1
|
Zendrikov D, Paraskevov A. The vitals for steady nucleation maps of spontaneous spiking coherence in autonomous two-dimensional neuronal networks. Neural Netw 2024; 180:106589. [PMID: 39217864 DOI: 10.1016/j.neunet.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/06/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Thin pancake-like neuronal networks cultured on top of a planar microelectrode array have been extensively tried out in neuroengineering, as a substrate for the mobile robot's control unit, i.e., as a cyborg's brain. Most of these attempts failed due to intricate self-organizing dynamics in the neuronal systems. In particular, the networks may exhibit an emergent spatial map of steady nucleation sites ("n-sites") of spontaneous population spikes. Being unpredictable and independent of the surface electrode locations, the n-sites drastically change local ability of the network to generate spikes. Here, using a spiking neuronal network model with generative spatially-embedded connectome, we systematically show in simulations that the number, location, and relative activity of spontaneously formed n-sites ("the vitals") crucially depend on the samplings of three distributions: (1) the network distribution of neuronal excitability, (2) the distribution of connections between neurons of the network, and (3) the distribution of maximal amplitudes of a single synaptic current pulse. Moreover, blocking the dynamics of a small fraction (about 4%) of non-pacemaker neurons having the highest excitability was enough to completely suppress the occurrence of population spikes and their n-sites. This key result is explained theoretically. Remarkably, the n-sites occur taking into account only short-term synaptic plasticity, i.e., without a Hebbian-type plasticity. As the spiking network model used in this study is strictly deterministic, all simulation results can be accurately reproduced. The model, which has already demonstrated a very high richness-to-complexity ratio, can also be directly extended into the three-dimensional case, e.g., for targeting peculiarities of spiking dynamics in cerebral (or brain) organoids. We recommend the model as an excellent illustrative tool for teaching network-level computational neuroscience, complementing a few benchmark models.
Collapse
Affiliation(s)
- Dmitrii Zendrikov
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| | | |
Collapse
|
2
|
Kreir M, Floren W, Policarpo R, De Bondt A, Van den Wyngaert I, Teisman A, Gallacher DJ, Lu HR. Is the forming of neuronal network activity in human-induced pluripotent stem cells important for the detection of drug-induced seizure risks? Eur J Pharmacol 2022; 931:175189. [PMID: 35987255 DOI: 10.1016/j.ejphar.2022.175189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Functional network activity is a characteristic for neuronal cells, and the complexity of the network activity represents the necessary substrate to support complex brain functions. Drugs that drastically increase the neuronal network activity may have a potential higher risk for seizures in human. Although there has been some recent considerable progress made using cultures from different types of human-induced pluripotent stem cell (hiPSC) derived neurons, one of the primary limitations is the lack of - or very low - network activity. METHOD In the present study, we investigated whether the limited neuronal network activity in commercial hiPSC-neurons (CNS.4U®) is capable of detecting drug-induced potential seizure risks. Therefore, we compared the hiPSC-results to those in rat primary neurons with known high neuronal network activity in vitro. RESULTS Gene expression and electrical activity from in vitro developing neuronal networks were assessed at multiple time-points. Transcriptomes of 7, 28, and 50 days in vitro were analyzed and compared to those from human brain tissues. Data from measurements of electrical activity using multielectrode arrays (MEAs) indicate that neuronal networks matured gradually over time, albeit in hiPSC this developed slower than rat primary cultures. The response of neuronal networks to neuronal active reference drugs modulating glutamatergic, acetylcholinergic and GABAergic pathways could be detected in both hiPSC-neurons and rat primary neurons. However, in comparison, GABAergic responses were limited in hiPSC-neurons. CONCLUSION Overall, despite a slower network development and lower network activity, CNS.4U® hiPSC-neurons can be used to detect drug induced changes in neuronal network activity, as shown by well-known seizurogenic drugs (affecting e.g., the Glycine receptor and Na+ channel). However, lower sensitivity to GABA antagonists has been observed.
Collapse
Affiliation(s)
- Mohamed Kreir
- Global Safety Pharmacology, Predictive & Investigative Translational Toxicology, Nonclinical Safety, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium.
| | - Wim Floren
- Global Safety Pharmacology, Predictive & Investigative Translational Toxicology, Nonclinical Safety, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Rafaela Policarpo
- Neuroscience Therapeutic Area, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Belgium
| | - An De Bondt
- High Dimensional & Computational Biology, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ilse Van den Wyngaert
- High Dimensional & Computational Biology, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Predictive & Investigative Translational Toxicology, Nonclinical Safety, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Predictive & Investigative Translational Toxicology, Nonclinical Safety, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Hua Rong Lu
- Global Safety Pharmacology, Predictive & Investigative Translational Toxicology, Nonclinical Safety, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
3
|
Disrupted Cacna1c gene expression perturbs spontaneous Ca 2+ activity causing abnormal brain development and increased anxiety. Proc Natl Acad Sci U S A 2022; 119:2108768119. [PMID: 35135875 PMCID: PMC8851547 DOI: 10.1073/pnas.2108768119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
The gene CACNA1C encodes for a calcium channel that has been linked to various psychiatric conditions, including schizophrenia and bipolar disorder, through hitherto unknown cellular mechanisms. Here, we report that deletion of Cacna1c in neurons of the developing brain disrupts spontaneous calcium activity and causes abnormal brain development and anxiety. Our results indicate that marginally alterations in the expression level of Cacna1c have major effects on the intrinsic spontaneous calcium activity of neural progenitors that play a crucial role in brain development. Thus, Cacna1c acts as a molecular switch that can increase susceptibility to psychiatric disease. The L-type voltage-gated Ca2+ channel gene CACNA1C is a risk gene for various psychiatric conditions, including schizophrenia and bipolar disorder. However, the cellular mechanism by which CACNA1C contributes to psychiatric disorders has not been elucidated. Here, we report that the embryonic deletion of Cacna1c in neurons destined for the cerebral cortex using an Emx1-Cre strategy disturbs spontaneous Ca2+ activity and causes abnormal brain development and anxiety. By combining computational modeling with electrophysiological membrane potential manipulation, we found that neural network activity was driven by intrinsic spontaneous Ca2+ activity in distinct progenitor cells expressing marginally increased levels of voltage-gated Ca2+ channels. MRI examination of the Cacna1c knockout mouse brains revealed volumetric differences in the neocortex, hippocampus, and periaqueductal gray. These results suggest that Cacna1c acts as a molecular switch and that its disruption during embryogenesis can perturb Ca2+ handling and neural development, which may increase susceptibility to psychiatric disease.
Collapse
|
4
|
Zendrikov D, Paraskevov A. Emergent population activity in metric-free and metric networks of neurons with stochastic spontaneous spikes and dynamic synapses. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.11.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Izsak J, Seth H, Iljin M, Theiss S, Ågren H, Funa K, Aigner L, Hanse E, Illes S. Differential acute impact of therapeutically effective and overdose concentrations of lithium on human neuronal single cell and network function. Transl Psychiatry 2021; 11:281. [PMID: 33980815 PMCID: PMC8115174 DOI: 10.1038/s41398-021-01399-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Lithium salts are used as mood-balancing medication prescribed to patients suffering from neuropsychiatric disorders, such as bipolar disorder and major depressive disorder. Lithium salts cross the blood-brain barrier and reach the brain parenchyma within few hours after oral application, however, how lithium influences directly human neuronal function is unknown. We applied patch-clamp and microelectrode array technology on human induced pluripotent stem cell (iPSC)-derived cortical neurons acutely exposed to therapeutic (<1 mM) and overdose concentrations (>1 mM) of lithium chloride (LiCl) to assess how therapeutically effective and overdose concentrations of LiCl directly influence human neuronal electrophysiological function at the synapse, single-cell, and neuronal network level. We describe that human iPSC-cortical neurons exposed to lithium showed an increased neuronal activity under all tested concentrations. Furthermore, we reveal a lithium-induced, concentration-dependent, transition of regular synchronous neuronal network activity using therapeutically effective concentration (<1 mM LiCl) to epileptiform-like neuronal discharges using overdose concentration (>1 mM LiCl). The overdose concentration lithium-induced epileptiform-like activity was similar to the epileptiform-like activity caused by the GABAA-receptor antagonist. Patch-clamp recordings reveal that lithium reduces action potential threshold at all concentrations, however, only overdose concentration causes increased frequency of spontaneous AMPA-receptor mediated transmission. By applying the AMPA-receptor antagonist and anti-epileptic drug Perampanel, we demonstrate that Perampanel suppresses lithium-induced epileptiform-like activity in human cortical neurons. We provide insights in how therapeutically effective and overdose concentration of lithium directly influences human neuronal function at synapse, a single neuron, and neuronal network levels. Furthermore, we provide evidence that Perampanel suppresses pathological neuronal discharges caused by overdose concentrations of lithium in human neurons.
Collapse
Affiliation(s)
- Julia Izsak
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Henrik Seth
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Margarita Iljin
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stephan Theiss
- grid.411327.20000 0001 2176 9917Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany ,Result Medical GmbH, Düsseldorf, Germany
| | - Hans Ågren
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Section of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Keiko Funa
- grid.8761.80000 0000 9919 9582Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XOncology Laboratory, Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ludwig Aigner
- grid.21604.310000 0004 0523 5263Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Eric Hanse
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Illes
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
Smits LM, Magni S, Kinugawa K, Grzyb K, Luginbühl J, Sabate-Soler S, Bolognin S, Shin JW, Mori E, Skupin A, Schwamborn JC. Single-cell transcriptomics reveals multiple neuronal cell types in human midbrain-specific organoids. Cell Tissue Res 2020; 382:463-476. [PMID: 32737576 PMCID: PMC7683480 DOI: 10.1007/s00441-020-03249-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Human stem cell-derived organoids have great potential for modelling physiological and pathological processes. They recapitulate in vitro the organization and function of a respective organ or part of an organ. Human midbrain organoids (hMOs) have been described to contain midbrain-specific dopaminergic neurons that release the neurotransmitter dopamine. However, the human midbrain contains also additional neuronal cell types, which are functionally interacting with each other. Here, we analysed hMOs at high-resolution by means of single-cell RNA sequencing (scRNA-seq), imaging and electrophysiology to unravel cell heterogeneity. Our findings demonstrate that hMOs show essential neuronal functional properties as spontaneous electrophysiological activity of different neuronal subtypes, including dopaminergic, GABAergic, glutamatergic and serotonergic neurons. Recapitulating these in vivo features makes hMOs an excellent tool for in vitro disease phenotyping and drug discovery.
Collapse
Affiliation(s)
- Lisa M. Smits
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
| | - Stefano Magni
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
| | - Kaoru Kinugawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
| | - Joachim Luginbühl
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa Japan
| | - Sonia Sabate-Soler
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
| | - Jay W. Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
- University California San Diego, La Jolla, CA USA
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
7
|
Smits LM, Schwamborn JC. Midbrain Organoids: A New Tool to Investigate Parkinson's Disease. Front Cell Dev Biol 2020; 8:359. [PMID: 32509785 PMCID: PMC7248385 DOI: 10.3389/fcell.2020.00359] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
The study of human 3D cell culture models not only bridges the gap between traditional 2D in vitro experiments and in vivo animal models, it also addresses processes that cannot be recapitulated by either of these traditional models. Therefore, it offers an opportunity to better understand complex biology including brain development. The brain organoid technology provides a physiologically relevant context, which holds great potential for its application in modeling neurological diseases. Here, we compare different methods to obtain highly specialized structures that resemble specific features of the human midbrain. Regionally patterned neural stem cells (NSCs) were utilized to derive such human midbrain-specific organoids (hMO). The resulting neural tissue exhibited abundant neurons with midbrain dopaminergic neuron identity, as well as astroglia and oligodendrocyte differentiation. Within the midbrain organoids, neurite myelination, and the formation of synaptic connections were observed. Regular neuronal fire patterning and neural network synchronicity were determined by multielectrode array recordings. In addition to electrophysiologically functional neurons producing and secreting dopamine, responsive neuronal subtypes, such as GABAergic and glutamatergic neurons were also detected. In order to model disorders like Parkinson's disease (PD) in vitro, midbrain organoids carrying a disease specific mutation were derived and compared to healthy control organoids to investigate relevant neurodegenerative pathophysiology. In this way midbrain-specific organoids constitute a powerful tool for human-specific in vitro modeling of neurological disorders with a great potential to be utilized in advanced therapy development.
Collapse
|
8
|
Negri J, Menon V, Young-Pearse TL. Assessment of Spontaneous Neuronal Activity In Vitro Using Multi-Well Multi-Electrode Arrays: Implications for Assay Development. eNeuro 2020; 7:ENEURO.0080-19.2019. [PMID: 31896559 PMCID: PMC6984810 DOI: 10.1523/eneuro.0080-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Multi-electrode arrays (MEAs) are being more widely used by researchers as an instrument platform for monitoring prolonged, non-destructive recordings of spontaneously firing neurons in vitro for applications in modeling Alzheimer's, Parkinson's, schizophrenia, and many other diseases of the human CNS. With the more widespread use of these instruments, there is a need to examine the prior art of studies utilizing MEAs and delineate best practices for data acquisition and analysis to avoid errors in interpretation of the resultant data. Using a dataset of recordings from primary rat (Rattus norvegicus) cortical cultures, methods and statistical power for discerning changes in neuronal activity on the array level are examined. Further, a method for unsupervised spike sorting is implemented, allowing for the resolution of action potential incidents down to the single neuron level. Following implementation of spike sorting, the dynamics of firing frequency across populations of individual neurons and networks are examined longitudinally. Finally, the ability to detect a frequency independent phenotype, the change in action potential amplitude, is demonstrated through the use of pore-forming neurotoxin treatments. Taken together, this study provides guidance and tools for users wishing to incorporate multi-well MEA usage into their studies.
Collapse
Affiliation(s)
- Joseph Negri
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Graduate Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University, Cambridge, MA 02138
| | - Vilas Menon
- Department of Neurology, Columbia University Medical Center, New York, NY 10032
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
9
|
Izsak J, Seth H, Andersson M, Vizlin-Hodzic D, Theiss S, Hanse E, Ågren H, Funa K, Illes S. Robust Generation of Person-Specific, Synchronously Active Neuronal Networks Using Purely Isogenic Human iPSC-3D Neural Aggregate Cultures. Front Neurosci 2019; 13:351. [PMID: 31068774 PMCID: PMC6491690 DOI: 10.3389/fnins.2019.00351] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
Reproducibly generating human induced pluripotent stem cell-based functional neuronal circuits, solely obtained from single individuals, poses particular challenges to achieve personalized and patient specific functional neuronal in vitro models. A hallmark of functional neuronal assemblies, synchronous neuronal activity, can be non-invasively studied by microelectrode array (MEA) technology, reliably capturing physiological and pathophysiological aspects of human brain function. In our here presented manuscript, we demonstrate a procedure to generate 3D neural aggregates comprising astrocytes, oligodendroglial cells, and neurons obtained from the same human tissue sample. Moreover, we demonstrate the robust ability of those neurons to create a highly synchronously active neuronal network within 3 weeks in vitro, without additionally applied astrocytes. The fusion of MEA-technology with functional neuronal circuits solely obtained from one individual's cells represent isogenic person-specific human neuronal sensor chips that pave the way for specific personalized in vitro neuronal networks as well as neurological and neuropsychiatric disease modeling.
Collapse
Affiliation(s)
- Julia Izsak
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Henrik Seth
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Mats Andersson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Dzeneta Vizlin-Hodzic
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Result Medical GmbH, Düsseldorf, Germany
| | - Eric Hanse
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Hans Ågren
- Institute of Neuroscience and Physiology, Section of Psychiatry and Neurochemistry, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Keiko Funa
- Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Oncology Laboratory, Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sebastian Illes
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
10
|
Hirose T, Cabrera-Socorro A, Chitayat D, Lemonnier T, Féraud O, Cifuentes-Diaz C, Gervasi N, Mombereau C, Ghosh T, Stoica L, Bacha JDA, Yamada H, Lauterbach MA, Guillon M, Kaneko K, Norris JW, Siriwardena K, Blasér S, Teillon J, Mendoza-Londono R, Russeau M, Hadoux J, Ito S, Corvol P, Matheus MG, Holden KR, Takei K, Emiliani V, Bennaceur-Griscelli A, Schwartz CE, Nguyen G, Groszer M. ATP6AP2 variant impairs CNS development and neuronal survival to cause fulminant neurodegeneration. J Clin Invest 2019; 129:2145-2162. [PMID: 30985297 DOI: 10.1172/jci79990] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
Vacuolar H+-ATPase-dependent (V-ATPase-dependent) functions are critical for neural proteostasis and are involved in neurodegeneration and brain tumorigenesis. We identified a patient with fulminant neurodegeneration of the developing brain carrying a de novo splice site variant in ATP6AP2 encoding an accessory protein of the V-ATPase. Functional studies of induced pluripotent stem cell-derived (iPSC-derived) neurons from this patient revealed reduced spontaneous activity and severe deficiency in lysosomal acidification and protein degradation leading to neuronal cell death. These deficiencies could be rescued by expression of full-length ATP6AP2. Conditional deletion of Atp6ap2 in developing mouse brain impaired V-ATPase-dependent functions, causing impaired neural stem cell self-renewal, premature neuronal differentiation, and apoptosis resulting in degeneration of nearly the entire cortex. In vitro studies revealed that ATP6AP2 deficiency decreases V-ATPase membrane assembly and increases endosomal-lysosomal fusion. We conclude that ATP6AP2 is a key mediator of V-ATPase-dependent signaling and protein degradation in the developing human central nervous system.
Collapse
Affiliation(s)
- Takuo Hirose
- Collège de France, Center for Interdisciplinary Research in Biology, Paris, France
| | - Alfredo Cabrera-Socorro
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - David Chitayat
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics and.,Department of Diagnostic Imaging, Division of Pediatric Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Lemonnier
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Olivier Féraud
- INSERM, UMR 935, ESTeam Paris Sud, SFR André Lwoff, Université Paris Sud, Villejuif, France.,Infrastructure Nationale INGESTEM, Université Paris Sud, INSERM, Paris, France
| | - Carmen Cifuentes-Diaz
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Nicolas Gervasi
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Cedric Mombereau
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Tanay Ghosh
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Loredana Stoica
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jeanne d'Arc Al Bacha
- Collège de France, Center for Interdisciplinary Research in Biology, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France.,Laboratory of Applied Biotechnology, Azm Center for the Research in Biotechnology and Its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli, Lebanon.,Reviva Regenerative Medicine Center, Human Genetic Center, Middle East Institute of Health Hospital, Bsalim, Lebanon
| | - Hiroshi Yamada
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Marcel A Lauterbach
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS, UMR 8250, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Guillon
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS, UMR 8250, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kiriko Kaneko
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Joy W Norris
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | | | - Jérémie Teillon
- Collège de France, Center for Interdisciplinary Research in Biology, Paris, France.,INSERM, U1050, Paris, France.,CNRS, UMR 7241, Paris, France
| | | | - Marion Russeau
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Julien Hadoux
- INSERM, UMR 935, ESTeam Paris Sud, SFR André Lwoff, Université Paris Sud, Villejuif, France.,Infrastructure Nationale INGESTEM, Université Paris Sud, INSERM, Paris, France
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Pierre Corvol
- Collège de France, Center for Interdisciplinary Research in Biology, Paris, France.,INSERM, U1050, Paris, France.,CNRS, UMR 7241, Paris, France
| | | | - Kenton R Holden
- Department of Radiology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kohji Takei
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS, UMR 8250, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Annelise Bennaceur-Griscelli
- INSERM, UMR 935, ESTeam Paris Sud, SFR André Lwoff, Université Paris Sud, Villejuif, France.,Infrastructure Nationale INGESTEM, Université Paris Sud, INSERM, Paris, France.,Faculté de Médecine, Kremlin-Bicêtre, Université Paris Sud, Paris Saclay, France.,AP-HP, Service d'Hématologie, Hôpitaux Universitaires Paris Sud, Hôpital Paul Brousse, Villejuif, France
| | | | - Genevieve Nguyen
- Collège de France, Center for Interdisciplinary Research in Biology, Paris, France.,INSERM, U1050, Paris, France.,CNRS, UMR 7241, Paris, France
| | - Matthias Groszer
- INSERM, UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
11
|
Kaindl J, Winner B. Disease Modeling of Neuropsychiatric Brain Disorders Using Human Stem Cell-Based Neural Models. Curr Top Behav Neurosci 2019; 42:159-183. [PMID: 31407242 DOI: 10.1007/7854_2019_111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human pluripotent stem (PS) cells are a relevant platform to model human-specific neurological disorders. In this chapter, we focus on human stem cell models for neuropsychiatric disorders including induced pluripotent stem (iPS) cell-derived neural precursor cells (NPCs), neurons and cerebral organoids. We discuss crucial steps for planning human disease modeling experiments. We introduce the different strategies of human disease modeling including transdifferentiation, human embryonic stem (ES) cell-based models, iPS cell-based models and genome editing options. Analysis of disease-relevant phenotypes is discussed. In more detail, we provide exemplary insight into modeling of the neurodevelopmental defects in autism spectrum disorder (ASD) and the process of neurodegeneration in Alzheimer's disease (AD). Besides monogenic diseases, iPS cell-derived models also generated data from idiopathic and sporadic cases.
Collapse
Affiliation(s)
- Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
12
|
Seidel D, Jahnke HG, Englich B, Girard M, Robitzki AA. In vitro field potential monitoring on a multi-microelectrode array for the electrophysiological long-term screening of neural stem cell maturation. Analyst 2018; 142:1929-1937. [PMID: 28484750 DOI: 10.1039/c6an02713j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Due to the lack of appropriate cell models as well as automated electrophysiology monitoring technologies, the standardized identification of neurotoxic or protective effects in vitro remains a major problem in today's pharmaceutical ingredient development. Over the past few years, in vivo-like human pluripotent stem cell-derived neuronal networks have turned out to be a promising physiological cell source, if the establishment of robust and time-saving functional maturation strategies based on stable and expandable neural progenitor populations can be achieved. Here, we describe a multi-microelectrode array (MMEA)-based bioelectronics platform that was optimized for long-term electrophysiological activity monitoring of neuronal networks via field potential measurements. Differentiation of small molecule-based neuronal progenitors on MMEAs led to functional neurons within 15 days. More strikingly, these functional neuronal cultures could remain electrophysiologically stable on the MMEAs for more than four weeks. The observed electrophysiological properties correlated with the expression of typical neuron subtype markers and were further validated by specific neurotransmitter applications. With our established monitoring platform, we could show for the first time the long-term stability of the neural stem cell-like progenitor population to differentiate to electrophysiologically active dopaminergic neuronal networks for more than 80 passages. In conclusion, we provide a comprehensive long-term stable field potential monitoring platform based on stem cell-derived human neuronal networks that can be automated and up-scaled for standardized high-content screening applications e.g. in the field of neurotoxic and neuroprotective therapeutics identification.
Collapse
Affiliation(s)
- Diana Seidel
- Centre for Biotechnology and Biomedicine (BBZ), University of Leipzig, Division of Molecular Biological-Biochemical Processing Technology, D-04103 Leipzig, Germany.
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine (BBZ), University of Leipzig, Division of Molecular Biological-Biochemical Processing Technology, D-04103 Leipzig, Germany.
| | - Beate Englich
- Centre for Biotechnology and Biomedicine (BBZ), University of Leipzig, Division of Molecular Biological-Biochemical Processing Technology, D-04103 Leipzig, Germany.
| | - Mathilde Girard
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Genopole Campus 1, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Andrea A Robitzki
- Centre for Biotechnology and Biomedicine (BBZ), University of Leipzig, Division of Molecular Biological-Biochemical Processing Technology, D-04103 Leipzig, Germany.
| |
Collapse
|
13
|
Synchronous firing patterns of induced pluripotent stem cell-derived cortical neurons depend on the network structure consisting of excitatory and inhibitory neurons. Biochem Biophys Res Commun 2018; 501:152-157. [DOI: 10.1016/j.bbrc.2018.04.197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 01/17/2023]
|
14
|
Yin XL, Jie HQ, Liang M, Gong LN, Liu HW, Pan HL, Xing YZ, Shi HB, Li CY, Wang LY, Yin SK. Accelerated Development of the First-Order Central Auditory Neurons With Spontaneous Activity. Front Mol Neurosci 2018; 11:183. [PMID: 29904342 PMCID: PMC5990604 DOI: 10.3389/fnmol.2018.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
In developing sensory systems, elaborate morphological connectivity between peripheral cells and first-order central neurons emerges via genetic programming before the onset of sensory activities. However, how the first-order central neurons acquire the capacity to interface with peripheral cells remains elusive. By making patch-clamp recordings from mouse brainstem slices, we found that a subset of neurons in the cochlear nuclei, the first central station to receive peripheral acoustic impulses, exhibits spontaneous firings (SFs) as early as at birth, and the fraction of such neurons increases during the prehearing period. SFs are reduced but not eliminated by a cocktail of blockers for excitatory and inhibitory synaptic inputs, implicating the involvement of intrinsic pacemaker channels. Furthermore, we demonstrate that these intrinsic firings (IFs) are largely driven by hyperpolarization- and cyclic nucleotide-gated channel (HCN) mediated currents (Ih), as evidenced by their attenuation in the presence of HCN blockers or in neurons from HCN1 knockout mice. Interestingly, genetic deletion of HCN1 cannot be fully compensated by other pacemaker conductances and precludes age-dependent up regulation in the fraction of spontaneous active neurons and their firing rate. Surprisingly, neurons with SFs show accelerated development in excitability, spike waveform and firing pattern as well as synaptic pruning towards mature phenotypes compared to those without SFs. Our results imply that SFs of the first-order central neurons may reciprocally promote their wiring and firing with peripheral inputs, potentially enabling the correlated activity and crosstalk between the developing brain and external environment.
Collapse
Affiliation(s)
- Xin-Lu Yin
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Qun Jie
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liang
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Na Gong
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Han-Wei Liu
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Lai Pan
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Zhi Xing
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Yan Li
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Lu-Yang Wang
- Programs in Neurosciences & Mental Health, Department of Physiology, Sick Kids Research Institute, Toronto, ON, Canada
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Mäkinen MEL, Ylä-Outinen L, Narkilahti S. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks. Front Cell Neurosci 2018; 12:56. [PMID: 29559893 PMCID: PMC5845705 DOI: 10.3389/fncel.2018.00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/16/2018] [Indexed: 01/03/2023] Open
Abstract
The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling.
Collapse
Affiliation(s)
- Meeri Eeva-Liisa Mäkinen
- NeuroGroup Laboratory, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Laura Ylä-Outinen
- NeuroGroup Laboratory, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup Laboratory, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
16
|
Bjorefeldt A, Illes S, Zetterberg H, Hanse E. Neuromodulation via the Cerebrospinal Fluid: Insights from Recent in Vitro Studies. Front Neural Circuits 2018; 12:5. [PMID: 29459822 PMCID: PMC5807333 DOI: 10.3389/fncir.2018.00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
The cerebrospinal fluid (CSF) occupies the brain's ventricles and subarachnoid space and, together with the interstitial fluid (ISF), forms a continuous fluidic network that bathes all cells of the central nervous system (CNS). As such, the CSF is well positioned to actively distribute neuromodulators to neural circuits in vivo via volume transmission. Recent in vitro experimental work in brain slices and neuronal cultures has shown that human CSF indeed contains neuromodulators that strongly influence neuronal activity. Here we briefly summarize these new findings and discuss their potential relevance to neural circuits in health and disease.
Collapse
Affiliation(s)
- Andreas Bjorefeldt
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Sebastian Illes
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom
- United Kingdom Dementia Research Institute, University College London, London, United Kingdom
| | - Eric Hanse
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Gazina EV, Morrisroe E, Mendis GDC, Michalska AE, Chen J, Nefzger CM, Rollo BN, Reid CA, Pera MF, Petrou S. Method of derivation and differentiation of mouse embryonic stem cells generating synchronous neuronal networks. J Neurosci Methods 2017; 293:53-58. [PMID: 28827162 DOI: 10.1016/j.jneumeth.2017.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Stem cells-derived neuronal cultures hold great promise for in vitro disease modelling and drug screening. However, currently stem cells-derived neuronal cultures do not recapitulate the functional properties of primary neurons, such as network properties. Cultured primary murine neurons develop networks which are synchronised over large fractions of the culture, whereas neurons derived from mouse embryonic stem cells (ESCs) display only partly synchronised network activity and human pluripotent stem cells-derived neurons have mostly asynchronous network properties. Therefore, strategies to improve correspondence of derived neuronal cultures with primary neurons need to be developed to validate the use of stem cell-derived neuronal cultures as in vitro models. NEW METHOD By combining serum-free derivation of ESCs from mouse blastocysts with neuronal differentiation of ESCs in morphogen-free adherent culture we generated neuronal networks with properties recapitulating those of mature primary cortical cultures. RESULTS After 35days of differentiation ESC-derived neurons developed network activity very similar to that of mature primary cortical neurons. Importantly, ESC plating density was critical for network development. COMPARISON WITH EXISTING METHOD(S) Compared to the previously published methods this protocol generated more synchronous neuronal networks, with high similarity to the networks formed in mature primary cortical culture. CONCLUSION We have demonstrated that ESC-derived neuronal networks recapitulating key properties of mature primary cortical networks can be generated by optimising both stem cell derivation and differentiation. This validates the approach of using ESC-derived neuronal cultures for disease modelling and in vitro drug screening.
Collapse
Affiliation(s)
- Elena V Gazina
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Emma Morrisroe
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Gunarathna D C Mendis
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3052, Australia
| | | | - Joseph Chen
- Department of Anatomy and Developmental Biology, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin N Rollo
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Martin F Pera
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Stem Cells Australia, Parkville, VIC 3052, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Centre for Neural Engineering, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
18
|
Henningson M, Illes S. Analysis and Modeling of Subthreshold Neural Multi-Electrode Array Data by Statistical Field Theory. Front Comput Neurosci 2017; 11:26. [PMID: 28458635 PMCID: PMC5394179 DOI: 10.3389/fncom.2017.00026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/29/2017] [Indexed: 12/19/2022] Open
Abstract
Multi-electrode arrays (MEA) are increasingly used to investigate spontaneous neuronal network activity. The recorded signals comprise several distinct components: Apart from artifacts without biological significance, one can distinguish between spikes (action potentials) and subthreshold fluctuations (local fields potentials). Here we aim to develop a theoretical model that allows for a compact and robust characterization of subthreshold fluctuations in terms of a Gaussian statistical field theory in two spatial and one temporal dimension. What is usually referred to as the driving noise in the context of statistical physics is here interpreted as a representation of the neural activity. Spatial and temporal correlations of this activity give valuable information about the connectivity in the neural tissue. We apply our methods on a dataset obtained from MEA-measurements in an acute hippocampal brain slice from a rat. Our main finding is that the empirical correlation functions indeed obey the logarithmic behavior that is a general feature of theoretical models of this kind. We also find a clear correlation between the activity and the occurrence of spikes. Another important insight is the importance of correctly separating out certain artifacts from the data before proceeding with the analysis.
Collapse
Affiliation(s)
- Måns Henningson
- Division of Biological Physics, Department of Physics, Chalmers University of TechnologyGöteborg, Sweden
| | - Sebastian Illes
- Department of Physiology, Institute of Neuroscience and Physiology, Sahgrenska Academy, University of GothenburgGöteborg, Sweden
| |
Collapse
|
19
|
Magown P, Rafuse VF, Brownstone RM. Microcircuit formation following transplantation of mouse embryonic stem cell-derived neurons in peripheral nerve. J Neurophysiol 2017; 117:1683-1689. [PMID: 28148646 DOI: 10.1152/jn.00943.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/22/2022] Open
Abstract
Motoneurons derived from embryonic stem cells can be transplanted in the tibial nerve, where they extend axons to functionally innervate target muscle. Here, we studied spontaneous muscle contractions in these grafts 3 mo following transplantation. One-half of the transplanted grafts generated rhythmic muscle contractions of variable patterns, either spontaneously or in response to brief electrical stimulation. Activity generated by transplanted embryonic stem cell-derived neurons was driven by glutamate and was modulated by muscarinic and GABAergic/glycinergic transmission. Furthermore, rhythmicity was promoted by the same transmitter combination that evokes rhythmic locomotor activity in spinal cord circuits. These results demonstrate that there is a degree of self-assembly of microcircuits in these peripheral grafts involving embryonic stem cell-derived motoneurons and interneurons. Such spontaneous activity is reminiscent of embryonic circuit development in which spontaneous activity is essential for proper connectivity and function and may be necessary for the grafts to form functional connections with muscle.NEW & NOTEWORTHY This manuscript demonstrates that, following peripheral transplantation of neurons derived from embryonic stem cells, the grafts are spontaneously active. The activity is produced and modulated by a number of transmitter systems, indicating that there is a degree of self-assembly of circuits in the grafts.
Collapse
Affiliation(s)
- Philippe Magown
- Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Victor F Rafuse
- Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - Robert M Brownstone
- Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; .,Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada.,Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
20
|
Bart Martens M, Frega M, Classen J, Epping L, Bijvank E, Benevento M, van Bokhoven H, Tiesinga P, Schubert D, Nadif Kasri N. Euchromatin histone methyltransferase 1 regulates cortical neuronal network development. Sci Rep 2016; 6:35756. [PMID: 27767173 PMCID: PMC5073331 DOI: 10.1038/srep35756] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022] Open
Abstract
Heterozygous mutations or deletions in the human Euchromatin histone methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a neurodevelopmental disorder that is characterized by autistic-like features and severe intellectual disability (ID). Neurodevelopmental disorders including ID and autism may be related to deficits in activity-dependent wiring of brain circuits during development. Although Kleefstra syndrome has been associated with dendritic and synaptic defects in mice and Drosophila, little is known about the role of EHMT1 in the development of cortical neuronal networks. Here we used micro-electrode arrays and whole-cell patch-clamp recordings to investigate the impact of EHMT1 deficiency at the network and single cell level. We show that EHMT1 deficiency impaired neural network activity during the transition from uncorrelated background action potential firing to synchronized network bursting. Spontaneous bursting and excitatory synaptic currents were transiently reduced, whereas miniature excitatory postsynaptic currents were not affected. Finally, we show that loss of function of EHMT1 ultimately resulted in less regular network bursting patterns later in development. These data suggest that the developmental impairments observed in EHMT1-deficient networks may result in a temporal misalignment between activity-dependent developmental processes thereby contributing to the pathophysiology of Kleefstra syndrome.
Collapse
Affiliation(s)
- Marijn Bart Martens
- Department of Neuroinformatics, Radboud University Nijmegen, Faculty of Science, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Monica Frega
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Jessica Classen
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Lisa Epping
- Department of Neuroinformatics, Radboud University Nijmegen, Faculty of Science, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Elske Bijvank
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Marco Benevento
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Paul Tiesinga
- Department of Neuroinformatics, Radboud University Nijmegen, Faculty of Science, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Dirk Schubert
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Human Genetics, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| |
Collapse
|
21
|
Perez-Alcazar M, Culley G, Lyckenvik T, Mobarrez K, Bjorefeldt A, Wasling P, Seth H, Asztely F, Harrer A, Iglseder B, Aigner L, Hanse E, Illes S. Human Cerebrospinal Fluid Promotes Neuronal Viability and Activity of Hippocampal Neuronal Circuits In Vitro. Front Cell Neurosci 2016; 10:54. [PMID: 26973467 PMCID: PMC4777716 DOI: 10.3389/fncel.2016.00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling.
Collapse
Affiliation(s)
- Marta Perez-Alcazar
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Georgia Culley
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Tim Lyckenvik
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Kristoffer Mobarrez
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Andreas Bjorefeldt
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Pontus Wasling
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Henrik Seth
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Frederik Asztely
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Andrea Harrer
- Department of Neurology, Christian-Doppler-Klinik, Paracelsus Medical University Salzburg, Austria
| | - Bernhard Iglseder
- Department of Geriatric Medicine, Christian-Doppler-Klinik, Paracelsus Medical University Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical UniversitySalzburg, Austria
| | - Eric Hanse
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Sebastian Illes
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg, Sweden; Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical UniversitySalzburg, Austria
| |
Collapse
|
22
|
Kapucu FE, Mäkinen MEL, Tanskanen JMA, Ylä-Outinen L, Narkilahti S, Hyttinen JAK. Joint analysis of extracellular spike waveforms and neuronal network bursts. J Neurosci Methods 2015; 259:143-155. [PMID: 26675487 DOI: 10.1016/j.jneumeth.2015.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Neuronal networks are routinely assessed based on extracellular electrophysiological microelectrode array (MEA) measurements by spike sorting, and spike and burst statistics. We propose to jointly analyze sorted spikes and detected bursts, and hypothesize that the obtained spike type compositions of the bursts can provide new information on the functional networks. NEW METHOD Spikes are detected and sorted to obtain spike types and bursts are detected. In the proposed joint analysis, each burst spike is associated with a spike type, and the spike type compositions of the bursts are assessed. RESULTS The proposed method was tested with simulations and MEA measurements of in vitro human stem cell derived neuronal networks under different pharmacological treatments. The results show that the treatments altered the spike type compositions of the bursts. For example, 6-cyano-7-nitroquinoxaline-2,3-dione almost completely abolished two types of spikes which had composed the bursts in the baseline, while bursts of spikes of two other types appeared more frequently. This phenomenon was not observable by spike sorting or burst analysis alone, but was revealed by the proposed joint analysis. COMPARISON WITH EXISTING METHODS The existing methods do not provide the information obtainable with the proposed method: for the first time, the spike type compositions of bursts are analyzed. CONCLUSIONS We showed that the proposed method provides useful and novel information, including the possible changes in the spike type compositions of the bursts due to external factors. Our method can be employed on any data exhibiting sortable action potential waveforms and detectable bursts.
Collapse
Affiliation(s)
- Fikret Emre Kapucu
- Tampere University of Technology, Department of Electronics and Communications Engineering, Computational Biophysics and Imaging Group, BioMediTech, Biokatu 6, FI-33520 Tampere, Finland.
| | - Meeri E-L Mäkinen
- University of Tampere, NeuroGroup, BioMediTech, Biokatu 12, FI-33014 Tampere, Finland.
| | - Jarno M A Tanskanen
- Tampere University of Technology, Department of Electronics and Communications Engineering, Computational Biophysics and Imaging Group, BioMediTech, Biokatu 6, FI-33520 Tampere, Finland.
| | - Laura Ylä-Outinen
- University of Tampere, NeuroGroup, BioMediTech, Biokatu 12, FI-33014 Tampere, Finland.
| | - Susanna Narkilahti
- University of Tampere, NeuroGroup, BioMediTech, Biokatu 12, FI-33014 Tampere, Finland.
| | - Jari A K Hyttinen
- Tampere University of Technology, Department of Electronics and Communications Engineering, Computational Biophysics and Imaging Group, BioMediTech, Biokatu 6, FI-33520 Tampere, Finland.
| |
Collapse
|
23
|
Abstract
Stem cell-based interventions aim to use special regenerative cells (stem cells) to facilitate neuronal function beyond the site of the injury. Many studies involving animal models of spinal cord injury (SCI) suggest that certain stem cell-based therapies may restore function after SCI. Currently, in case of spinal cord injuries, new discoveries with clinical implications have been continuously made in basic stem cell research, and stem cell-based approaches are advancing rapidly toward application in patients. There is a huge base of preclinical evidence in vitro and in animal models which suggests the safety and clinical efficacy of cellular therapies after SCI. Despite this, data from clinical studies is not very encouraging and at times confounding. Here, we have attempted to cover preclinical and clinical evidence base dealing with safety, feasibility and efficacy of cell based interventions after SCI. The limitations of preclinical data and the reasons underlying its failure to translate in a clinical setting are also discussed. Based on the evidence base, it is suggested that a multifactorial approach is required to address this situation. Need for standardized, stringently designed multi-centric clinical trials for obtaining validated proof of evidence is also highlighted.
Collapse
Affiliation(s)
- Harvinder Singh Chhabra
- Spine Service, Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, India,Address for correspondence: Dr. Harvinder Singh Chhabra, Indian Spinal Injuries Centre, Sector C, Vasant Kunj, New Delhi - 110 070, India. E-mail:
| | - Kanchan Sarda
- Spine Service, Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, India
| |
Collapse
|