1
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
2
|
Mozneb M, Arzt M, Mesci P, Martin DMN, Pohlman S, Lawless G, Doraisingam S, Al Neyadi S, Barnawi R, Al Qarni A, Whitson PA, Shoffner J, Stoudemire J, Countryman S, Svendsen CN, Sharma A. Surface tension enables induced pluripotent stem cell culture in commercially available hardware during spaceflight. NPJ Microgravity 2024; 10:97. [PMID: 39402072 PMCID: PMC11473755 DOI: 10.1038/s41526-024-00435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/06/2024] [Indexed: 10/17/2024] Open
Abstract
Low Earth Orbit (LEO) has emerged as a unique environment for evaluating altered stem cell properties in microgravity. LEO has become increasingly accessible for research and development due to progress in private spaceflight. Axiom Mission 2 (Ax-2) was launched as the second all-private astronaut mission to the International Space Station (ISS). Frozen human induced pluripotent stem cells (hiPSCs) expressing green fluorescent protein (GFP) under the SOX2 promoter, as well as fibroblasts differentiated from SOX2-GFP hiPSCs, were sent to the ISS. Astronauts then thawed and seeded both cell types into commercially available 96-well plates, which provided surface tension that reduced fluid movement out of individual wells and showed that hiPSCs or hiPSC-derived fibroblasts could survive either in suspension or attached to a Matrigel substrate. Furthermore, both cell types could be transfected with red fluorescent protein (RFP)-expressing plasmid. We demonstrate that hiPSCs and hiPSC-fibroblasts can be thawed in microgravity in off-the-shelf, commercially-available cell culture hardware, can associate into 3D spheroids or grow adherently in Matrigel, and can be transfected with DNA. This lays the groundwork for future biomanufacturing experiments in space.
Collapse
Affiliation(s)
- Maedeh Mozneb
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Madelyn Arzt
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Stephany Pohlman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - George Lawless
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Rayyanah Barnawi
- Axiom Space, Inc., Houston, TX, USA
- Saudi Space Commission, Riyadh, Saudi Arabia
| | - Ali Al Qarni
- Axiom Space, Inc., Houston, TX, USA
- Saudi Space Commission, Riyadh, Saudi Arabia
| | | | | | | | | | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Mo X, Zhang Y, Wang Z, Zhou X, Zhang Z, Fang Y, Fan Z, Guo Y, Zhang T, Xiong Z. Satellite-Based On-Orbit Printing of 3D Tumor Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309618. [PMID: 38145905 DOI: 10.1002/adma.202309618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Space three dimension (3D) bioprinting provides a precise and bionic tumor model for evaluating the compound effect of the space environment on tumors, thereby providing insight into the progress of the disease and potential treatments. However, space 3D bioprinting faces several challenges, including prelaunch uncertainty, possible liquid leakage, long-term culture in space, automatic equipment control, data acquisition, and transmission. Here, a novel satellite-based 3D bioprinting device with high structural strength, small volume, and low weight (<6 kg) is developed. A microgel-based biphasic thermosensitive bioink and suspension medium that supports the on-orbit printing and in situ culture of complex tumor models is developed. An intelligent control algorithm that enables the automatic control of 3D printing, autofocusing, fluorescence imaging, and data transfer back to the ground is developed. To the authors' knowledge, this is the first time that on-orbit printing of tumor models is achieved in space with stable morphology and moderate viability via a satellite. It is found that 3D tumor models are more sensitive to antitumor drugs in space than on Earth. This study opens up a new avenue for 3D bioprinting in space and offers new possibilities for future research in space life science and medicine.
Collapse
Affiliation(s)
- Xingwu Mo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yanmei Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zixuan Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Xianhao Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhenrui Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zilian Fan
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yihan Guo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Bakr MM, Caswell GM, Hussein H, Shamel M, Al-Ankily MM. Considerations for oral and dental tissues in holistic care during long-haul space flights. Front Physiol 2024; 15:1406631. [PMID: 39055690 PMCID: PMC11269229 DOI: 10.3389/fphys.2024.1406631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
The health of astronauts during and after the return from long-haul space missions is paramount. There is plethora of research in the literature about the medical side of astronauts' health, however, the dental and oral health of the space crew seem to be overlooked with limited information in the literature about the effects of the space environment and microgravity on the oral and dental tissues. In this article, we shed some light on the latest available research related to space dentistry and provide some hypotheses that could guide the directions of future research and help maintain the oral health of space crews. We also promote for the importance of regenerative medicine and dentistry as well highlight the opportunities available in the expanding field of bioprinting/biomanufacturing through utilizing the effects of microgravity on stem cells culture techniques. Finally, we provide recommendations for adopting a multidisciplinary approach for oral healthcare during long-haul space flights.
Collapse
Affiliation(s)
- Mahmoud M. Bakr
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| | | | - Habiba Hussein
- Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Mohamed Shamel
- Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | | |
Collapse
|
5
|
Park S, Laskow TC, Chen J, Guha P, Dawn B, Kim D. Microphysiological systems for human aging research. Aging Cell 2024; 23:e14070. [PMID: 38180277 PMCID: PMC10928588 DOI: 10.1111/acel.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Recent advances in microphysiological systems (MPS), also known as organs-on-a-chip (OoC), enable the recapitulation of more complex organ and tissue functions on a smaller scale in vitro. MPS therefore provide the potential to better understand human diseases and physiology. To date, numerous MPS platforms have been developed for various tissues and organs, including the heart, liver, kidney, blood vessels, muscle, and adipose tissue. However, only a few studies have explored using MPS platforms to unravel the effects of aging on human physiology and the pathogenesis of age-related diseases. Age is one of the risk factors for many diseases, and enormous interest has been devoted to aging research. As such, a human MPS aging model could provide a more predictive tool to understand the molecular and cellular mechanisms underlying human aging and age-related diseases. These models can also be used to evaluate preclinical drugs for age-related diseases and translate them into clinical settings. Here, we provide a review on the application of MPS in aging research. First, we offer an overview of the molecular, cellular, and physiological changes with age in several tissues or organs. Next, we discuss previous aging models and the current state of MPS for studying human aging and age-related conditions. Lastly, we address the limitations of current MPS and present future directions on the potential of MPS platforms for human aging research.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical EngineeringUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Thomas C. Laskow
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jingchun Chen
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Prasun Guha
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
- School of Life SciencesUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Deok‐Ho Kim
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
6
|
Ren Z, Ahn EH, Do M, Mair DB, Monemianesfahani A, Lee PHU, Kim DH. Simulated microgravity attenuates myogenesis and contractile function of 3D engineered skeletal muscle tissues. NPJ Microgravity 2024; 10:18. [PMID: 38365862 PMCID: PMC10873406 DOI: 10.1038/s41526-024-00353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
While the effects of microgravity on inducing skeletal muscle atrophy have been extensively studied, the impacts of microgravity on myogenesis and its mechanisms remain unclear. In this study, we developed a microphysiological system of engineered muscle tissue (EMT) fabricated using a collagen / Matrigel composite hydrogel and murine skeletal myoblasts. This 3D EMT model allows non-invasive quantitative assessment of contractile function. After applying a 7-day differentiation protocol to induce myotube formation, the EMTs clearly exhibited sarcomerogenesis, myofilament formation, and synchronous twitch and tetanic contractions with electrical stimuli. Using this 3D EMT system, we investigated the effects of simulated microgravity at 10-3 G on myogenesis and contractile function utilizing a random positioning machine. EMTs cultured for 5 days in simulated microgravity exhibited significantly reduced contractile forces, myofiber size, and differential expression of muscle contractile, myogenesis regulatory, and mitochondrial biogenesis-related proteins. These results indicate simulated microgravity attenuates myogenesis, resulting in impaired muscle function.
Collapse
Affiliation(s)
- Zhanping Ren
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Amir Monemianesfahani
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, 02720, USA.
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA.
| | - Deok-Ho Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Yin Y, Yang J, Gao G, Zhou H, Chi B, Yang HY, Li J, Wang Y. Enhancing cell-scale performance via sustained release of the varicella-zoster virus antigen from a microneedle patch under simulated microgravity. Biomater Sci 2024; 12:763-775. [PMID: 38164004 DOI: 10.1039/d3bm01440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The immune system of astronauts might become weakened in the microgravity environment in space, and the dormant varicella-zoster virus (VZV) in the body might be reactivated, seriously affecting their work and safety. For working in orbit for the long term, there is currently no efficient and durable delivery system of general vaccines in a microgravity environment. Accordingly, based on the previous foundation, we designed, modified, and synthesized a biodegradable and biocompatible copolymer, polyethylene glycol-polysulfamethazine carbonate urethane (PEG-PSCU) that could be mainly adopted to fabricate a novel sustained-release microneedle (S-R MN) patch. Compared with conventional biodegradable microneedles, this S-R MN patch could not only efficiently encapsulate protein vaccines (varicella-zoster virus glycoprotein E, VZV gE) but also further prolong the release time of VZV gE in a simulated microgravity (SMG) environment. Eventually, we verified the activation of dendritic cells by VZV gE released from the S-R MN patch in an SMG environment and the positive bioeffect of activated dendritic cells on lymphocytes using an in vitro lymph node model. This study is of great significance for the exploration of long-term specific immune responses to the VZV in an SMG environment.
Collapse
Affiliation(s)
- Yue Yin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Junyuan Yang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Bowen Chi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China.
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
8
|
Rausser G, Choi E, Bayen A. Public-private partnerships in fostering outer space innovations. Proc Natl Acad Sci U S A 2023; 120:e2222013120. [PMID: 37844233 PMCID: PMC10614614 DOI: 10.1073/pnas.2222013120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
As public and private institutions recognize the role of space exploration as a catalyst for economic growth, various areas of innovation are expected to emerge as drivers of the space economy. These include space transportation, in-space manufacturing, bioproduction, in-space agriculture, nuclear launch, and propulsion systems, as well as satellite services and their maintenance. However, the current nature of space as an open-access resource and global commons presents a systemic risk for exuberant competition for space goods and services, which may result in a "tragedy of the commons" dilemma. In the race among countries to capture the value of space exploration, NASA, American research universities, and private companies can avoid any coordination failures by collaborating in a public-private research and development partnership (PPRDP) structure. We present such a structure founded upon the principles of polycentric autonomous governance, which incorporate a decentralized autonomous organization framework and specialized research clusters. By advancing an alignment of incentives among the specified participatory members, PPRDPs can play a pivotal role in stimulating open-source research by creating positive knowledge spillover effects and agglomeration externalities as well as embracing the nonlinear decomposition paradigm that may blur the distinction between basic and applied research.
Collapse
Affiliation(s)
- Gordon Rausser
- University of California, Rausser College of Natural Resources, Berkeley, CA94720
| | - Elliot Choi
- University of California, Rausser College of Natural Resources, Berkeley, CA94720
| | - Alexandre Bayen
- University of California, College of Engineering, Berkeley, CA94720
| |
Collapse
|
9
|
Soundararajan M, Paddock MB, Dougherty M, Jones HW, Hogan JA, Donovan FM, Galazka JM, Settles AM. Theoretical design of a space bioprocessing system to produce recombinant proteins. NPJ Microgravity 2023; 9:78. [PMID: 37717090 PMCID: PMC10505218 DOI: 10.1038/s41526-023-00324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
Space-based biomanufacturing has the potential to improve the sustainability of deep space exploration. To advance biomanufacturing, bioprocessing systems need to be developed for space applications. Here, commercial technologies were assessed to design space bioprocessing systems to supply a liquid amine carbon dioxide scrubber with active carbonic anhydrase produced recombinantly. Design workflows encompassed biomass dewatering of 1 L Escherichia coli cultures through to recombinant protein purification. Non-crew time equivalent system mass (ESM) analyses had limited utility for selecting specific technologies. Instead, bioprocessing system designs focused on minimizing complexity and enabling system versatility. Three designs that differed in biomass dewatering and protein purification approaches had nearly equivalent ESM of 357-522 kg eq. Values from the system complexity metric (SCM), technology readiness level (TRL), integration readiness level (IRL), and degree of crew assistance metric identified a simpler, less costly, and easier to operate design for automated biomass dewatering, cell lysis, and protein affinity purification.
Collapse
Affiliation(s)
| | - Matthew B Paddock
- KBR, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Michael Dougherty
- KBR, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Harry W Jones
- Bioengineering Branch, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - John A Hogan
- Bioengineering Branch, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Frances M Donovan
- Bioengineering Branch, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - A Mark Settles
- Bioengineering Branch, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA.
| |
Collapse
|
10
|
Parafati M, Giza S, Shenoy TS, Mojica-Santiago JA, Hopf M, Malany LK, Platt D, Moore I, Jacobs ZA, Kuehl P, Rexroat J, Barnett G, Schmidt CE, McLamb WT, Clements T, Coen PM, Malany S. Human skeletal muscle tissue chip autonomous payload reveals changes in fiber type and metabolic gene expression due to spaceflight. NPJ Microgravity 2023; 9:77. [PMID: 37714852 PMCID: PMC10504373 DOI: 10.1038/s41526-023-00322-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
Microphysiological systems provide the opportunity to model accelerated changes at the human tissue level in the extreme space environment. Spaceflight-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting in older adults, known as sarcopenia. These shared attributes provide a rationale for investigating molecular changes in muscle cells exposed to spaceflight that may mimic the underlying pathophysiology of sarcopenia. We report the results from three-dimensional myobundles derived from muscle biopsies from young and older adults, integrated into an autonomous CubeLab™, and flown to the International Space Station (ISS) aboard SpaceX CRS-21 as part of the NIH/NASA funded Tissue Chips in Space program. Global transcriptomic RNA-Seq analyses comparing the myobundles in space and on the ground revealed downregulation of shared transcripts related to myoblast proliferation and muscle differentiation. The analyses also revealed downregulated differentially expressed gene pathways related to muscle metabolism unique to myobundles derived from the older cohort exposed to the space environment compared to ground controls. Gene classes related to inflammatory pathways were downregulated in flight samples cultured from the younger cohort compared to ground controls. Our muscle tissue chip platform provides an approach to studying the cell autonomous effects of spaceflight on muscle cell biology that may not be appreciated on the whole organ or organism level and sets the stage for continued data collection from muscle tissue chip experimentation in microgravity. We also report on the challenges and opportunities for conducting autonomous tissue-on-chip CubeLabTM payloads on the ISS.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Shelby Giza
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Tushar S Shenoy
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jorge A Mojica-Santiago
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32610, USA
| | - Meghan Hopf
- Translational Research Institute, AdventHealth, Orlando, FL, 32804, USA
| | | | - Don Platt
- Micro Aerospace Solutions, INC, Melbourne, FL, 32935, USA
| | | | | | - Paul Kuehl
- Space Tango, LLC, Lexington, KY, 40505, USA
| | | | | | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32610, USA
| | | | | | - Paul M Coen
- Translational Research Institute, AdventHealth, Orlando, FL, 32804, USA
| | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
11
|
Ren Z, Harriot AD, Mair DB, Chung MK, Lee PHU, Kim DH. Biomanufacturing of 3D Tissue Constructs in Microgravity and their Applications in Human Pathophysiological Studies. Adv Healthc Mater 2023; 12:e2300157. [PMID: 37483106 DOI: 10.1002/adhm.202300157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/27/2023] [Indexed: 07/25/2023]
Abstract
The growing interest in bioengineering in-vivo-like 3D functional tissues has led to novel approaches to the biomanufacturing process as well as expanded applications for these unique tissue constructs. Microgravity, as seen in spaceflight, is a unique environment that may be beneficial to the tissue-engineering process but cannot be completely replicated on Earth. Additionally, the expense and practical challenges of conducting human and animal research in space make bioengineered microphysiological systems an attractive research model. In this review, published research that exploits real and simulated microgravity to improve the biomanufacturing of a wide range of tissue types as well as those studies that use microphysiological systems, such as organ/tissue chips and multicellular organoids, for modeling human diseases in space are summarized. This review discusses real and simulated microgravity platforms and applications in tissue-engineered microphysiological systems across three topics: 1) application of microgravity to improve the biomanufacturing of tissue constructs, 2) use of tissue constructs fabricated in microgravity as models for human diseases on Earth, and 3) investigating the effects of microgravity on human tissues using biofabricated in vitro models. These current achievements represent important progress in understanding the physiological effects of microgravity and exploiting their advantages for tissue biomanufacturing.
Collapse
Affiliation(s)
- Zhanping Ren
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Anicca D Harriot
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | | | - Peter H U Lee
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, 02720, USA
| | - Deok-Ho Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218, USA
| |
Collapse
|
12
|
Van Ombergen A, Chalupa‐Gantner F, Chansoria P, Colosimo BM, Costantini M, Domingos M, Dufour A, De Maria C, Groll J, Jungst T, Levato R, Malda J, Margarita A, Marquette C, Ovsianikov A, Petiot E, Read S, Surdo L, Swieszkowski W, Vozzi G, Windisch J, Zenobi‐Wong M, Gelinsky M. 3D Bioprinting in Microgravity: Opportunities, Challenges, and Possible Applications in Space. Adv Healthc Mater 2023; 12:e2300443. [PMID: 37353904 PMCID: PMC11468760 DOI: 10.1002/adhm.202300443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Indexed: 06/25/2023]
Abstract
3D bioprinting has developed tremendously in the last couple of years and enables the fabrication of simple, as well as complex, tissue models. The international space agencies have recognized the unique opportunities of these technologies for manufacturing cell and tissue models for basic research in space, in particular for investigating the effects of microgravity and cosmic radiation on different types of human tissues. In addition, bioprinting is capable of producing clinically applicable tissue grafts, and its implementation in space therefore can support the autonomous medical treatment options for astronauts in future long term and far-distant space missions. The article discusses opportunities but also challenges of operating different types of bioprinters under space conditions, mainly in microgravity. While some process steps, most of which involving the handling of liquids, are challenging under microgravity, this environment can help overcome problems such as cell sedimentation in low viscous bioinks. Hopefully, this publication will motivate more researchers to engage in the topic, with publicly available bioprinting opportunities becoming available at the International Space Station (ISS) in the imminent future.
Collapse
Affiliation(s)
- Angelique Van Ombergen
- SciSpacE TeamDirectorate of Human and Robotic Exploration Programmes (HRE)European Space Agency (ESA)Keplerlaan 1Noordwijk2201AGThe Netherlands
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
| | - Franziska Chalupa‐Gantner
- Research Group 3D Printing and BiofabricationInstitute of Materials Science and TechnologyAustrian Cluster for Tissue RegenerationTU WienGetreidemarkt 9/E308Vienna1060Austria
| | - Parth Chansoria
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH Zurich Otto‐Stern‐Weg 7Zürich8093Switzerland
| | - Bianca Maria Colosimo
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of Mechanical EngineeringPolitecnico di MilanoVia La Masa 1Milano20156Italy
| | - Marco Costantini
- Institute of Physical ChemistryPolish Academy of SciencesUl. Kasprzaka 44/52Warsaw01–224Poland
| | - Marco Domingos
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of MechanicalAerospace and Civil EngineeringSchool of EngineeringFaculty of Science and Engineering & Henry Royce InstituteUniversity of ManchesterM13 9PLManchesterUK
| | - Alexandre Dufour
- 3d.FAB – ICBMSCNRS UMR 5246University Claude Bernard‐Lyon 1 and University of Lyon1 rue Victor GrignardVilleurbanne69100France
| | - Carmelo De Maria
- Department of Information Engineering (DII) and Research Center “E. Piaggio”University of PisaLargo Lucio Lazzarino 1Pisa56122Italy
| | - Jürgen Groll
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Riccardo Levato
- Department of OrthopaedicsUniversity Medical Center UtrechtDepartment of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CXThe Netherlands
| | - Jos Malda
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of OrthopaedicsUniversity Medical Center UtrechtDepartment of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CXThe Netherlands
| | - Alessandro Margarita
- Department of Mechanical EngineeringPolitecnico di MilanoVia La Masa 1Milano20156Italy
| | - Christophe Marquette
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- 3d.FAB – ICBMSCNRS UMR 5246University Claude Bernard‐Lyon 1 and University of Lyon1 rue Victor GrignardVilleurbanne69100France
| | - Aleksandr Ovsianikov
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Research Group 3D Printing and BiofabricationInstitute of Materials Science and TechnologyAustrian Cluster for Tissue RegenerationTU WienGetreidemarkt 9/E308Vienna1060Austria
| | - Emma Petiot
- 3d.FAB – ICBMSCNRS UMR 5246University Claude Bernard‐Lyon 1 and University of Lyon1 rue Victor GrignardVilleurbanne69100France
| | - Sophia Read
- Department of MechanicalAerospace and Civil EngineeringSchool of EngineeringFaculty of Science and Engineering & Henry Royce InstituteUniversity of ManchesterM13 9PLManchesterUK
| | - Leonardo Surdo
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Space Applications Services NV/SA for the European Space Agency (ESA)Keplerlaan 1Noordwijk2201AGThe Netherlands
| | - Wojciech Swieszkowski
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Biomaterials GroupMaterials Design DivisionFaculty of Materials Science and EngineeringWarsaw University of TechnologyWoloska Str. 141Warsaw02–507Poland
| | - Giovanni Vozzi
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of Information Engineering (DII) and Research Center “E. Piaggio”University of PisaLargo Lucio Lazzarino 1Pisa56122Italy
| | - Johannes Windisch
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital and Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenFetscherstr. 7401307DresdenGermany
| | - Marcy Zenobi‐Wong
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH Zurich Otto‐Stern‐Weg 7Zürich8093Switzerland
| | - Michael Gelinsky
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital and Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenFetscherstr. 7401307DresdenGermany
| |
Collapse
|
13
|
Tabury K, Rehnberg E, Baselet B, Baatout S, Moroni L. Bioprinting of Cardiac Tissue in Space: Where Are We? Adv Healthc Mater 2023; 12:e2203338. [PMID: 37312654 PMCID: PMC11469151 DOI: 10.1002/adhm.202203338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/18/2023] [Indexed: 06/15/2023]
Abstract
Bioprinting in space is the next frontier in tissue engineering. In the absence of gravity, novel opportunities arise, as well as new challenges. The cardiovascular system needs particular attention in tissue engineering, not only to develop safe countermeasures for astronauts in future deep and long-term space missions, but also to bring solutions to organ transplantation shortage. In this perspective, the challenges encountered when using bioprinting techniques in space and current gaps that need to be overcome are discussed. The recent developments that have been made in the bioprinting of heart tissues in space and an outlook on potential future bioprinting opportunities in space are described.
Collapse
Affiliation(s)
- Kevin Tabury
- Radiology UnitBelgian Nuclear Research CenterBoeretang 200Mol2400Belgium
- Department of Biomedical EngineeringCollege of Engineering and ComputingUniversity of South CarolinaColumbiaSC29208USA
| | - Emil Rehnberg
- Radiology UnitBelgian Nuclear Research CenterBoeretang 200Mol2400Belgium
- Department of Molecular BiotechnologyGhent UniversityGhent9000Belgium
| | - Bjorn Baselet
- Radiology UnitBelgian Nuclear Research CenterBoeretang 200Mol2400Belgium
| | - Sarah Baatout
- Radiology UnitBelgian Nuclear Research CenterBoeretang 200Mol2400Belgium
- Department of Molecular BiotechnologyGhent UniversityGhent9000Belgium
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
14
|
ElGindi M, Sapudom J, Garcia Sabate A, Chesney Quartey B, Alatoom A, Al-Sayegh M, Li R, Chen W, Teo J. Effects of an aged tissue niche on the immune potency of dendritic cells using simulated microgravity. NPJ AGING 2023; 9:14. [PMID: 37393393 DOI: 10.1038/s41514-023-00111-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 07/03/2023]
Abstract
Microgravity accelerates the aging of various physiological systems, and it is well acknowledged that aged individuals and astronauts both have increased susceptibility to infections and poor response to vaccination. Immunologically, dendritic cells (DCs) are the key players in linking innate and adaptive immune responses. Their distinct and optimized differentiation and maturation phases play a critical role in presenting antigens and mounting effective lymphocyte responses for long-term immunity. Despite their importance, no studies to date have effectively investigated the effects of microgravity on DCs in their native microenvironment, which is primarily located within tissues. Here, we address a significantly outstanding research gap by examining the effects of simulated microgravity via a random positioning machine on both immature and mature DCs cultured in biomimetic collagen hydrogels, a surrogate for tissue matrices. Furthermore, we explored the effects of loose and dense tissues via differences in collagen concentration. Under these various environmental conditions, the DC phenotype was characterized using surface markers, cytokines, function, and transcriptomic profiles. Our data indicate that aged or loose tissue and exposure to RPM-induced simulated microgravity both independently alter the immunogenicity of immature and mature DCs. Interestingly, cells cultured in denser matrices experience fewer effects of simulated microgravity at the transcriptome level. Our findings are a step forward to better facilitate healthier future space travel and enhance our understanding of the aging immune system on Earth.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Anna Garcia Sabate
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Rui Li
- Department of Biomedical Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Weiqiang Chen
- Department of Biomedical Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
- Department of Mechanical and Aerospace Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates.
- Department of Biomedical Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
- Department of Mechanical and Aerospace Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
| |
Collapse
|
15
|
Parafati M, Giza S, Shenoy T, Mojica-Santiago J, Hopf M, Malany L, Platt D, Kuehl P, Moore I, Jacobs Z, Barnett G, Schmidt C, McLamb W, Coen P, Clements T, Malany S. Validation of Human Skeletal Muscle Tissue Chip Autonomous Platform to Model Age-Related Muscle Wasting in Microgravity. RESEARCH SQUARE 2023:rs.3.rs-2631490. [PMID: 37034730 PMCID: PMC10081368 DOI: 10.21203/rs.3.rs-2631490/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Microgravity-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting experienced by older adults, known as sarcopenia. These shared attributes provide a rationale for investigating microgravity-induced molecular changes in human bioengineered muscle cells that may also mimic the progressive underlying pathophysiology of sarcopenia. Here, we report the results of an experiment that incorporated three-dimensional myobundles derived from muscle biopsies from young and older adults, that were integrated into an autonomous CubeLabâ"¢, and flown to the International Space Station (ISS) aboard SpaceX CRS-21 in December 2020 as part of the NIH/NASA funded Tissue Chips in Space program. Global transcriptomic RNA-Seq analysis comparing the myobundles in space and on the ground revealed downregulation of shared transcripts related to myoblast proliferation and muscle differentiation for those in space. The analysis also revealed differentially expressed gene pathways related to muscle metabolism unique to myobundles derived from the older cohort exposed to the space environment compared to ground controls. Gene classes related to inflammatory pathways were uniquely modulated in flight samples cultured from the younger cohort compared to ground controls. Our muscle tissue chip platform provides a novel approach to studying the cell autonomous effects of microgravity on muscle cell biology that may not be appreciated on the whole organ or organism level and sets the stage for continued data collection from muscle tissue chip experimentation in microgravity. Thus, we also report on the challenges and opportunities for conducting autonomous tissue-on-chip CubeLab TM payloads on the ISS.
Collapse
|
16
|
Iordachescu A, Eisenstein N, Appleby-Thomas G. Space habitats for bioengineering and surgical repair: addressing the requirement for reconstructive and research tissues during deep-space missions. NPJ Microgravity 2023; 9:23. [PMID: 36966158 PMCID: PMC10039948 DOI: 10.1038/s41526-023-00266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
Numerous technical scenarios have been developed to facilitate a human return to the Moon, and as a testbed for a subsequent mission to Mars. Crews appointed with constructing and establishing planetary bases will require a superior level of physical ability to cope with the operational demands. However, the challenging environments of nearby planets (e.g. geological, atmospheric, gravitational conditions) as well as the lengthy journeys through microgravity, will lead to progressive tissue degradation and an increased susceptibility to injury. The isolation, distance and inability to evacuate in an emergency will require autonomous medical support, as well as a range of facilities and specialised equipment to repair tissue damage on-site. Here, we discuss the design requirements of such a facility, in the form of a habitat that would concomitantly allow tissue substitute production, maintenance and surgical implantation, with an emphasis on connective tissues. The requirements for the individual modules and their operation are identified. Several concepts are assessed, including the presence of adjacent wet lab and medical modules supporting the gradual implementation of regenerative biomaterials and acellular tissue substitutes, leading to eventual tissue grafts and, in subsequent decades, potential tissues/organ-like structures. The latter, currently in early phases of development, are assessed particularly for researching the effects of extreme conditions on representative analogues for astronaut health support. Technical solutions are discussed for bioengineering in an isolated planetary environment with hypogravity, from fluid-gel bath suspended manufacture to cryostorage, cell sourcing and on-site resource utilisation for laboratory infrastructure. Surgical considerations are also discussed.
Collapse
Affiliation(s)
- Alexandra Iordachescu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
- Consortium for organotypic research on ageing and microgravity, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
- Cranfield Defence and Security, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, SN6 8LA, United Kingdom.
| | - Neil Eisenstein
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Gareth Appleby-Thomas
- Consortium for organotypic research on ageing and microgravity, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- Cranfield Defence and Security, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, SN6 8LA, United Kingdom
| |
Collapse
|
17
|
Tissue Engineering Supporting Regenerative Strategies to Enhance Clinical Orthodontics and Dentofacial Orthopaedics: A Scoping, Perspective Review. Biomedicines 2023; 11:biomedicines11030795. [PMID: 36979774 PMCID: PMC10045353 DOI: 10.3390/biomedicines11030795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
The personalized regenerative therapeutic strategies applicable in the structural and functional repair of maxillofacial/dental defects are expected to extend beyond the limits of what is currently possible in the management of dentofacial anomalies and treating malocclusions. The application of undifferentiated stem cells (SCs), including signaling molecule control and individualized tissue engineering based on targeted therapies, has been proposed to overcome therapeutic limitations and complications associated with treatments for craniofacial defects, including severe orthodontic discrepancies. This scoping, prospective review discusses comprehensively the current knowledge and prospects for improving clinical outcomes by the application of novel cell-required and cell-free regenerative strategies in biomedicine. The existing evidence, although scant, suggests that patients receiving an orthodontic treatment could benefit from precise tissue augmentation, allowing enhancement of tooth movement generated by orthognathic forces; faster, more predictable alignment of dental arches; optimal management of periodontal complications; and prevention of external root resorption. Ultimately, enriching orofacial tissues and “customizing” the repair of congenital/acquired defects in the craniofacial region can be vastly enhanced to provide a positive therapeutic outcome and improve patients’ quality of life.
Collapse
|
18
|
Li X, Xiong Y. Application of "Click" Chemistry in Biomedical Hydrogels. ACS OMEGA 2022; 7:36918-36928. [PMID: 36312409 PMCID: PMC9608400 DOI: 10.1021/acsomega.2c03931] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 06/12/2023]
Abstract
Since "click" chemistry was first reported in 2001, it has remained a popular research topic in the field of chemistry due to its high yield without byproducts, fast reaction rate, simple reaction, and biocompatibility. It has achieved good applications in various fields, especially for the preparation of hydrogels. The development of biomedicine presents new challenges and opportunities for hydrogels, and "click" chemistry provides a library of chemical tools for the preparation of various innovative hydrogels, including cell culture, 3D bioprinting, and drug release. This article summarizes several common "click" reactions, including copper-catalyzed azide-alkyne cycloaddition reactions, strain-promoted azide-alkyne cycloaddition (SPAAC) reaction, thiol-ene reaction, the Diels-Alder reaction, and the inverse electron demand Diels-Alder (IEDDA) reaction. We introduce the "click" reaction in the nucleic acid field to expand the concept of "click" chemistry. This article focuses on the application of "click" chemistry for preparing various types of biomedical hydrogels and highlights the advantages of "click" reactions for cross-linking to obtain hydrogels. This review also discusses applications of "click" chemistry outside the field of hydrogels, such as drug synthesis, targeted delivery, and surface modification, hydrogels have great application potential in these fields in the future and hopefully inspire other applications of hydrogels.
Collapse
Affiliation(s)
- Xin Li
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Yuzhu Xiong
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
19
|
Rampoldi A, Forghani P, Li D, Hwang H, Armand LC, Fite J, Boland G, Maxwell J, Maher K, Xu C. Space microgravity improves proliferation of human iPSC-derived cardiomyocytes. Stem Cell Reports 2022; 17:2272-2285. [PMID: 36084640 PMCID: PMC9561632 DOI: 10.1016/j.stemcr.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
In microgravity, cells undergo profound changes in their properties. However, how human cardiac progenitors respond to space microgravity is unknown. In this study, we evaluated the effect of space microgravity on differentiation of human induced pluripotent stem cell (hiPSC)-derived cardiac progenitors compared with 1G cultures on the International Space Station (ISS). Cryopreserved 3D cardiac progenitors were cultured for 3 weeks on the ISS. Compared with 1G cultures, the microgravity cultures had 3-fold larger sphere sizes, 20-fold higher counts of nuclei, and increased expression of proliferation markers. Highly enriched cardiomyocytes generated in space microgravity showed improved Ca2+ handling and increased expression of contraction-associated genes. Short-term exposure (3 days) of cardiac progenitors to space microgravity upregulated genes involved in cell proliferation, survival, cardiac differentiation, and contraction, consistent with improved microgravity cultures at the late stage. These results indicate that space microgravity increased proliferation of hiPSC-cardiomyocytes, which had appropriate structure and function. Cryopreserved 3D hiPSC-cardiac progenitors differentiated efficiently in space Microgravity cultures had increased sphere sizes and cellular proliferation Beating cardiomyocytes in microgravity cultures had improved Ca2+ handling Microgravity cultures had upregulated genes in cardiac contraction
Collapse
Affiliation(s)
- Antonio Rampoldi
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dong Li
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Hyun Hwang
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Lawrence Christian Armand
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | | | | | - Joshua Maxwell
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kevin Maher
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Giza S, Mojica‐Santiago JA, Parafati M, Malany LK, Platt D, Schmidt CE, Coen PM, Malany S. Microphysiological system for studying contractile differences in young, active, and old, sedentary adult derived skeletal muscle cells. Aging Cell 2022; 21:e13650. [PMID: 35653714 PMCID: PMC9282836 DOI: 10.1111/acel.13650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/06/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Microphysiological systems (MPS), also referred to as tissue chips, incorporating 3D skeletal myobundles are a novel approach for physiological and pharmacological studies to uncover new medical treatments for sarcopenia. We characterize a MPS in which engineered skeletal muscle myobundles derived from donor-specific satellite cells that model aged phenotypes are encapsulated in a perfused tissue chip platform containing platinum electrodes. Our myobundles were derived from CD56+ myogenic cells obtained via percutaneous biopsy of the vastus lateralis from adults phenotyped by age and physical activity. Following 17 days differentiation including 5 days of a 3 V, 2 Hz electrical stimulation regime, the myobundles exhibited fused myotube alignment and upregulation of myogenic, myofiber assembly, signaling and contractile genes as demonstrated by gene array profiling and localization of key components of the sarcomere. Our results demonstrate that myobundles derived from the young, active (YA) group showed high intensity immunofluorescent staining of α-actinin proteins and responded to electrical stimuli with a ~1 μm displacement magnitude compared with non-stimulated myobundles. Myobundles derived from older sedentary group (OS) did not display a synchronous contraction response. Hypertrophic potential is increased in YA-derived myobundles in response to stimulation as shown by upregulation of insulin growth factor (IGF-1), α-actinin (ACTN3, ACTA1) and fast twitch troponin protein (TNNI2) compared with OS-derived myobundles. Our MPS mimics disease states of muscle decline and thus provides an aged system and experimental platform to investigate electrical stimulation mimicking exercise regimes and may be adapted to long duration studies of compound efficacy and toxicity for therapeutic evaluation against sarcopenia.
Collapse
Affiliation(s)
- Shelby Giza
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Jorge A. Mojica‐Santiago
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of EngineeringUniversity of FloridaGainesvilleFloridaUSA
| | - Maddalena Parafati
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | | | - Don Platt
- Micro Aerospace SolutionsMelbourneFloridaUSA
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of EngineeringUniversity of FloridaGainesvilleFloridaUSA
| | - Paul M. Coen
- Translational Research InstituteAdventHealthOrlandoFloridaUSA
| | - Siobhan Malany
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
21
|
Sarabi MR, Yetisen AK, Tasoglu S. Magnetic levitation for space exploration. Trends Biotechnol 2022; 40:915-917. [DOI: 10.1016/j.tibtech.2022.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/22/2022]
|