1
|
Selheim F, Aasebø E, Reikvam H, Bruserud Ø, Hernandez-Valladares M. Proteomic Comparison of Acute Myeloid Leukemia Cells and Normal CD34 + Bone Marrow Cells: Studies of Leukemia Cell Differentiation and Regulation of Iron Metabolism/Ferroptosis. Proteomes 2025; 13:11. [PMID: 39982321 PMCID: PMC11843884 DOI: 10.3390/proteomes13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy that can be cured only by intensive chemotherapy possibly combined with allogeneic stem cell transplantation. We compared the pretreatment proteomic profiles of AML cells derived from 50 patients at the time of first diagnosis with normal CD34+ bone marrow cells. A comparison based on all AML and CD34+ normal cell populations identified 121 differentially abundant proteins that showed at least 2-fold differences, and these proteins included several markers of neutrophil differentiation (e.g., TLR2, the integrins ITGM and ITGX, and downstream mediators including RHO GTPase, S100A8, S100A9, S100A22). However, the expression of these 121 proteins varied between patients, and a subset of 28 patients was characterized by increased long-term AML-free survival, signs of myeloid AML cell differentiation, and favorable genetic abnormalities. These two main patient subsets (28 with differentiation versus 22 with fewer signs of differentiation) also differed with regard to the phosphorylation of 16 differentially abundant proteins. Furthermore, we also classified our patients based on their expression of 16 proteins involved in the regulation of iron metabolism/ferroptosis and showing differential expression when comparing AML cells and normal CD34+ cells. Among the 22 patients with less favorable prognosis, we could then identify a genetically heterogeneous subset characterized by adverse prognosis (i.e., death from primary resistance/relapse) and an iron metabolism/ferroptosis protein profile showing similarities with normal CD34+ cells. We conclude that proteomic profiles differ between AML and normal CD34+ cells; especially, proteomic differences reflecting differentiation and regulation of iron metabolism/ferroptosis are associated with risk of relapse after intensive conventional therapy.
Collapse
Affiliation(s)
- Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (F.S.); (M.H.-V.)
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (F.S.); (M.H.-V.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
2
|
Das S, Thompson W, Papoutsakis ET. Engineered and hybrid human megakaryocytic extracellular vesicles for targeted non-viral cargo delivery to hematopoietic (blood) stem and progenitor cells. Front Bioeng Biotechnol 2024; 12:1435228. [PMID: 39386042 PMCID: PMC11461334 DOI: 10.3389/fbioe.2024.1435228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Native and engineered extracellular vesicles generated from human megakaryocytes (huMkEVs) or from the human megakaryocytic cell line CHRF (CHEVs) interact with tropism delivering their cargo to both human and murine hematopoietic stem and progenitor cells (HSPCs). To develop non-viral delivery vectors to HSPCs based on MkEVs, we first confirmed, using NOD-scid IL2Rγnull (NSG™) mice, the targeting potential of the large EVs, enriched in microparticles (huMkMPs), chosen for their large cargo capacity. 24 h post intravenous infusion into NSG mice, huMkEVs induced a nearly 50% increase in murine platelet counts. PKH26-labeled huMkEVs or CHEVs localized to the HSPC-rich bone marrow preferentially interacting with murine HSPCs, thus confirming their receptor-mediated tropism for NSG HSPCs, and their potential to treat thromobocytopenias. We explored this tropism to functionally deliver synthetic cargo, notably plasmid DNA coding for a fluorescent reporter, to NSG HSPCs both in vitro and in vivo. We loaded huMkEVs with plasmid DNA either through electroporation or by generating hybrid particles with preloaded liposomes. Both methods facilitated successful functional targeted delivery of pDNA, as tissue weight-normalized fluorescence intensity of the expressed fluorescent reporter was significantly higher in bone marrow than other tissues. Furthermore, the fraction of fluorescent CD117+ HSPCs was nearly 19-fold higher than other cell types within the bone marrow 72-h following administration of the hybrid particles, further supporting that HSPC tropism is retained when using hybrid particles. These data demonstrate the potential of these EVs as a non-viral, HSPC-specific cargo vehicle for gene therapy applications to treat hematological diseases.
Collapse
Affiliation(s)
- Samik Das
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Will Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
3
|
Pêgo AC, Lima IS, Martins AC, Sá-Pereira I, Martins G, Gozzelino R. Infection vs. Reinfection: The Immunomodulation of Erythropoiesis. Int J Mol Sci 2024; 25:6153. [PMID: 38892340 PMCID: PMC11172545 DOI: 10.3390/ijms25116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Severe malarial anemia (SMA) increases the morbidity and mortality of Plasmodium, the causative agent of malaria. SMA is mainly developed by children and pregnant women in response to the infection. It is characterized by ineffective erythropoiesis caused by impaired erythropoietin (EPO) signaling. To gain new insights into the pathogenesis of SMA, we investigated the relationship between the immune system and erythropoiesis, conducting comparative analyses in a mouse model of malaria. Red blood cell (RBC) production was evaluated in infected and reinfected animals to mimic endemic occurrences. Higher levels of circulating EPO were observed in response to (re)infection. Despite no major differences in bone marrow erythropoiesis, compensatory mechanisms of splenic RBC production were significantly reduced in reinfected mice. Concomitantly, a pronounced immune response activation was observed in erythropoietic organs of reinfected animals in relation to single-infected mice. Aged mice were also used to mimic the occurrence of malaria in the elderly. The increase in symptom severity was correlated with the enhanced activation of the immune system, which significantly impaired erythropoiesis. Immunocompromised mice further support the existence of an immune-shaping regulation of RBC production. Overall, our data reveal the strict correlation between erythropoiesis and immune cells, which ultimately dictates the severity of SMA.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Gozzelino
- NOVA Medical School Research, NOVA University of Lisbon, 1150-082 Lisbon, Portugal
| |
Collapse
|
4
|
Wang X, Chen M, Hu L, Tan C, Li X, Xue P, Jiang Y, Bao P, Yu T, Li F, Xiao Y, Ran Q, Li Z, Chen L. Humanized mouse models for inherited thrombocytopenia studies. Platelets 2023; 34:2267676. [PMID: 37849076 DOI: 10.1080/09537104.2023.2267676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Inherited thrombocytopenia (IT) is a group of hereditary disorders characterized by a reduced platelet count as the main clinical manifestation, and often with abnormal platelet function, which can subsequently lead to impaired hemostasis. In the past decades, humanized mouse models (HMMs), that are mice engrafted with human cells or genes, have been widely used in different research areas including immunology, oncology, and virology. With advances of the development of immunodeficient mice, the engraftment, and reconstitution of functional human platelets in HMM permit studies of occurrence and development of platelet disorders including IT and treatment strategies. This article mainly reviews the development of humanized mice models, the construction methods, research status, and problems of using humanized mice for the in vivo study of human thrombopoiesis.
Collapse
Affiliation(s)
- Xiaojie Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- Laboratory of Precision Medicine, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Chengning Tan
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoliang Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Peipei Xue
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yangzhou Jiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Peipei Bao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Teng Yu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Fengjie Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- Laboratory of Precision Medicine, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Basic Research Innovation Center for Prevention and Treatment of Acute Radiation Syndrome, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- Laboratory of Precision Medicine, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Chen A, Neuwirth I, Herndler-Brandstetter D. Modeling the Tumor Microenvironment and Cancer Immunotherapy in Next-Generation Humanized Mice. Cancers (Basel) 2023; 15:2989. [PMID: 37296949 PMCID: PMC10251926 DOI: 10.3390/cancers15112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer immunotherapy has brought significant clinical benefits to numerous patients with malignant disease. However, only a fraction of patients experiences complete and durable responses to currently available immunotherapies. This highlights the need for more effective immunotherapies, combination treatments and predictive biomarkers. The molecular properties of a tumor, intratumor heterogeneity and the tumor immune microenvironment decisively shape tumor evolution, metastasis and therapy resistance and are therefore key targets for precision cancer medicine. Humanized mice that support the engraftment of patient-derived tumors and recapitulate the human tumor immune microenvironment of patients represent a promising preclinical model to address fundamental questions in precision immuno-oncology and cancer immunotherapy. In this review, we provide an overview of next-generation humanized mouse models suitable for the establishment and study of patient-derived tumors. Furthermore, we discuss the opportunities and challenges of modeling the tumor immune microenvironment and testing a variety of immunotherapeutic approaches using human immune system mouse models.
Collapse
Affiliation(s)
| | | | - Dietmar Herndler-Brandstetter
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090 Vienna, Austria; (A.C.); (I.N.)
| |
Collapse
|
6
|
Zhou Z, Zhang H, Tao Y, Jie H, Zhao J, Zang J, Li H, Wang Y, Wang T, Zhao H, Li Y, Guo C, Zhu F, Mao H, Zhang L, Liu F, Wang Q. CX3CR1 hi macrophages sustain metabolic adaptation by relieving adipose-derived stem cell senescence in visceral adipose tissue. Cell Rep 2023; 42:112424. [PMID: 37086405 DOI: 10.1016/j.celrep.2023.112424] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/20/2022] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Adipose-derived stem cells (ASCs) drive healthy visceral adipose tissue (VAT) expansion via adipocyte hyperplasia. Obesity induces ASC senescence that causes VAT dysfunction and metabolic disorders. It is challenging to restrain this process by biological intervention, as mechanisms of controlling VAT ASC senescence remain unclear. We demonstrate that a population of CX3CR1hi macrophages is maintained in mouse VAT during short-term energy surplus, which sustains ASCs by restraining their senescence, driving adaptive VAT expansion and metabolic health. Long-term overnutrition induces diminishment of CX3CR1hi macrophages in mouse VAT accompanied by ASC senescence and exhaustion, while transferring CX3CR1hi macrophages restores ASC reservoir and triggers VAT beiging to alleviate the metabolic maladaptation. Mechanistically, visceral ASCs attract macrophages via MCP-1 and shape their CX3CR1hi phenotype via exosomes; these macrophages relieve ASC senescence by promoting the arginase1-eIF5A hypusination axis. These findings identify VAT CX3CR1hi macrophages as ASC supporters and unravel their therapeutic potential for metabolic maladaptation to obesity.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huiying Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yan Tao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Haipeng Jie
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jingyuan Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jinhao Zang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huijie Li
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yalin Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tianci Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yuan Li
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chun Guo
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Faliang Zhu
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fengming Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
7
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Aparici Herraiz I, Caires HR, Castillo-Fernández Ó, Sima N, Méndez-Mora L, Risueño RM, Sattabongkot J, Roobsoong W, Hernández-Machado A, Fernandez-Becerra C, Barrias CC, del Portillo HA. Advancing Key Gaps in the Knowledge of Plasmodium vivax Cryptic Infections Using Humanized Mouse Models and Organs-on-Chips. Front Cell Infect Microbiol 2022; 12:920204. [PMID: 35873153 PMCID: PMC9302440 DOI: 10.3389/fcimb.2022.920204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden.
Collapse
Affiliation(s)
- Iris Aparici Herraiz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Hugo R. Caires
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Óscar Castillo-Fernández
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Núria Sima
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Lourdes Méndez-Mora
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aurora Hernández-Machado
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
- Centre de Recerca Matemàtica (CRM), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Cristina C. Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Hernando A. del Portillo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- *Correspondence: Hernando A. del Portillo,
| |
Collapse
|
9
|
Liu W, Teodorescu P, Halene S, Ghiaur G. The Coming of Age of Preclinical Models of MDS. Front Oncol 2022; 12:815037. [PMID: 35372085 PMCID: PMC8966105 DOI: 10.3389/fonc.2022.815037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal bone-marrow diseases with ineffective hematopoiesis resulting in cytopenias and morphologic dysplasia of hematopoietic cells. MDS carry a wide spectrum of genetic abnormalities, ranging from chromosomal abnormalities such as deletions/additions, to recurrent mutations affecting the spliceosome, epigenetic modifiers, or transcription factors. As opposed to AML, research in MDS has been hindered by the lack of preclinical models that faithfully replicate the complexity of the disease and capture the heterogeneity. The complex molecular landscape of the disease poses a unique challenge when creating transgenic mouse-models. In addition, primary MDS cells are difficult to manipulate ex vivo limiting in vitro studies and resulting in a paucity of cell lines and patient derived xenograft models. In recent years, progress has been made in the development of both transgenic and xenograft murine models advancing our understanding of individual contributors to MDS pathology as well as the complex primary interplay of genetic and microenvironment aberrations. We here present a comprehensive review of these transgenic and xenograft models for MDS and future directions.
Collapse
Affiliation(s)
- Wei Liu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Patric Teodorescu
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Fröbel J, Landspersky T, Percin G, Schreck C, Rahmig S, Ori A, Nowak D, Essers M, Waskow C, Oostendorp RAJ. The Hematopoietic Bone Marrow Niche Ecosystem. Front Cell Dev Biol 2021; 9:705410. [PMID: 34368155 PMCID: PMC8339972 DOI: 10.3389/fcell.2021.705410] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
The bone marrow (BM) microenvironment, also called the BM niche, is essential for the maintenance of fully functional blood cell formation (hematopoiesis) throughout life. Under physiologic conditions the niche protects hematopoietic stem cells (HSCs) from sustained or overstimulation. Acute or chronic stress deregulates hematopoiesis and some of these alterations occur indirectly via the niche. Effects on niche cells include skewing of its cellular composition, specific localization and molecular signals that differentially regulate the function of HSCs and their progeny. Importantly, while acute insults display only transient effects, repeated or chronic insults lead to sustained alterations of the niche, resulting in HSC deregulation. We here describe how changes in BM niche composition (ecosystem) and structure (remodeling) modulate activation of HSCs in situ. Current knowledge has revealed that upon chronic stimulation, BM remodeling is more extensive and otherwise quiescent HSCs may be lost due to diminished cellular maintenance processes, such as autophagy, ER stress response, and DNA repair. Features of aging in the BM ecology may be the consequence of intermittent stress responses, ultimately resulting in the degeneration of the supportive stem cell microenvironment. Both chronic stress and aging impair the functionality of HSCs and increase the overall susceptibility to development of diseases, including malignant transformation. To understand functional degeneration, an important prerequisite is to define distinguishing features of unperturbed niche homeostasis in different settings. A unique setting in this respect is xenotransplantation, in which human cells depend on niche factors produced by other species, some of which we will review. These insights should help to assess deviations from the steady state to actively protect and improve recovery of the niche ecosystem in situ to optimally sustain healthy hematopoiesis in experimental and clinical settings.
Collapse
Affiliation(s)
- Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Theresa Landspersky
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| | - Gülce Percin
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Christina Schreck
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| | - Susann Rahmig
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Alessandro Ori
- Proteomics of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marieke Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division Inflammatory Stress in Stem Cells, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany.,Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.,Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Robert A J Oostendorp
- School of Medicine, Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| |
Collapse
|
11
|
Hess NJ, S Bharadwaj N, Bobeck EA, McDougal CE, Ma S, Sauer JD, Hudson AW, Gumperz JE. iNKT cells coordinate immune pathways to enable engraftment in nonconditioned hosts. Life Sci Alliance 2021; 4:e202000999. [PMID: 34112724 PMCID: PMC8200291 DOI: 10.26508/lsa.202000999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/05/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that interact with key antigen-presenting cells to modulate adaptive T-cell responses in ways that can either promote protective immunity, or limit pathological immune activation. Understanding the immunological networks engaged by iNKT cells to mediate these opposing functions is a key pre-requisite to effectively using iNKT cells for therapeutic applications. Using a human umbilical cord blood xenotransplantation model, we show here that co-transplanted allogeneic CD4+ iNKT cells interact with monocytes and T cells in the graft to coordinate pro-hematopoietic and immunoregulatory pathways. The nexus of iNKT cells, monocytes, and cord blood T cells led to the release of cytokines (IL-3, GM-CSF) that enhance hematopoietic stem and progenitor cell activity, and concurrently induced PGE2-mediated suppression of T-cell inflammatory responses that limit hematopoietic stem and progenitor cell engraftment. This resulted in successful long-term hematopoietic engraftment without pretransplant conditioning, including multi-lineage human chimerism and colonization of the spleen by antibody-producing human B cells. These results highlight the potential for using iNKT cellular immunotherapy to improve rates of hematopoietic engraftment independently of pretransplant conditioning.
Collapse
Affiliation(s)
- Nicholas J Hess
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nikhila S Bharadwaj
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Elizabeth A Bobeck
- Department of Animal Science, 201F Kildee Hall, Iowa State University, Ames, IA, USA
| | - Courtney E McDougal
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Shidong Ma
- QLB Biotherapeutics, Inc., Boston, MA, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Amy W Hudson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
12
|
Genetic in vivo engineering of human T lymphocytes in mouse models. Nat Protoc 2021; 16:3210-3240. [PMID: 33846629 DOI: 10.1038/s41596-021-00510-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Receptor targeting of vector particles is a key technology to enable cell type-specific in vivo gene delivery. For example, T cells in humanized mouse models can be modified by lentiviral vectors (LVs) targeted to human T-cell markers to enable them to express chimeric antigen receptors (CARs). Here, we provide detailed protocols for the generation of CD4- and CD8-targeted LVs (which takes ~9 d in total). We also describe how to humanize immunodeficient mice with hematopoietic stem cells (which takes 12-16 weeks) and precondition (over 5 d) and administer the vector stocks. Conversion of the targeted cell type is monitored by PCR and flow cytometry of blood samples. A few weeks after administration, ~10% of the targeted T-cell subtype can be expected to have converted to CAR T cells. By closely following the protocol, sufficient vector stock for the genetic manipulation of 10-15 humanized mice is obtained. We also discuss how the protocol can be easily adapted to use LVs targeted to other types of receptors and/or for delivery of other genes of interest.
Collapse
|
13
|
Song Y, Shan L, Gbyli R, Liu W, Strowig T, Patel A, Fu X, Wang X, Xu ML, Gao Y, Qin A, Bruscia EM, Tebaldi T, Biancon G, Mamillapalli P, Urbonas D, Eynon E, Gonzalez DG, Chen J, Krause DS, Alderman J, Halene S, Flavell RA. Combined liver-cytokine humanization comes to the rescue of circulating human red blood cells. Science 2021; 371:1019-1025. [PMID: 33674488 DOI: 10.1126/science.abe2485] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
In vivo models that recapitulate human erythropoiesis with persistence of circulating red blood cells (RBCs) have remained elusive. We report an immunodeficient murine model in which combined human liver and cytokine humanization confer enhanced human erythropoiesis and RBC survival in the circulation. We deleted the fumarylacetoacetate hydrolase (Fah) gene in MISTRG mice expressing several human cytokines in place of their murine counterparts. Liver humanization by intrasplenic injection of human hepatocytes (huHep) eliminated murine complement C3 and reduced murine Kupffer cell density. Engraftment of human sickle cell disease (SCD)-derived hematopoietic stem cells in huHepMISTRGFah -/- mice resulted in vaso-occlusion that replicated acute SCD pathology. Combined liver-cytokine-humanized mice will facilitate the study of diseases afflicting RBCs, including bone marrow failure, hemoglobinopathies, and malaria, and also preclinical testing of therapies.
Collapse
Affiliation(s)
- Yuanbin Song
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Liang Shan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Medicine, Pathology and Immunology, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Rana Gbyli
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Wei Liu
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Till Strowig
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Amisha Patel
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoying Fu
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Xiaman Wang
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Hematology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yimeng Gao
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley Qin
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Padmavathi Mamillapalli
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - David Urbonas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Eynon
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David G Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Jie Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Diane S Krause
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jonathan Alderman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA. .,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
14
|
Abe T, Uosaki H, Shibata H, Hara H, Sarentonglaga B, Nagao Y, Hanazono Y. Fetal sheep support the development of hematopoietic cells in vivo from human induced pluripotent stem cells. Exp Hematol 2021; 95:46-57.e8. [PMID: 33395577 DOI: 10.1016/j.exphem.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
We report that a sheep fetal liver provides a microenvironment for generating hematopoietic cells with long-term engrafting capacity and multilineage differentiation potential from human induced pluripotent stem cell (iPSC)-derived hemogenic endothelial cells (HEs). Despite the promise of iPSCs for making any cell types, generating hematopoietic stem and progenitor cells (HSPCs) is still a challenge. We hypothesized that the hematopoietic microenvironment, which exists in fetal liver but is lacking in vitro, turns iPSC-HEs into HSPCs. To test this, we transplanted CD45-negative iPSC-HEs into fetal sheep liver, in which HSPCs first grow. Within 2 months, the transplanted cells became CD45 positive and differentiated into multilineage blood cells in the fetal liver. Then, CD45-positive cells translocated to the bone marrow and were maintained there for 3 years with the capability of multilineage differentiation, indicating that hematopoietic cells with long-term engraftment potential were generated. Moreover, human hematopoietic cells were temporally enriched by xenogeneic donor-lymphocyte infusion into the sheep. This study could serve as a foundation to generate HSPCs from iPSCs.
Collapse
Affiliation(s)
- Tomoyuki Abe
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan.
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Hiroaki Shibata
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Hiromasa Hara
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | | | - Yoshikazu Nagao
- Department of Agriculture, Utsunomiya University, Tochigi, Japan
| | - Yutaka Hanazono
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan; Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan.
| |
Collapse
|
15
|
Kwon N, Thompson EN, Mayday MY, Scanlon V, Lu YC, Krause DS. Current understanding of human megakaryocytic-erythroid progenitors and their fate determinants. Curr Opin Hematol 2021; 28:28-35. [PMID: 33186151 PMCID: PMC7737300 DOI: 10.1097/moh.0000000000000625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW This review focuses on our current understanding of fate decisions in bipotent megakaryocyte-erythroid progenitors (MEPs). Although extensive research has been carried out over decades, our understanding of how MEP commit to the erythroid versus megakaryocyte fate remains unclear. RECENT FINDINGS We discuss the isolation of primary human MEP, and focus on gene expression patterns, epigenetics, transcription factors and extrinsic factors that have been implicated in MEP fate determination. We conclude with an overview of the open debates in the field of MEP biology. SUMMARY Understanding MEP fate is important because defects in megakaryocyte and erythrocyte development lead to disease states such as anaemia, thrombocytopenia and leukaemia. MEP also represent a model system for studying fundamental principles underlying cell fate decisions of bipotent and pluripotent progenitors, such that discoveries in MEP are broadly applicable to stem/progenitor cell biology.
Collapse
Affiliation(s)
- Nayoung Kwon
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Evrett N. Thompson
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Madeline Y. Mayday
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Vanessa Scanlon
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Yi-Chien Lu
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Diane S. Krause
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| |
Collapse
|
16
|
A human SIRPA knock-in xenograft mouse model to study human hematopoietic and cancer stem cells. Blood 2020; 135:1661-1672. [PMID: 32206775 DOI: 10.1182/blood.2019002194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
In human-to-mouse xenogeneic transplantation, polymorphisms of signal-regulatory protein α (SIRPA) that decide their binding affinity for human CD47 are critical for engraftment efficiency of human cells. In this study, we generated a new C57BL/6.Rag2nullIl2rgnull (BRG) mouse line with Sirpahuman/human (BRGShuman) mice, in which mouse Sirpa was replaced by human SIRPA encompassing all 8 exons. Macrophages from C57BL/6 mice harboring Sirpahuman/human had a significantly stronger affinity for human CD47 than those harboring SirpaNOD/NOD and did not show detectable phagocytosis against human hematopoietic stem cells. In turn, Sirpahuman/human macrophages had a moderate affinity for mouse CD47, and BRGShuman mice did not exhibit the blood cytopenia that was seen in Sirpa-/- mice. In human to mouse xenograft experiments, BRGShuman mice showed significantly greater engraftment and maintenance of human hematopoiesis with a high level of myeloid reconstitution, as well as improved reconstitution in peripheral tissues, compared with BRG mice harboring SirpaNOD/NOD (BRGSNOD). BRGShuman mice also showed significantly enhanced engraftment and growth of acute myeloid leukemia and subcutaneously transplanted human colon cancer cells compared with BRGSNOD mice. BRGShuman mice should be a useful basic line for establishing a more authentic xenotransplantation model to study normal and malignant human stem cells.
Collapse
|
17
|
Donada A, Basso-Valentina F, Arkoun B, Monte-Mor B, Plo I, Raslova H. Induced pluripotent stem cells and hematological malignancies: A powerful tool for disease modeling and drug development. Stem Cell Res 2020; 49:102060. [PMID: 33142254 DOI: 10.1016/j.scr.2020.102060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 01/12/2023] Open
Abstract
The derivation of human pluripotent stem cell (iPSC) lines by in vitro reprogramming of somatic cells revolutionized research: iPSCs have been used for disease modeling, drug screening and regenerative medicine for many disorders, especially when combined with cutting-edge genome editing technologies. In hematology, malignant transformation is often a multi-step process, that starts with either germline or acquired genetic alteration, followed by progressive acquisition of mutations combined with the selection of one or more pre-existing clones. iPSCs are an excellent model to study the cooperation between different genetic alterations and to test relevant therapeutic drugs. In this review, we will describe the use of iPSCs for pathophysiological studies and drug testing in inherited and acquired hematological malignancies.
Collapse
Affiliation(s)
- A Donada
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France
| | - F Basso-Valentina
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France
| | - B Arkoun
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France
| | - B Monte-Mor
- Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - I Plo
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France
| | - H Raslova
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.
| |
Collapse
|
18
|
Hess NJ, Lindner PN, Vazquez J, Grindel S, Hudson AW, Stanic AK, Ikeda A, Hematti P, Gumperz JE. Different Human Immune Lineage Compositions Are Generated in Non-Conditioned NBSGW Mice Depending on HSPC Source. Front Immunol 2020; 11:573406. [PMID: 33193358 PMCID: PMC7604455 DOI: 10.3389/fimmu.2020.573406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023] Open
Abstract
NBSGW mice are highly immunodeficient and carry a hypomorphic mutation in the c-kit gene, providing a host environment that supports robust human hematopoietic expansion without pre-conditioning. These mice thus provide a model to investigate human hematopoietic engraftment in the absence of conditioning-associated damage. We compared transplantation of human CD34+ HSPCs purified from three different sources: umbilical cord blood, adult bone marrow, and adult G-CSF mobilized peripheral blood. HSPCs from mobilized peripheral blood were significantly more efficient (as a function of starting HSPC dose) than either cord blood or bone marrow HSPCs at generating high levels of human chimerism in the murine blood and bone marrow by 12 weeks post-transplantation. While T cells do not develop in this model due to thymic atrophy, all three HSPC sources generated a human compartment that included B lymphocytic, myeloid, and granulocytic lineages. However, the proportions of these lineages varied significantly according to HSPC source. Mobilized blood HSPCs produced a strikingly higher proportion of granulocyte lineage cells (~35% as compared to ~5%), whereas bone marrow HSPC output was dominated by B lymphocytic cells, and cord blood HSPC output was enriched for myeloid lineages. Following transplantation, all three HSPC sources showed a shift in the CD34+ subset towards CD45RA+ progenitors along with a complete loss of the CD45RA-CD49f+ long-term HSC subpopulation, suggesting this model promotes mainly short-term HSC activity. Mice transplanted with cord blood HSPCs maintained a diversified human immune compartment for at least 36 weeks after the primary transplant, although mice given adult bone marrow HSPCs had lost diversity and contained only myeloid cells by this time point. Finally, to assess the impact of non-HSPCs on transplantation outcome, we also tested mice transplanted with total or T cell-depleted adult bone marrow mononuclear cells. Total bone marrow mononuclear cell transplants produced significantly lower human chimerism compared to purified HSPCs, and T-depletion rescued B cell levels but not other lineages. Together these results reveal marked differences in engraftment efficiency and lineage commitment according to HSPC source and suggest that T cells and other non-HSPC populations affect lineage output even in the absence of conditioning-associated inflammation.
Collapse
Affiliation(s)
- Nicholas J Hess
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Payton N Lindner
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Jessica Vazquez
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Samuel Grindel
- Department of Medical Genetics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Amy W Hudson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Peiman Hematti
- Division of Hematology/Oncology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
19
|
Saito Y, Shultz LD, Ishikawa F. Understanding Normal and Malignant Human Hematopoiesis Using Next-Generation Humanized Mice. Trends Immunol 2020; 41:706-720. [PMID: 32631635 DOI: 10.1016/j.it.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Rodent models for human diseases contribute significantly to understanding human physiology and pathophysiology. However, given the accelerating pace of drug development, there is a crucial need for in vivo preclinical models of human biology and pathology. The humanized mouse is one tool to bridge the gap between traditional animal models and the clinic. The development of immunodeficient mouse strains with high-level engraftment of normal and diseased human immune/hematopoietic cells has made in vivo functional characterization possible. As a patient-derived xenograft (PDX) model, humanized mice functionally correlate putative mechanisms with in vivo behavior and help to reveal pathogenic mechanisms. Combined with single-cell genomics, humanized mice can facilitate functional precision medicine such as risk stratification and individually optimized therapeutic approaches.
Collapse
Affiliation(s)
- Yoriko Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| | | | - Fumihiko Ishikawa
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan.
| |
Collapse
|
20
|
Abstract
The self-renewal capacity of multipotent haematopoietic stem cells (HSCs) supports blood system homeostasis throughout life and underlies the curative capacity of clinical HSC transplantation therapies. However, despite extensive characterization of the HSC state in the adult bone marrow and embryonic fetal liver, the mechanism of HSC self-renewal has remained elusive. This Review presents our current understanding of HSC self-renewal in vivo and ex vivo, and discusses important advances in ex vivo HSC expansion that are providing new biological insights and offering new therapeutic opportunities.
Collapse
|
21
|
Gbyli R, Song Y, Halene S. Humanized mice as preclinical models for myeloid malignancies. Biochem Pharmacol 2020; 174:113794. [PMID: 31926939 DOI: 10.1016/j.bcp.2020.113794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Humanized mice have proven to be invaluable for human hematological translational research since they offer essential tools to dissect disease biology and to bridge the gap between pre-clinical testing of novel therapeutics and their clinical applications. Many efforts have been placed to advance and optimize humanized mice to support the engraftment, differentiation, and maintenance of hematopoietic stem cells (HSCs) and the human hematological system in order to broaden the scope of applications of such models. This review covers the background of humanized mice, how they are used as platforms to model myeloid malignancies, and the various current and potential approaches to further enhance their utilization in biomedical research.
Collapse
Affiliation(s)
- Rana Gbyli
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Brendel C, Rio P, Verhoeyen E. Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochem Pharmacol 2019; 174:113711. [PMID: 31726047 DOI: 10.1016/j.bcp.2019.113711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
Over the last decade, incrementally improved xenograft mouse models, which support the engraftment and development of a human hemato-lymphoid system, have been developed and represent an important fundamental and preclinical research tool. Immunodeficient mice can be transplanted with human hematopoietic stem cells (HSCs) and this process is accompanied by HSC homing to the murine bone marrow. This is followed by stem cell expansion, multilineage hematopoiesis, long-term engraftment, and functional human antibody and cellular immune responses. The most significant contributions made by these humanized mice are the identification of normal and leukemic hematopoietic stem cells, the characterization of the human hematopoietic hierarchy, screening of anti-cancer therapies and their use as preclinical models for gene therapy applications. This review article focuses on several gene therapy applications that have benefited from evaluation in humanized mice such as chimeric antigen receptor (CAR) T cell therapies for cancer, anti-viral therapies and gene therapies for multiple monogenetic diseases. Humanized mouse models have been and still are of great value for the gene therapy field since they provide a more reliable understanding of sometimes complicated therapeutic approaches such as recently developed therapeutic gene editing strategies, which seek to correct a gene at its endogenous genomic locus. Additionally, humanized mouse models, which are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior toclinical trials, help to expedite the critical translation from basic findings to clinical applications. In this review, innovative gene therapies and preclinical studies to evaluate T- and B-cell and HSC-based therapies in humanized mice are discussed and illustrated by multiple examples.
Collapse
Affiliation(s)
- Christian Brendel
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Paula Rio
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France; Université Côte d'Azur, INSERM, C3M, 06204 Nice, France.
| |
Collapse
|
23
|
Leonard A, Yapundich M, Nassehi T, Gamer J, Drysdale CM, Haro-Mora JJ, Demirci S, Hsieh MM, Uchida N, Tisdale JF. Low-Dose Busulfan Reduces Human CD34 + Cell Doses Required for Engraftment in c-kit Mutant Immunodeficient Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:430-437. [PMID: 31890735 PMCID: PMC6909187 DOI: 10.1016/j.omtm.2019.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/30/2019] [Indexed: 01/07/2023]
Abstract
Humanized animal models are central to efforts aimed at improving hematopoietic stem cell (HSC) transplantation with or without genetic modification. Human cell engraftment is feasible in immunodeficient mice; however, high HSC doses and conditioning limit broad use of xenograft models. We assessed human CD45+ chimerism after transplanting varying doses of human CD34+ HSCs (2 × 105 to 2 × 106 cells/mouse) with or without busulfan (BU) pretransplant conditioning in c-kit mutant mice that do not require conditioning (non-obese diabetic [NOD]/B6/severe combined immunodeficiency [SCID]/ interleukin-2 receptor gamma chain null (IL-2rγ-/-) KitW41/W41 [NBSGW]). We then tested a range of BU (5-37.5 mg/kg) using 2 × 105 human CD34+ cells. Glycophorin-A erythrocyte chimerism was assessed after murine macrophage depletion using clodronate liposomes. We demonstrated successful long-term engraftment of human CD34+ cells at all cell doses in this model, and equivalent engraftment using 10-fold less CD34+ cells with the addition of BU conditioning. Low-dose BU (10 mg/kg) was sufficient to allow human engraftment using 2 × 105 CD34+ cells, whereas higher doses (≥37.5 mg/kg) were toxic. NBSGW mice support human erythropoiesis in the bone marrow; however, murine macrophage depletion provided only minimal and transient increases in peripheral blood human erythrocytes. Our xenograft model is therefore useful in HSC gene therapy and genome-editing studies, especially for modeling in disorders, such as sickle cell disease, where access to HSCs is limited.
Collapse
Affiliation(s)
- Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Morgan Yapundich
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Tina Nassehi
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Jackson Gamer
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Claire M. Drysdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Juan J. Haro-Mora
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Matthew M. Hsieh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
- Corresponding author: Naoya Uchida, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD 20892, USA.
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| |
Collapse
|
24
|
Song Y, Rongvaux A, Taylor A, Jiang T, Tebaldi T, Balasubramanian K, Bagale A, Terzi YK, Gbyli R, Wang X, Fu X, Gao Y, Zhao J, Podoltsev N, Xu M, Neparidze N, Wong E, Torres R, Bruscia EM, Kluger Y, Manz MG, Flavell RA, Halene S. A highly efficient and faithful MDS patient-derived xenotransplantation model for pre-clinical studies. Nat Commun 2019; 10:366. [PMID: 30664659 PMCID: PMC6341122 DOI: 10.1038/s41467-018-08166-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022] Open
Abstract
Comprehensive preclinical studies of Myelodysplastic Syndromes (MDS) have been elusive due to limited ability of MDS stem cells to engraft current immunodeficient murine hosts. Here we report a MDS patient-derived xenotransplantation model in cytokine-humanized immunodeficient “MISTRG” mice that provides efficient and faithful disease representation across all MDS subtypes. MISTRG MDS patient-derived xenografts (PDX) reproduce patients’ dysplastic morphology with multi-lineage representation, including erythro- and megakaryopoiesis. MISTRG MDS-PDX replicate the original sample’s genetic complexity and can be propagated via serial transplantation. MISTRG MDS-PDX demonstrate the cytotoxic and differentiation potential of targeted therapeutics providing superior readouts of drug mechanism of action and therapeutic efficacy. Physiologic humanization of the hematopoietic stem cell niche proves critical to MDS stem cell propagation and function in vivo. The MISTRG MDS-PDX model opens novel avenues of research and long-awaited opportunities in MDS research. Myelodyplastic hematopoietic stem cells (MDS HSC) have eluded in vivo modeling. Here the authors present a highly efficient MDS patient-derived xenotransplantation model in cytokine-humanized mice with replication of the donors’ genetic complexity and myeloid, erythroid, and megakaryocytic lineage dysplasia.
Collapse
Affiliation(s)
- Yuanbin Song
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Anthony Rongvaux
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Fred Hutchinson Cancer Research Center, Program in Immunology, Clinical Research Division, and Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ashley Taylor
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Tingting Jiang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Kunthavai Balasubramanian
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Arun Bagale
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,University of New Haven, New Haven, CT, USA
| | - Yunus Kasim Terzi
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Medical Genetics, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Rana Gbyli
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaman Wang
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiaoying Fu
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Yimeng Gao
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Jun Zhao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Nikolai Podoltsev
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Mina Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Natalia Neparidze
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Ellice Wong
- Section of Hematology/Oncology, VA Medical Center, West Haven, CT, USA
| | - Richard Torres
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.,Program of Applied Mathematics, Yale University, New Haven, CT, USA
| | - Markus G Manz
- Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
25
|
Oguro H. Generation of Hematopoietic Stem and Progenitor Cells from Human Pluripotent Stem Cells. Methods Mol Biol 2019; 2048:245-257. [PMID: 31396942 DOI: 10.1007/978-1-4939-9728-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human pluripotent stem cells (PSCs) have the potential to provide a virtually unlimited supply of cells for transplantation therapy. When combined with recent advances in genome editing technologies, human PSCs could offer various approaches that enable gene therapy, drug discovery, disease modeling, and in vitro modeling of human development. De novo generation of hematopoietic stem cells (HSCs) from human PSCs is an important focus in the field, since it enables autologous HSC transplantation to treat many blood disorders and malignancies. Although culture conditions have been established to generate a broad spectrum of hematopoietic progenitors from human PSCs, it remains a significant challenge to generate bona fide HSCs that possess sustained self-renewal and multilineage differentiation capacities upon transplantation. In this review, recent promising advances in the efforts to generate HSCs and hematopoietic progenitors from human PSCs in vitro and in vivo or from somatic cells are discussed.
Collapse
Affiliation(s)
- Hideyuki Oguro
- Cellular Engineering, The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| |
Collapse
|
26
|
Nakano M, Ito M, Tanaka R, Ariyama H, Mitsugi K, Makiyama A, Uchino K, Esaki T, Tsuruta N, Hanamura F, Yamaguchi K, Okumura Y, Sagara K, Takayoshi K, Nio K, Tsuchihashi K, Tamura S, Shimokawa H, Arita S, Miyawaki K, Kusaba H, Akashi K, Baba E. Epithelial-mesenchymal transition is activated in CD44-positive malignant ascites tumor cells of gastrointestinal cancer. Cancer Sci 2018; 109:3461-3470. [PMID: 30142697 PMCID: PMC6215886 DOI: 10.1111/cas.13777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/18/2022] Open
Abstract
Disseminated cancer cells in malignant ascites possess unique properties that differ from primary tumors. However, the biological features of ascites tumor cells (ATC) have not been fully investigated. By analyzing ascites fluid from 65 gastrointestinal cancer patients, the distinguishing characteristics of ATC were identified. High frequency of CD44+ cells was observed in ATC using flow cytometry (n = 48). Multiplex quantitative PCR (n = 15) showed higher gene expression of epithelial‐mesenchymal transition (EMT)‐related genes and transforming growth factor beta (TGF‐beta)‐related genes in ATC than in the primary tissues. Immunohistochemistry (n = 10) showed that ATC also had much higher expression of phosphorylated SMAD2 than that in the corresponding primary tissues. TGF‐beta 1 was detected in all cases of malignant ascites by enzyme‐linked immunoassay (n = 38), suggesting the possible interaction of ATC and the ascites microenvironment. In vitro experiments revealed that these ATC properties were maintained by TGF‐beta 1 in cultured ATC(n = 3). Here, we showed that ATCrevealed high frequencies of CD44 and possessed distinct EMT features from primary tissues that were mainly maintained by TGF‐beta 1 in the ascites.
Collapse
Affiliation(s)
- Michitaka Nakano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mamoru Ito
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Risa Tanaka
- Department of Medical Oncology, Hamanomachi Hospital, Fukuoka, Japan
| | - Hiroshi Ariyama
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenji Mitsugi
- Department of Medical Oncology, Hamanomachi Hospital, Fukuoka, Japan
| | - Akitaka Makiyama
- Department of Hematology/Oncology, Japan Community Healthcare Organization Kyushu Hospital, Kitakyushu, Japan
| | - Keita Uchino
- Department of Medical Oncology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Nobuhiro Tsuruta
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Fumiyasu Hanamura
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kyoko Yamaguchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuta Okumura
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kosuke Sagara
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kotoe Takayoshi
- Department of Gastrointestinal and Medical Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Kenta Nio
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenji Tsuchihashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shingo Tamura
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hozumi Shimokawa
- Department of Medical Oncology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Shuji Arita
- Department of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hitoshi Kusaba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Eishi Baba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
27
|
Abarrategi A, Mian SA, Passaro D, Rouault-Pierre K, Grey W, Bonnet D. Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. J Exp Med 2018; 215:729-743. [PMID: 29453226 PMCID: PMC5839768 DOI: 10.1084/jem.20172139] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Xenotransplantation of patient-derived samples in mouse models has been instrumental in depicting the role of hematopoietic stem and progenitor cells in the establishment as well as progression of hematological malignancies. The foundations for this field of research have been based on the development of immunodeficient mouse models, which provide normal and malignant human hematopoietic cells with a supportive microenvironment. Immunosuppressed and genetically modified mice expressing human growth factors were key milestones in patient-derived xenograft (PDX) models, highlighting the importance of developing humanized microenvironments. The latest major improvement has been the use of human bone marrow (BM) niche-forming cells to generate human-mouse chimeric BM tissues in PDXs, which can shed light on the interactions between human stroma and hematopoietic cells. Here, we summarize the methods used for human hematopoietic cell xenotransplantation and their milestones and review the latest approaches in generating humanized BM tissues in mice to study human normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Ander Abarrategi
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| | - Syed A Mian
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
- Department of Haematological Medicine, King's College London School of Medicine, London, England, UK
| | - Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, England, UK
| | - William Grey
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| |
Collapse
|
28
|
Fiorini C, Abdulhay NJ, McFarland SK, Munschauer M, Ulirsch JC, Chiarle R, Sankaran VG. Developmentally-faithful and effective human erythropoiesis in immunodeficient and Kit mutant mice. Am J Hematol 2017; 92:E513-E519. [PMID: 28568895 DOI: 10.1002/ajh.24805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
Abstract
Immunodeficient mouse models have been valuable for studies of human hematopoiesis, but high-fidelity recapitulation of erythropoiesis in most xenograft recipients remains elusive. Recently developed immunodeficient and Kit mutant mice, however, have provided a suitable background to achieve higher-level human erythropoiesis after long-term hematopoietic engraftment. While there has been some characterization of human erythropoiesis in these models, a comprehensive analysis from various human developmental stages has not yet been reported. Here, we have utilized cell surface phenotypes, morphologic analyses, and molecular studies to fully characterize human erythropoiesis from multiple developmental stages in immunodeficient and Kit mutant mouse models following long-term hematopoietic stem and progenitor cell engraftment. We show that human erythropoiesis in such models demonstrates complete maturation and enucleation, as well as developmentally appropriate globin gene expression. These results provide a framework for future studies to utilize this model system for interrogating disorders affecting human erythropoiesis and for developing improved therapeutic approaches.
Collapse
Affiliation(s)
- Claudia Fiorini
- Division of Hematology/Oncology; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
| | - Nour J. Abdulhay
- Division of Hematology/Oncology; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
| | - Sean K. McFarland
- Division of Hematology/Oncology; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
| | | | - Jacob C. Ulirsch
- Division of Hematology/Oncology; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
| | - Roberto Chiarle
- Department of Pathology; Boston Children's Hospital, Harvard Medical School; Boston Massachusetts
| | - Vijay G. Sankaran
- Division of Hematology/Oncology; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
- Broad Institute of MIT and Harvard; Cambridge Massachusetts
| |
Collapse
|
29
|
Identification of unipotent megakaryocyte progenitors in human hematopoiesis. Blood 2017; 129:3332-3343. [PMID: 28336526 DOI: 10.1182/blood-2016-09-741611] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/13/2017] [Indexed: 12/22/2022] Open
Abstract
The developmental pathway for human megakaryocytes remains unclear, and the definition of pure unipotent megakaryocyte progenitor is still controversial. Using single-cell transcriptome analysis, we have identified a cluster of cells within immature hematopoietic stem- and progenitor-cell populations that specifically expresses genes related to the megakaryocyte lineage. We used CD41 as a positive marker to identify these cells within the CD34+CD38+IL-3RαdimCD45RA- common myeloid progenitor (CMP) population. These cells lacked erythroid and granulocyte-macrophage potential but exhibited robust differentiation into the megakaryocyte lineage at a high frequency, both in vivo and in vitro. The efficiency and expansion potential of these cells exceeded those of conventional bipotent megakaryocyte/erythrocyte progenitors. Accordingly, the CD41+ CMP was defined as a unipotent megakaryocyte progenitor (MegP) that is likely to represent the major pathway for human megakaryopoiesis, independent of canonical megakaryocyte-erythroid lineage bifurcation. In the bone marrow of patients with essential thrombocythemia, the MegP population was significantly expanded in the context of a high burden of Janus kinase 2 mutations. Thus, the prospectively isolatable and functionally homogeneous human MegP will be useful for the elucidation of the mechanisms underlying normal and malignant human hematopoiesis.
Collapse
|
30
|
Miller PH, Rabu G, MacAldaz M, Knapp DJHF, Cheung AMS, Dhillon K, Nakamichi N, Beer PA, Shultz LD, Humphries RK, Eaves CJ. Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunodeficient mice. Exp Hematol 2017; 48:41-49. [PMID: 28087429 PMCID: PMC5926796 DOI: 10.1016/j.exphem.2016.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 12/20/2022]
Abstract
Xenograft models are transforming our understanding of the output capabilities of primitive human hematopoietic cells in vivo. However, many variables that affect posttransplantation reconstitution dynamics remain poorly understood. Here, we show that an equivalent level of human chimerism can be regenerated from human CD34+ cord blood cells transplanted intravenously either with or without additional radiation-inactivated cells into 2- to 6-month-old NOD-Rag1−/−-IL2Rγc−/− (NRG) mice given a more radioprotective conditioning regimen than is possible in conventionally used, repair-deficient NOD-Prkdcscid/scid-IL2Rγc−/−(NSG) hosts. Comparison of sublethally irradiated and non-irradiated NRG mice and W41/W41 derivatives showed superior chimerism in the W41-deficient recipients, with some differential effects on different lineage outputs. Consistently superior outputs were observed in female recipients regardless of their genotype, age, or pretransplantation conditioning, with greater differences apparent later after transplantation. These results define key parameters for optimizing the sensitivity and minimizing the intraexperimental variability of human hematopoietic xenografts generated in increasingly supportive immunodeficient host mice.
Collapse
Affiliation(s)
- Paul H Miller
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gabrielle Rabu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Margarita MacAldaz
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - David J H F Knapp
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alice M S Cheung
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Kiran Dhillon
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Naoto Nakamichi
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Philip A Beer
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|