycans are important drivers of and promising new therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Junya Arai
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Division of Gastroenterology, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | - Keita Murakami
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takeru Hayashi
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Masahiro Hata
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuki Matsushita
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroto Kinoshita
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Sohei Abe
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ken Kurokawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yukiko Oya
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Sozaburo Ihara
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ryota Niikura
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yusuke Iwata
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiro Shiokawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chihiro Shiomi
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chie Uekura
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Division of Gastroenterology, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Satoshi Kawamura
- Department of Gastroenterology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Laboratory Animal Science, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Hirata
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan; Department of Biotechnology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Susan Woods
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan; Center of Infection-Associated Cancer, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, New York
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Hu R, Xue X, Sun X, Mi Y, Wen H, Xi H, Li F, Zheng P, Liu S. Revealing the role of metformin in gastric intestinal metaplasia treatment. Front Pharmacol 2024; 15:1340309. [PMID: 39101145 PMCID: PMC11294171 DOI: 10.3389/fphar.2024.1340309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Objective Gastric intestinal metaplasia (IM) is a precancerous stage associated with gastric cancer. Despite the observed beneficial effects of metformin on IM, its molecular mechanism remains not fully elucidated. This study aims to reveal the effects and potential mechanisms of metformin in treating IM based on both bioinformatics and in vivo investigations. Methods The seven public databases (GeneCards, DisGeNET, OMIM, SuperPred, Pharm Mapper, Swiss Target Prediction, TargetNet) were used in this work to identify targeted genes related to intestinal metaplasia (IM) and metformin. The shared targeted genes between metformin and IM were further analyzed by network pharmacology, while the interactions in-between were investigated by molecular docking. In parallel, the therapeutic effect of metformin was evaluated in IM mice model, while the core targets and pathways effected by metformin were verified in vivo. Results We screened out 1,751 IM-related genes and 318 metformin-targeted genes, 99 common genes identified in between were visualized by constructing the protein-protein interaction (PPI) network. The top ten core targeted genes were EGFR, MMP9, HIF1A, HSP90AA1, SIRT1, IL2, MAPK8, STAT1, PIK3CA, and ICAM1. The functional enrichment analysis confirmed that carcinogenesis and HIF-1 signaling pathways were primarily involved in the metformin treatment of IM. Based on molecular docking and dynamics, we found metformin affected the function of its targets by inhibiting receptor binding. Furthermore, metformin administration reduced the progression of IM lesions in Atp4a-/- mice model significantly. Notably, metformin enhanced the expression level of MUC5AC, while inhibited the expression level of CDX2. Our results also showed that metformin modulated the expression of core targets in vivo by reducing the activity of NF-κB and the PI3K/AKT/mTOR/HIF-1α signaling pathway. Conclusion This study confirms that metformin improves the efficacy of IM treatment by regulating a complex molecular network. Metformin plays a functional role in inhibiting inflammation/apoptosis-related pathways of further IM progression. Our work provides a molecular foundation for understanding metformin and other guanidine medicines in IM treatment.
Collapse
Affiliation(s)
- Ruoyu Hu
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangdong Sun
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huijuan Wen
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huayuan Xi
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fuhao Li
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Simeng Liu
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Zhang W, Wang S, Zhang H, Meng Y, Jiao S, An L, Zhou Z. Modeling human gastric cancers in immunocompetent mice. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0124. [PMID: 38940675 PMCID: PMC11271222 DOI: 10.20892/j.issn.2095-3941.2024.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Gastric cancer (GC) is a major cause of cancer-related mortality worldwide. GC is determined by multiple (epi)genetic and environmental factors; can occur at distinct anatomic positions of the stomach; and displays high heterogeneity, with different cellular origins and diverse histological and molecular features. This heterogeneity has hindered efforts to fully understand the pathology of GC and develop efficient therapeutics. In the past decade, great progress has been made in the study of GC, particularly in molecular subtyping, investigation of the immune microenvironment, and defining the evolutionary path and dynamics. Preclinical mouse models, particularly immunocompetent models that mimic the cellular and molecular features of human GC, in combination with organoid culture and clinical studies, have provided powerful tools for elucidating the molecular and cellular mechanisms underlying GC pathology and immune evasion, and the development of novel therapeutic strategies. Herein, we first briefly introduce current progress and challenges in GC study and subsequently summarize immunocompetent GC mouse models, emphasizing the potential application of genetically engineered mouse models in antitumor immunity and immunotherapy studies.
Collapse
Affiliation(s)
- Weihong Zhang
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shilong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Meng
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liwei An
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
11
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
12
|
Malagola E, Vasciaveo A, Ochiai Y, Kim W, Zheng B, Zanella L, Wang ALE, Middelhoff M, Nienhüser H, Deng L, Wu F, Waterbury QT, Belin B, LaBella J, Zamechek LB, Wong MH, Li L, Guha C, Cheng CW, Yan KS, Califano A, Wang TC. Isthmus progenitor cells contribute to homeostatic cellular turnover and support regeneration following intestinal injury. Cell 2024; 187:3056-3071.e17. [PMID: 38848678 PMCID: PMC11164536 DOI: 10.1016/j.cell.2024.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/15/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
The currently accepted intestinal epithelial cell organization model proposes that Lgr5+ crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5+ cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling. These studies, combined with in vivo lineage tracing, show that Lgr5 is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury. Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.
Collapse
Affiliation(s)
- Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Woosook Kim
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Biyun Zheng
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Gastroenterology, Fujian Medical University Union Hospital, Fujian 350000, China
| | - Luca Zanella
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Alexander L E Wang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Henrik Nienhüser
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Lu Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66107, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Quin T Waterbury
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Bryana Belin
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Jonathan LaBella
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Leah B Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Melissa H Wong
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, L215, Portland, OR, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66107, USA
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Chia-Wei Cheng
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Kelley S Yan
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Chan Zuckerberg Biohub NY, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA; Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
13
|
Abstract
All cancers arise from normal cells whose progeny acquire the cancer-initiating mutations and epigenetic modifications leading to frank tumorigenesis. The identity of those "cells-of-origin" has historically been a source of controversy across tumor types, as it has not been possible to witness the dynamic events giving rise to human tumors. Genetically engineered mouse models (GEMMs) of cancer provide an invaluable substitute, enabling researchers to interrogate the competence of various naive cellular compartments to initiate tumors in vivo. Researchers using these models have relied on lineage-specific promoters, knowledge of preneoplastic disease states in humans, and technical advances allowing more precise manipulations of the mouse germline. These approaches have given rise to the emerging view that multiple lineages within a given organ may generate tumors with similar histopathology. Here, we review some of the key studies leading to this conclusion in solid tumors and highlight the biological and clinical ramifications.
Collapse
Affiliation(s)
- Jason R Pitarresi
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Huang H, Jiang Y, Liu J, Luo D, Yuan J, Mu R, Yu X, Sun D, Lin J, Chen Q, Li X, Jiang M, Xu J, Chu B, Yin C, Zhang L, Ye Y, Cao B, Wang Q, Zhang Y. Jag1/2 maintain esophageal homeostasis and suppress foregut tumorigenesis by restricting the basal progenitor cell pool. Nat Commun 2024; 15:4124. [PMID: 38750026 PMCID: PMC11096375 DOI: 10.1038/s41467-024-48347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Basal progenitor cells are crucial for maintaining foregut (the esophagus and forestomach) homeostasis. When their function is dysregulated, it can promote inflammation and tumorigenesis. However, the mechanisms underlying these processes remain largely unclear. Here, we employ genetic mouse models to reveal that Jag1/2 regulate esophageal homeostasis and foregut tumorigenesis by modulating the function of basal progenitor cells. Deletion of Jag1/2 in mice disrupts esophageal and forestomach epithelial homeostasis. Mechanistically, Jag1/2 deficiency impairs activation of Notch signaling, leading to reduced squamous epithelial differentiation and expansion of basal progenitor cells. Moreover, Jag1/2 deficiency exacerbates the deoxycholic acid (DCA)-induced squamous epithelial injury and accelerates the initiation of squamous cell carcinoma (SCC) in the forestomach. Importantly, expression levels of JAG1/2 are lower in the early stages of human esophageal squamous cell carcinoma (ESCC) carcinogenesis. Collectively, our study demonstrates that Jag1/2 are important for maintaining esophageal and forestomach homeostasis and the onset of foregut SCC.
Collapse
Affiliation(s)
- Haidi Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yu Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jiangying Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Dan Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jianghong Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Rongzi Mu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiang Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Donglei Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
| | - Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, PR China
| | - Xinjing Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ming Jiang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, Zhejiang, PR China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Chengqian Yin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, PR China
| | - Lei Zhang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, Guangdong, PR China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, PR China
| | - Youqiong Ye
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Bo Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qiong Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
15
|
Lin YC, Ku CC, Wuputra K, Liu CJ, Wu DC, Satou M, Mitsui Y, Saito S, Yokoyama KK. Possible Strategies to Reduce the Tumorigenic Risk of Reprogrammed Normal and Cancer Cells. Int J Mol Sci 2024; 25:5177. [PMID: 38791215 PMCID: PMC11120835 DOI: 10.3390/ijms25105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The reprogramming of somatic cells to pluripotent stem cells has immense potential for use in regenerating or redeveloping tissues for transplantation, and the future application of this method is one of the most important research topics in regenerative medicine. These cells are generated from normal cells, adult stem cells, or neoplastic cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, and NANOG, and can differentiate into all tissue types in adults, both in vitro and in vivo. However, tumorigenicity, immunogenicity, and heterogeneity of cell populations may hamper the use of this method in medical therapeutics. The risk of cancer formation is dependent on mutations of these stemness genes during the transformation of pluripotent stem cells to cancer cells and on the alteration of the microenvironments of stem cell niches at genetic and epigenetic levels. Recent reports have shown that the generation of induced pluripotent stem cells (iPSCs) derived from human fibroblasts could be induced using chemicals, which is a safe, easy, and clinical-grade manufacturing strategy for modifying the cell fate of human cells required for regeneration therapies. This strategy is one of the future routes for the clinical application of reprogramming therapy. Therefore, this review highlights the recent progress in research focused on decreasing the tumorigenic risk of iPSCs or iPSC-derived organoids and increasing the safety of iPSC cell preparation and their application for therapeutic benefits.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cha-Chien Ku
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Maki Satou
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Yukio Mitsui
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Shigeo Saito
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
- Saito Laboratory of Cell Technology, Yaita 329-1571, Tochigi, Japan
| | - Kazunari K. Yokoyama
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
16
|
Li K, Ma X, Li Z, Liu Y, Shen G, Luo Z, Wang D, Xia L, Wang Z, Tian M, Liu H, Geng F, Li B. A Natural Peptide from A Traditional Chinese Medicine Has the Potential to Treat Chronic Atrophic Gastritis by Activating Gastric Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304326. [PMID: 38544338 PMCID: PMC11132046 DOI: 10.1002/advs.202304326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/08/2024] [Indexed: 05/29/2024]
Abstract
Chronic atrophic gastritis (AG) is initiated mainly by Helicobacter pylori infection, which may progress to stomach cancer following the Correa's cascade. The current treatment regimen is H. pylori eradication, yet evidence is lacking that this treatment is effective on later stages of AG especially gastric gland atrophy. Here, using AG mouse model, patient samples, gastric organoids, and lineage tracing, this study unraveled gastric stem cell (GSC) defect as a crucial pathogenic factor in AG in mouse and human. Moreover, a natural peptide is isolated from a traditional Chinese medicine that activated GSCs to regenerate gastric epithelia in experimental AG models and revitalized the atrophic gastric organoids derived from patients. It is further shown that the peptide exerts its functions by stabilizing the EGF-EGFR complex and specifically activating the downstream ERK and Stat1 signaling. Overall, these findings advance the understanding of AG pathogenesis and open a new avenue for AG treatment.
Collapse
Affiliation(s)
- Ke Li
- Institute of Traditional Chinese Medicine and Stem Cell ResearchCollege of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengdu611137China
- Bio‐X InstitutesShanghai Jiao Tong UniversityShanghai200240China
| | - Xiuying Ma
- Sichuan Engineering Research Center for Medicinal AnimalsSichuan Good Doctor Panxi Pharmaceutical Co., LtdChengdu610000China
| | - Zihao Li
- Bio‐X InstitutesShanghai Jiao Tong UniversityShanghai200240China
| | - Ya Liu
- Institute of Traditional Chinese Medicine and Stem Cell ResearchCollege of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Guiyan Shen
- Institute of Traditional Chinese Medicine and Stem Cell ResearchCollege of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Zecheng Luo
- Institute of Traditional Chinese Medicine and Stem Cell ResearchCollege of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Dong Wang
- Institute of Traditional Chinese Medicine and Stem Cell ResearchCollege of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Li Xia
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhengting Wang
- Department of GastroenterologyRuijin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Ming Tian
- Department of BurnRuijin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Huijuan Liu
- Bio‐X InstitutesShanghai Jiao Tong UniversityShanghai200240China
| | - Funeng Geng
- Sichuan Engineering Research Center for Medicinal AnimalsSichuan Good Doctor Panxi Pharmaceutical Co., LtdChengdu610000China
| | - Baojie Li
- Institute of Traditional Chinese Medicine and Stem Cell ResearchCollege of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengdu611137China
- Bio‐X InstitutesShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
17
|
de Boer RJ, van Lidth de Jeude JF, Heijmans J. ER stress and the unfolded protein response in gastrointestinal stem cells and carcinogenesis. Cancer Lett 2024; 587:216678. [PMID: 38360143 DOI: 10.1016/j.canlet.2024.216678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Endoplasmic reticulum (ER) stress and the adaptive response that follows, termed the unfolded protein response (UPR), are crucial molecular mechanisms to maintain cellular integrity by safeguarding proper protein synthesis. Next to being important in protein homeostasis, the UPR is intricate in cell fate decisions such as proliferation, differentiation, and stemness. In the intestine, stem cells are critical in governing epithelial homeostasis and they are the cell of origin of gastrointestinal malignancies. In this review, we will discuss the role of ER stress and the UPR in the gastrointestinal tract, focusing on stem cells and carcinogenesis. Insights in mechanisms that connect ER stress and UPR with stemness and carcinogenesis may broaden our understanding in the development of cancer throughout the gastrointestinal tract and how we can exploit these mechanisms to target these malignancies.
Collapse
Affiliation(s)
- Ruben J de Boer
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Jooske F van Lidth de Jeude
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Jarom Heijmans
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Department of General Internal Medicine and Department of Hematology, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Zhi X, Wu F, Qian J, Ochiai Y, Lian G, Malagola E, Chen D, Ryeom SW, Wang TC. Nociceptive neurons interact directly with gastric cancer cells via a CGRP/Ramp1 axis to promote tumor progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583209. [PMID: 38496544 PMCID: PMC10942283 DOI: 10.1101/2024.03.04.583209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cancer cells have been shown to exploit neurons to modulate their survival and growth, including through establishment of neural circuits within the central nervous system (CNS) 1-3 . Here, we report a distinct pattern of cancer-nerve interactions between the peripheral nervous system (PNS) and gastric cancer (GC). In multiple GC mouse models, nociceptive nerves demonstrated the greatest degree of nerve expansion in an NGF-dependent manner. Neural tracing identified CGRP+ peptidergic neurons as the primary gastric sensory neurons. Three-dimensional co-culture models showed that sensory neurons directly connect with gastric cancer spheroids through synapse-like structures. Chemogenetic activation of sensory neurons induced the release of calcium into the cytoplasm of cancer cells, promoting tumor growth and metastasis. Pharmacological ablation of sensory neurons or treatment with CGRP inhibitors suppressed tumor growth and extended survival. Depolarization of gastric tumor membranes through in vivo optogenetic activation led to enhanced calcium flux in nodose ganglia and CGRP release, defining a cancer cell-peptidergic neuronal circuit. Together, these findings establish the functional connectivity between cancer and sensory neurons, identifying this pathway as a potential therapeutic target.
Collapse
|
19
|
Jiang Y, Huang H, Liu J, Luo D, Mu R, Yuan J, Lin J, Chen Q, Tao W, Yang L, Zhang M, Zhang P, Fang F, Xu J, Gong Q, Xie Z, Zhang Y. Hippo cooperates with p53 to maintain foregut homeostasis and suppress the malignant transformation of foregut basal progenitor cells. Proc Natl Acad Sci U S A 2024; 121:e2320559121. [PMID: 38408237 PMCID: PMC10927585 DOI: 10.1073/pnas.2320559121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Basal progenitor cells serve as a stem cell pool to maintain the homeostasis of the epithelium of the foregut, including the esophagus and the forestomach. Aberrant genetic regulation in these cells can lead to carcinogenesis, such as squamous cell carcinoma (SCC). However, the underlying molecular mechanisms regulating the function of basal progenitor cells remain largely unknown. Here, we use mouse models to reveal that Hippo signaling is required for maintaining the homeostasis of the foregut epithelium and cooperates with p53 to repress the initiation of foregut SCC. Deletion of Mst1/2 in mice leads to epithelial overgrowth in both the esophagus and forestomach. Further molecular studies find that Mst1/2-deficiency promotes epithelial growth by enhancing basal cell proliferation in a Yes-associated protein (Yap)-dependent manner. Moreover, Mst1/2 deficiency accelerates the onset of foregut SCC in a carcinogen-induced foregut SCC mouse model, depending on Yap. Significantly, a combined deletion of Mst1/2 and p53 in basal progenitor cells sufficiently drives the initiation of foregut SCC. Therefore, our studies shed light on the collaborative role of Hippo signaling and p53 in maintaining squamous epithelial homeostasis while suppressing malignant transformation of basal stem cells within the foregut.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Haidi Huang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiangying Liu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Dan Luo
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Rongzi Mu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jianghong Yuan
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, China
| | - Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou350001, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai200433, China
| | - Ling Yang
- Clinical Medical Research Center of The Affiliated Hospital and Inner Mongolia Key Laboratory of Medical Cellular Biology, Inner Mongolia Medical University, Hohhot010050, China
| | - Man Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou510120, China
| | - Pingping Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Fengqin Fang
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200336, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
20
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Shiokawa D, Sakai H, Koizumi M, Okimoto Y, Mori Y, Kanda Y, Ohata H, Honda H, Okamoto K. Elevated stress response marks deeply quiescent reserve cells of gastric chief cells. Commun Biol 2023; 6:1183. [PMID: 37985874 PMCID: PMC10662433 DOI: 10.1038/s42003-023-05550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Gastrointestinal tract organs harbor reserve cells, which are endowed with cellular plasticity and regenerate functional units in response to tissue damage. However, whether the reserve cells in gastrointestinal tract exist as long-term quiescent cells remain incompletely understood. In the present study, we systematically examine H2b-GFP label-retaining cells and identify a long-term slow-cycling population in the gastric corpus but not in other gastrointestinal organs. The label-retaining cells, which reside near the basal layers of the corpus, comprise a subpopulation of chief cells. The identified quiescent cells exhibit induction of Atf4 and its target genes including Atf3, a marker of paligenosis, and activation of the unfolded protein response, but do not show elevated expression of Troy, Lgr5, or Mist. External damage to the gastric mucosa induced by indomethacin treatment triggers proliferation of the quiescent Atf4+ population, indicating that the gastric corpus harbors a specific cell population that is primed to facilitate stomach regeneration.
Collapse
Affiliation(s)
- Daisuke Shiokawa
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Ehime University Hospital Translational Research Center, Shitsukawa, Toon, 791-0295, Ehime, Japan
| | - Hiroaki Sakai
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women's Medical University, 81- Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan
| | - Yoshie Okimoto
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Yutaro Mori
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Yusuke Kanda
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Hirokazu Ohata
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women's Medical University, 81- Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan.
| | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan.
| |
Collapse
|
22
|
Fan H, Wu J, Yang K, Xiong C, Xiong S, Wu X, Fang Z, Zhu J, Huang J. Dietary regulation of intestinal stem cells in health and disease. Int J Food Sci Nutr 2023; 74:730-745. [PMID: 37758199 DOI: 10.1080/09637486.2023.2262780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Diet is a critical regulator for physiological metabolism and tissue homeostasis, with a close relation to health and disease. As an important organ for digestion and absorption, the intestine comes into direct contact with many dietary components. The rapid renewal of its mucosal epithelium depends on the continuous proliferation and differentiation of intestinal stem cells (ISCs). The function and metabolism of ISCs can be controlled by a variety of dietary patterns including calorie restriction, fasting, high-fat, ketogenic, and high-sugar diets, as well as different nutrients including vitamins, amino acids, dietary fibre, and probiotics. Therefore, dietary interventions targeting ISCs may make it possible to prevent and treat intestinal disorders such as colon cancer, inflammatory bowel disease, and radiation enteritis. This review summarised recent research on the role and mechanism of diet in regulating ISCs, and discussed the potential of dietary modulation for intestinal diseases.
Collapse
Affiliation(s)
- Hancheng Fan
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Siyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| |
Collapse
|
23
|
Yang Y, McCullough CG, Seninge L, Guo L, Kwon WJ, Zhang Y, Li NY, Gaddam S, Pan C, Zhen H, Torkelson J, Glass IA, Charville G, Que J, Stuart J, Ding H, Oro A. A Spatiotemporal and Machine-Learning Platform Accelerates the Manufacturing of hPSC-derived Esophageal Mucosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563664. [PMID: 37961271 PMCID: PMC10634774 DOI: 10.1101/2023.10.24.563664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Human pluripotent stem cell-derived tissue engineering offers great promise in designer cell-based personalized therapeutics. To harness such potential, a broader approach requires a deeper understanding of tissue-level interactions. We previously developed a manufacturing system for the ectoderm-derived skin epithelium for cell replacement therapy. However, it remains challenging to manufacture the endoderm-derived esophageal epithelium, despite both possessing similar stratified structure. Here we employ single cell and spatial technologies to generate a spatiotemporal multi-omics cell atlas for human esophageal development. We illuminate the cellular diversity, dynamics and signal communications for the developing esophageal epithelium and stroma. Using the machine-learning based Manatee, we prioritize the combinations of candidate human developmental signals for in vitro derivation of esophageal basal cells. Functional validation of the Manatee predictions leads to a clinically-compatible system for manufacturing human esophageal mucosa. Our approach creates a versatile platform to accelerate human tissue manufacturing for future cell replacement therapies to treat human genetic defects and wounds.
Collapse
|
24
|
Liu M, Liu Q, Zou Q, Li J, Chu Z, Xiang J, Chen WQ, Miao ZF, Wang B. The composition and roles of gastric stem cells in epithelial homeostasis, regeneration, and tumorigenesis. Cell Oncol (Dordr) 2023; 46:867-883. [PMID: 37010700 DOI: 10.1007/s13402-023-00802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
The epithelial lining of the stomach undergoes rapid turnover to preserve its structural and functional integrity, a process driven by long-lived stem cells residing in the antral and corpus glands. Several subpopulations of gastric stem cells have been identified and their phenotypic and functional diversities linked to spatiotemporal specification of stem cells niches. Here, we review the biological features of gastric stem cells at various locations of the stomach under homeostatic conditions, as demonstrated by reporter mice, lineage tracing, and single cell sequencing. We also review the role of gastric stem cells in epithelial regeneration in response to injury. Moreover, we discuss emerging evidence demonstrating that accumulation of oncogenic drivers or alteration of stemness signaling pathways in gastric stem cells promotes gastric cancer. Given a fundamental role of the microenvironment, this review highlights the role reprogramming of niche components and signaling pathways under pathological conditions in dictating stem cell fate. Several outstanding issues are raised, such as the relevance of stem cell heterogeneity and plasticity, and epigenetic regulatory mechanisms, to Helicobacter pylori infection-initiated metaplasia-carcinogenesis cascades. With the development of spatiotemporal genomics, transcriptomics, and proteomics, as well as multiplexed screening and tracing approaches, we anticipate that more precise definition and characterization of gastric stem cells, and the crosstalk with their niche will be delineated in the near future. Rational exploitation and proper translation of these findings may bring forward novel modalities for epithelial rejuvenation and cancer therapeutics.
Collapse
Affiliation(s)
- Meng Liu
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, P. R. China
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Qin Liu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Qiang Zou
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, P. R. China
| | - Jinyang Li
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Zhaole Chu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Junyu Xiang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Wei-Qing Chen
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, P. R. China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P. R. China.
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China.
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China.
- Jinfeng Laboratory, Chongqing, 401329, P. R. China.
| |
Collapse
|
25
|
Liu H, Wang X. Esophageal organoids: applications and future prospects. J Mol Med (Berl) 2023; 101:931-945. [PMID: 37380866 DOI: 10.1007/s00109-023-02340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Organoids have been developed in the last decade as a new research tool to simulate organ cell biology and disease. Compared to traditional 2D cell lines and animal models, experimental data based on esophageal organoids are more reliable. In recent years, esophageal organoids derived from multiple cell sources have been established, and relatively mature culture protocols have been developed. Esophageal inflammation and cancer are two directions of esophageal organoid modeling, and organoid models of esophageal adenocarcinoma, esophageal squamous cell carcinoma, and eosinophilic esophagitis have been established. The properties of esophageal organoids, which mimic the real esophagus, contribute to research in drug screening and regenerative medicine. The combination of organoids with other technologies, such as organ chips and xenografts, can complement the deficiencies of organoids and create entirely new research models that are more advantageous for cancer research. In this review, we will summarize the development of tumor and non-tumor esophageal organoids, the current application of esophageal organoids in disease modeling, regenerative medicine, and drug screening. We will also discuss the future prospects of esophageal organoids.
Collapse
Affiliation(s)
- Hongyuan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xianli Wang
- Shanghai Jiao Tong University, School of Public Health, Shanghai, 200025, China.
| |
Collapse
|
26
|
Takahashi-Kanemitsu A, Lu M, Knight CT, Yamamoto T, Hayashi T, Mii Y, Ooki T, Kikuchi I, Kikuchi A, Barker N, Susaki EA, Taira M, Hatakeyama M. The Helicobacter pylori CagA oncoprotein disrupts Wnt/PCP signaling and promotes hyperproliferation of pyloric gland base cells. Sci Signal 2023; 16:eabp9020. [PMID: 37463245 DOI: 10.1126/scisignal.abp9020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/24/2023] [Indexed: 07/20/2023]
Abstract
Helicobacter pylori strains that deliver the oncoprotein CagA into gastric epithelial cells are the major etiologic agents of upper gastric diseases including gastric cancer. CagA promotes gastric carcinogenesis through interactions with multiple host proteins. Here, we show that CagA also disrupts Wnt-dependent planar cell polarity (Wnt/PCP), which orients cells within the plane of an epithelium and coordinates collective cell behaviors such as convergent extension to enable epithelial elongation during development. Ectopic expression of CagA in Xenopus laevis embryos impaired gastrulation, neural tube formation, and axis elongation, processes driven by convergent extension movements that depend on the Wnt/PCP pathway. Mice specifically expressing CagA in the stomach epithelium had longer pyloric glands and mislocalization of the tetraspanin proteins VANGL1 and VANGL2 (VANGL1/2), which are critical components of Wnt/PCP signaling. The increased pyloric gland length was due to hyperproliferation of cells at the gland base, where Lgr5+ stem and progenitor cells reside, and was associated with fewer differentiated enteroendocrine cells. In cultured human gastric epithelial cells, the N terminus of CagA interacted with the C-terminal cytoplasmic tails of VANGL1/2, which impaired Wnt/PCP signaling by inducing the mislocalization of VANGL1/2 from the plasma membrane to the cytoplasm. Thus, CagA may contribute to the development of gastric cancer by subverting a Wnt/PCP-dependent mechanism that restrains pyloric gland stem cell proliferation and promotes enteroendocrine differentiation.
Collapse
Affiliation(s)
- Atsushi Takahashi-Kanemitsu
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mengxue Lu
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Christopher Takaya Knight
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Yamamoto
- Department of Biological Sciences, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yusuke Mii
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Takuya Ooki
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Ippei Kikuchi
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| | - Nick Barker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Division of Epithelial Stem Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa 924-1192, Japan
| | - Etsuo A Susaki
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
- Research Center of Microbial Carcinogenesis, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| |
Collapse
|
27
|
Juul NH, Yoon JK, Martinez MC, Rishi N, Kazadaeva YI, Morri M, Neff NF, Trope WL, Shrager JB, Sinha R, Desai TJ. KRAS(G12D) drives lepidic adenocarcinoma through stem-cell reprogramming. Nature 2023; 619:860-867. [PMID: 37468622 PMCID: PMC10423036 DOI: 10.1038/s41586-023-06324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.
Collapse
Affiliation(s)
- Nicholas H Juul
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jung-Ki Yoon
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Marina C Martinez
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Neha Rishi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yana I Kazadaeva
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Winston L Trope
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph B Shrager
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tushar J Desai
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Luo Y, Xiao JH. Inflammatory auxo-action in the stem cell division theory of cancer. PeerJ 2023; 11:e15444. [PMID: 37309372 PMCID: PMC10257902 DOI: 10.7717/peerj.15444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/01/2023] [Indexed: 06/14/2023] Open
Abstract
Acute inflammation is a beneficial response to the changes caused by pathogens or injuries that can eliminate the source of damage and restore homeostasis in damaged tissues. However, chronic inflammation causes malignant transformation and carcinogenic effects of cells through continuous exposure to pro-inflammatory cytokines and activation of inflammatory signaling pathways. According to the theory of stem cell division, the essential properties of stem cells, including long life span and self-renewal, make them vulnerable to accumulating genetic changes that can lead to cancer. Inflammation drives quiescent stem cells to enter the cell cycle and perform tissue repair functions. However, as cancer likely originates from DNA mutations that accumulate over time via normal stem cell division, inflammation may promote cancer development, even before the stem cells become cancerous. Numerous studies have reported that the mechanisms of inflammation in cancer formation and metastasis are diverse and complex; however, few studies have reviewed how inflammation affects cancer formation from the stem cell source. Based on the stem cell division theory of cancer, this review summarizes how inflammation affects normal stem cells, cancer stem cells, and cancer cells. We conclude that chronic inflammation leads to persistent stem cells activation, which can accumulate DNA damage and ultimately promote cancer. Additionally, inflammation not only facilitates the progression of stem cells into cancer cells, but also plays a positive role in cancer metastasis.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
29
|
Chen Q, Weng K, Lin M, Jiang M, Fang Y, Chung SSW, Huang X, Zhong Q, Liu Z, Huang Z, Lin J, Li P, El-Rifai W, Zaika A, Li H, Rustgi AK, Nakagawa H, Abrams JA, Wang TC, Lu C, Huang C, Que J. SOX9 Modulates the Transformation of Gastric Stem Cells Through Biased Symmetric Cell Division. Gastroenterology 2023; 164:1119-1136.e12. [PMID: 36740200 PMCID: PMC10200757 DOI: 10.1053/j.gastro.2023.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Transformation of stem/progenitor cells has been associated with tumorigenesis in multiple tissues, but stem cells in the stomach have been hard to localize. We therefore aimed to use a combination of several markers to better target oncogenes to gastric stem cells and understand their behavior in the initial stages of gastric tumorigenesis. METHODS Mouse models of gastric metaplasia and cancer by targeting stem/progenitor cells were generated and analyzed with techniques including reanalysis of single-cell RNA sequencing and immunostaining. Gastric cancer cell organoids were genetically manipulated with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) for functional studies. Cell division was determined by bromodeoxyuridine-chasing assay and the assessment of the orientation of the mitotic spindles. Gastric tissues from patients were examined by histopathology and immunostaining. RESULTS Oncogenic insults lead to expansion of SOX9+ progenitor cells in the mouse stomach. Genetic lineage tracing and organoid culture studies show that SOX9+ gastric epithelial cells overlap with SOX2+ progenitors and include stem cells that can self-renew and differentiate to generate all gastric epithelial cells. Moreover, oncogenic targeting of SOX9+SOX2+ cells leads to invasive gastric cancer in our novel mouse model (Sox2-CreERT;Sox9-loxp(66)-rtTA-T2A-Flpo-IRES-loxp(71);Kras(Frt-STOP-Frt-G12D);P53R172H), which combines Cre-loxp and Flippase-Frt genetic recombination systems. Sox9 deletion impedes the expansion of gastric progenitor cells and blocks neoplasia after Kras activation. Although Sox9 is not required for maintaining tissue homeostasis where asymmetric division predominates, loss of Sox9 in the setting of Kras activation leads to reduced symmetric cell division and effectively attenuates the Kras-dependent expansion of stem/progenitor cells. Similarly, Sox9 deletion in gastric cancer organoids reduces symmetric cell division, organoid number, and organoid size. In patients with gastric cancer, high levels of SOX9 are associated with recurrence and poor prognosis. CONCLUSION SOX9 marks gastric stem cells and modulates biased symmetric cell division, which appears to be required for the malignant transformation of gastric stem cells.
Collapse
Affiliation(s)
- Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Kai Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Ming Jiang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yinshan Fang
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Sanny S W Chung
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Xiaobo Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Qing Zhong
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zhiyu Liu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jianxian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Alexander Zaika
- Department of Surgery, University of Miami, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Haiyan Li
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anil K Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Julian A Abrams
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, People's Republic of China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
30
|
Gong J, Nirala NK, Chen J, Wang F, Gu P, Wen Q, Ip YT, Xiang Y. TrpA1 is a shear stress mechanosensing channel regulating intestinal stem cell proliferation in Drosophila. SCIENCE ADVANCES 2023; 9:eadc9660. [PMID: 37224252 PMCID: PMC10208578 DOI: 10.1126/sciadv.adc9660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Adult stem cells are essential for tissue maintenance and repair. Although genetic pathways for controlling adult stem cells are extensively investigated in various tissues, much less is known about how mechanosensing could regulate adult stem cells and tissue growth. Here, we demonstrate that shear stress sensing regulates intestine stem cell proliferation and epithelial cell number in adult Drosophila. Ca2+ imaging in ex vivo midguts shows that shear stress, but not other mechanical forces, specifically activates enteroendocrine cells among all epithelial cell types. This activation is mediated by transient receptor potential A1 (TrpA1), a Ca2+-permeable channel expressed in enteroendocrine cells. Furthermore, specific disruption of shear stress, but not chemical, sensitivity of TrpA1 markedly reduces proliferation of intestinal stem cells and midgut cell number. Therefore, we propose that shear stress may act as a natural mechanical stimulation to activate TrpA1 in enteroendocrine cells, which, in turn, regulates intestine stem cell behavior.
Collapse
Affiliation(s)
- Jiaxin Gong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K. Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiazhang Chen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Fei Wang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pengyu Gu
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
31
|
Levra Levron C, Watanabe M, Proserpio V, Piacenti G, Lauria A, Kaltenbach S, Tamburrini A, Nohara T, Anselmi F, Duval C, Elettrico L, Donna D, Conti L, Baev D, Natsuga K, Hagai T, Oliviero S, Donati G. Tissue memory relies on stem cell priming in distal undamaged areas. Nat Cell Biol 2023; 25:740-753. [PMID: 37081165 DOI: 10.1038/s41556-023-01120-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/28/2023] [Indexed: 04/22/2023]
Abstract
Epithelial cells that participated in wound repair elicit a more efficient response to future injuries, which is believed to be locally restricted. Here we show that cell adaptation resulting from a localized tissue damage has a wide spatial impact at a scale not previously appreciated. We demonstrate that a specific stem cell population, distant from the original injury, originates long-lasting wound memory progenitors residing in their own niche. Notably, these distal memory cells have not taken part in the first healing but become intrinsically pre-activated through priming. This cell state, maintained at the chromatin and transcriptional level, leads to an enhanced wound repair that is partially recapitulated through epigenetic perturbation. Importantly wound memory has long-term harmful consequences, exacerbating tumourigenesis. Overall, we show that sub-organ-scale adaptation to injury relies on spatially organized memory-dedicated progenitors, characterized by an actionable cell state that establishes an epigenetic field cancerization and predisposes to tumour onset.
Collapse
Affiliation(s)
- Chiara Levra Levron
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Mika Watanabe
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Valentina Proserpio
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Gabriele Piacenti
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Andrea Lauria
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Stefan Kaltenbach
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Annalaura Tamburrini
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Takuma Nohara
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Francesca Anselmi
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Carlotta Duval
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Luca Elettrico
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Daniela Donna
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
| | - Laura Conti
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Denis Baev
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy
- Italian Institute for Genomic Medicine, Candiolo (TO), Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy.
- Molecular Biotechnology Center 'Guido Tarone', University of Turin, Torino, Italy.
| |
Collapse
|
32
|
Wang Q, Qin Y, Li B. CD8 + T cell exhaustion and cancer immunotherapy. Cancer Lett 2023; 559:216043. [PMID: 36584935 DOI: 10.1016/j.canlet.2022.216043] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Immunotherapy plays an increasingly important role in the treatment of most malignant tumors, and CD8+ T cells are the most important antitumor effector cells in the process of immunotherapy, and their number and functional status largely determine the antitumor effect. However, under continuous antigen exposure and the stimulation of inflammatory factors, CD8+ T cells gradually show a weakened proliferation and effector function, accompanied by the expression of a variety of inhibitory receptors. This state is known as CD8+ T cell "exhaustion" and often leads to the loss of control and progression of tumors. Recent studies provided us a better understanding of the mechanisms of T cell exhaustion, this review provides an overview of the activation, exhaustion mechanisms and exhaustion characteristics of CD8+ T cells. Although immunotherapy can reverse the exhaustion of CD8+ T cells and significantly improve the antitumor effects, single immunotherapy often has limitations, and it is difficult to achieve satisfactory antitumor effects, therefore, this review also summarizes up-to-date information related to cancer immunotherapy, and these emerging insights provide promising clues to the future management of malignant tumors.
Collapse
Affiliation(s)
- Qingda Wang
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, Chengdu, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, Chengdu, China.
| |
Collapse
|
33
|
Niikura R, Hayakawa Y, Nagata N, Miyoshi-Akiayama T, Miyabayashi K, Tsuboi M, Suzuki N, Hata M, Arai J, Kurokawa K, Abe S, Uekura C, Miyoshi K, Ihara S, Hirata Y, Yamada A, Fujiwara H, Ushiku T, Woods SL, Worthley DL, Hatakeyama M, Han YW, Wang TC, Kawai T, Fujishiro M. Non- Helicobacter pylori Gastric Microbiome Modulates Prooncogenic Responses and Is Associated With Gastric Cancer Risk. GASTRO HEP ADVANCES 2023; 2:684-700. [PMID: 39129877 PMCID: PMC11307406 DOI: 10.1016/j.gastha.2023.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/08/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Although Helicobacter pylori is the most important bacterial carcinogen in gastric cancer (GC), GC can emerge even after H. pylori eradication. Studies suggest that various constituents of the gastric microbiome may influence GC development, but the role of individual pathogens is unclear. Methods Human gastric mucosal samples were analyzed by 16SrRNA sequencing to investigate microbiome composition and its association with clinical parameters, including GC risk. Identified bacteria in the stomach were cocultured with gastric epithelial cells or inoculated into mice, and transcriptomic changes, DNA damage, and inflammation were analyzed. Bacterial reads in GC tissues were examined together with transcriptomic and genetic sequencing data in the cancer genome atlas dataset. Results Patients after Helicobacter pylori eradication formed 3 subgroups based on the microbial composition revealed by 16SrRNA sequencing. One dysbiotic group enriched with Fusobacterium and Neisseria species was associated with a significantly higher GC incidence. These species activated prooncogenic pathways in gastric epithelial cells and promoted inflammation in mouse stomachs. Sugar chains that constitute gastric mucin attenuate host-bacteria interactions. Metabolites from Fusobacterium species were genotoxic, and the presence of the bacteria was associated with an inflammatory signature and a higher tumor mutation burden. Conclusion Gastric microbiota in the dysbiotic stomach is associated with GC development after H. pylori eradication and plays a pathogenic role through direct host-bacteria interaction.
Collapse
Affiliation(s)
- Ryota Niikura
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
- Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Naoyoshi Nagata
- Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Tohru Miyoshi-Akiayama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Koji Miyabayashi
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Hata
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Junya Arai
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Ken Kurokawa
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Sohei Abe
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Chie Uekura
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Miyoshi
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Sozaburo Ihara
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Hirata
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Atsuo Yamada
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, The Institute for Medical Science, Asahi-life Foundation, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Susan L. Woods
- Cancer Theme, SAHMRI, Adelaide, South Australia, Australia
- Medical Specialties, Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yiping W. Han
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, New York
- Department of Microbiology and Immunology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York
- Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York
| | - Timothy C. Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, New York
| | - Takashi Kawai
- Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Liffers ST, Godfrey L, Frohn L, Haeberle L, Yavas A, Vesce R, Goering W, Opitz FV, Stoecklein N, Knoefel WT, Schlitter AM, Klöppel G, Espinet E, Trumpp A, Siveke JT, Esposito I. Molecular heterogeneity and commonalities in pancreatic cancer precursors with gastric and intestinal phenotype. Gut 2023; 72:522-534. [PMID: 35944927 PMCID: PMC9933174 DOI: 10.1136/gutjnl-2021-326550] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/31/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Due to the limited number of modifiable risk factors, secondary prevention strategies based on early diagnosis represent the preferred route to improve the prognosis of pancreatic ductal adenocarcinoma (PDAC). Here, we provide a comparative morphogenetic analysis of PDAC precursors aiming at dissecting the process of carcinogenesis and tackling the heterogeneity of preinvasive lesions. DESIGN Targeted and whole-genome low-coverage sequencing, genome-wide methylation and transcriptome analyses were applied on a final collective of 122 morphologically well-characterised low-grade and high-grade PDAC precursors, including intestinal and gastric intraductal papillary mucinous neoplasms (IPMN) and pancreatic intraepithelial neoplasias (PanIN). RESULTS Epigenetic regulation of mucin genes determines the phenotype of PDAC precursors. PanIN and gastric IPMN display a ductal molecular profile and numerous similarly regulated pathways, including the Notch pathway, but can be distinguished by recurrent deletions and differential methylation and, in part, by the expression of mucin-like 3. Intestinal IPMN are clearly distinct lesions at the molecular level with a more instable genotype and are possibly related to a different ductal cell compartment. CONCLUSIONS PDAC precursors with gastric and intestinal phenotype are heterogeneous in terms of morphology, genetic and epigenetic profile. This heterogeneity is related to a different cell identity and, possibly, to a different aetiology.
Collapse
Affiliation(s)
- Sven-Thorsten Liffers
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Laura Godfrey
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Lisa Frohn
- Institute of Pathology, Heinrich-Heine University and University Hospital of Dusseldorf, Dusseldorf, Germany
| | - Lena Haeberle
- Institute of Pathology, Heinrich-Heine University and University Hospital of Dusseldorf, Dusseldorf, Germany
| | - Aslihan Yavas
- Institute of Pathology, Heinrich-Heine University and University Hospital of Dusseldorf, Dusseldorf, Germany
| | - Rita Vesce
- Institute of Pathology, Heinrich-Heine University and University Hospital of Dusseldorf, Dusseldorf, Germany
| | - Wolfgang Goering
- Institute of Pathology, Heinrich-Heine University and University Hospital of Dusseldorf, Dusseldorf, Germany
| | - Friederike V Opitz
- Institute of Pathology, Heinrich-Heine University and University Hospital of Dusseldorf, Dusseldorf, Germany
| | - Nickolas Stoecklein
- Department of General, Visceral and Pediatric Surgery, Heinrich-Heine-University and University Hospital of Dusseldorf, Dusseldorf, Germany
| | - Wolfram Trudo Knoefel
- Department of General, Visceral and Pediatric Surgery, Heinrich-Heine-University and University Hospital of Dusseldorf, Dusseldorf, Germany
| | | | - Guenter Klöppel
- Institute of Pathology, Technische Universitaet Muenchen, Munich, Germany
| | - Elisa Espinet
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH, Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Centre and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium, (DKTK), Heidelberg, Germany
| | - Andreas Trumpp
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH, Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Centre and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium, (DKTK), Heidelberg, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine University and University Hospital of Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
35
|
Mukherjee A, Epperly MW, Fisher R, Shields D, Hou W, Pennathur A, Luketich J, Wang H, Greenberger JS. Carcinogen 4-Nitroquinoline Oxide (4-NQO) Induces Oncostatin-M (OSM) in Esophageal Cells. In Vivo 2023; 37:506-518. [PMID: 36881075 PMCID: PMC10026636 DOI: 10.21873/invivo.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM The earliest cellular and molecular biologic changes in the esophagus that lead to esophageal cancer were evaluated in a mouse model. We correlated numbers of senescent cells with the levels of expression of potentially carcinogenic genes in sorted side population (SP) cells containing esophageal stem cells and non-stem cells in the non-side population cells in the 4-nitroquinolone oxide (NQO)-treated esophagus. MATERIALS AND METHODS We compared stem cells with non-stem cells from the esophagus of mice treated with the chemical carcinogen 4-NQO (100 μg/ml) in drinking water. We also compared gene expression in human esophagus samples treated with 4-NQO (100 μg/ml media) to non-treated samples. We separated and quantitated the relative levels of expression of RNA using RNAseq analysis. We identified senescent cells by luciferase imaging of p16+/LUC mice and senescent cells in excised esophagus from tdTOMp16+ mice. RESULTS A significant increase in the levels of RNA for oncostatin-M was found in senescent cells of the esophagus from 4-NQO-treated mice and human esophagus in vitro. CONCLUSION Induction of OSM in chemically-induced esophageal cancer in mice correlates with the appearance of senescent cells.
Collapse
Affiliation(s)
- Amitava Mukherjee
- Department Radiation Oncology, UPMC-Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department Radiation Oncology, UPMC-Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department Radiation Oncology, UPMC-Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department Radiation Oncology, UPMC-Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Wen Hou
- Department Radiation Oncology, UPMC-Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Arjun Pennathur
- Department Thoracic Surgery, UPMC-Presbyterian Hospital, Pittsburgh, PA, U.S.A
| | - James Luketich
- Department Thoracic Surgery, UPMC-Presbyterian Hospital, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department Radiation Oncology, UPMC-Hillman Cancer Center, UPMC Cancer Pavilion, Pittsburgh, PA, U.S.A.
| |
Collapse
|
36
|
Liao G, Tang J, Bai J. Early development of esophageal squamous cell cancer: Stem cells, cellular origins and early clone evolution. Cancer Lett 2023; 555:216047. [PMID: 36587837 DOI: 10.1016/j.canlet.2022.216047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC), a highly malignant cancer with poor prognosis, is an example of the classical view of cancer development based on stem cell origin and multistep progression. In the past five years, the applications of large-scale sequencing and single-cell sequencing have expanded to human esophageal normal tissues and precancerous lesions, which, coupled with the application of transgenic lineage tracing technology in mouse models, has provided a more comprehensive and detailed understanding of esophageal stem cell heterogeneity and early clonal evolution of ESCC. In this review, we discuss the heterogeneity of esophageal basal-layer stem cells and their potential relationship with cells of ESCC origin. We present evidence that expansion of NOTCH1 mutants may call into play an evolutionarily conserved anti-cancer mechanism and mold the model of early clonal evolution in ESCCs. Finally, we discuss the potential avenues in this context. This review provides a focused understanding of the early development of ESCC, as a background for early tumor detection, intervention, and prevention strategies.
Collapse
Affiliation(s)
- Guobin Liao
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China; Department of Gastroenterology, The 901 Hospital of Chinese People's Liberation Army Joint Service Support Unit, Hefei, 230000, China.
| | - Jun Tang
- Department of Gastroenterology, The 901 Hospital of Chinese People's Liberation Army Joint Service Support Unit, Hefei, 230000, China.
| | - Jianying Bai
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
37
|
Qin YF, Zhou ZY, Fu HW, Lin HM, Xu LB, Wu WR, Liu C, Xu XL, Zhang R. Hepatitis B Virus Surface Antigen Promotes Stemness of Hepatocellular Carcinoma through Regulating MicroRNA-203a. J Clin Transl Hepatol 2023; 11:118-129. [PMID: 36406317 PMCID: PMC9647105 DOI: 10.14218/jcth.2021.00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/26/2021] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Patients with persistent positive hepatitis B surface antigen (HBsAg), even with a low HBV-DNA load, have a higher risk of hepatocellular carcinoma (HCC) than those without HBV infection. Given that tumor stemness has a critical role in the occurrence and maintenance of neoplasms, this study aimed to explore whether HBsAg affects biological function and stemness of HCC by regulating microRNA, and to explore underlying mechanisms. METHODS We screened out miR-203a, the most significant down-regulated microRNA in the microarray analysis of HBsAg-positive samples and focused on that miRNA in the ensuing study. In vitro and in vivo functional experiments were performed to assess its regulatory function. The effect of miR-203a on stemness and the possible correlation with BMI1 were analyzed in this study. RESULTS MiR-203a was significantly down-regulated in HBsAg-positive HCC with the sharpest decrease shown in microarray analysis. The negative correlation between miR-203a and HBsAg expression was confirmed by quantitative real-time PCR after stimulation or overexpression/knockdown of HBsAg in cells. We demonstrated the function of miR-203a in inhibiting HCC cell proliferation, migration, clonogenic capacity, and tumor development in vivo. Furthermore, the overexpression of miR-203a remarkably increases the sensitivity of tumor cells to 5-FU treatment and decreases the proportion of HCC cells with stem markers. In concordance with our study, the survival analysis of both The Cancer Genome Atlas database and samples in our center indicated a worse prognosis in patients with low level of miR-203a. We also found that BMI1, a gene maintains the self-renewal capacity of stem cells, showed a significant negative correlation with miR-203a in HCC specimen (p<0.001). Similarly, opposite BMI1 changes after overexpression/knockdown of miR-203a were also confirmed in vitro. Dual luciferase reporting assay suggested that miR-203a may regulate BMI1 expression by direct binding. CONCLUSIONS HBsAg may promote the development of HCC and tumor stemness by inhibiting miR-203a, resulting in poor prognosis. miR-203a may serve as a crucial treatment target in HBsAg-positive HCC. More explicit mechanistic studies and animal experiments need to be conducted as a next step.
Collapse
Affiliation(s)
- Yu-Fei Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zi-Yu Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hou-Wei Fu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao-Ming Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei-Bo Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen-Rui Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Lin Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Correspondence to: Xiao-Lin Xu, Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China. E-mail: . Rui Zhang, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China. ORCID: https://orcid.org/0000-0003-3335-093. Tel: +86-20-34070133, Fax: +86-20-3407109, E-mail:
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Correspondence to: Xiao-Lin Xu, Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China. E-mail: . Rui Zhang, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China. ORCID: https://orcid.org/0000-0003-3335-093. Tel: +86-20-34070133, Fax: +86-20-3407109, E-mail:
| |
Collapse
|
38
|
Gier RA, Hueros RAR, Rong J, DeMarshall M, Karakasheva TA, Muir AB, Falk GW, Zhang NR, Shaffer SM. Clonal cell states link Barrett's esophagus and esophageal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525564. [PMID: 36747708 PMCID: PMC9900873 DOI: 10.1101/2023.01.26.525564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Barrett's esophagus is a common type of metaplasia and a precursor of esophageal adenocarcinoma. However, the cell states and lineage connections underlying the origin, maintenance, and progression of Barrett's esophagus have not been resolved in humans. To address this, we performed single-cell lineage tracing and transcriptional profiling of patient cells isolated from metaplastic and healthy tissue. Our analysis revealed discrete lineages in Barrett's esophagus, normal esophagus, and gastric cardia. Transitional basal progenitor cells of the gastroesophageal junction were unexpectedly related to both esophagus and gastric cardia cells. Barrett's esophagus was polyclonal, with lineages that contained all progenitor and differentiated cell types. In contrast, precancerous dysplastic foci were initiated by the expansion of a single molecularly aberrant Barrett's esophagus clone. Together, these findings provide a comprehensive view of the cell dynamics of Barrett's esophagus, linking cell states along the full disease trajectory, from its origin to cancer.
Collapse
Affiliation(s)
- Rodrigo A. Gier
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Raúl A. Reyes Hueros
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiazhen Rong
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maureen DeMarshall
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tatiana A. Karakasheva
- Gastrointestinal Epithelium Modeling Program, Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amanda B. Muir
- Gastrointestinal Epithelium Modeling Program, Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gary W. Falk
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy R. Zhang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney M. Shaffer
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Hepatocyte growth factor-mediated apoptosis mechanisms of cytotoxic CD8 + T cells in normal and cirrhotic livers. Cell Death Dis 2023; 9:13. [PMID: 36658107 PMCID: PMC9852593 DOI: 10.1038/s41420-023-01313-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Intrahepatic stem/progenitor cells and cytotoxic CD8+ T cells (CD8+ T cells) in the cirrhotic liver undergo apoptosis, which potentially facilitates progression to cancer. Here, we report that hepatocyte growth factor (HGF) signaling plays an important role in promoting normal and damaged liver CD8+ T cell Fas-mediated apoptosis through its only receptor, c-Met. In addition to binding with HGF, c-Met also binds to Fas to form a complex. Using a diethylnitrosamine (DEN)-induced liver fibrosis/cirrhosis mouse model, immunostaining, and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) staining, we found that HGF secretion was significantly higher at 10 weeks post-DEN, the liver cirrhotic phase (LCP), than at 3 weeks post-DEN, the liver fibrotic phase (LFP). Correspondingly, differences in CD8+ T cell proliferation and apoptosis were noted between the two phases. Interestingly, staining and TUNEL assays revealed lower smooth muscle actin (α-SMA)+ cell apoptosis, a marker for hepatic stellate cells (HSCs), in the LFP group than in the LCP group, which suggested a beneficial correlation among HGF, CD8+ T cells and HSCs in improving the fibrotic load during damaged liver repair. In cultures, when met different concentrations of recombinant HGF (rHGF), phytohemagglutinin (PHA)-stimulated naive mouse splenic CD8+ T cells (pn-msCD8+ T cells) responded differently; as increases in rHGF increased were associated with decreases in the clonal numbers of pn-msCD8+ T cells, and when the rHGF dose was greater than 200 ng/mL, the clonal numbers significantly decreased. In the presence of 400 ng/mL rHGF, the death-inducing signaling complex (DISC) can be directly activated in both nsCD8+ T cells and healthy human peripheral blood CD8+ T cells (hp-CD8+ T cells), as indicated by recruitment of FADD and caspase-8 because DISC forms via the recruitment of FADD and caspase-8, among others. These findings suggest that Fas-mediated apoptosis, may also indicate a regulatory role of HGF signaling in hepatic homeostasis.
Collapse
|
40
|
Liang ZF, Zhang Y, Guo W, Chen B, Fang S, Qian H. Gastric cancer stem cell-derived exosomes promoted tobacco smoke-triggered development of gastric cancer by inducing the expression of circ670. Med Oncol 2022; 40:24. [PMID: 36454423 DOI: 10.1007/s12032-022-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
As one of the most common malignant cancers in the world, gastric cancer is caused by mang factors among which tobacco smoke is an important risk factor. Gastric cancer stem cells (GCSCs) and the derived exosomes play a key role in the occurrence and development of gastric cancer, and exosomal circRNA is considered as a new regulatory factor in the development of gastric cancer. However, it is unclear whether tobacco smoke can affect exosomes and their transport circRNAs to promote the development of gastric cancer. Herein, we provided a new insight into tobacco smoke promoting the progression of gastric cancer. In the present study, we demonstrated that tobacco smoke-induced exosomes promoted the spheroidizing ability, stemness genes expression, and epithelial-mesenchymal transition (EMT) process of GCSCs. We further found that hsa-circRNA-000670 (circ670) was up-regulated in tissues of gastric cancer patients with smoking history, tobacco smoke-induced GCSCs, and their exosomes. Functional assays have shown that circ670 knockdown inhibited the stemness and EMT process of GCSCs, whereas circ670 overexpression appeared to have an opposite effect. Our findings indicated that exosomal circ670 promotes the development of tobacco smoke-induced gastric cancer, which may provide insight into the mechanism of tobacco smoke promoting the progression of gastric cancer.
Collapse
Affiliation(s)
- Zhao Feng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Wenhao Guo
- Department of Laboratory, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taichang, Suzhou, 215400, Jiangsu, People's Republic of China
| | - Bei Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
- Suzhou Science and Technology Town Hospital, Suzhou, 215153, Jiangsu, People's Republic of China
| | - Shikun Fang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| |
Collapse
|
41
|
Kurokawa K, Wang TC, Hayakawa Y. R-spondin 3 governs secretory differentiation in the gastric oxyntic glands. J Clin Invest 2022; 132:163380. [PMID: 36317629 PMCID: PMC9621126 DOI: 10.1172/jci163380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The gastric oxyntic glands are maintained by gastric stem cells that continuously supply all differentiated cell types within the corpus epithelium. Stem cells are supported by stromal cells that make up the stem cell niche. In this issue of the JCI, Fischer et al. report on their use of genetically engineered mouse models and organoids to study the role of R-spondin 3 (RSPO3) in the stomach. RSPO3, one of the major stem cell niche factors, primarily promoted secretory differentiation in the normal stomach, but also contributed to regeneration following injury. Mechanistically, RSPO3 was upregulated in the stroma by loss of chief cells and then activated the YAP pathway in gastric stem and progenitor cells, which appeared to be critical for regeneration of the secretory lineage. These data substantially advance our understanding of the regulation of gastric stem cells and highlight a function for RSPO3 in the gastrointestinal tract, which is as the gatekeeper of secretory differentiation.
Collapse
Affiliation(s)
- Ken Kurokawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Zeng Y, Jin RU. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Semin Cancer Biol 2022; 86:566-582. [PMID: 34933124 DOI: 10.1016/j.semcancer.2021.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 01/27/2023]
Abstract
Gastric cancer is a major source of global cancer mortality with limited treatment options and poor patient survival. As our molecular understanding of gastric cancer improves, we are now beginning to recognize that these cancers are a heterogeneous group of diseases with incredibly unique pathogeneses and active oncogenic pathways. It is this molecular diversity and oftentimes lack of common oncogenic driver mutations that bestow the poor treatment responses that oncologists often face when treating gastric cancer. In this review, we will examine the treatments for gastric cancer including up-to-date molecularly targeted therapies and immunotherapies. We will then review the molecular subtypes of gastric cancer to highlight the diversity seen in this disease. We will then shift our discussion to basic science and gastric cancer mouse models as tools to study gastric cancer molecular heterogeneity. Furthermore, we will elaborate on a molecular process termed paligenosis and the cyclical hit model as key events during gastric cancer initiation that impart nondividing mature differentiated cells the ability to re-enter the cell cycle and accumulate disparate genomic mutations during years of chronic inflammation and injury. As our basic science understanding of gastric cancer advances, so too must our translational and clinical efforts. We will end with a discussion regarding single-cell molecular analyses and cancer organoid technologies as future translational avenues to advance our understanding of gastric cancer heterogeneity and to design precision-based gastric cancer treatments. Elucidation of interpatient and intratumor heterogeneity is the only way to advance future cancer prevention, diagnoses and treatment.
Collapse
Affiliation(s)
- Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Ramon U Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
43
|
The KEAP1-NRF2 System and Esophageal Cancer. Cancers (Basel) 2022; 14:cancers14194702. [PMID: 36230622 PMCID: PMC9564177 DOI: 10.3390/cancers14194702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 12/18/2022] Open
Abstract
NRF2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that regulates the expression of many cytoprotective genes. NRF2 activation is mainly regulated by KEAP1 (kelch-like ECH-associated protein 1) through ubiquitination and proteasome degradation. Esophageal cancer is classified histologically into two major types: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC harbors more genetic alterations in the KEAP-NRF2 system than EAC does, which results in NRF2 activation in these cancers. NRF2-addicted ESCC exhibits increased malignancy and acquisition of resistance to chemoradiotherapy. Therefore, it has been recognized that the development of drugs targeting the KEAP1-NRF2 system based on the molecular dissection of NRF2 function is important and urgent for the treatment of ESCC, along with efficient clinical screening for NRF2-addicted ESCC patients. Recently, the fate of NRF2-activated cells in esophageal tissues, which was under the influence of strong cell competition, and its relationship to the pathogenesis of ESCC, was clarified. In this review, we will summarize the current knowledge of the KEAP1-NRF2 system and the treatment of ESCC. We propose three main strategies for the treatment of NRF2-addicted cancer: (1) NRF2 inhibitors, (2) synthetic lethal drugs for NRF2-addicted cancers, and (3) NRF2 inducers of the host defense system.
Collapse
|
44
|
Malagola E, Hayakawa Y, Wang TC. R-spondin signaling in the stomach: isthmal Lgr4 rules. EMBO J 2022; 41:e111696. [PMID: 35767358 PMCID: PMC9251835 DOI: 10.15252/embj.2022111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 01/21/2023] Open
Abstract
R-spondins are critical regulators of gastric epithelial cells, with Lgr5 receptor historically considered as their main signaling transducer. Recent work by Wizenty et al (2022) now revealed distinct roles for Lgr4 and Lgr5 in directing gland reconstitution following H. pylori infection, shedding new light on the complexities of Rspo signaling during gastric regeneration and raising questions about antral stem cell hierarchy.
Collapse
Affiliation(s)
- Ermanno Malagola
- Division of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNYUSA
| | - Yoku Hayakawa
- Department of GastroenterologyGraduate school of MedicineThe University of TokyoTokyoJapan
| | - Timothy C Wang
- Division of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNYUSA
| |
Collapse
|
45
|
Wang S, Li L, Cook C, Zhang Y, Xia Y, Liu Y. A potential fate decision landscape of the TWEAK/Fn14 axis on stem and progenitor cells: a systematic review. Stem Cell Res Ther 2022; 13:270. [PMID: 35729659 PMCID: PMC9210594 DOI: 10.1186/s13287-022-02930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Stem and progenitor cells (SPCs) possess self-remodeling ability and differentiation potential and are responsible for the regeneration and development of organs and tissue systems. However, the precise mechanisms underlying the regulation of SPC biology remain unclear. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) acts on miscellaneous cells via binding to fibroblast growth factor-inducible 14 (Fn14) and exerts pleiotropic functions in the regulation of divergent stem cell fates. TWEAK/Fn14 signaling can regulate the proliferation, differentiation, and migration of multiple SPCs as well as tumorigenesis in certain contexts. Although TWEAK’s roles in modulating multiple SPCs are sparsely reported, the systemic effector functions of this multifaceted protein have not been fully elucidated. In this review, we summarized the fate decisions of TWEAK/Fn14 signaling on multiple stem cells and characterized its potential in stem cell therapy.
Collapse
Affiliation(s)
- Sijia Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Liang Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yufei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| | - Yale Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
46
|
Wuputra K, Ku CC, Pan JB, Liu CJ, Liu YC, Saito S, Kato K, Lin YC, Kuo KK, Chan TF, Chong IW, Lin CS, Wu DC, Yokoyama KK. Stem Cell Biomarkers and Tumorigenesis in Gastric Cancer. J Pers Med 2022; 12:jpm12060929. [PMID: 35743714 PMCID: PMC9224738 DOI: 10.3390/jpm12060929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Stomach cancer has a high mortality, which is partially caused by an absence of suitable biomarkers to allow detection of the initiation stages of cancer progression. Thus, identification of critical biomarkers associated with gastric cancer (GC) is required to advance its clinical diagnoses and treatment. Recent studies using tracing models for lineage analysis of GC stem cells indicate that the cell fate decision of the gastric stem cells might be an important issue for stem cell plasticity. They include leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5+), Cholecystokinin receptor 2 (Cckr2+), and axis inhibition protein 2 (Axin2+) as the stem cell markers in the antrum, Trefoil Factor 2 (TFF2+), Mist1+ stem cells, and Troy+ chief cells in the corpus. By contrast, Estrogen receptor 1 (eR1), Leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), SRY (sex determining region Y)-box 2 (Sox2), and B lymphoma Mo-MLV insertion region 1 homolog (Bmi1) are rich in both the antrum and corpus regions. These markers might help to identify the cell-lineage identity and analyze the plasticity of each stem cell population. Thus, identification of marker genes for the development of GC and its environment is critical for the clinical application of cancer stem cells in the prevention of stomach cancers.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chang Liu
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita 329-2192, Japan;
- Horus Co., Ltd., Nakano, Tokyo 164-0001, Japan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, The University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kung-Kai Kuo
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Genecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Obstetrics and Genecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Correspondence: ; Tel.: +886-7312-1101 (ext. 2729); Fax: +886-7313-3849
| |
Collapse
|
47
|
Jin Y, Yang S, Gao X, Chen D, Luo T, Su S, Shi Y, Yang G, Dong L, Liang J. DEAD-Box Helicase 27 Triggers Epithelial to Mesenchymal Transition by Regulating Alternative Splicing of Lipoma-Preferred Partner in Gastric Cancer Metastasis. Front Genet 2022; 13:836199. [PMID: 35601484 PMCID: PMC9114675 DOI: 10.3389/fgene.2022.836199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
DEAD-box helicase 27 (DDX27) was previously identified as an important mediator during carcinogenesis, while its role in gastric cancer (GC) is not yet fully elucidated. Here, we aimed to investigate the mechanism and clinical significance of DDX27 in GC. Public datasets were analyzed to determine DDX27 expression profiling. The qRT-PCR, Western blot, and immunohistochemistry analyses were employed to investigate the DDX27 expression in GC cell lines and clinical samples. The role of DDX27 in GC metastasis was explored in vitro and in vivo. Mass spectrometry, RNA-seq, and alternative splicing analysis were conducted to demonstrate the DDX27-mediated molecular mechanisms in GC. We discovered that DDX27 was highly expressed in GCs, and a high level of DDX27 indicated poor prognosis. An increased DDX27 expression could promote GC metastasis, while DDX27 knockdown impaired GC aggressiveness. Mechanically, the LLP expression was significantly altered after DDX27 downregulation, and further results indicated that LPP may be regulated by DDX27 via alternative splicing. In summary, our study indicated that DDX27 contributed to GC malignant progression via a prometastatic DDX27/LPP/EMT regulatory axis.
Collapse
Affiliation(s)
- Yirong Jin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Suzhen Yang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Gao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Di Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Tingting Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
| | - Song Su
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Yanting Shi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Gang Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Lei Dong, ; Jie Liang,
| | - Jie Liang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
- *Correspondence: Lei Dong, ; Jie Liang,
| |
Collapse
|
48
|
Wang X, Gao J, Li C, Xu C, Li X, Meng F, Liu Q, Wang Q, Yu L, Liu B, Li R. In situ gelatinase-responsive and thermosensitive nanocomplex for local therapy of gastric cancer with peritoneal metastasis. Mater Today Bio 2022; 15:100305. [PMID: 35734198 PMCID: PMC9207302 DOI: 10.1016/j.mtbio.2022.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Intraperitoneal chemotherapy (IPC) has been considered as an effective therapy for advanced gastric cancer (GC) especially those with peritoneal metastasis, while limited effectiveness, complications caused by chemotherapeutics and repeated infusion procedures restrict the application of IPC. In this study, to enhance the efficacy and safety of IPC, we intended to establish a biocompatible and biodegradable nanocomplex composed of intelligent gelatinase-responsive nanoparticles (NPs) and thermosensitive gel, which were prepared from different compositions of poly (ethyleneglycol)–poly (3-caprolactone) (PEG–PCL). Cancer stem cells (CSCs) inhibitor Salinomycin (SAL) and non-CSC inhibitor Docetaxel (DOC) were co-loaded in the NPs and delivered by liquid PEG-PCL-PEG gel (PECE) at room temperature, which was able to target tumor and formed a gel in situ at body temperature. Compared with free SAL-DOC solution administered at the same dose, PECE NP group inhibited intraperitoneal disseminated gastric cancer growth more remarkably, some of which even achieved complete response (CR) and continued for more than 2 weeks. Cytometric analysis of cellular suspension from abdominal tumor tissues showed that the proportion of CSCs (CD44+CD133+) and the expression of PD-L1 on the tumor cells in the PECE NP group were the lowest. In the allograft mouse models of GC, PECE NP significantly improved the infiltration of M1 macrophages into the tumor bed in vivo. This design may provide biodegradable smart drug-delivery system for potential application in IPC.
Collapse
|
49
|
Diffuse gastric cancer: Emerging mechanisms of tumor initiation and progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188719. [PMID: 35307354 DOI: 10.1016/j.bbcan.2022.188719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Gastric cancer is globally the fourth leading cause of cancer-related deaths. Patients with diffuse-type gastric cancer (DGC) particularly have a poor prognosis that only marginally improved over the last decades, as conventional chemotherapies are frequently ineffective and specific therapies are unavailable. Early-stage DGC is characterized by intramucosal lesions of discohesive cells, which can be present for many years before the emergence of advanced DGC consisting of highly proliferative and invasive cells. The mechanisms underlying the key steps of DGC development and transition to aggressive tumors are starting to emerge. Novel mouse- and organoid models for DGC, together with multi-omic analyses of DGC tumors, revealed contributions of both tumor cell-intrinsic alterations and gradual changes in the tumor microenvironment to DGC progression. In this review, we will discuss how these recent findings are leading towards an understanding of the cellular and molecular mechanisms responsible for DGC initiation and malignancy, which may provide opportunities for targeted therapies.
Collapse
|
50
|
CD73 + Epithelial Progenitor Cells That Contribute to Homeostasis and Renewal Are Depleted in Eosinophilic Esophagitis. Cell Mol Gastroenterol Hepatol 2022; 13:1449-1467. [PMID: 35108658 PMCID: PMC8957025 DOI: 10.1016/j.jcmgh.2022.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Although basal cell hyperplasia is a histologic hallmark of eosinophilic esophagitis (EoE), little is known about the capabilities of epithelial renewal and differentiation in the EoE inflammatory milieu. In murine esophageal epithelium, there are self-renewing and slowly proliferating basal stem-like cells characterized by concurrent expression of CD73 (5'-nucleotidase ecto) and CD104 (integrin β4). Here, we investigated CD73+CD104+ cells within the basal population of human esophageal epithelium and clarified the biological significance of these cells in the EoE epithelium. METHODS We performed flow cytometry on esophageal biopsy samples from EoE and non-EoE patients to determine the quantity of CD73+CD104+ cells in the epithelium. Simulating the EoE milieu we stimulated primary patient-derived and immortalized cell line-derived esophageal organoids with interleukin (IL)4 and IL13 and analyzed by flow cytometry, immunohistochemistry, and quantitative reverse-transcription polymerase chain reaction. We performed single-cell RNA sequencing on primary organoids in the setting of IL13 stimulation and evaluated the CD73+CD104+ population. We performed fluorescent-activated cell sorting to purify CD73+CD104+ and CD73- CD104+ populations and seeded these groups in organoid culture to evaluate the organoid formation rate and organoid size. We used RNA interference to knock down CD73 in esophageal organoids to evaluate organoid formation rates and size. We evaluated the effects of signal transducer and activator of transcription 6 (STAT6) signaling inhibition by RNA interference, a STAT6 inhibitor, AS1517499, as well as the proton pump inhibitor omeprazole. RESULTS EoE patients showed decreased epithelial CD73+CD104+ cell content. IL4 and IL13 stimulation depleted this population in 3-dimensional organoids with a recapitulation of basal cell hyperplasia as corroborated by single-cell RNA sequencing of the organoids, which suggests depletion of CD73+CD104+ cells. The CD73+CD104+ population had enhanced organoid formation compared with the CD73-CD104+ population. Similarly, knock-down of CD73 resulted in decreased organoid formation rate. Genetic and pharmacologic inhibition of STAT6 prevented T helper 2 cytokine-induced depletion of CD73+CD104+ cells. Lastly, omeprazole treatment prevented the effects of IL4 and IL13 on the CD73+CD104+ population. CONCLUSIONS This study addressed the role of CD73+CD104+ cells in epithelial renewal and homeostasis in the context of EoE. The depletion of the CD73+CD104+ self-renewal population by helper T cell 2 cytokines in EoE milieu may be perpetuating epithelial injury. Future therapies targeting epithelial restitution in EoE could decrease the need for immune modulation and steroid therapy.
Collapse
|