1
|
Wang Y, Hu S, Han C. A Simple and Efficient Procedure for Developing Mouse Germline Stem Cell Lines with Gene Knock-in via CRISPR/Cas9 Technology. Curr Protoc 2024; 4:e70002. [PMID: 39264143 DOI: 10.1002/cpz1.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Cultured mammalian spermatogonial stem cells (SSCs), also known as germline stem cells (GSCs), hold great promise for applications such as fertility preservation, gene therapy, and animal breeding, particularly in conjunction with accurate gene editing. Although the in vitro development of mouse GSC (mGSC) lines, and gene-targeting procedures for such lines, were initially established about two decades ago, it remains challenging for beginners to efficiently accomplish these tasks, partly because mGSCs proliferate more slowly and are more resistant to lipid-mediated gene transfection than pluripotent stem cells (PSCs). Meanwhile, methods for mGSC culture and gene editing have been evolving constantly to become simpler and more efficient. Here, we describe how to develop mGSC lines from small mouse testis samples and how to carry out gene knock-in in these cells using CRISPR/Cas9 technology, detailing three basic protocols that constitute a streamlined procedure. Using these simple and efficient procedures, site-specific knock-in mGSC lines can be obtained in 3 months. We hope that these protocols will help researchers use genetically modified GSCs to explore scientific questions of interest and to accumulate experience for application to GSC research in other mammalian species. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Establishment of mouse GSCs lines from small testicular samples Basic Protocol 2: Preparation of plasmids for gene knock-in using the CRISPR/Cas9 system Basic Protocol 3: Establishment of gene knock-in mGSC lines by electroporation gene delivery.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shuaitao Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Zhao Y, Deng S, Li C, Cao J, Wu A, Chen M, Ma X, Wu S, Lian Z. The Role of Retinoic Acid in Spermatogenesis and Its Application in Male Reproduction. Cells 2024; 13:1092. [PMID: 38994945 PMCID: PMC11240464 DOI: 10.3390/cells13131092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogenesis in mammalian testes is essential for male fertility, ensuring a continuous supply of mature sperm. The testicular microenvironment finely tunes this process, with retinoic acid, an active metabolite of vitamin A, serving a pivotal role. Retinoic acid is critical for various stages, including the differentiation of spermatogonia, meiosis in spermatogenic cells, and the production of mature spermatozoa. Vitamin A deficiency halts spermatogenesis, leading to the degeneration of numerous germ cells, a condition reversible with retinoic acid supplementation. Although retinoic acid can restore fertility in some males with reproductive disorders, it does not work universally. Furthermore, high doses may adversely affect reproduction. The inconsistent outcomes of retinoid treatments in addressing infertility are linked to the incomplete understanding of the molecular mechanisms through which retinoid signaling governs spermatogenesis. In addition to the treatment of male reproductive disorders, the role of retinoic acid in spermatogenesis also provides new ideas for the development of male non-hormone contraceptives. This paper will explore three facets: the synthesis and breakdown of retinoic acid in the testes, its role in spermatogenesis, and its application in male reproduction. Our discussion aims to provide a comprehensive reference for studying the regulatory effects of retinoic acid signaling on spermatogenesis and offer insights into its use in treating male reproductive issues.
Collapse
Affiliation(s)
- Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Chongyang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Jingchao Cao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Aowu Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuehai Ma
- Xinjiang Key Laboratory of Mental Development and Learning Science, College of Psychology, Xinjiang Normal University, Urumqi 830017, China
| | - Sen Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Han C. Gene expression programs in mammalian spermatogenesis. Development 2024; 151:dev202033. [PMID: 38691389 DOI: 10.1242/dev.202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.
Collapse
Affiliation(s)
- Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
4
|
Diawara M, Martin LJ. Regulatory mechanisms of SoxD transcription factors and their influences on male fertility. Reprod Biol 2023; 23:100823. [PMID: 37979495 DOI: 10.1016/j.repbio.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Members of the SRY-related box (SOX) subfamily D (SoxD) of transcription factors are well conserved among vertebrate species and play important roles in different stages of male reproductive development. In mammals, the SoxD subfamily contains three members: SOX5, SOX6 and SOX13. Here, we describe their implications in testicular development and spermatogenesis, contributing to fertility. We also cover the mechanisms of action of SoxD transcription factors in gene regulation throughout male development. The specificity of activation of target genes by SoxD members depends, in part, on their post-translational modifications and interactions with other partners. Sperm production in adult males requires the coordination in the regulation of gene expression by different members of the SoxD subfamily of transcription factors in the testis. Specifically, the regulation of genes promoting adequate spermatogenesis by SoxD members is discussed in comparison between species.
Collapse
Affiliation(s)
- Mariama Diawara
- Biology Department, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada.
| |
Collapse
|
5
|
Luo Y, Yamada M, N’Tumba-Byn T, Asif H, Gao M, Hu Y, Marangoni P, Liu Y, Evans T, Rafii S, Klein OD, Voss HU, Hadjantonakis AK, Elemento O, Martin LA, Seandel M. SPRY4-dependent ERK negative feedback demarcates functional adult stem cells in the male mouse germline†. Biol Reprod 2023; 109:533-551. [PMID: 37552049 PMCID: PMC10577279 DOI: 10.1093/biolre/ioad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/28/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023] Open
Abstract
Niche-derived growth factors support self-renewal of mouse spermatogonial stem and progenitor cells through ERK MAPK signaling and other pathways. At the same time, dysregulated growth factor-dependent signaling has been associated with loss of stem cell activity and aberrant differentiation. We hypothesized that growth factor signaling through the ERK MAPK pathway in spermatogonial stem cells is tightly regulated within a narrow range through distinct intracellular negative feedback regulators. Evaluation of candidate extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK)-responsive genes known to dampen downstream signaling revealed robust induction of specific negative feedback regulators, including Spry4, in cultured mouse spermatogonial stem cells in response to glial cell line-derived neurotrophic factor or fibroblast growth factor 2. Undifferentiated spermatogonia in vivo exhibited high levels of Spry4 mRNA. Quantitative single-cell analysis of ERK MAPK signaling in spermatogonial stem cell cultures revealed both dynamic signaling patterns in response to growth factors and disruption of such effects when Spry4 was ablated, due to dysregulation of ERK MAPK downstream of RAS. Whereas negative feedback regulator expression decreased during differentiation, loss of Spry4 shifted cell fate toward early differentiation with concomitant loss of stem cell activity. Finally, a mouse Spry4 reporter line revealed that the adult spermatogonial stem cell population in vivo is demarcated by strong Spry4 promoter activity. Collectively, our data suggest that negative feedback-dependent regulation of ERK MAPK is critical for preservation of spermatogonial stem cell fate within the mammalian testis.
Collapse
Affiliation(s)
- Yanyun Luo
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Makiko Yamada
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | | | - Hana Asif
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Meng Gao
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Yang Hu
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Pauline Marangoni
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Ying Liu
- Division of Regenerative Medicine, Department of Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Department of Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Henning U Voss
- College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Laura A Martin
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Marco Seandel
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Wang G, Lu R, Gao Y, Zhang H, Shi X, Ma W, Wu L, Tian X, Liu H, Jiang H, Li X, Ma X. Molecular characterization and potential function of Rxrγ in gonadal differentiation of Chinese soft-shelled turtle (Pelodiscus sinensis). J Steroid Biochem Mol Biol 2023; 233:106360. [PMID: 37429547 DOI: 10.1016/j.jsbmb.2023.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Retinoid X receptor (RXR) is a member of the ligand-dependent nuclear receptor family. Previous studies revealed that RXRs are involved in reproduction in vertebrates. However, information on the function of RXRs in turtles is scarce. In this study, the Rxrγ cDNA sequence of Pelodiscus sinensis was cloned and analyzed, and a polyclonal antibody was constructed. RXRγ protein showed a positive signal in both mature and differentiated gonads of the turtle. Subsequently, the function of the Rxrγ gene in gonadal differentiation was confirmed using short interfering RNA (RNAi). The full-length cDNA sequence of the Rxrγ gene in P. sinensis was 2152 bp, encoding 407 amino acids and containing typical nuclear receptor family domains, including the DNA-binding domain (DBD), ligand-binding domain (LBD), and activation function 1 (AF1). Moreover, gonadal Ps-Rxrγ showed sexual dimorphism expression patterns in differentiated gonads. Real-time quantitative PCR results revealed that the Rxrγ gene was highly expressed in the turtle ovary. RNAi treatment increased the number of Sertoli cells in ZZ embryonic gonads. Furthermore, RNA interference upregulated Dmrt1 and Sox9 in ZZ and ZW embryonic gonads. However, Foxl2, Cyp19a1, Stra8, and Cyp26b1 were downregulated in embryonic gonads. The results indicated that Rxrγ participated in gonadal differentiation and development in P. sinensis.
Collapse
Affiliation(s)
- Guiyu Wang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Ruiyi Lu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Yijie Gao
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Haoran Zhang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xi Shi
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Wenge Ma
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Limin Wu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xue Tian
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Huifen Liu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Hongxia Jiang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- College of Fisheries Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- College of Fisheries Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
7
|
Wu K, Chen Q, Li F, Shen J, Sun W, Ge C. Evidence for RA-dependent meiosis onset in a turtle embryo. Cell Tissue Res 2023; 394:229-241. [PMID: 37526735 DOI: 10.1007/s00441-023-03814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Meiotic entry is one of the earliest sex determination events of the germ cell in higher vertebrates. Although advances in meiosis onset have been achieved in mammals, birds and fish, how this process functions in reptiles is largely unknown. In this study, we present the molecular analysis of meiosis onset and the role of retinoic acid (RA) in this process in the red-eared slider turtle. Our results using Stra8 as a pre-meiosis indicator show that in the female embryonic gonad, meiosis commitment starts around stage 19. Additionally, signals of the meiosis marker Sycp3 could be detected at stage 19 and become highly expressed by stage 23. No expression of these genes was detected in male embryonic gonads, suggesting the entry into meiosis prophase I was restricted to female embryonic germ cells. Notably, RA activity in fetal gonads is likely to be elevated in females than that in males, as evidenced by the higher expression of RA synthase Aldh1a1 and lower expression of RA-degrading enzyme Cyp26a1 in female gonads prior to meiotic entry. In addition, exogenous RA treatment induced the expression of Stra8 and Sycp3 in both sexes, whether in vivo or in vitro. Together, these results indicate that high levels of RA in the embryonic female gonads can lead to the initiation of meiosis in the turtle.
Collapse
Affiliation(s)
- Kaiyue Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Qiran Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Fang Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Jiadong Shen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Wei Sun
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Chutian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
8
|
Ben Jemaa S, Tolone M, Sardina MT, Di Gerlando R, Chessari G, Criscione A, Persichilli C, Portolano B, Mastrangelo S. A genome-wide comparison between selected and unselected Valle del Belice sheep reveals differences in population structure and footprints of recent selection. J Anim Breed Genet 2023; 140:558-567. [PMID: 37226373 DOI: 10.1111/jbg.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
About three decades of breeding and selection in the Valle del Belìce sheep are expected to have left several genomic footprints related to milk production traits. In this study, we have assembled a dataset with 451 individuals of the Valle del Belìce sheep breed: 184 animals that underwent directional selection for milk production and 267 unselected animals, genotyped for 40,660 single-nucleotide polymorphisms (SNPs). Three different statistical approaches, both within (iHS and ROH) and between (Rsb) groups, were used to identify genomic regions potentially under selection. Population structure analyses separated all individuals according to their belonging to the two groups. A total of four genomic regions on two chromosomes were jointly identified by at least two statistical approaches. Several candidate genes for milk production were identified, corroborating the polygenic nature of this trait and which may provide clues to potential new selection targets. We also found candidate genes for growth and reproductive traits. Overall, the identified genes may explain the effect of selection to improve the performances related to milk production traits in the breed. Further studies using high-density array data, would be particularly relevant to refine and validate these results.
Collapse
Affiliation(s)
- Slim Ben Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Ariana, Tunisia
| | - Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Andrea Criscione
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Christian Persichilli
- Dipartimento di Agraria, Ambientale e Scienze dell'alimentazione, University of Molise, Campobasso, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Lavudi K, Nuguri SM, Olverson Z, Dhanabalan AK, Patnaik S, Kokkanti RR. Targeting the retinoic acid signaling pathway as a modern precision therapy against cancers. Front Cell Dev Biol 2023; 11:1254612. [PMID: 37645246 PMCID: PMC10461636 DOI: 10.3389/fcell.2023.1254612] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Retinoic acid (RA) is a vital metabolite derived from vitamin A. RA plays a prominent role during development, which helps in embryological advancement and cellular differentiation. Mechanistically, RA binds to its definite nuclear receptors including the retinoic acid receptor and retinoid X receptor, thus triggering gene transcription and further consequences in gene regulation. This functional heterodimer activation later results in gene activation/inactivation. Several reports have been published related to the detailed embryonic and developmental role of retinoic acids and as an anti-cancer drug for specific cancers, including acute promyelocytic leukemia, breast cancer, and prostate cancer. Nonetheless, the other side of all-trans retinoic acid (ATRA) has not been explored widely yet. In this review, we focused on the role of the RA pathway and its downstream gene activation in relation to cancer progression. Furthermore, we explored the ways of targeting the retinoic acid pathway by focusing on the dual role of aldehyde dehydrogenase (ALDH) family enzymes. Combination strategies by combining RA targets with ALDH-specific targets make the tumor cells sensitive to the treatment and improve the progression-free survival of the patients. In addition to the genomic effects of ATRA, we also highlighted the role of ATRA in non-canonical mechanisms as an immune checkpoint inhibitor, thus targeting the immune oncological perspective of cancer treatments in the current era. The role of ATRA in activating independent mechanisms is also explained in this review. This review also highlights the current clinical trials of ATRA in combination with other chemotherapeutic drugs and explains the future directional insights related to ATRA usage.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Shreya Madhav Nuguri
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Zianne Olverson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anantha Krishna Dhanabalan
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Rekha Rani Kokkanti
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India
| |
Collapse
|
10
|
Chen J, Han C. In vivo functions of miRNAs in mammalian spermatogenesis. Front Cell Dev Biol 2023; 11:1154938. [PMID: 37215089 PMCID: PMC10196063 DOI: 10.3389/fcell.2023.1154938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
MicroRNAs (miRNAs) are believed to play important roles in mammalian spermatogenesis mainly because spermatogenesis is more or less disrupted when genes encoding key enzymes for miRNA biogenesis are mutated. However, it is challenging to study the functions of individual miRNAs due to their family-wise high sequence similarities and the clustered genomic distributions of their genes, both of which expose difficulties in using genetic methods. Accumulating evidence shows that a number of miRNAs indeed play important roles in mammalian spermatogenesis and the underlying mechanisms start to be understood. In this mini review, we focus on highlighting the roles of miRNAs in mammalian spermatogenesis elucidated mainly by using in vivo genetic methods and on discussing the underlying mechanisms. We propose that studies on the roles of miRNAs in spermatogenesis should and can be conducted in a more fruitful way given the progress in traditional methods and the birth of new technologies.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Retinoic acid-induced differentiation of porcine prospermatogonia in vitro. Theriogenology 2023; 198:344-355. [PMID: 36640739 DOI: 10.1016/j.theriogenology.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Spermatogenesis is an intricate developmental process occurring in testes by which spermatogonial stem cells (SSCs) self-renew and differentiate into mature sperm. The molecular mechanisms for SSC self-renewal and differentiation, while have been well studied in mice, may differ between mice and domestic animals including pigs. To gain knowledge about the molecular mechanisms for porcine SSC self-renewal and differentiation that have so far been poorly understood, here we isolated and enriched prospermatogonia from neonatal porcine testes, and exposed the cells to retinoic acid, a direct inducer for spermatogonial differentiation. We then identified that retinoic acid could induce porcine prospermatogonial differentiation, which was accompanied by a clear transcriptomic alteration, as revealed by the RNA-sequencing analysis. We also compared retinoic acid-induced in vitro porcine spermatogonial differentiation with the in vivo process, and compared retinoic acid-induced in vitro spermatogonial differentiation between pigs and mice. Furthermore, we analyzed retinoic acid-induced differentially expressed long non-coding RNAs (lncRNAs), and demonstrated that a pig-specific lncRNA, lncRNA-106504875, positively regulated porcine spermatogonial proliferation by targeting the core transcription factor ZBTB16. Taken together, these results would help to elucidate the roles of retinoic acid in porcine spermatogonial differentiation, thereby contributing to further knowledge about the molecular mechanisms underlying porcine SSC development and, in the long run, to optimization of both long-term culture and induced differentiation systems for porcine SSCs.
Collapse
|
12
|
scATAC-Seq reveals heterogeneity associated with spermatogonial differentiation in cultured male germline stem cells. Sci Rep 2022; 12:21482. [PMID: 36509798 PMCID: PMC9744833 DOI: 10.1038/s41598-022-25729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Spermatogonial stem cells are the most primitive spermatogonia in testis, which can self-renew to maintain the stem cell pool or differentiate to give rise to germ cells including haploid spermatids. All-trans-retinoic acid (RA), a bioactive metabolite of vitamin A, plays a fundamental role in initiating spermatogonial differentiation. In this study, single-cell ATAC-seq (scATAC-seq) was used to obtain genome-wide chromatin maps of cultured germline stem cells (GSCs) that were in control and RA-induced differentiation states. We showed that different subsets of GSCs can be distinguished based on chromatin accessibility of self-renewal and differentiation signature genes. Importantly, both progenitors and a subset of stem cells are able to respond to RA and give rise to differentiating cell subsets with distinct chromatin accessibility profiles. In this study, we identified regulatory regions that undergo chromatin remodeling and are associated with the retinoic signaling pathway. Moreover, we reconstructed the differentiation trajectory and identified novel transcription factor candidates enriched in different spermatogonia subsets. Collectively, our work provides a valuable resource for understanding the heterogeneity associated with differentiation and RA response in GSCs.
Collapse
|
13
|
Chen J, Gao C, Luo M, Zheng C, Lin X, Ning Y, Ma L, He W, Xie D, Liu K, Hong K, Han C. MicroRNA-202 safeguards meiotic progression by preventing premature SEPARASE-mediated REC8 cleavage. EMBO Rep 2022; 23:e54298. [PMID: 35712867 PMCID: PMC9346496 DOI: 10.15252/embr.202154298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 03/26/2024] Open
Abstract
MicroRNAs (miRNAs) are believed to play important roles in mammalian spermatogenesis but the in vivo functions of single miRNAs in this highly complex developmental process remain unclear. Here, we report that miR-202, a member of the let-7 family, plays an important role in spermatogenesis by phenotypic evaluation of miR-202 knockout (KO) mice. Loss of miR-202 results in spermatocyte apoptosis and perturbation of the zygonema-to-pachynema transition. Multiple processes during meiosis prophase I including synapsis and crossover formation are disrupted, and inter-sister chromatid synapses are detected. Moreover, we demonstrate that Separase mRNA is a miR-202 direct target and provides evidence that miR-202 upregulates REC8 by repressing Separase expression. Therefore, we have identified miR-202 as a new regulating noncoding gene that acts on the established SEPARASE-REC8 axis in meiosis.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Chenxu Gao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Mengcheng Luo
- Department of Tissue and EmbryologyHubei Provincial Key Laboratory of Developmentally Originated DiseaseSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Wei He
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Dan Xie
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility RegulationCenter of Assisted Reproduction and EmbryologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Obstetrics and GynecologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Kai Hong
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
14
|
Ebrahimi S, Shams A, Maghami P, Hekmat A. Investigation of Signals and Transcription Factors for The Generation of Female Germ-Like Cells. CELL JOURNAL 2022; 24:458-464. [PMID: 36093805 PMCID: PMC9468721 DOI: 10.22074/cellj.2022.8303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 11/04/2022]
Abstract
<strong>Objective:</strong> Primordial germ cell (PGCs) lines are a source of a highly specialized type of cells, characteristically oocytes,<br />during female germline development in vivo. The oocyte growth begins in the transition from the primary follicle. It is<br />associated with dynamic changes in gene expression, but the gene-regulating signals and transcription factors that control oocyte growth remain unknown. We aim to investigate the differentiation potential of mouse bone marrow mesenchymal stem cells (mMSCs) into female germ-like cells by testing several signals and transcription factors.<br /><strong>Materials and Methods:</strong> In this experimental study, mMSCs were extracted from mice femur bone using the flushing<br />technique. The cluster-differentiation (CD) of superficial mesenchymal markers was determined with flow cytometric analysis. We applied a set of transcription factors including retinoic acid (RA), titanium nanotubes (TNTs), and fibrin such as TNT-coated fibrin (F+TNT) formation and (RA+F+TNT) induction, and investigated the changes in gene, MVH/ DDX4, expression and functional screening using an in vitro mouse oocyte development condition. Germ cell markers expression, (MVH / DDX4), was analyzed with Immunocytochemistry staining, quantitative transcription-polymerase chain reaction (RT-qPCR) analysis, and Western blots.<br /><strong>Results:</strong> The expression of CD was confirmed by flow cytometry. The phase determination of the TNTs and F+TNT were confirmed using x-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. Remarkably, applying these transcription factors quickly induced pluripotent stem cells into oocyte-like cells that were sufficient to generate female germlike cells, growth, and maturation from mMSCs differentiation. These transcription factors formed oocyte-like cells specification of stem cells, epigenetic reprogramming, or meiosis and indicate that oocyte meiosis initiation and oocyte growth are not separable from the previous epigenetic reprogramming in stem cells in vitro.<br /><strong>Conclusion:</strong> Results suggested several transcription factors may apply for arranging oocyte-like cell growth and supplies an alternative source of in vitro maturation (IVM).
Collapse
Affiliation(s)
- Saman Ebrahimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Shams
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran,P.O.Box: 3149969415Department of AnatomySchool of MedicineAlborz University of Medical SciencesKarajIran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Establishment of a Coilia nasus Gonadal Somatic Cell Line Capable of Sperm Induction In Vitro. BIOLOGY 2022; 11:biology11071049. [PMID: 36101428 PMCID: PMC9312022 DOI: 10.3390/biology11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022]
Abstract
Coilia nasus is an important economic anadromous migratory fish of the Yangtze River in China. In recent years, overfishing and the deterioration of the ecological environment almost led to the extinction of the wild resources of C.nasus. Thus, there is an urgent need to protect this endangered fish. Recently, cell lines derived from fish have proven a promising tool for studying important aspects of aquaculture. In this study, a stable C. nasus gonadal somatic cell line (CnCSC) was established and characterized. After over one year of cell culture (>80 passages), this cell line kept stable growth. RT-PCR results revealed that the CnGSC expressed some somatic cell markers such as clu, fshr, hsd3β, and sox9b instead of germ cell markers like dazl, piwi, and vasa. The strong phagocytic activity of CnGSC suggested that it contained a large number of Sertoli cells. Interestingly, CnGSC could induce medaka spermatogonial cells (SG3) to differentiate into elongated spermatids while co-cultured together. In conclusion, we established a C. nasus gonadal somatic cell line capable of sperm induction in vitro. This research provides scientific evidence for the long-term culture of a gonadal cell line from farmed fish, which would lay the foundation for exploring the regulatory mechanisms between germ cells and somatic cells in fish.
Collapse
|
16
|
Lu C, Zhang D, Zhang J, Li L, Qiu J, Gou K, Cui S. Casein kinase 1α regulates murine spermatogenesis via p53-Sox3 signaling. Development 2022; 149:275697. [DOI: 10.1242/dev.200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Casein kinase 1α (CK1α), acting as one member of the β-catenin degradation complex, negatively regulates the Wnt/β-catenin signaling pathway. CK1α knockout usually causes both Wnt/β-catenin and p53 activation. Our results demonstrated that conditional disruption of CK1α in spermatogonia impaired spermatogenesis and resulted in male mouse infertility. The progenitor cell population was dramatically decreased in CK1α conditional knockout (cKO) mice, while the proliferation of spermatogonial stem cells (SSCs) was not affected. Furthermore, our molecular analyses identified that CK1α loss was accompanied by nuclear stability of p53 protein in mouse spermatogonia, and dual-luciferase reporter and chromatin immunoprecipitation assays revealed that p53 directly targeted the Sox3 gene. In addition, the p53 inhibitor pifithrin α (PFTα) partially rescued the phenotype observed in cKO mice. Collectively, our data suggest that CK1α regulates spermatogenesis and male fertility through p53-Sox3 signaling, and they deepen our understanding of the regulatory mechanism underlying the male reproductive system.
Collapse
Affiliation(s)
- Chenyang Lu
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Jinglin Zhang
- Institute of Reproduction and Metabolism, Yangzhou University 2 , Yangzhou 225009, Jiangsu , People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University 3 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Liuhui Li
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Jingtao Qiu
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Kemian Gou
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University 2 , Yangzhou 225009, Jiangsu , People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses 4 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University 2 , Yangzhou 225009, Jiangsu , People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses 4 , Yangzhou 225009, Jiangsu , People's Republic of China
| |
Collapse
|
17
|
Abstract
Successful in vitro spermatogenesis would generate functional haploid spermatids, and thus, form the basis for novel approaches to treat patients with impaired spermatogenesis or develop alternative strategies for male fertility preservation. Several culture strategies, including cell cultures using various stem cells and ex vivo cultures of testicular tissue, have been investigated to recapitulate spermatogenesis in vitro. Although some studies have described complete meiosis and subsequent generation of functional spermatids, key meiotic events, such as chromosome synapsis and homologous recombination required for successful meiosis and faithful in vitro-derived gametes, are often not reported. To guarantee the generation of in vitro-formed spermatids without persistent DNA double-strand breaks (DSBs) and chromosomal aberrations, criteria to evaluate whether all meiotic events are completely executed in vitro need to be established. In vivo, these meiotic events are strictly monitored by meiotic checkpoints that eliminate aberrant spermatocytes. To establish criteria to evaluate in vitro meiosis, we review the meiotic events and checkpoints that have been investigated by previous in vitro spermatogenesis studies. We found that, although major meiotic events such as initiation of DSBs and recombination, complete chromosome synapsis, and XY-body formation can be achieved in vitro, crossover formation, chiasmata frequency, and checkpoint mechanisms have been mostly ignored. In addition, complete spermiogenesis, during which round spermatids differentiate into elongated spermatids, has not been achieved in vitro by various cell culture strategies. Finally, we discuss the implications of meiotic checkpoints for in vitro spermatogenesis protocols and future clinical use.
Collapse
Affiliation(s)
- Qijing Lei
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
AOP Key Event Relationship report: Linking decreased retinoic acid levels with disrupted meiosis in developing oocytes. Curr Res Toxicol 2022; 3:100069. [PMID: 35345548 PMCID: PMC8957012 DOI: 10.1016/j.crtox.2022.100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
The first case study to develop and publish an individual KER as a stand-alone unit of information under the AOP framework overseen by the OECD. Full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. KER described is associated with an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
The Adverse Outcome Pathway (AOP) concept is an emerging tool in regulatory toxicology that uses simplified descriptions to show cause-effect relationships between stressors and toxicity outcomes in intact organisms. The AOP structure is a modular framework, with Key Event Relationships (KERs) representing the unit of causal relationship based on existing knowledge, describing the connection between two Key Events. Because KERs are the only unit to support inference it has been argued recently that KERs should be recognized as the core building blocks of knowledge assembly within the AOP-Knowledge Base. Herein, we present a first case to support this proposal and provide a full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. We outline the evidence to support a role for atRA in inducing meiosis in oogonia across mammals; this is important because elements of the RA synthesis/degradation pathway are recognized targets for numerous environmental chemicals. The KER we describe will be used to support an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
Collapse
|
19
|
Richer G, Hobbs RM, Loveland KL, Goossens E, Baert Y. Long-Term Maintenance and Meiotic Entry of Early Germ Cells in Murine Testicular Organoids Functionalized by 3D Printed Scaffolds and Air-Medium Interface Cultivation. Front Physiol 2022; 12:757565. [PMID: 35002756 PMCID: PMC8739976 DOI: 10.3389/fphys.2021.757565] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/18/2021] [Indexed: 01/15/2023] Open
Abstract
Short-term germ cell survival and central tissue degeneration limit organoid cultures. Here, testicular organoids (TOs) were generated from two different mouse strains in 3D printed one-layer scaffolds (1LS) at the air-medium interface displaying tubule-like structures and Leydig cell functionality supporting long-term survival and differentiation of germ cells to the meiotic phase. Chimeric TOs, consisting of a mixture of primary testicular cells and EGFP+ germline stem (GS) cells, were cultured in two-layer scaffolds (2LSs) for better entrapment. They showed an improved spheroidal morphology consisting of one intact tubule-like structure and surrounding interstitium, representing the functional unit of a testis. However, GS cells did not survive long-term culture. Consequently, further optimization of the culture medium is required to enhance the maintenance and differentiation of germ cells. The opportunities TOs offer to manipulate somatic and germ cells are essential for the study of male infertility and the search for potential therapies.
Collapse
Affiliation(s)
- Guillaume Richer
- Biology of the Testis Lab, Vrije Universiteit Brussel (VUB), University Medical Campus, Brussels, Belgium
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Katherine L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Ellen Goossens
- Biology of the Testis Lab, Vrije Universiteit Brussel (VUB), University Medical Campus, Brussels, Belgium
| | - Yoni Baert
- Biology of the Testis Lab, Vrije Universiteit Brussel (VUB), University Medical Campus, Brussels, Belgium
| |
Collapse
|
20
|
Chen J, Gao C, Lin X, Ning Y, He W, Zheng C, Zhang D, Yan L, Jiang B, Zhao Y, Hossen MA, Han C. The microRNA miR-202 prevents precocious spermatogonial differentiation and meiotic initiation during mouse spermatogenesis. Development 2021; 148:273742. [PMID: 34913465 DOI: 10.1242/dev.199799] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
Spermatogonial differentiation and meiotic initiation during spermatogenesis are tightly regulated by a number of genes, including those encoding enzymes for miRNA biogenesis. However, whether and how single miRNAs regulate these processes remain unclear. Here, we report that miR-202, a member of the let-7 family, prevents precocious spermatogonial differentiation and meiotic initiation in spermatogenesis by regulating the timely expression of many genes, including those for key regulators such as STRA8 and DMRT6. In miR-202 knockout (KO) mice, the undifferentiated spermatogonial pool is reduced, accompanied by age-dependent decline of fertility. In KO mice, SYCP3, STRA8 and DMRT6 are expressed earlier than in wild-type littermates, and Dmrt6 mRNA is a direct target of miR-202-5p. Moreover, the precocious spermatogonial differentiation and meiotic initiation were also observed in KO spermatogonial stem cells when cultured and induced in vitro, and could be partially rescued by the knockdown of Dmrt6. Therefore, we have not only shown that miR-202 is a regulator of meiotic initiation but also identified a previously unknown module in the underlying regulatory network.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenxu Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daoqin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601 Anhui, China
| | - Binjie Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuting Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Md Alim Hossen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Wei L, Tang Y, Zeng X, Li Y, Zhang S, Deng L, Wang L, Wang D. The transcription factor Sox30 is involved in Nile tilapia spermatogenesis. J Genet Genomics 2021; 49:666-676. [PMID: 34801758 DOI: 10.1016/j.jgg.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/30/2022]
Abstract
Spermatogenesis is a complex process in which spermatogonial stem cells differentiate and develop into mature spermatozoa. The transcriptional regulatory network involved in fish spermatogenesis remains poorly understood. Here, we demonstrate in Nile tilapia that the Sox transcription factor family member Sox30 is specifically expressed in the testes and mainly localizes to spermatocytes and spermatids. CRISPR/Cas9-mediated sox30 mutation results in abnormal spermiogenesis, reduction of sperm motility, and male subfertility. Comparative transcriptome analysis shows that sox30 mutation alters the expression of genes involved in spermatogenesis. Further chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), ChIP-PCR, and luciferase reporter assays reveal that Sox30 positively regulates the transcription of ift140 and ptprb, two genes involved in spermiogenesis, by directly binding to their promoters. Taken together, our data indicate that Sox30 plays essential roles in Nile tilapia spermatogenesis by directly regulating the transcription of the spermiogenesis-related genes ift140 and ptprb.
Collapse
Affiliation(s)
- Ling Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Yaohao Tang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xianhai Zeng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yueqin Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Song Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Deng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lingsong Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
22
|
Zhang W, Chen W, Cui Y, Wen L, Yuan Q, Zhou F, Qiu Q, Sun M, Li Z, He Z. Direct reprogramming of human Sertoli cells into male germline stem cells with the self-renewal and differentiation potentials via overexpressing DAZL/DAZ2/BOULE genes. Stem Cell Reports 2021; 16:2798-2812. [PMID: 34653405 PMCID: PMC8581058 DOI: 10.1016/j.stemcr.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/15/2023] Open
Abstract
We propose a new concept that human somatic cells can be converted to become male germline stem cells by the defined factors. Here, we demonstrated that the overexpression of DAZL, DAZ2, and BOULE could directly reprogram human Sertoli cells into cells with the characteristics of human spermatogonial stem cells (SSCs), as shown by their similar transcriptomes and proteomics with human SSCs. Significantly, human SSCs derived from human Sertoli cells colonized and proliferated in vivo, and they could differentiate into spermatocytes and haploid spermatids in vitro. Human Sertoli cell-derived SSCs excluded Y chromosome microdeletions and assumed normal chromosomes. Collectively, human somatic cells could be converted directly to human SSCs with the self-renewal and differentiation potentials and high safety. This study is of unusual significance, because it provides an effective approach for reprogramming human somatic cells into male germ cells and offers invaluable male gametes for treating male infertility.
Collapse
Affiliation(s)
- Wenhui Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Yinghong Cui
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Liping Wen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qianqian Qiu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zheng Li
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China.
| |
Collapse
|
23
|
Lei Q, Lai X, Eliveld J, Chuva de Sousa Lopes SM, van Pelt AMM, Hamer G. In Vitro Meiosis of Male Germline Stem Cells. Stem Cell Reports 2021; 15:1140-1153. [PMID: 33176123 PMCID: PMC7664054 DOI: 10.1016/j.stemcr.2020.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/15/2023] Open
Abstract
In vitro spermatogenesis has been achieved by culturing mouse embryonic stem cells (ESCs) together with a cell suspension of male juvenile gonad. However, for human fertility treatment or preservation, patient-specific ESCs or juvenile gonad is not available. We therefore aim to achieve in vitro spermatogenesis using male germline stem cells (GSCs) without the use of juvenile gonad. GSCs, when cultured on immortalized Sertoli cells, were able to enter meiosis, reach the meiotic metaphase stages, and sporadically form spermatid-like cells. However, the in vitro-formed pachytene-like spermatocytes did not display full chromosome synapsis and did not form meiotic crossovers. Despite this, the meiotic checkpoints that usually eliminate such cells to prevent genomic instabilities from being transmitted to the offspring were not activated, allowing the cells to proceed to the meiotic metaphase stages. In vitro-generated spermatid-like cells should thus be thoroughly investigated before being considered for clinical use.
Collapse
Affiliation(s)
- Qijing Lei
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Xin Lai
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Jitske Eliveld
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | | | - Ans M M van Pelt
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Dong F, Chen M, Chen M, Jiang L, Shen Z, Ma L, Han C, Guo X, Gao F. PRMT5 Is Involved in Spermatogonial Stem Cells Maintenance by Regulating Plzf Expression via Modulation of Lysine Histone Modifications. Front Cell Dev Biol 2021; 9:673258. [PMID: 34113620 PMCID: PMC8185031 DOI: 10.3389/fcell.2021.673258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of mono- or symmetric dimethylarginine residues on histones and non-histone substrates and has been demonstrated to play important roles in many biological processes. In the present study, we observed that PRMT5 is abundantly expressed in spermatogonial stem cells (SSCs) and that Prmt5 deletion results in a progressive loss of SSCs and male infertility. The proliferation of Prmt5-deficient SSCs cultured in vitro exhibited abnormal proliferation, cell cycle arrest in G0/G1 phase and a significant increase in apoptosis. Furthermore, PLZF expression was dramatically reduced in Prmt5-deficient SSCs, and the levels of H3K9me2 and H3K27me2 were increased in the proximal promoter region of the Plzf gene in Prmt5-deficient SSCs. Further study revealed that the expression of lysine demethylases (JMJD1A, JMJD1B, JMJD1C, and KDM6B) was significantly reduced in Prmt5-deficient SSCs and that the level of permissive arginine methylation H3R2me2s was significantly decreased at the upstream promoter region of these genes in Prmt5-deficient SSCs. Our results demonstrate that PRMT5 regulates spermatogonial stem cell development by modulating histone H3 lysine modifications.
Collapse
Affiliation(s)
- Fangfang Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Lin Jiang
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xudong Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Survivable potential of germ cells after trehalose cryopreservation of bovine testicular tissues. Cryobiology 2021; 101:105-114. [PMID: 33989617 DOI: 10.1016/j.cryobiol.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/23/2021] [Accepted: 05/01/2021] [Indexed: 12/26/2022]
Abstract
Germplasm preservation of livestock or endangered animals and expansion of germline stem cells are important. The purpose of this study is to investigate whether supplementation of trehalose to the freezing medium (FM) reduces tissular damage and improves the quality of testicular cells in the cryopreserved bovine testicular tissues. We herein established an optimized protocol for the cryopreservation of bovine testicular tissues, and the isolation as well as culture of bovine germ cells containing spermatogonial stem cells (SSCs) from these tissues. The results showed that FM containing 10% dimethyl sulfoxide (Me2SO/DMSO), 10% knockout serum replacement (KSR) and 20% trehalose (FM5) combined with the uncontrolled slow freezing (USF) procedures has the optimized cryoprotective effect on bovine testicular tissues. The FM5 + USF protocol reduced the cell apoptosis, maintained high cell viability, supported the structural integrity and seminiferous epithelial cohesion similar to that in the fresh tissues. Viable germ cells containing SSCs were effectively isolated from these tissues and they maintained germline marker expressions in the co-testicular cells and co-mouse embryonic fibroblasts (MEF) feeder culture systems respectively, during the short-term culture. Additionally, upregulated transcriptions of spermatogenic differentiation marker C-KIT and meiotic marker SYCP3 were detected in these cells after retinoic acid-induced differentiation. Together, FM5 + USF is suitable for the cryopreservation of bovine testicular tissues, with benefits of reducing the apoptosis, maintaining the cell viability, supporting the testicular structure integrity, and sustaining the survival and differentiation potential of bovine germ cells containing SSCs.
Collapse
|
26
|
Jiang X, Li X, Feng W, Qin Y, Li Z, Nie H, Qin W, Han L, Bai W. Baking of methionine-choline deficient diet aggravates testis injury in mice. Food Chem Toxicol 2021; 154:112245. [PMID: 33940107 DOI: 10.1016/j.fct.2021.112245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 01/09/2023]
Abstract
Dietary pattern and cooking methods are important factors to determine the nutrients supplementation for male reproduction. Methionine and choline are two methyl donors in daily diet, which could mediate the lipid metabolism, but their effects on the sperms are not clear. In this study, we fed the mice with methionine-choline deficient (MCD) diet or the baked MCD diet for 6 weeks to evaluate this dietary pattern and the appended high temperature cooking on the spermatogenesis. The results have shown that MCD diet induced testis degradation and the damage of spermatocytes, reduced sperm vitality, motility, but elevated sperm deformity. Additionally, baking of MCD diet aggravated the testis injury, further reduced sperm density, sperm motility, and decreased normal sperm morphology dramatically. These changes were not related to the blood-testis barrier nor the Leydig cells dysfunction, but related to spermatocytes lost and apoptosis. The spermatocyte apoptosis was mediated by reticulum stress, including GRP78, XBP-1 and CHOP gene expression. Our study has shown the importance of methionine and choline in diet, and emphasized the crucial role of cooking condition, which are dietary factors to influence the quality of sperms.
Collapse
Affiliation(s)
- Xinwei Jiang
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xia Li
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wenjun Feng
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yige Qin
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhen Li
- Department of Clinical Nutrition, Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics (Family Planning Research Institute of Guangdong Province), Guangzhou, 510600, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics (Family Planning Research Institute of Guangdong Province), Guangzhou, 510600, China
| | - Lu Han
- NHC Key Laboratory of Male Reproduction and Genetics (Family Planning Research Institute of Guangdong Province), Guangzhou, 510600, China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
27
|
Long C, Zhou Y, Shen L, Yu Y, Hu D, Liu X, Lin T, He D, Xu T, Zhang D, Zhu J, Wei G. Retinoic acid can improve autophagy through depression of the PI3K-Akt-mTOR signaling pathway via RARα to restore spermatogenesis in cryptorchid infertile rats. Genes Dis 2021; 9:1368-1377. [PMID: 35873030 PMCID: PMC9293722 DOI: 10.1016/j.gendis.2021.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Cryptorchidism-caused adult infertility is a common component of idiopathic reasons for male infertility. Retinoic acid (RA) has a vital effect on the spermatogenesis process. Here, we found that the expression of c-Kit, Stra8, and Sycp3 could be up-regulated via the activation of retinoic acid receptor α (RARα) after RA supplementation in neonatal cryptorchid infertile rats. We also demonstrated that the protein expression of PI3K, p-Akt/pan-Akt, and p-mTOR/mTOR was higher in cryptorchid than in normal testes, and could be suppressed with RA in vivo. After RA treatment in infertile cryptorchid testis in vivo, the levels of the autophagy proteins LC3 and Beclin1 increased and those of P62 decreased. Biotin tracer indicated that the permeability of blood-testis barrier (BTB) in cryptorchid rats decreased after RA administration. Additionally, after blocking the RARα with AR7 (an RARα antagonist) in testicle culture in vitro, we observed that compared with normal testes, the PI3K-Akt-mTOR signaling pathway and the autophagy pathway was increased and decreased, respectively, which were coincident with cryptorchisd testes in vivo. Additionally, the appropriate concentrations of RA treatment could depress the PI3K-Akt-mTOR signaling pathway and improve the autophagy pathway. The results confirmed that RA can rehabilitate BTB function and drive key protein levels in spermatogonial differentiation through depressing the PI3K-Akt-mTOR signaling pathway via RARα.
Collapse
Affiliation(s)
- Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yu Zhou
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yihang Yu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Dong Hu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Xing Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Tao Lin
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Dawei He
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Tao Xu
- Bio-manufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Deying Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jing Zhu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Guanghui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
- Corresponding author. Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.
| |
Collapse
|
28
|
Feng CW, Burnet G, Spiller CM, Cheung FKM, Chawengsaksophak K, Koopman P, Bowles J. Identification of regulatory elements required for Stra8 expression in fetal ovarian germ cells of the mouse. Development 2021; 148:dev.194977. [PMID: 33574039 DOI: 10.1242/dev.194977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
In mice, the entry of germ cells into meiosis crucially depends on the expression of stimulated by retinoic acid gene 8 (Stra8). Stra8 is expressed specifically in pre-meiotic germ cells of females and males, at fetal and postnatal stages, respectively, but the mechanistic details of its spatiotemporal regulation are yet to be defined. In particular, there has been considerable debate regarding whether retinoic acid is required, in vivo, to initiate Stra8 expression in the mouse fetal ovary. We show that the distinctive anterior-to-posterior pattern of Stra8 initiation, characteristic of germ cells in the fetal ovary, is faithfully recapitulated when 2.9 kb of the Stra8 promoter is used to drive eGFP expression. Using in vitro transfection assays of cutdown and mutant constructs, we identified two functional retinoic acid responsive elements (RAREs) within this 2.9 kb regulatory element. We also show that the transcription factor DMRT1 enhances Stra8 expression, but only in the presence of RA and the most proximal RARE. Finally, we used CRISPR/Cas9-mediated targeted mutation studies to demonstrate that both RAREs are required for optimal Stra8 expression levels in vivo.
Collapse
Affiliation(s)
- Chun-Wei Feng
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Guillaume Burnet
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cassy M Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fiona Ka Man Cheung
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kallayanee Chawengsaksophak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i. Vídenská 1083, 4 14220 Prague, Czech Republic
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia .,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
29
|
Hodge MJ, de las Heras-Saldana S, Rindfleish SJ, Stephen CP, Pant SD. Characterization of Breed Specific Differences in Spermatozoal Transcriptomes of Sheep in Australia. Genes (Basel) 2021; 12:genes12020203. [PMID: 33573244 PMCID: PMC7912062 DOI: 10.3390/genes12020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 01/27/2023] Open
Abstract
Reduced reproductive efficiency results in economic losses to the Australian sheep industry. Reproductive success, particularly after artificial insemination, is dependent on a number of contributing factors on both ewe and ram sides. Despite considerable emphasis placed on characterising ewe side contributions, little emphasis has been placed on characterising ram side contributions to conception success. Over 14,000 transcripts are in spermatozoa of other species, which are transferred to the ova on fertilisation. These transcripts conceivably influence early embryonic development and whether conception is successful. Semen was collected (n = 45) across three breeds; Merino, Dohne, and Poll Dorset. Following collection, each ejaculate was split in two; an aliquot was assessed utilising Computer Assisted Semen Analysis (CASA) and the remaining was utilised for RNA extraction and subsequent next-generation sequencing. Overall, 754 differentially expressed genes were identified in breed contrasts and contrast between ejaculates of different quality. Downstream analysis indicated that these genes could play significant roles in a broad range of physiological functions, including maintenance of spermatogenesis, fertilisation, conception, embryonic development, and offspring production performance. Overall results provide evidence that the spermatozoal transcriptome could be a crucial contributing factor in improving reproductive performance as well as in the overall productivity and profitability of sheep industries.
Collapse
Affiliation(s)
- Marnie J. Hodge
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
- Apiam Animal Health, Apiam Genetic Services, Dubbo, NSW 2830, Australia;
| | - Sara de las Heras-Saldana
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia;
| | | | - Cyril P. Stephen
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
| | - Sameer D. Pant
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
- Correspondence:
| |
Collapse
|
30
|
Li L, Yang R, Yin C, Kee K. Studying human reproductive biology through single-cell analysis and in vitro differentiation of stem cells into germ cell-like cells. Hum Reprod Update 2020; 26:670-688. [PMID: 32464645 DOI: 10.1093/humupd/dmaa021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Understanding the molecular and cellular mechanisms of human reproductive development has been limited by the scarcity of human samples and ethical constraints. Recently, in vitro differentiation of human pluripotent stem cells into germ cells and single-cell analyses have opened new avenues to directly study human germ cells and identify unique mechanisms in human reproductive development. OBJECTIVE AND RATIONALE The goal of this review is to collate novel findings and insightful discoveries with these new methodologies, aiming at introducing researchers and clinicians to the use of these tools to study human reproductive biology and develop treatments for infertility. SEARCH METHODS PubMed was used to search articles and reviews with the following main keywords: in vitro differentiation, human stem cells, single-cell analysis, spermatogenesis, oogenesis, germ cells and other key terms related to these subjects. The search period included all publications from 2000 until now. OUTCOMES Single-cell analyses of human gonads have identified many important gene markers at different developmental stages and in subpopulations of cells. To validate the functional roles of these gene markers, researchers have used the in vitro differentiation of human pluripotent cells into germ cells and confirmed that some genetic requirements are unique in human germ cells and are not conserved in mouse models. Moreover, transcriptional regulatory networks and the interaction of germ and somatic cells in gonads were elucidated in these studies. WIDER IMPLICATIONS Single-cell analyses allow researchers to identify gene markers and potential regulatory networks using limited clinical samples. On the other hand, in vitro differentiation methods provide clinical researchers with tools to examine these newly identify gene markers and study the causative effects of mutations previously associated with infertility. Combining these two methodologies, researchers can identify gene markers and networks which are essential and unique in human reproductive development, thereby producing more accurate diagnostic tools for assessing reproductive disorders and developing treatments for infertility.
Collapse
Affiliation(s)
- Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Risako Yang
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Kehkooi Kee
- Department of Basic Medical Sciences, Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Gao W, Zhang C, Jin K, Zhang Y, Zuo Q, Li B. Analysis of lncRNA Expression Profile during the Formation of Male Germ Cells in Chickens. Animals (Basel) 2020; 10:ani10101850. [PMID: 33050652 PMCID: PMC7599500 DOI: 10.3390/ani10101850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The differentiation of germ cells plays an important role in sex differentiation in poultry. Therefore, it is necessary for us to explore the potential regulators in the process of germ cell development. In this study, RNA-seq was used to detect the expression profile of long non-coding RNAs (lncRNAs) in chicken embryonic stem cells (ESCs), primordial germ cells (PGCs) and spermatogonial stem cells (SSCs). The results showed that a total of 296, 280 and 357 differentially expressed lncRNAs (DELs) were screened in ESCs vs. PGCs, ESCs vs. SSCs and PGCs vs. SSCs, respectively. Functional analysis of the target genes of DELs showed that autophagy, Wnt/β-catenin, TGF-β, Notch and ErbB signaling pathways were involved in the differentiation process of male germ cells and, moreover, XLOC_612026, XLOC_612029, XLOC_240662, XLOC_362463, XLOC_023952, XLOC_674549, XLOC_160716, ALDBGALG0000001810, ALDBGALG0000002986, XLOC_657380674549, XLOC_022100 and XLOC_657380 were predicted to be the key lncRNAs in this process. Our findings could not only supply scientific data for constructing the gene regulatory network of germ cell development, but also provide new ideas for further optimizing the induction efficiency of germ cells in vitro. Abstract Germ cells have an irreplaceable role in transmitting genetic information from one generation to the next, and also play an important role in sex differentiation in poultry, while little is known about epigenetic factors that regulate germ cell differentiation. In this study, RNA-seq was used to detect the expression profiles of long non-coding RNAs (lncRNAs) during the differentiation of chicken embryonic stem cells (ESCs) into spermatogonial stem cells (SSCs). The results showed that a total of 296, 280 and 357 differentially expressed lncRNAs (DELs) were screened in ESCs vs. PGCs, ESCs vs. SSCs and PGCs vs. SSCs, respectively. Gene Ontology (GO) and KEGG enrichment analysis showed that DELs in the three cell groups were mainly enriched in autophagy, Wnt/β-catenin, TGF-β, Notch and ErbB and signaling pathways. The co-expression network of 37 candidate DELs and their target genes enriched in the biological function of germ cell development showed that XLOC_612026, XLOC_612029, XLOC_240662, XLOC_362463, XLOC_023952, XLOC_674549, XLOC_160716, ALDBGALG0000001810, ALDBGALG0000002986, XLOC_657380674549, XLOC_022100 and XLOC_657380 were the key lncRNAs in the process of male germ cell formation and, moreover, the function of these DELs may be related to the interaction of their target genes. Our findings preliminarily excavated the key lncRNAs and signaling pathways in the process of male chicken germ cell formation, which could be helpful to construct the gene regulatory network of germ cell development, and also provide new ideas for further optimizing the induction efficiency of germ cells in vitro.
Collapse
Affiliation(s)
- Wen Gao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (C.Z.); (K.J.); (Y.Z.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chen Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (C.Z.); (K.J.); (Y.Z.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (C.Z.); (K.J.); (Y.Z.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (C.Z.); (K.J.); (Y.Z.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (C.Z.); (K.J.); (Y.Z.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (C.Z.); (K.J.); (Y.Z.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-87997207
| |
Collapse
|
32
|
Xie Y, Wei BH, Ni FD, Yang WX. Conversion from spermatogonia to spermatocytes: Extracellular cues and downstream transcription network. Gene 2020; 764:145080. [PMID: 32858178 DOI: 10.1016/j.gene.2020.145080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Spermatocyte (spc) formation from spermatogonia (spg) differentiation is the first step of spermatogenesis which produces prodigious spermatozoa for a lifetime. After decades of studies, several factors involved in the functioning of a mouse were discovered both inside and outside spg. Considering the peculiar expression and working pattern of each factor, this review divides the whole conversion of spg to spc into four consecutive development processes with a focus on extracellular cues and downstream transcription network in each one. Potential coordination among Dmrt1, Sohlh1/2 and BMP families mediates Ngn3 upregulation, which marks progenitor spg, with other changes. After that, retinoic acid (RA), as a master regulator, promotes A1 spg formation with its helpers and Sall4. A1-to-B spg transition is under the control of Kitl and impulsive RA signaling together with early and late transcription factors Stra8 and Dmrt6. Finally, RA and its responsive effectors conduct the entry into meiosis. The systematic transcription network from outside to inside still needs research to supplement or settle the controversials in each process. As a step further ahead, this review provides possible drug targets for infertility therapy by cross-linking humans and mouse model.
Collapse
Affiliation(s)
- Yi Xie
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
33
|
Yu K, Zhang Y, Zhang BL, Wu HY, Jiang WQ, Wang ST, Han DP, Liu YX, Lian ZX, Deng SL. In-vitro differentiation of early pig spermatogenic cells to haploid germ cells. Mol Hum Reprod 2020; 25:507-518. [PMID: 31328782 DOI: 10.1093/molehr/gaz043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/26/2019] [Indexed: 01/06/2023] Open
Abstract
Spermatogonial stem cells (SSCs) self-renew and contribute genetic information to the next generation. Pig is wildly used as a model animal for understanding reproduction mechanisms of human being. Inducing directional differentiation of porcine SSCs may be an important strategy in exploring the mechanisms of spermatogenesis and developing better treatment methods for male infertility. Here, we established an in-vitro culture model for porcine small seminiferous tubule segments, to induce SSCs to differentiate into single-tail haploid spermatozoa. The culture model subsequently enabled spermatozoa to express the sperm-specific protein acrosin and oocytes to develop to blastocyst stage after round spermatid injection. The addition of retinoic acid (RA) to the differentiation media promoted the efficiency of haploid differentiation. RT-PCR analysis indicated that RA stimulated the expression of Stra8 but reduced the expression of NANOS2 in spermatogonia. Genes involved in post-meiotic development, transition protein 1 (Tnp1) and protamine 1 (Prm1) were upregulated in the presence of RA. The addition of an RA receptor (RAR) inhibitor, BMS439, showed that RA enhanced the expression of cAMP responsive-element binding protein through RAR and promoted the formation of round spermatids. We established an efficient culture system for in-vitro differentiation of pig SSCs. Our study represents a model for human testis disease and toxicology screening. Molecular regulators of SSC differentiation revealed in this study might provide a therapeutic strategy for male infertility.
Collapse
Affiliation(s)
- Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Yi Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China.,Department of Medicine, Panzhihua University, Sichuan, Sichuan, People's Republic of China
| | - Bao-Lu Zhang
- Marine Consulting Center of MNR, Oceanic Counseling Center, Ministry of Natural Resources of the People's Republic of China, Feng-tai District, Beijing, People's Republic of China
| | - Han-Yu Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Wu-Qi Jiang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Su-Tian Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Xiangfang District, People's Republic of China
| | - De-Ping Han
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| |
Collapse
|
34
|
Zheng Y, Feng T, Zhang P, Lei P, Li F, Zeng W. Establishment of cell lines with porcine spermatogonial stem cell properties. J Anim Sci Biotechnol 2020; 11:33. [PMID: 32308978 PMCID: PMC7146966 DOI: 10.1186/s40104-020-00439-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background Spermatogonial stem cells (SSCs) are capable of both self-renewal and differentiation to mature functional spermatozoa, being the only adult stem cells in the males that can transmit genetic information to the next generation. Porcine SSCs hold great value in transgenic pig production and in establishment of porcine models for regenerative medicine. However, studies and applications of porcine SSCs have been greatly hampered by the low number of SSCs in the testis as well as the lack of an ideal stable long-term culture system to propagate porcine SSCs perpetually. Results In the present study, by lentiviral transduction of plasmids expressing the simian virus 40 (SV40) large T antigen into porcine primary SSCs, we developed two immortalized cell lines with porcine SSC attributes. The established cell lines, with the expression of porcine SSC and germ cell markers UCHL1, PLZF, THY1, VASA and DAZL, could respond to retinoic acid (RA), and could colonize the recipient mouse testis without tumor formation after transplantation. The cell lines displayed infinite proliferation potential, and have now been cultured for more than 7 months and passaged for over 35 times without morphological abnormalities. Conclusions We have for the first time established porcine SSC lines that could provide abundant cell sources for mechanistic studies on porcine SSC self-renewal and differentiation, thereby facilitating development of an optimal long-term culture system for porcine primary SSCs and their application to animal husbandry and medicine.
Collapse
Affiliation(s)
- Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Tongying Feng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Pengfei Zhang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Peipei Lei
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fuyuan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
35
|
Single-Cell Transcriptomic Atlas of Primate Ovarian Aging. Cell 2020; 180:585-600.e19. [PMID: 32004457 DOI: 10.1016/j.cell.2020.01.009] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Molecular mechanisms of ovarian aging and female age-related fertility decline remain unclear. We surveyed the single-cell transcriptomic landscape of ovaries from young and aged non-human primates (NHPs) and identified seven ovarian cell types with distinct gene-expression signatures, including oocyte and six types of ovarian somatic cells. In-depth dissection of gene-expression dynamics of oocytes revealed four subtypes at sequential and stepwise developmental stages. Further analysis of cell-type-specific aging-associated transcriptional changes uncovered the disturbance of antioxidant signaling specific to early-stage oocytes and granulosa cells, indicative of oxidative damage as a crucial factor in ovarian functional decline with age. Additionally, inactivated antioxidative pathways, increased reactive oxygen species, and apoptosis were observed in granulosa cells from aged women. This study provides a comprehensive understanding of the cell-type-specific mechanisms underlying primate ovarian aging at single-cell resolution, revealing new diagnostic biomarkers and potential therapeutic targets for age-related human ovarian disorders.
Collapse
|
36
|
Transcription of the Sox30 Gene Is Positively Regulated by Dmrt1 in Nile Tilapia. Int J Mol Sci 2019; 20:ijms20215487. [PMID: 31690021 PMCID: PMC6862701 DOI: 10.3390/ijms20215487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
The Sox family member Sox30 is highly expressed in the testis of several vertebrate species and has been shown to play key roles in spermiogenesis. However, its transcription regulation remains unclear. Here, we analyzed the Sox30 promoter from the teleost fish Nile tilapia (Oreochromis niloticus) and predicted a putative cis-regulatory element (CRE) for doublesex and mab-3 related transcription factor 1 (Dmrt1), a male-specific transcription factor involved in male sex differentiation. Transcriptional profiling revealed that Sox30 and Dmrt1 similarly exhibited a high expression in tilapia testes from 90 days after hatching (dah) to 300 dah, and the transcription of the Sox30 gene was reduced about one-fold in the testes of male tilapia with Dmrt1 knockdown. Further dual-luciferase reporter assay confirmed that Dmrt1 overexpression significantly promoted transcriptional activity of the Sox30 promoter and this promotion was decreased following the mutation of putative CRE for Dmrt1 within the Sox30 promoter. Chromatin immunoprecipitation-based PCR (ChIP-PCR) and electrophoretic mobility shift assay (EMSA) demonstrated that Dmrt1 directly binds to putative CRE within the Sox30 promoter. These results together indicate that Dmrt1 positively regulates the transcription of the tilapia Sox30 gene by directly binding to specific CRE within the Sox30 promoter.
Collapse
|
37
|
Crespo D, Assis LHC, van de Kant HJG, de Waard S, Safian D, Lemos MS, Bogerd J, Schulz RW. Endocrine and local signaling interact to regulate spermatogenesis in zebrafish: follicle-stimulating hormone, retinoic acid and androgens. Development 2019; 146:dev.178665. [PMID: 31597660 DOI: 10.1242/dev.178665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023]
Abstract
Retinoic acid (RA) is crucial for mammalian spermatogonia differentiation, and stimulates Stra8 expression, a gene required for meiosis. Certain fish species, including zebrafish, have lost the stra8 gene. While RA still seems important for spermatogenesis in fish, it is not known which stage(s) respond to RA or whether its effects are integrated into the endocrine regulation of spermatogenesis. In zebrafish, RA promoted spermatogonia differentiation, supported androgen-stimulated meiosis, and reduced spermatocyte and spermatid apoptosis. Follicle-stimulating hormone (Fsh) stimulated RA production. Expressing a dominant-negative RA receptor variant in germ cells clearly disturbed spermatogenesis but meiosis and spermiogenesis still took place, although sperm quality was low in 6-month-old adults. This condition also activated Leydig cells. Three months later, spermatogenesis apparently had recovered, but doubling of testis weight demonstrated hypertrophy, apoptosis/DNA damage among spermatids was high and sperm quality remained low. We conclude that RA signaling is important for zebrafish spermatogenesis but is not of crucial relevance. As Fsh stimulates androgen and RA production, germ cell-mediated, RA-dependent reduction of Leydig cell activity may form a hitherto unknown intratesticular negative-feedback loop.
Collapse
Affiliation(s)
- Diego Crespo
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Luiz H C Assis
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Henk J G van de Kant
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Sjors de Waard
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Diego Safian
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Moline S Lemos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands .,Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen NO-5817, Norway
| |
Collapse
|
38
|
Two Opposing Faces of Retinoic Acid: Induction of Stemness or Induction of Differentiation Depending on Cell-Type. Biomolecules 2019; 9:biom9100567. [PMID: 31590252 PMCID: PMC6843238 DOI: 10.3390/biom9100567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cells have the capacity of self-renewal and, through proliferation and differentiation, are responsible for the embryonic development, postnatal development, and the regeneration of tissues in the adult organism. Cancer stem cells, analogous to the physiological stem cells, have the capacity of self-renewal and may account for growth and recurrence of tumors. Development and regeneration of healthy tissues and tumors depend on the balance of different genomic and nongenomic signaling pathways that regulate stem cell quiescence, proliferation, and differentiation. During evolution, this balance became dependent on all-trans retinoic acid (RA), a molecule derived from the environmental factor vitamin A. Here we summarize some recent findings on the prominent role of RA on the proliferation of stem and progenitor cells, in addition to its well-known function as an inductor of cell differentiation. A better understanding of the regulatory mechanisms of stemness and cell differentiation by RA may improve the therapeutic options of this molecule in regenerative medicine and cancer.
Collapse
|
39
|
Li X, Long XY, Xie YJ, Zeng X, Chen X, Mo ZC. The roles of retinoic acid in the differentiation of spermatogonia and spermatogenic disorders. Clin Chim Acta 2019; 497:54-60. [PMID: 31302099 DOI: 10.1016/j.cca.2019.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Abstract
Male fertility depends on the regulatory balance between germ cell self-renewal and differentiation, and the spatial and temporal patterns of this balance must be maintained throughout the life cycle. Retinoic acid and its receptors are important factors in spermatogenesis. Spermatogonia cells can self-proliferate and differentiate and have unique meiotic capabilities; they halve their genetic material and produce monomorphic sperm to pass genetic material to the next generation. A number of studies have found that the spermatogenesis process is halted in animals with vitamin A deficiency and that most germ cells are degraded, but they tend to recover after treatment with RA or vitamin A. This literature review discusses our understanding of how RA regulates sperm cell differentiation and meiosis and also reviews the functional information and details of RA.
Collapse
Affiliation(s)
- Xuan Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiang-Yang Long
- Department of Urology, The Second Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Yuan-Jie Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xin Zeng
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Zhong-Cheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
40
|
Sarkar S, Sujit KM, Singh V, Pandey R, Trivedi S, Singh K, Gupta G, Rajender S. Array-based DNA methylation profiling reveals peripheral blood differential methylation in male infertility. Fertil Steril 2019; 112:61-72.e1. [DOI: 10.1016/j.fertnstert.2019.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
|
41
|
Zhou Y, Zhang D, Hu D, Liu B, Peng J, Shen L, Long C, Yu Y, Zhang Y, Liu X, Tao X, Timashev P, Lin T, He D, Wei G. Retinoic acid: A potential therapeutic agent for cryptorchidism infertility based on investigation of flutamide-induced cryptorchid rats in vivo and in vitro. Reprod Toxicol 2019; 87:108-117. [PMID: 31170451 DOI: 10.1016/j.reprotox.2019.05.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 11/27/2022]
Abstract
Cryptorchidism is a common disorder in children and may cause infertility in adults. The BTB is essential for maintaining the microenvironment necessary for normal spermatogenesis. This study investigated whether retinoic acid (RA) may regulate the proteins that are essential for integrity of the BTB in cryptorchidism. Female Sprague-Dawley rats were administrated flutamide during late pregnancy to induce a model of cryptorchidism in male offspring. The concentrations of RA and BTB tight and gap junction protein levels were significantly lower in untreated cryptorchid pups compared with normal pups, but almost normal in cryptorchid pups given RA. Studies in vitro corroborated these findings. The sperm quality of RA-treated model pups was better compared with the untreated model. RA treatment may have therapeutic potential to restore retinoic acid and proteins associated with integrity of the BTB in cryptorchid testis.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China; Chongqing Key Laboratory of Pediatrics, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China; Chongqing Key Laboratory of Pediatrics, China.
| | - Dong Hu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Bo Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China; Chongqing Key Laboratory of Pediatrics, China
| | - Jinpu Peng
- Department of Pediatric Surgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Chunlan Long
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China; Chongqing Key Laboratory of Pediatrics, China
| | - Xu Tao
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Tao Lin
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China; Chongqing Key Laboratory of Pediatrics, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China; Chongqing Key Laboratory of Pediatrics, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China; Chongqing Key Laboratory of Pediatrics, China.
| |
Collapse
|
42
|
Gholamitabar Tabari M, Jorsaraei SGA, Ghasemzadeh-Hasankolaei M, Ahmadi AA, Ghasemi M. Comparison of Germ Cell Gene Expressions in Spontaneous Monolayer versus Embryoid Body Differentiation of Mouse Embryonic Stem Cells toward Germ Cells. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:139-147. [PMID: 31037925 PMCID: PMC6500080 DOI: 10.22074/ijfs.2019.5557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/24/2018] [Indexed: 01/15/2023]
Abstract
Background Genetic and morphologic similarities between mouse embryonic stem cells (ESCs) and primordial
germ cells (PGCs) make it difficult to distinguish differentiation of these two cell types in vitro. Using specific GC
markers expressed in low level or even not expressed in ESCs- can help recognize differentiated cells in vitro. We
attempted to differentiate the mouse ESCs into Gc-like cells spontaneously in monolayer and EB culture method. Materials and Methods In this experimental study, we attempted to differentiate ESCs, Oct4-GFP OG2, into GC-like cells
(GCLCs) spontaneously in two different ways, including: i. Spontaneous differentiation of ESCs in monolayer culture as
(SP) and ii. Spontaneous differentiation of ESCs using embryoid body (EB) culture method as (EB+SP). During culture,
expression level of four GC specific genes (Fkbp6, Mov10l1, Riken and Tex13) and Mvh, Scp3, Stra8, Oct4 were evaluated. Results In both groups, Mov10l1 was down-regulated (P=0.3), while Tex13 and Riken were up-regulated (P=0.3 and
P=0.04, respectively). Fkbp6 and Stra8 were decreased in EB+SP and they were increased in SP group, while no significant
difference was determined between them (P=0.1, P=0.07). Additionally, in SP group, gene expression of Mvh and Scp3
were up-regulated and they had significant differences compared to EB+SP group (P=0.00 and P=0.01, respectively). Oct4
was down-regulated in the both groups. Flow-cytometry analysis showed that mean number of Mvh-positive cells in the
SP group was significantly greater compared to ESCs, EB+SP and EB7 groups (P=0.00, P=0.01, and P=0.3, respectively). Conclusion These findings showed that ESCs were differentiated into GCLCs in both group. But spontaneous dif-
ferentiation of ESCs into GCLCs in SP group (monolayer culture) compared to EB+SP (EB culture methods) has more
ability to express GCs markers.
Collapse
Affiliation(s)
- Maryam Gholamitabar Tabari
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Seyed Gholam Ali Jorsaraei
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.Electronic Address:
| | - Mohammad Ghasemzadeh-Hasankolaei
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Asghar Ahmadi
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Masoumeh Ghasemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
43
|
Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction. Protein Cell 2019; 11:1-22. [PMID: 31037510 PMCID: PMC6949206 DOI: 10.1007/s13238-019-0623-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 01/07/2023] Open
Abstract
Cockayne syndrome (CS) is a rare autosomal recessive inherited disorder characterized by a variety of clinical features, including increased sensitivity to sunlight, progressive neurological abnormalities, and the appearance of premature aging. However, the pathogenesis of CS remains unclear due to the limitations of current disease models. Here, we generate integration-free induced pluripotent stem cells (iPSCs) from fibroblasts from a CS patient bearing mutations in CSB/ERCC6 gene and further derive isogenic gene-corrected CS-iPSCs (GC-iPSCs) using the CRISPR/Cas9 system. CS-associated phenotypic defects are recapitulated in CS-iPSC-derived mesenchymal stem cells (MSCs) and neural stem cells (NSCs), both of which display increased susceptibility to DNA damage stress. Premature aging defects in CS-MSCs are rescued by the targeted correction of mutant ERCC6. We next map the transcriptomic landscapes in CS-iPSCs and GC-iPSCs and their somatic stem cell derivatives (MSCs and NSCs) in the absence or presence of ultraviolet (UV) and replicative stresses, revealing that defects in DNA repair account for CS pathologies. Moreover, we generate autologous GC-MSCs free of pathogenic mutation under a cGMP (Current Good Manufacturing Practice)-compliant condition, which hold potential for use as improved biomaterials for future stem cell replacement therapy for CS. Collectively, our models demonstrate novel disease features and molecular mechanisms and lay a foundation for the development of novel therapeutic strategies to treat CS.
Collapse
|
44
|
Li N, Ma W, Shen Q, Zhang M, Du Z, Wu C, Niu B, Liu W, Hua J. Reconstitution of male germline cell specification from mouse embryonic stem cells using defined factors in vitro. Cell Death Differ 2019; 26:2115-2124. [PMID: 30683919 DOI: 10.1038/s41418-019-0280-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/24/2018] [Accepted: 01/02/2019] [Indexed: 01/15/2023] Open
Abstract
In vitro induction of functional haploid cells from embryonic stem cells (ESCs) has been reported by several groups. However, these reports either involve complex induction process with undefined induction factors or show low-induction efficiency. Here, we report complete meiosis in vitro from ESCs with defined induction factors. ESCs were first induced into primordial germ cell-like cells, which were further induced into male germline cells, including spermatogonial stem cell-like cells (SSCLCs) and spermatid-like cells. Importantly, the obtained SSCLCs were functional as infertile male mice sired healthy offspring via SSCLC transplantation. Further, we found that eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) was essential for spermatogenesis. Eif2s3y-overexpressing ESCs showed enhanced spermatogenesis in vitro, as demonstrated by higher expression levels of SSC-specific markers during SSCLC induction process, improved reproductive ability recovery of infertile male mice, and increased efficiency of haploid cell induction. Our work provides a convenient and efficient approach to obtain functional male germline cells.
Collapse
Affiliation(s)
- Na Li
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Wentao Ma
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Zhaoyu Du
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Chongyang Wu
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Bowen Niu
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Wenqing Liu
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
45
|
Li Y, Qi W, Liu G, Du B, Sun Q, Zhang X, Jin M, Dong W, Liu J, Zheng Z. Sohlh1 is required for synaptonemal complex formation by transcriptionally regulating meiotic genes during spermatogenesis in mice. Mol Reprod Dev 2019; 86:252-264. [PMID: 30614095 DOI: 10.1002/mrd.23100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/29/2022]
Abstract
Gonad-specific transcription factor spermatogenesis- and oogenesis-specific helix-loop-helix transcription factor 1 (SOHLH1) plays a key role in the transcriptional regulation of the expression of differentiating spermatogonial genes. However, its role in spermatocytes (meiotic male germ cells) remains largely unknown. In this study, Sohlh1 knockout (KO) male mice displayed meiotic defects at the zygotene stage during spermatogenesis. Microarray analyses identified 66 upregulated genes and 139 downregulated genes in Sohlh1 KO testes compared with those in wild-type testes at postnatal Day 7.5. Among many of the downregulated genes, Sycp1 and Sycp3, which encode synaptonemal complex proteins 1 and 3 (SYCP1 and SYCP3), respectively, were significantly reduced in Sohlh1 knockout mice. Transmission electron microscopy revealed no formation of the synaptonemal complex in Sohlh1 KO spermatocytes. Luciferase reporter and chromatin-immunoprecipitation assays demonstrated that SOHLH1 enhanced the expression of the Sycp1 and Sycp3 genes by binding the -1276, -708, and -94 basepairs (bp) E-boxes upstream of the Sycp1 promoter and the -64 and -43 bp E-boxes upstream of the Sycp3 promoter. Our data suggest that SOHLH1 transcriptionally regulates the expression of many target genes critical for the meiotic phase of spermatogenesis.
Collapse
Affiliation(s)
- Yuan Li
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Wanjing Qi
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Gongqing Liu
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China.,Department of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, People's Republic of China.,Police Dog Technical School of the Ministry of Public Security of P.R. China, Shenyang, People's Republic of China
| | - Bing Du
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Qi Sun
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Xue Zhang
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Meiyu Jin
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Wanwei Dong
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Transgenic Animal Research, Shenyang, Liaoning, People's Republic of China
| | - Jia Liu
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Transgenic Animal Research, Shenyang, Liaoning, People's Republic of China
| | - Zhihong Zheng
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Transgenic Animal Research, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
46
|
Zheng Y, Lei Q, Jongejan A, Mulder CL, van Daalen SKM, Mastenbroek S, Hwang G, Jordan PW, Repping S, Hamer G. The influence of retinoic acid-induced differentiation on the radiation response of male germline stem cells. DNA Repair (Amst) 2018; 70:55-66. [PMID: 30179733 PMCID: PMC6237089 DOI: 10.1016/j.dnarep.2018.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Lifelong mammalian male fertility is maintained through an intricate balance between spermatogonial proliferation and differentiation. DNA damage in spermatogonia, for instance caused by chemo- or radiotherapy, can induce cell cycle arrest or germ cell apoptosis, possibly resulting in male infertility. Spermatogonia are generally more radiosensitive and prone to undergo apoptosis than somatic cells. Among spermatogonial subtypes the response to DNA damage is differentially modulated; undifferentiated spermatogonia, including the spermatogonial stem cells (SSCs), are relatively radio-resistant, whereas differentiating spermatogonia are very radiosensitive. To investigate the molecular mechanisms underlying this difference, we used an in vitro system consisting of mouse male germline stem (GS) cells that can be induced to differentiate. Using RNA-sequencing analysis, we analyzed the response of undifferentiated and differentiating GS cells to ionizing radiation (IR). At the RNA expression level, both undifferentiated and differentiating GS cells showed a very similar response to IR. Protein localization of several genes found to be involved in either spermatogonial differentiation or radiation response was investigated using mouse testis sections. For instance, we found that the transcription factor PDX1 was specifically expressed in undifferentiated spermatogonia and thus may be a novel marker for these cells. Interestingly, also at the protein level, undifferentiated GS cells showed a more pronounced upregulation of p53 in response to IR than differentiating GS cells. The higher p53 protein level in undifferentiated spermatogonia may preferentially induce cell cycle arrest, thereby giving these cells more time to repair inflicted DNA damage and increase their radio-resistance.
Collapse
Affiliation(s)
- Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China; Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Qijing Lei
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Academic Medical Center Amsterdam, The Netherlands
| | - Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Saskia K M van Daalen
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sebastiaan Mastenbroek
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Grace Hwang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Shen X, Niu C, Guo J, Xia M, Xia J, Hu Y, Zheng Y. Stra8 may inhibit apoptosis during mouse spermatogenesis via the AKT signaling pathway. Int J Mol Med 2018; 42:2819-2830. [PMID: 30106128 DOI: 10.3892/ijmm.2018.3825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/02/2018] [Indexed: 11/06/2022] Open
Abstract
Stimulated by retinoic acid 8 (Stra8), one of genes induced by retinoic acid (RA), is required for the meiotic initiation of male spermatogenesis. The present study found that Stra8 inhibited apoptosis in male Stra8‑knockout mice, and in mice with vitamin A deficiency and vitamin A recovery in vivo. This phenotype was also verified in GC1 spermatogonia (spg) cells overexpressing Stra8. In addition, microarray analysis identified that there were nine differentially expressed genes (DEGs) in the Stra8‑overexpressed GC1 spg cells compared with the control groups; the expression of these nine genes was verified via mRNA expression levels. The DEGs were as follows: Phosphatidylinositol‑dependent kinase 1 (PDK1), a key gene upstream of protein kinase B (AKT); angiopoietin 2, a B‑cell lymphoma 2 (Bcl‑2)‑inhibited gene; transcription factor 4, glutathione S‑transferase P91 and ubiquitin‑specific protease 33, mitogen‑activated protein kinase (MAPK)‑related genes; oxidative stress induced growth inhibitor 1, related to the P53 pathway; Bcl‑2, P53, ERK (MAPK1/3), c‑Jun N‑terminal kinase (MAPK8/9), and P38 (MAPK14), all of which are key genes involved in the AKT signaling pathway. Therefore, the present study further verified these genes and found that the mRNA and protein expression levels of PDK1, AKT, Bcl‑2 and ERK were increased. Although the mRNA expression level of P53 was decreased, there was no significant difference in the protein expression level in Stra8‑overexpressing GC1 spg cells compared with controls. In addition, Caspase 3, one of the executioner caspases, was decreased in Stra8‑overexpressing GC1 spg cells compared with the control groups. Therefore, it was suggested that Stra8 may directly or indirectly inhibit caspases through the AKT signaling pathway and ultimately exert an anti‑apoptotic effect in the male reproductive system.
Collapse
Affiliation(s)
- Xueyi Shen
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Changmin Niu
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jiaqian Guo
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Mengmeng Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jing Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yanqiu Hu
- Center of Reproductive Medicine, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
48
|
Gholamitabar Tabari M, Jorsaraei SGA, Ghasemzadeh-Hasankolaei M, Ahmadi AA, Amirikia M. Evaluation of Novel Mouse-Specific Germ Cell Gene Expression in Embryonic Stem Cell-Derived Germ Cell-Like CellsIn Vitrowith Retinoic Acid Treatment. Cell Reprogram 2018; 20:245-255. [DOI: 10.1089/cell.2017.0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Maryam Gholamitabar Tabari
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| | - Seyed Gholam Ali Jorsaraei
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| | - Mohammad Ghasemzadeh-Hasankolaei
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| | - Ali Asghar Ahmadi
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| | - Mehdi Amirikia
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| |
Collapse
|
49
|
Zhang D, Xie D, Lin X, Ma L, Chen J, Zhang D, Wang Y, Duo S, Feng Y, Zheng C, Jiang B, Ning Y, Han C. The transcription factor SOX30 is a key regulator of mouse spermiogenesis. Development 2018; 145:145/11/dev164723. [PMID: 29848638 DOI: 10.1242/dev.164723] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023]
Abstract
The postmeiotic development of male germ cells, also known as spermiogenesis, features the coordinated expression of a large number of spermatid-specific genes. However, only a limited number of key transcription factors have been identified and the underlying regulatory mechanisms remain largely unknown. Here, we report that SOX30, the most-divergent member of the Sry-related high-motility group box (SOX) family of transcription factors, is essential for mouse spermiogenesis. The SOX30 protein was predominantly expressed in spermatids, while its transcription was regulated by retinoic acid and by MYBL1 before and during meiosis. Sox30 knockout mice arrested spermiogenesis at step 3 round spermatids, which underwent apoptosis and abnormal chromocenter formation. We also determined that SOX30 regulated the expression of hundreds of spermatid-specific protein-coding and long non-coding RNA genes. SOX30 bound to the proximal promoter of its own gene and activated its transcription. These results reveal SOX30 as a novel key regulator of spermiogenesis that regulates its own transcription to enforce and activate this meiotic regulatory pathway.
Collapse
Affiliation(s)
- Daoqin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoqi Zhang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuguang Duo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanmin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binjie Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
50
|
Wei C, Lin H, Cui S. The Forkhead Transcription Factor FOXC2 Is Required for Maintaining Murine Spermatogonial Stem Cells. Stem Cells Dev 2018; 27:624-636. [DOI: 10.1089/scd.2017.0233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Chao Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Hao Lin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|