1
|
Pant A, Moar K, Maurya PK. Impact of estradiol in inducing endometrial cancer using RL95-2. Pathol Res Pract 2024; 263:155640. [PMID: 39383736 DOI: 10.1016/j.prp.2024.155640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Endometrial cancer is the most common gynecological malignancy that originates from the inner lining of the uterus and predominantly affects postmenopausal women. Prolonged exposure to estrogen, family history of endometrial cancer, obesity, and hormonal imbalance are some of the risk factors associated with endometrial cancer. In our study, we investigated the effect of estradiol, a potent form of estrogen at various concentrations on endometrial cell line RL95-2. METHODS Endometrial cell RL95-2 were cultured in DMEM medium with optimal conditions required to maintain the cells. MTT assay and colony formation assay were further performed after treating the cells with different concentrations of estradiol (1, 10, and 100 nM) and TAM (100 nM). Moreover, the effect of genes regulated by estradiol was also examined using microarray and validated using real-time polymerase chain reaction (qRT-PCR). RESULTS Time-dependent MTT assay shows a significant change in the ability of the cells to survive relative to concentrations. Colony formation was found to be directly proportional to the concentration of the estradiol (p < 0.05). Among genes, MMP14 (p = 0.03), SPARCL1 (p = 0.005), and CLU (p = 0.06) showed a significant up-regulation in their expression after estradiol treatment while NRN1 (p < 0.001) showed significant downregulation in expression pattern compared to control. However, the TAM treatment was found to be significantly effective after 72 h (p < 0.001) compared to control and 100 nM E2 (p = 0.0206). CONCLUSION Our study suggests that estradiol significantly contributes to regulating the viability, colony formation, and expression of genes associated with endometrial cancer.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
2
|
Xiang X, Palasuberniam P, Pare R. The Role of Estrogen across Multiple Disease Mechanisms. Curr Issues Mol Biol 2024; 46:8170-8196. [PMID: 39194700 DOI: 10.3390/cimb46080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Estrogen is a significant hormone that is involved in a multitude of physiological and pathological processes. In addition to its pivotal role in the reproductive system, estrogen is also implicated in the pathogenesis of a multitude of diseases. Nevertheless, previous research on the role of estrogen in a multitude of diseases, including Alzheimer's disease, depression, cardiovascular disease, diabetes, osteoporosis, gastrointestinal diseases, and estrogen-dependent cancers, has concentrated on a single disease area, resulting in a lack of comprehensive understanding of cross-disease mechanisms. This has brought some challenges to the current treatment methods for these diseases, because estrogen as a potential therapeutic tool has not yet fully developed its potential. Therefore, this review aims to comprehensively explore the mechanism of estrogen in these seven types of diseases. The objective of this study is to describe the relationship between each disease and estrogen, including the ways in which estrogen participates in regulating disease mechanisms, and to outline the efficacy of estrogen in treating these diseases in clinical practice. By studying the role of estrogen in a variety of disease mechanisms, it is hoped that a more accurate theoretical basis and clinical guidance for future treatment strategies will be provided, thus promoting the effective management and treatment of these diseases.
Collapse
Affiliation(s)
- Xiuting Xiang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
3
|
Yu S, Wang B, Rao Y, Liu M, Liang L, Gou K. Trans 10, cis 12-conjugated linoleic acid reduced reproductive ability by disrupting the estrus cycle in female mice. Anim Reprod 2024; 21:e20240010. [PMID: 38756621 PMCID: PMC11095849 DOI: 10.1590/1984-3143-ar2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 05/18/2024] Open
Abstract
As a positional and geometrical isomer of linoleic acid, trans 10, cis 12 conjugated linoleic acid (t10c12-CLA) reduces white fat by reducing food intake, modulating lipid metabolism, and stimulating energy expenditure. However, the t10c12-CLA products are mostly mixtures, making it difficult to obtain accurate results. Studies are needed to investigate the effects of pure t10c12-CLA on animals and humans. In this study, we used the biallelic transgenic (tg) mice, which could produce t10c12-CLA itself, to investigate the effects of pure t10c12-CLA on female reproductive ability. The results showed that the body and relative ovary weights had no significant difference between tg and wild-type (wt) littermates at ages 3 or 10 weeks. While the fecundity test found that tg mice had a significantly longer first litter time (32.0 ± 4.70 days vs. 21.3 ± 2.31 days, P<0.05), and a significantly lower number of litters (4.75 ± 2.75 vs. 6.67 ± 0.57, P<0.05) when compared with wt mice during continuous mating within seven months. Hormone profiles showed that serum estradiol levels did not change in tg mice; however, significantly (P<0.05) decreased progesterone and increased prostaglandin E2 levels were observed in tg mice compared with those of wt mice. Hematoxylin-eosin staining showed no pathological characteristics in tg ovaries, except for the increased atresia follicles (P<0.05). Moreover, the tg mice had a significantly more extended diestrus period than the wt mice (48.4 ± 6.38% vs. 39.6 ± 3.81%, P<0.05). In summary, t10c12-CLA could affect serum progesterone and prostaglandin E2 levels, lead to a disordered estrus cycle, and impact the reproductive performance of female mice. This study provided theoretical and biosafety recommendations for applying t10c12-CLA in female mammals.
Collapse
Affiliation(s)
- Shuai Yu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Baozhu Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yu Rao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mei Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Luwen Liang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kemian Gou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Chen SY, Wang TE, Lee WY, Yang YY, Lai HC, Matsuda F, Kosek H, Chen YT, Li SH, Tsai PS. Cre-LoxP and tamoxifen-induced deletion of ovarian quiescin sulfhydryl oxidase 2 showed disruption of ovulatory activity in mice. J Ovarian Res 2024; 17:66. [PMID: 38504307 PMCID: PMC10949576 DOI: 10.1186/s13048-024-01388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Quiescin sulfhydryl oxidase 2 (QSOX2) is a flavin adenine dinucleotide-dependent sulfhydryl oxidase that is known to be involved in protein folding, cell growth regulation, and redox state modification through oxidative activities. Earlier studies demonstrated the tissue and cellular localization of QSOX2 in the male reproductive tract, as well as the highly-regulated mechanism of QSOX2 protein synthesis and expression through the coordinated action of testosterone and epididymal-enriched amino acid, glutamate. However, the presence and the functions of QSOX2 in female reproduction are unknown. In this study, we applied the Cre-loxP gene manipulation system to generate the heterozygous and homozygous Qsox2 knockout mice and examined its effects on ovarian function. RESULTS We demonstrated that QSOX2 was detected in the follicle-supporting cells (granulosa and cumulus cells) of ovarian follicles of all stages but was absent in the corpus luteum, suggesting its supportive role in folliculogenesis. In comparison with reproductive organogenesis in wild-type mice, there was no difference in testicular and epididymal structure in male Qsox2 knockout; however, Qsox2 knockout disrupted the regular ovulation process in female mice as a drastic decrease in the formation of the corpus luteum was detected, and no pregnancy was achieved when mating males with homozygous Qsox2 knockout females. RNAseq analyses further revealed that Qsox2 knockout altered critical signaling pathways and genes that are responsible for maintaining ovarian functions. CONCLUSION Our data demonstrated for the first time that Qsox2 is critical for ovarian function in mice.
Collapse
Affiliation(s)
- Shih-Yun Chen
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Tse-En Wang
- Graduate Institute of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Wei-Yun Lee
- Graduate Institute of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Ya-Yi Yang
- Graduate Institute of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Hong-Chun Lai
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Haruhiko Kosek
- Center for Integrative Medical Sciences (IMS), RIEKN, Yokohama, Kanagawa, 230-0045, Japan
| | - You-Tzung Chen
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 10617, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, 10055, Taipei, Taiwan
| | - Sheng-Hsiang Li
- Department of Medical Research, MacKay Memorial Hospital, 25160, Tamsui, Taiwan
| | - Pei-Shiue Tsai
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
- Graduate Institute of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 10617, Taipei, Taiwan.
| |
Collapse
|
5
|
Li J, Zhao J, Wang X, Lin Z, Lin H, Lin Z. Ginsenoside - a promising natural active ingredient with steroidal hormone activity. Food Funct 2024; 15:1825-1839. [PMID: 38315542 DOI: 10.1039/d3fo05484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ginsenosides are a class of natural products with hormone-like activity of triterpenoid saponins and have a variety of pharmacological activities such as anti-aging, immune regulation and cognitive improvement. With the great research interest in alternative medicine and natural products, they are gradually becoming research hotspots. Ginsenosides have a four-ring rigid steroid backbone similar to steroid hormones, and a series of experimental studies have shown that they can exhibit hormone-like activity by binding to nuclear receptors or affecting hormone levels, thereby affecting a wide range of inflammatory conditions, cancers, and menopause-related diseases. This review summarizes the mechanisms and potential health effects of ginsenosides exhibiting estrogen-like, glucocorticoid-like and androgen-like activities, providing an important reference for the exploration of safe phytohormone replacement therapy.
Collapse
Affiliation(s)
- Jun Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Jiarui Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xinhe Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhi Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
6
|
Singh P, Ali SA, Kumar S, Mohanty AK. CRISPR-Cas9 based knockout of S100A8 in mammary epithelial cells enhances cell proliferation and triggers oncogenic transformation via the PI3K-Akt pathway: Insights from a deep proteomic analysis. J Proteomics 2023; 288:104981. [PMID: 37544501 DOI: 10.1016/j.jprot.2023.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
S100A8 is a calcium-binding protein with multiple functions, including being a chemoattractant for phagocytes and playing a key role in the inflammatory response. Its expression has been shown to influence epithelial-mesenchymal transition (EMT) and metastasis in colorectal cancer. However, the role of S100A8 in cell proliferation and differentiation remains unknown. In this study, we used the CRISPR-Cas9 system to knock out S100A8 in healthy mammary epithelial cells and investigated the resulting changes in proteome profiling and signaling pathways. Our results showed that S100A8 knockout led to an increase in cell proliferation and migration, reduced cell-cell adhesion, and increased apoptosis compared to wildtype cells. Proteomics data indicated that S100A8 significantly affects cell cycle progression, cell proliferation, and cell survival through the PI3K-Akt pathway. Furthermore, our findings suggest that S100A8 function is associated with Pten expression, a negative regulator of the PI3K-Akt pathway. These results indicate that S100A8 dysregulation in healthy cells can lead to altered cellular physiology and higher proliferation, similar to cancerous growth. Therefore, maintaining S100A8 expression is critical for preserving healthy cell physiology. This study provides novel insights into the role of S100A8 in cell proliferation and differentiation and its potential relevance to cancer biology. SIGNIFICANCE: The study suggests that maintaining S100A8 expression is critical for preserving healthy cell physiology, and dysregulation of S100A8 in healthy cells can lead to altered cellular physiology and higher proliferation, similar to cancerous growth. Therefore, targeting the PI3K-Akt pathway or regulating Pten expression, a negative regulator of the PI3K-Akt pathway, may be potential strategies for cancer treatment by controlling S100A8 dysregulation. Additionally, S100A8 and S100A9 have been shown to promote metastasis of breast carcinoma by forming a metastatic milieu. However, the differential expression of S100A8 in tumors and its dual effects of antitumor and protumor make the relationship between S100A8 and tumors complicated. Currently, most research focuses on the function of S100A8 as a secretory protein in the microenvironment of tumors, and its function inside healthy cells without forming dimers remains unclear. Furthermore, the study provides insight into the role of S100A8 in cell proliferation and differentiation, which may have implications for other diseases beyond cancer. The functional role of S100A8 in normal mammary epithelial cells remains completely uncertain. Therefore, the objective of this study is to investigate the function of S100A8 on proliferation in mammary epithelial cells after its deletion and to elucidate the underlying proteins involved in downstream signaling. Our findings indicate that the deletion of S100A8 leads to excessive proliferation in normal mammary epithelial cells, reduces apoptosis, and affects cell-cell adhesion molecules required for cellular communication, resulting in a cancer-like phenotype.
Collapse
Affiliation(s)
- Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India; Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India; Indian Veterinary Research Institute, Mukteshwar, 263138 Nainital, Uttarakhand, India.
| |
Collapse
|
7
|
Bhatia N, Hazra S, Thareja S. Selective Estrogen receptor degraders (SERDs) for the treatment of breast cancer: An overview. Eur J Med Chem 2023; 256:115422. [PMID: 37163948 DOI: 10.1016/j.ejmech.2023.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Discovery of SERDs has changed the direction of anticancer research, as more than 70% of breast cancer cases are estrogen receptor positive (ER+). Therapies such as selective estrogen receptor modulators (SERM) and aromatase inhibitors (AI's) have been effective, but due to endocrine resistance, SERDs are now considered essential therapeutics for the treatment of ER+ breast cancer. The present review deliberates the pathophysiology of SERDs from the literature covering various molecules in clinical trials. Estrogen receptors active sites distinguishing characteristics and interactions with currently available FDA-approved drugs have also been discussed. Designing strategy of previously reported SERDs, their SAR analysis, in silico, and the biological efficacy have also been summarized along with appropriate examples.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Shreejita Hazra
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
8
|
Maiti S, Nazmeen A, Banerjee A. Significant impact of redox regulation of estrogen-metabolizing proteins on cellular stress responses. Cell Biochem Funct 2023. [PMID: 37139830 DOI: 10.1002/cbf.3796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
The ultimate driving force, stress, promotes adaptability/evolution in proliferating organisms, transforming tumorigenic growth. Estradiol (E2) regulates both phenomena. In this study, bioinformatics-tools, site-directed-mutagenesis (human estrogen-sulfotransferase/hSULT1E1), HepG2 cells tested with N-acetyl-cysteine (NAC/thiol-inducer) or buthionine-sulfoxamine (BSO/thiol-depletory) were evaluated for hSULT1E1 (estradiol-sulphating/inactivating) functions. Reciprocal redox regulation of steroid sulfatase (STS, E2-desulfating/activating) results in the Cys-formylglycine transition by the formylglycine-forming enzyme (FGE). The enzyme sequences and structures were examined across the phylogeny. Motif/domain and the catalytic conserve sequences and protein-surface-topography (CASTp) were investigated. The E2 binding to SULT1E1 suggests that the conserved-catalytic-domain in this enzyme has critical Cysteine 83 at position. This is strongly supported by site-directed mutagenesis/HepG2-cell research. Molecular-docking and superimposition studies of E2 with the SULT1E1 of representative species and to STS reinforce this hypothesis. SULT1E1-STS are reciprocally activated in response to the cellular-redox-environment by the critical Cys of these two enzymes. The importance of E2 in organism/species proliferation and tissue tumorigenesis is highlighted.
Collapse
Affiliation(s)
- Smarajit Maiti
- Department of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, India
| | - Aarifa Nazmeen
- Department of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, India
| | - Amrita Banerjee
- Department of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, India
| |
Collapse
|
9
|
Khallouki F, Hajji L, Saber S, Bouddine T, Edderkaoui M, Bourhia M, Mir N, Lim A, El Midaoui A, Giesy JP, Aboul-Soud MAM, Silvente-Poirot S, Poirot M. An Update on Tamoxifen and the Chemo-Preventive Potential of Vitamin E in Breast Cancer Management. J Pers Med 2023; 13:jpm13050754. [PMID: 37240924 DOI: 10.3390/jpm13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer (BC) is the most common female cancer in terms of incidence and mortality worldwide. Tamoxifen (Nolvadex) is a widely prescribed, oral anti-estrogen drug for the hormonal treatment of estrogen-receptor-positive BC, which represents 70% of all BC subtypes. This review assesses the current knowledge on the molecular pharmacology of tamoxifen in terms of its anticancer and chemo-preventive actions. Due to the importance of vitamin E compounds, which are widely taken as a supplementary dietary component, the review focuses only on the potential importance of vitamin E in BC chemo-prevention. The chemo-preventive and onco-protective effects of tamoxifen combined with the potential effects of vitamin E can alter the anticancer actions of tamoxifen. Therefore, methods involving an individually designed, nutritional intervention for patients with BC warrant further consideration. These data are of great importance for tamoxifen chemo-prevention strategies in future epidemiological studies.
Collapse
Affiliation(s)
- Farid Khallouki
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Lhoussain Hajji
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Somayya Saber
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Toufik Bouddine
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Mouad Edderkaoui
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center & University of California, Los Angeles, CA 90048, USA
| | - Mohammed Bourhia
- Higher Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Nora Mir
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Adrian Lim
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center & University of California, Los Angeles, CA 90048, USA
| | - Adil El Midaoui
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Environmental Sciences, Baylor University, Waco, TX 76706, USA
| | - Mourad A M Aboul-Soud
- Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM, UMR 5071 CNRS, University of Toulouse III, Equipe labellisée par la Ligue Nationale Contre le Cancer, 31037 Toulouse, France
- French Network for Nutrition And Cancer Research (NACRe Network), 78350 Jouy-en-Josas, France
| | - Marc Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM, UMR 5071 CNRS, University of Toulouse III, Equipe labellisée par la Ligue Nationale Contre le Cancer, 31037 Toulouse, France
- French Network for Nutrition And Cancer Research (NACRe Network), 78350 Jouy-en-Josas, France
| |
Collapse
|
10
|
Denaro N, Romanò R, Alfieri S, Dolci A, Licitra L, Nuzzolese I, Ghidini M, Bareggi C, Bertaglia V, Solinas C, Garrone O. The Tumor Microenvironment and the Estrogen Loop in Thyroid Cancer. Cancers (Basel) 2023; 15:cancers15092458. [PMID: 37173925 PMCID: PMC10177023 DOI: 10.3390/cancers15092458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Thyroid cancer (TC) cells employ multiple signaling pathways, such as PI3K/AKT/mTOR and RAS/Raf/MAPK, fostering cell proliferation, survival and metastasis. Through a complex interplay with immune cells, inflammatory mediators and stroma, TC cells support an immunosuppressive, inflamed, pro-carcinogenic TME. Moreover, the participation of estrogens in TC pathogenesis has previously been hypothesized, in view of the higher TC incidence observed among females. In this respect, the interactions between estrogens and the TME in TC could represent a relevant, unexplored area of research. We thereby collectively reviewed the available evidence concerning the potential carcinogenic role of estrogens in TC, specifically focusing on their crosstalk with the TME.
Collapse
Affiliation(s)
- Nerina Denaro
- Medical Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Rebecca Romanò
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Salvatore Alfieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Alessia Dolci
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Department of Hematology and Oncology, University of Milan, 20122 Milan, Italy
| | - Imperia Nuzzolese
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Claudia Bareggi
- Medical Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valentina Bertaglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Cinzia Solinas
- Medical Oncology, AOU Cagliari, Policlinico di Monserrato, 09042 Cagliari, Italy
| | - Ornella Garrone
- Medical Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
11
|
Li J, Ma C, Yuan X, Wang X, Li N, Yu R, Liao H. Preoperative Serum Triglyceride to High-Density Lipoprotein Cholesterol Ratio Can Predict Prognosis in Non-Small Cell Lung Cancer: A Multicenter Retrospective Cohort Study. Curr Oncol 2022; 29:6125-6136. [PMID: 36135050 PMCID: PMC9497812 DOI: 10.3390/curroncol29090481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Previously, research has reported associations of lipid and lipoprotein imbalances with carcinogenesis and cancer progression, so they have been considered as promising prognostic biomarkers for cancer in recent years. However, the correlation of preoperative serum triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) with non-small cell lung carcinoma (NSCLC) prognosis remains under exploration. Here, the study investigated the prognostic function of TG/HDL-C for NSCLC. Methods: The total combined group of this retrospective study enrolled 479 NSCLC patients from two tertiary referral hospitals, of which 223 patients were defined as the training group (Nanchang) and the remaining 256 were defined as the validation group (Wuhan). The cut-off of preoperative TG/HDL-C was determined through ROC curve in the training group and verified in the validation and combined groups subsequently. With one Cox proportional hazards model and K-M survival curves, a survival analysis was conducted. Results: In the training group, the optimal cut-off of TG/HDL-C was 1.02. Furthermore, the data based on the training group revealed a greater, shorter, overall survival (OS) in patients having a high TG/HDL-C (>1.02) than those having low TG/HDL-C (≤1.02). Meanwhile, in univariate and multivariate analysis, for prognostic OS among NSCLC patients, TG/HDL-C acted as one independent factor. All the results above were confirmed in the validation and combined groups. Conclusion: NSCLC patients with a comparatively low preoperative serum TG/HDL-C level had a correlation with well OS. TG/HDL-C possibly acted as one novel, effective prognostic biomarker for NSCLC patients.
Collapse
Affiliation(s)
- Junhong Li
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cong Ma
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuhui Yuan
- Department of Surgery, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Surgery, Third Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Xiaoyan Wang
- Department of Surgery, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Na Li
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ronghui Yu
- Department of Surgery, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hui Liao
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
12
|
The Potential of Pharmaceutical Hydrogels in the Formulation of Topical Administration Hormone Drugs. Polymers (Basel) 2022; 14:polym14163307. [PMID: 36015564 PMCID: PMC9413899 DOI: 10.3390/polym14163307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hormones have attracted considerable interest in recent years due to their potential use in treatment of many diseases. Their ability to have a multidirectional effect leads to searching for new and increasingly effective drugs and therapies. Limitations in formulating drug forms containing hormones are mainly due to their low enzymatic stability, short half-life and limited bioavailability. One of the solutions may be to develop a hydrogel as a potential hormone carrier, for epidermal and transdermal application. This review discusses the main research directions in developing this drug formulation. The factors determining the action of hormones as drugs are presented. An analysis of hydrogel substrates and permeation enhancers that have the potential to enhance the efficacy of hormones applied to the skin is reviewed.
Collapse
|
13
|
Yang Y, Wu G, Li Q, Zheng Y, Liu M, Zhou L, Chen Z, Wang Y, Guo Q, Ji R, Zhou Y. Angiogenesis-Related Immune Signatures Correlate With Prognosis, Tumor Microenvironment, and Therapeutic Sensitivity in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:690206. [PMID: 34262941 PMCID: PMC8273615 DOI: 10.3389/fmolb.2021.690206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the highly heterogeneous cancers that lacks an effective risk model for prognosis prediction. Therefore, we searched for angiogenesis-related immune genes that affected the prognosis of HCC to construct a risk model and studied the role of this model in HCC. Methods: In this study, we collected the transcriptome data of HCC from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database. Pearson correlation analysis was performed to identify the association between immune genes and angiogenesis-related genes. Consensus clustering was applied to divide patients into clusters A and B. Subsequently, we studied the differentially expressed angiogenesis-related immune genes (DEari-genes) that affected the prognosis of HCC. The most significant features were identified by least absolute shrinkage and selection operator (LASSO) regression, and a risk model was constructed. The reliability of the risk model was evaluated in the TCGA discovery cohort and the ICGC validation cohort. In addition, we compared the novel risk model to the previous models based on ROC analysis. ssGSEA analysis was used for function evaluation, and pRRophetic was utilized to predict the sensitivity of administering chemotherapeutic agents. Results: Cluster A patients had favorable survival rates. A total of 23 DEari-genes were correlated with the prognosis of HCC. A five-gene (including BIRC5, KITLG, PGF, SPP1, and SHC1) signature-based risk model was constructed. After regrouping the HCC patients by the median score, we could effectively discriminate between them based on the adverse survival outcome, the unique tumor immune microenvironment, and low chemosensitivity. Conclusion: The five-gene signature-based risk score established by ari-genes showed a promising clinical prediction value.
Collapse
Affiliation(s)
- Yuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Guozhi Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Qiang Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Lingshan Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Zhaofeng Chen
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Liang Y, Lei Y, Du M, Liang M, Liu Z, Li X, Gao Y. The increased expression and aberrant methylation of SHC1 in non-small cell lung cancer: Integrative analysis of clinical and bioinformatics databases. J Cell Mol Med 2021; 25:7039-7051. [PMID: 34117717 PMCID: PMC8278126 DOI: 10.1111/jcmm.16717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the previous evidence showing that SHC adaptor protein 1 (SHC1) could encode three distinct isoforms (p46SHC, p52SHC and p66SHC) that function in different activities such as regulating life span and Ras activation, the precise underlying role of SHC1 in lung cancer also remains obscure. In this study, we firstly found that SHC1 expression was up‐regulated both in lung adenocarcinoma (LUAD) and in lung squamous cell carcinoma (LUSC) tissues. Furthermore, compared to patients with lower SHC1 expression, LUAD patients with higher expression of SHC1 had poorer overall survival (OS). Moreover, higher expression of SHC1 was also associated with worse OS in patients with stages 1 and 2 but not stage 3 lung cancer. Significantly, the analysis showed that SHC1 methylation level was associated with OS in lung cancer patients. It seemed that the methylation level at specific probes within SHC1 showed negative correlations with SHC1 expression both in LUAD and in LUSC tissues. The LUAD and LUSC patients with hypermethylated SHC1 at cg12473916 and cg19356022 probes had a longer OS. Therefore, it is reasonable to conclude that SHC1 has a potential clinical significance in LUAD and LUSC patients.
Collapse
Affiliation(s)
- Yicheng Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangyang Lei
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minjun Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Ndzie Noah ML, Adzika GK, Mprah R, Adekunle AO, Adu-Amankwaah J, Sun H. Sex-Gender Disparities in Cardiovascular Diseases: The Effects of Estrogen on eNOS, Lipid Profile, and NFATs During Catecholamine Stress. Front Cardiovasc Med 2021; 8:639946. [PMID: 33644139 PMCID: PMC7907444 DOI: 10.3389/fcvm.2021.639946] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) characterized by sex-gender differences remain a leading cause of death globally. Hence, it is imperative to understand the underlying mechanisms of CVDs pathogenesis and the possible factors influencing the sex-gender disparities in clinical demographics. Attempts to elucidate the underlying mechanisms over the recent decades have suggested the mechanistic roles of estrogen in modulating cardioprotective and immunoregulatory effect as a factor for the observed differences in the incidence of CVDs among premenopausal and post-menopausal women and men. This review from a pathomechanical perspective aims at illustrating the roles of estrogen (E2) in the modulation of stimuli signaling in the heart during chronic catecholamine stress (CCS). The probable mechanism employed by E2 to decrease the incidence of hypertension, coronary heart disease, and pathological cardiac hypertrophy in premenopausal women are discussed. Initially, signaling via estrogen receptors and β-adrenergic receptors (βARs) during physiological state and CCS were summarized. By reconciling the impact of estrogen deficiency and hyperstimulation of βARs, the discussions were centered on their implications in disruption of nitric oxide synthesis, dysregulation of lipid profiles, and upregulation of nuclear factor of activated T cells, which induces the aforementioned CVDs, respectively. Finally, updates on E2 therapies for maintaining cardiac health during menopause and suggestions for the advancement treatments were highlighted.
Collapse
Affiliation(s)
| | | | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
Luo F, Guo H, Yu H, Li Y, Feng Y, Wang Y. PM2.5 organic extract mediates inflammation through the ERβ pathway to contribute to lung carcinogenesis in vitro and vivo. CHEMOSPHERE 2021; 263:127867. [PMID: 32841872 DOI: 10.1016/j.chemosphere.2020.127867] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
An increasing number of researches have shown that fine particulate matter (PM2.5) is closely related to increased respiratory inflammation and can even lead to lung cancer. Estrogen receptor β (ERβ) has been demonstrated to be involved in several cancers. However, the exact role of ERβ in PM2.5 organic extract (Po)-promoted inflammation and lung cancer remains unknown. The purpose of this study was to investigate whether ERβ is involved in Po induced inflammation and lung cancer. In vitro, our results showed that interleukin-6 (IL-6) and ERβ were simultaneously increased in lung bronchial epithelial cells exposed to Po; additionally, inhibition of ERβ decreased IL-6 expression and secretion through inactivating ERK and AKT and further promoted cells malignant transformation. Moreover, we performed an animal model of inhalation exposure to Po using female C57BL/6 mice. Although we were unable to find tumor tissue in mice exposed to Po, we detected evidence of lung inflammation, epithelial-to-mesenchymal transition (EMT) phenotype and severe pulmonary injury; in addition, intraperitoneal injection of PHTPP (an ERβ inhibitor) showed that the above phenomena have been improved, which demonstrate that Po stimulates IL-6 expression to promote inflammation, EMT phenotype and lung injury through the ERβ pathway. In conclusion, our results confirmed the potential toxic effect of PM2.5, and increased our understanding of PM2.5 carcinogenic potential by exploring the mechanism of ERβ regulating inflammation.
Collapse
Affiliation(s)
- Fei Luo
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Huaqi Guo
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Hengyi Yu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yan Li
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yan Feng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yan Wang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China; The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
| |
Collapse
|
17
|
Farahani H, Amri J, Alaee M, Mohaghegh F, Rafiee M. Serum and Saliva Levels of Cancer Antigen 15-3, Carcinoembryonic Antigen, Estradiol, Vaspin, and Obestatin as Biomarkers for the Diagnosis of Breast Cancer in Postmenopausal Women. Lab Med 2020; 51:620-627. [PMID: 32537654 DOI: 10.1093/labmed/lmaa013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To find suitable biomarkers for diagnosis of Breast cancer in serum and saliva; also, to examine the correlation between salivary and serum concentrations of suitable biomarkers. METHODS This case-control study included 30 women with breast cancer as a case group and 30 healthy women as a matched control group. Blood and saliva specimens were collected from all participants. We evaluated serum and salivary cancer antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), estradiol, vaspin, and obestatin concentrations. Mann-Whitney U testing and Spearman correlation coefficients were used for statistical analysis. RESULTS Serum and salivary concentrations of estradiol were significantly higher in patients with breast cancer (BC) than in healthy women (P < .05). Also, serum CEA and salivary obestatin concentrations were significantly higher in BC patients than in the control group (P < .05). However, there was no significant difference between other parameters in patients with BC and controls. We observed a positive correlation between serum and salivary concentrations of CA15-3, as well as a negative correlation between serum and salivary concentrations of vaspin and obestatin. CONCLUSION The results of this study demonstrated that concentrations of CEA and estradiol in serum, obestatin in serum and saliva, and estradiol in saliva were significantly different between the 2 groups.
Collapse
Affiliation(s)
- Hyder Farahani
- Department of Clinical Biochemistry and Genetic, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Jamal Amri
- Department of Clinical Biochemistry and Genetic, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Mona Alaee
- Department of Clinical Biochemistry and Genetic, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Fathollah Mohaghegh
- Department of Radiotherapy Oncology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Rafiee
- Department of Biostatistics and Epidemiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
18
|
Shaheer K, Somashekarappa HM, Lakshmanan MD. Piperine sensitizes radiation-resistant cancer cells towards radiation and promotes intrinsic pathway of apoptosis. J Food Sci 2020; 85:4070-4079. [PMID: 33089532 DOI: 10.1111/1750-3841.15496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022]
Abstract
Piperine, a bioactive alkaloid, is known to have anticancer activities. Hence, in this study, the effectiveness of piperine pretreatment as a strategy for radio-sensitizing colorectal adenocarcinoma cell line (HT-29) was analyzed. For this, HT-29 cells were pretreated with piperine (12.5 and 25 µg/mL) and exposed to γ-radiation (1.25 Gy) and analyzed for various effector pathways to elucidate the possible mode of action in comparison to individual treatments. The proliferation efficiency of the cells was analyzed by trypan blue dye exclusion assay and MTT assay. The synergistic effects of the combination treatment were analyzed with compuSyn software. Downstream signaling pathways leading to apoptosis were studied using flowcytometry, immunofluorescence, and immunoblot assays. It was observed that combination treatment arrested HT-29 cells at G2/M phase nearly 2.8 folds higher than radiation treatment alone, inducing the radio-resistant cells to undergo apoptosis through mitochondria-dependent pathway. In addition, activation of caspase-3 and cleavage of poly(ADP-ribose) polymerases-1, the key molecular events in apoptotic signaling, were significantly enhanced. Activation of estrogen receptor beta (ERβ), a nuclear hormone transcription factor promoting tumor suppression represents a novel clinical advance towards management and prevention of cancers. Interestingly, the expression of ERβ was increased in the cells treated with piperine. In conclusion, piperine pretreatment enhances radio-sensitization in HT-29 cells by inducing the cells to undergo apoptosis hence, can be used as a classic candidate for colon cancer sensitization towards radiotherapy. PRACTICAL APPLICATION: Piperine induces enhanced radiosensitization of colon cancer cell line (HT-29) by interfering with the cancer cell line proliferation, DNA damage, and apoptosis.
Collapse
Affiliation(s)
- Koniyan Shaheer
- Molecular Biology Division, Yenepoya Research Centre, Yenepoya (deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - H M Somashekarappa
- Centre for Application of Radioisotopes and Radiation Technology (CARRT), USIC, Mangalore University, Mangalore, Karnataka, 575018, India
| | - M Divya Lakshmanan
- Molecular Biology Division, Yenepoya Research Centre, Yenepoya (deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| |
Collapse
|
19
|
Sa Söz H, Liman N, Güney Saruhan B, Akbal K ME, Ketani MA, Topalo Lu UU. Expression and localisation of epidermal growth factor receptors and their ligands in the lower genital tract of cycling cows. Reprod Fertil Dev 2020; 31:1692-1706. [PMID: 31270009 DOI: 10.1071/rd18179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/10/2019] [Indexed: 01/02/2023] Open
Abstract
The epidermal growth factor receptor (ErbB) family and its ligands are essential for the regulation of multiple cellular processes required for mammalian reproduction. The objectives of this study were to investigate the expression and localisation of ErbB subtypes (ErbB1-4) and selected ligands, namely epidermal growth factor (EGF), amphiregulin (AREG) and neuregulin (NRG), in the cervix and vagina of cycling cows and to determine possible steroid hormone-dependence of their expression using immunohistochemistry. All four ErbBs and EGF, AREG and NRG proteins were found to be localised in the nucleus and cytoplasm of different cells in the cervix and vagina, and their expression differed during the oestrous cycle. During the follicular phase, in both the cervix and vagina, ErbB1, ErbB2, ErbB3, ErbB4 and EGF expression was higher in the luminal epithelium (LE) than in stromal and smooth muscle (SM) cells (P<0.05). During the luteal phase, the expression of ErbB1, ErbB3 and EGF in the LE was significantly different from that in stromal and SM cells in the cervix, whereas the expression of EGF and AREG differed in the vagina compared to the cervix (P<0.05). Throughout the oestrous cycle, in both the cervix and vagina, although ErbB2/human epidermal growth factor receptor 2 expression in the LE and SM cells was significantly higher than in the stromal cells (P<0.05), NRG expression was similar in the LE, stromal and SM cells (P>0.05). Overall, these results suggest that all four ErbBs and the EGF, AREG and NRG proteins may collectively contribute to several cellular processes in the bovine cervix and vagina during the oestrous cycle.
Collapse
Affiliation(s)
- Hakan Sa Söz
- Dicle University, Faculty of Veterinary Medicine, Department of Histology and Embryology, 21280, Diyarbakir, Turkey; and Corresponding author.
| | - Narin Liman
- Erciyes University, Faculty of Veterinary Medicine, Department of Histology and Embryology, 38039, Kayseri, Turkey
| | - Berna Güney Saruhan
- Dicle University, Faculty of Veterinary Medicine, Department of Histology and Embryology, 21280, Diyarbakir, Turkey
| | - Mehmet E Akbal K
- Dicle University, Faculty of Veterinary Medicine, Department of Histology and Embryology, 21280, Diyarbakir, Turkey
| | - Muzaffer A Ketani
- Dicle University, Faculty of Veterinary Medicine, Department of Histology and Embryology, 21280, Diyarbakir, Turkey
| | - U Ur Topalo Lu
- Dicle University, Faculty of Veterinary Medicine, Department of Histology and Embryology, 21280, Diyarbakir, Turkey
| |
Collapse
|
20
|
Progesterone receptor membrane component 1 regulates lipid homeostasis and drives oncogenic signaling resulting in breast cancer progression. Breast Cancer Res 2020; 22:75. [PMID: 32660617 PMCID: PMC7359014 DOI: 10.1186/s13058-020-01312-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
Background PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling pathways leading to breast cancer progression. Methods The effect of PGRMC1 overexpression and silencing on cellular proliferation was examined in vitro and in a xenograft mouse model. Next, we investigated the interaction of PGRMC1 with enzymes involved in the cholesterol synthesis pathway such as CYP51, FDFT1, and SCD1. Further, the impact of PGRMC1 expression on lipid levels and expression of enzymes involved in lipid homeostasis was examined. Additionally, we assessed the role of PGRMC1 in key cancer-related signaling pathways including EGFR/HER2 and ERα signaling. Results Overexpression of PGRMC1 resulted in significantly enhanced proliferation. PGRMC1 interacted with key enzymes of the cholesterol synthesis pathway, alters the expression of proteins, and results in increased lipid levels. PGRMC1 also influenced lipid raft formation leading to altered expression of growth receptors in membranes of breast cancer cells. Analysis of activation of proteins revealed facilitated ERα and EGFR activation and downstream signaling dependent on PGRMC1 overexpression in hormone receptor-positive breast cancer cells. Depletion of cholesterol and fatty acids induced by statins reversed this growth benefit. Conclusion PGRMC1 may mediate proliferation and progression of breast cancer cells potentially by altering lipid metabolism and by activating key oncogenic signaling pathways, such as ERα expression and activation, as well as EGFR signaling. Our present study underlines the potential of PGRMC1 as a target for anti-cancer therapy.
Collapse
|
21
|
Sex differences in neutrophil biology modulate response to type I interferons and immunometabolism. Proc Natl Acad Sci U S A 2020; 117:16481-16491. [PMID: 32601182 DOI: 10.1073/pnas.2003603117] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Differences between female and male immunity may contribute to variations in response to infections and predisposition to autoimmunity. We previously reported that neutrophils from reproductive-age males are more immature and less activated than their female counterparts. To further characterize the mechanisms that drive differential neutrophil phenotypes, we performed RNA sequencing on circulating neutrophils from healthy adult females and males. Female neutrophils displayed significant up-regulation of type I IFN (IFN)-stimulated genes (ISGs). Single-cell RNA-sequencing analysis indicated that these differences are neutrophil specific, driven by a distinct neutrophil subset and related to maturation status. Neutrophil hyperresponsiveness to type I IFNs promoted enhanced responses to Toll-like receptor agonists. Neutrophils from young adult males had significantly increased mitochondrial metabolism compared to those from females and this was modulated by estradiol. Assessment of ISGs and neutrophil maturation genes in Klinefelter syndrome (47, XXY) males and in prepubescent children supported that differences in neutrophil phenotype between adult male and female neutrophils are hormonally driven and not explained by X chromosome gene dosage. Our results indicate that there are distinct sex differences in neutrophil biology related to responses to type I IFNs, immunometabolism, and maturation status that may have prominent functional and pathogenic implications.
Collapse
|
22
|
Deng W, Liu H, Luo S, Clarke J, Glass C, Su L, Lin L, Christiani DC, Wei Q. APOB Genotypes and CDH13 Haplotypes in the Cholesterol-Related Pathway Genes Predict Non-Small Cell Lung Cancer Survival. Cancer Epidemiol Biomarkers Prev 2020; 29:1204-1213. [PMID: 32238407 PMCID: PMC7269811 DOI: 10.1158/1055-9965.epi-19-1262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/07/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several oncogenic signals are involved in the synthesis, metabolism, transportation, and modulation of cholesterol. However, the roles of genetic variants of the cholesterol pathway genes in cancer survival remain unclear. METHODS We investigated associations between 26,781 common SNPs in 209 genes of the cholesterol pathway and non-small cell lung cancer (NSCLC) survival by utilizing genotyping data from two published genome-wide association studies. We used multivariate Cox proportional hazards regression and expression quantitative trait loci analyses to identify survival-associated SNPs and their correlations with the corresponding mRNA expression, respectively. We also used the Kaplan-Meier survival analysis and bioinformatics functional prediction to further evaluate the identified independent SNPs. RESULTS We found five independent SNPs (APOB rs1801701C>T; CDH13 rs35859010 C>T, rs1833970 T>A, rs254315 T>C, and rs425904 T>C) to be significantly associated with NSCLC survival in both discovery and replication datasets. When the unfavorable genotype (APOB rs1801701CC) and haplotypes (CDH13 rs35859010-rs1833970-rs254315-rs425904 C-A-T-C and T-T-T-T) were combined into a genetic score as the number of unfavorable genotypes/haplotypes (NUGH) in the multivariate analysis, an increased NUGH was associated with worse survival (P trend < 0.0001). In addition, both APOB rs1801701T CONCLUSIONS Genetic variants of APOB and CDH13 in the cholesterol pathway were associated with NSCLC survival, possibly by affecting their gene expression. IMPACT Genetic variants of APOB and CDH13 in the cholesterol pathway may provide new scientific insights into NSCLC prognosis.
Collapse
Affiliation(s)
- Wei Deng
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Jeffrey Clarke
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Carolyn Glass
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Li Su
- Departments of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Lijuan Lin
- Departments of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
23
|
Zhou Z, Song X, Chi JJ, Gius DR, Huang Y, Cristofanilli M, Wan Y. Regulation of KLF4 by posttranslational modification circuitry in endocrine resistance. Cell Signal 2020; 70:109574. [PMID: 32084531 PMCID: PMC7511032 DOI: 10.1016/j.cellsig.2020.109574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 01/04/2023]
Abstract
KLF4 plays an important role in orchestrating a variety of cellular events, including cell-fate decision, genome stability and apoptosis. Its deregulation is correlated with human diseases such as breast cancer and gastrointestinal cancer. Results from recent biochemical studies have revealed that KLF4 is tightly regulated by posttranslational modifications. Here we report a new finding that KLF4 orchestrates estrogen receptor signaling and facilitates endocrine resistance. We also uncovered the underlying mechanism that alteration of KLF4 by posttranslational modifications such as phosphorylation and ubiquitylation changes tumor cell response to endocrine therapy drugs. IHC analyses using based on human breast cancer specimens showed the accumulation of KLF4 protein in ER-positive breast cancer tissues. Elevated KLF4 expression significantly correlated with prognosis and endocrine resistance. Our drug screening for suppressing KLF4 protein expression led to identification of Src kinase to be a critical player in modulating KLF4-mediated tamoxifen resistance. Depletion of VHL (von Hippel-Lindau tumor suppressor), a ubiquitin E3 ligase for KLF4, reduces tumor cell sensitivity to tamoxifen. We demonstrated phosphorylation of VHL by Src enhances proteolysis of VHL that in turn leads to upregulation of KLF4 and increases endocrine resistance. Suppression of Src-VHL-KLF4 cascade by Src inhibitor or enhancement of VHL-KLF4 ubiquitination by TAT-KLF4 (371-420AAa) peptides re-sensitizes tamoxifen-resistant breast cancer cells to tamoxifen treatment. Taken together, our findings demonstrate a novel role for KLF4 in modulating endocrine resistance via the Src-VHL-KLF4 axis.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Xinxin Song
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Junlong Jack Chi
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - David R Gius
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Yi Huang
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Yong Wan
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
24
|
Varallo GR, Gelaleti GB, Maschio-Signorini LB, Moschetta MG, Lopes JR, De Nardi AB, Tinucci-Costa M, Rocha RM, De Campos Zuccari DAP. Prognostic phenotypic classification for canine mammary tumors. Oncol Lett 2019; 18:6545-6553. [PMID: 31807173 PMCID: PMC6876320 DOI: 10.3892/ol.2019.11052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
Mammary neoplasms are a heterogeneous form of disease, and in order to determine its course and biological features with more accuracy, investigations based on tumor phenotypes are required. The aim of the present study was to propose and validate a phenotypic classification for canine mammary tumors and to assess any association between clinicopathological characteristics, survival and prognosis. For the immunohistochemistry analysis, the primary antibodies against estrogen receptor-α, progesterone receptor, human epidermal growth factor receptor 2 (HER-2)/neu and E-cadherin were used. A total of 110 canine mammary tumors were investigated; 42 tumors were classified as luminal A, 41 as luminal B, 17 as triple-negative and 10 as HER-2-positive. The luminal A and B phenotypes were associated with improved prognosis, whereas HER-2positive and triple-negative tumors were more aggressive, and exhibited a significant association with the occurrence of metastasis, a worse Tumor-Node-Metastasis classification and shorter survival time (P<0.05). In addition, there were different levels of E-cadherin expression intensity observed among the four tumor profiles investigated. Luminal A and B phenotypes presented an upregulation of E-cadherin compared with the HER-2 positive and triple-negative phenotypes (P<0.05). From the results of the present study, the proposed immunohistochemical panel and phenotypic classification techniques could be useful diagnostic tools with a good technical applicability in veterinary oncology. The analysis of E-cadherin expression in the panel of tumor markers allowed a more accurate classification for determining the biological features of the mammary tumor.
Collapse
Affiliation(s)
- Giovanna Rossi Varallo
- Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Gabriela Bottaro Gelaleti
- Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Larissa Bazela Maschio-Signorini
- Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Marina Gobbe Moschetta
- Laboratory of Molecular Investigation of Cancer, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto, São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Juliana Ramos Lopes
- Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Andrigo Barboza De Nardi
- Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Mirela Tinucci-Costa
- Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Jaboticabal, São Paulo 14884-900, Brazil
| | - Rafael Malagoli Rocha
- International Research Center-A.C. Camargo Cancer Center, São Paulo, São Paulo 01508-010, Brazil
| | - Debora Aparecida Pires De Campos Zuccari
- Laboratory of Molecular Investigation of Cancer, Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto, São José do Rio Preto, São Paulo 15090-000, Brazil
| |
Collapse
|
25
|
Wright KD, Miller BS, El-Meanawy S, Tsaih SW, Banerjee A, Geurts AM, Sheinin Y, Sun Y, Kalyanaraman B, Rui H, Flister MJ, Sorokin A. The p52 isoform of SHC1 is a key driver of breast cancer initiation. Breast Cancer Res 2019; 21:74. [PMID: 31202267 PMCID: PMC6570928 DOI: 10.1186/s13058-019-1155-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/23/2019] [Indexed: 01/23/2023] Open
Abstract
Background SHC1 proteins (also called SHCA) exist in three functionally distinct isoforms (p46SHC, p52SHC, and p66SHC) that serve as intracellular adaptors for several key signaling pathways in breast cancer. Despite the broad evidence implicating SHC1 gene products as a central mediator of breast cancer, testing the isoform-specific roles of SHC1 proteins have been inaccessible due to the lack of isoform-specific inhibitors or gene knockout models. Methods Here, we addressed this issue by generating the first isoform-specific gene knockout models for p52SHC and p66SHC, using germline gene editing in the salt-sensitive rat strain. Compared with the wild-type (WT) rats, we found that genetic ablation of the p52SHC isoform significantly attenuated mammary tumor formation, whereas the p66SHC knockout had no effect. Rats were dosed with 7,12-dimethylbenz(a)anthracene (DMBA) by oral gavage to induce mammary tumors, and progression of tumor development was followed for 15 weeks. At 15 weeks, tumors were excised and analyzed by RNA-seq to determine differences between tumors lacking p66SHC or p52SHC. Results Compared with the wild-type (WT) rats, we found that genetic ablation of the p52SHC isoform significantly attenuated mammary tumor formation, whereas the p66SHC knockout had no effect. These data, combined with p52SHC being the predominant isoform that is upregulated in human and rat tumors, provide the first evidence that p52SHC is the oncogenic isoform of Shc1 gene products in breast cancer. Compared with WT tumors, 893 differentially expressed (DE; FDR < 0.05) genes were detected in p52SHC KO tumors compared with only 18 DE genes in the p66SHC KO tumors, further highlighting that p52SHC is the relevant SHC1 isoform in breast cancer. Finally, gene network analysis revealed that p52SHC KO disrupted multiple key pathways that have been previously implicated in breast cancer initiation and progression, including ESR1 and mTORC2/RICTOR. Conclusion Collectively, these data demonstrate the p52SHC isoform is the key driver of DMBA-induced breast cancer while the expression of p66SHC and p46SHC are not enough to compensate. Electronic supplementary material The online version of this article (doi:10.1186/s13058-019-1155-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin D Wright
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Bradley S Miller
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Sarah El-Meanawy
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Shirng-Wern Tsaih
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Anjishnu Banerjee
- Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Aron M Geurts
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yuri Sheinin
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael J Flister
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Andrey Sorokin
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
26
|
Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:135-170. [PMID: 31036290 DOI: 10.1016/bs.apcsb.2019.01.001] [Citation(s) in RCA: 492] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The primary female sex hormones, estrogens, are responsible for the control of functions of the female reproductive system, as well as the development of secondary sexual characteristics that appear during puberty and sexual maturity. Estrogens exert their actions by binding to specific receptors, the estrogen receptors (ERs), which in turn activate transcriptional processes and/or signaling events that result in the control of gene expression. These actions can be mediated by direct binding of estrogen receptor complexes to specific sequences in gene promoters (genomic effects), or by mechanisms that do not involve direct binding to DNA (non-genomic effects). Whether acting via direct nuclear effects, indirect non-nuclear actions, or a combination of both, the effects of estrogens on gene expression are controlled by highly regulated complex mechanisms. In this chapter, we summarize the knowledge gained in the past 60years since the discovery of the estrogen receptors on the mechanisms governing estrogen-mediated gene expression. We provide an overview of estrogen biosynthesis, and we describe the main mechanisms by which the female sex hormone controls gene transcription in different tissues and cell types. Specifically, we address the molecular events governing regulation of gene expression via the nuclear estrogen receptors (ERα, and ERβ) and the membrane estrogen receptor (GPER1). We also describe mechanisms of cross-talk between signaling cascades activated by both nuclear and membrane estrogen receptors. Finally, we discuss natural compounds that are able to target specific estrogen receptors and their implications for human health and medical therapeutics.
Collapse
Affiliation(s)
- Nathalie Fuentes
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States; The University of North Carolina at Chapel Hill, School of Nursing, Chapel Hill, NC, United States.
| |
Collapse
|
27
|
Lee E, Luo J, Schumacher FR, Van Den Berg D, Wu AH, Stram DO, Bernstein L, Ursin G. Growth factor genes and change in mammographic density after stopping combined hormone therapy in the California Teachers Study. BMC Cancer 2018; 18:1072. [PMID: 30400783 PMCID: PMC6220514 DOI: 10.1186/s12885-018-4981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/21/2018] [Indexed: 11/24/2022] Open
Abstract
Background The contribution of genetic polymorphisms to the large inter-individual variation in mammographic density (MD) changes following starting and stopping use of estrogen and progestin combined therapy (EPT) has not been well-studied. Previous studies have shown that circulating levels of insulin-like growth factors are associated with MD and cross-talk between estrogen signaling and growth factors is necessary for cell proliferation in the breast. We evaluated single nucleotide polymorphisms (SNPs) in growth factor genes in association with MD changes after women stop EPT use. Methods We genotyped 191 SNPs in 13 growth factor pathway genes in 284 non-Hispanic white California Teachers Study participants who previously used EPT and collected their mammograms before and after quitting EPT. Percent MD was assessed using a computer-assisted method. Change in percent MD was calculated by subtracting percent MD of an ‘off-EPT’ mammogram from percent MD of an ‘on-EPT’ (i.e. baseline) mammogram. We used multivariable linear regression analysis to investigate the association between SNPs and change in percent MD. We calculated P-values corrected for multiple testing within a gene (Padj). Results Rs1983210 in INHA and rs35539615 in IGFBP1/3 showed the strongest associations. Per minor allele of rs1983210, the absolute change in percent MD after stopping EPT use decreased by 1.80% (a difference in absolute change in percent MD) (Padj= 0.021). For rs35539615, change in percent MD increased by 1.79% per minor allele (Padj= 0.042). However, after applying a Bonferroni correction for the number of genes tested, these associations were no longer statistically significant. Conclusions Genetic variation in growth factor pathway genes INHA and IGFBP1/3 may predict longitudinal MD change after women quit EPT. The observed differences in EPT-associated changes in percent MD in association with these genetic polymorphisms are modest but may be clinically significant considering that the magnitude of absolute increase in percent MD reported from large clinical trials of EPT ranged from 3% to 7%. Electronic supplementary material The online version of this article (10.1186/s12885-018-4981-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.
| | - Jianning Luo
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - David Van Den Berg
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA
| | - Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Giske Ursin
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.,Department of Nutrition, University of Oslo, Oslo, Norway.,Cancer Registry of Norway, Oslo, Norway
| |
Collapse
|
28
|
Huang Q, Zhang Z, Liao Y, Liu C, Fan S, Wei X, Ai B, Xiong J. 17β-estradiol upregulates IL6 expression through the ERβ pathway to promote lung adenocarcinoma progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:133. [PMID: 29970138 PMCID: PMC6029357 DOI: 10.1186/s13046-018-0804-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023]
Abstract
Background In non-small cell lung cancer (NSCLC), estrogen (E2) significantly promotes NSCLC cell growth via estrogen receptor beta (ERβ). Discovery and elucidation of the mechanism underlying estrogen-promoted NSCLC progression is critical for effective preventive interventions. IL6 has been demonstrated to be involved in the development, progression and metastasis in several cancers and IL6 overexpression is associated with poor prognosis in NSCLC. However, the exact role played by IL6 in estrogen-promoted NSCLC progress remain unknown. Here, we evaluated the expression and biological effects of IL6 in NSCLC cells when treated with E2 and explored the underlying mechanism of IL6 in E2-promoted NSCLC progression. Methods Expression of ERβ/IL6 in 289 lung cancer samples was assessed by immunohistochemistry. Matched samples of metastatic lymph node and primary tumor tissues were used to quantify the expression of ERβ/IL6 by western blot. Expression levels of IL6 in NSCLC cells were quantified by western blotting, ELISA, and immunofluorescence staining. The effects of IL6 stimulated by E2 on cell malignancy were evaluated using CCK8, colony formation, wound healing and transwell. Furthermore, overexpression and knockdown ERβ constructs were constructed to measure the expression of IL6. The effects of IL6 stimulated by E2 on tumor growth were evaluated using a urethane-induced adenocarcinoma model. In addition, a xenograft mouse model was used to observe differences in ERβ subtype tumor growth with respect to IL6 expression. Results IL6/ERβ expression were significantly increased in lung cancer. Higher IL6/ERβ expression was associated with decreased differentiation or increased metastasis. IL6 was an independent prognostic factor for overall survival (OS), higher IL6 expression was associated with decreased OS. Furthermore, ERβ regulates IL6 expression via MAPK/ERK and PI3K/AKT pathways when stimulated by E2 and promotes cell malignancy in vitro and induced tumor growth in vivo. Finally we confirm that ERβ isolation 1/5 is essential for E2 promotion of IL6 expression, while ERβ2 not. Conclusions Our findings demonstrate that E2 stimulates IL6 expression to promote lung adenocarcinoma progression through the ERβ pathway. We also clarify the difference in each ERβ subtype for E2 promoting IL6 expression, suggesting that ERβ/IL6 might be potential targets for prognostic assessment and therapeutic intervention in lung cancer. Electronic supplementary material The online version of this article (10.1186/s13046-018-0804-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quanfu Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongde Liao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Changyu Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Fan
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Ai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xiong
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Ding X, Li L, Tang CH, Meng C, Xu W, Wei X, Guo Z, Zhang T, Fu Y, Zhang L, Wang X, Lin L, Liang J. Cytoplasmic expression of estrogen receptor β may predict poor outcome of EGFR-TKI therapy in metastatic lung adenocarcinoma. Oncol Lett 2018; 16:2382-2390. [PMID: 30013628 PMCID: PMC6036564 DOI: 10.3892/ol.2018.8936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 04/20/2018] [Indexed: 02/02/2023] Open
Abstract
There is growing evidence that estrogen receptors (ER) are expressed in lung cancer cells, and are able to interact with the epidermal growth factor receptor (EGFR) signaling pathway. However, data on the association between cytoplasmic ER expression and the response to EGFR-tyrosine kinase inhibitors (TKI) treatment are limited. The aim of the present study was to investigate the associations between ERα/ERβ expression and EGFR mutational status and response to TKI treatment in metastatic lung adenocarcinoma. A retrospective study of 126 consecutive patients with lung adenocarcinoma who were diagnosed with stage IV disease and had received EGFR-TKI treatment was conducted. ER expression was detected by immunohistochemistry. EGFR and GTPase KRas (KRAS) mutational statuses were evaluated by denaturing high performance liquid chromatography and PCR-restriction fragment length polymorphism, respectively. In the overall cohort of 126 lung adenocarcinoma samples analyzed, ERα expression in the nucleus of tumor cells was identified in 17 (18.9%) patients, whereas ERβ expression was identified in the nucleus (22/126, 17.5%) and cytoplasm (17/126, 13.5%). The nuclear expression of ERβ was positively associated with the degree of tumor differentiation (P=0.010). EGFR-sensitizing mutations were significantly associated with improved objective response rates (ORR), disease control rates (DCR), median progression-free survival (mPFS) and median overall survival (mOS) (P<0.001; P<0.001; P=0.003; and P=0.026, respectively). Patients with cytoplasmic ERβ expression exhibited non-significant poorer ORR, DCR, mPFS and mOS compared with patients without cytoplasmic ERβ expression (P=0.082; P=0.106; P=0.084; and P=0.119, respectively). However, the significant decrease of ORR, DCR and mPFS was observed in patients with coexisting cytoplasmic ERβ expression and EGFR-sensitizing mutations (P=0.030; P=0.009; and P=0.018, respectively) in comparison with the subgroup with EGFR sensitizing mutations but negative expression of cytoplasmic ERβ. A trend towards shorter mOS was also observed in patients with coexisting cytoplasmic ERβ expression and EGFR-sensitizing mutations (P=0.071). No KRAS mutations were identified in patients with cytoplasmic ERβ expression. Subsequent to adjusting for sex, smoking status and EGFR mutation status, the Cox repression analysis indicated that cytoplasmic expression of ERβ was a negative independent predictor for mPFS in the whole patient cohort (HR=1.870; 95% confidence interval 1.058–3.305; P=0.031). Cytoplasmic ERβ expression was negatively correlated with the efficacy of EGFR-TKI treatment for metastatic lung adenocarcinoma, particularly for patients with coexisting cytoplasmic ERβ expression and EGFR-sensitizing mutations. Cytoplasmic ERβ may be a promising marker to predict the outcome of EGFR-TKI treatment.
Collapse
Affiliation(s)
- Xiaosheng Ding
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Li Li
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - CHuanhao Tang
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Chao Meng
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Weiran Xu
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xing Wei
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Ziwei Guo
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Tingting Zhang
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Yali Fu
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Lingling Zhang
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xiangyi Wang
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Li Lin
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Jun Liang
- Department of Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| |
Collapse
|
30
|
Denley MCS, Gatford NJF, Sellers KJ, Srivastava DP. Estradiol and the Development of the Cerebral Cortex: An Unexpected Role? Front Neurosci 2018; 12:245. [PMID: 29887794 PMCID: PMC5981095 DOI: 10.3389/fnins.2018.00245] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
The cerebral cortex undergoes rapid folding in an "inside-outside" manner during embryonic development resulting in the establishment of six discrete cortical layers. This unique cytoarchitecture occurs via the coordinated processes of neurogenesis and cell migration. In addition, these processes are fine-tuned by a number of extracellular cues, which exert their effects by regulating intracellular signaling pathways. Interestingly, multiple brain regions have been shown to develop in a sexually dimorphic manner. In many cases, estrogens have been demonstrated to play an integral role in mediating these sexual dimorphisms in both males and females. Indeed, 17β-estradiol, the main biologically active estrogen, plays a critical organizational role during early brain development and has been shown to be pivotal in the sexually dimorphic development and regulation of the neural circuitry underlying sex-typical and socio-aggressive behaviors in males and females. However, whether and how estrogens, and 17β-estradiol in particular, regulate the development of the cerebral cortex is less well understood. In this review, we outline the evidence that estrogens are not only present but are engaged and regulate molecular machinery required for the fine-tuning of processes central to the cortex. We discuss how estrogens are thought to regulate the function of key molecular players and signaling pathways involved in corticogenesis, and where possible, highlight if these processes are sexually dimorphic. Collectively, we hope this review highlights the need to consider how estrogens may influence the development of brain regions directly involved in the sex-typical and socio-aggressive behaviors as well as development of sexually dimorphic regions such as the cerebral cortex.
Collapse
Affiliation(s)
- Matthew C. S. Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Nicholas J. F. Gatford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Katherine J. Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Ginsenoside Rg1 activates ligand-independent estrogenic effects via rapid estrogen receptor signaling pathway. J Ginseng Res 2018; 43:527-538. [PMID: 31695561 PMCID: PMC6823751 DOI: 10.1016/j.jgr.2018.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/12/2018] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
Background Ginsenoside Rg1 was shown to exert ligand-independent activation of estrogen receptor (ER) via mitogen-activated protein kinase–mediated pathway. Our study aimed to delineate the mechanisms by which Rg1 activates the rapid ER signaling pathways. Methods ER-positive human breast cancer MCF-7 cells and ER-negative human embryonic kidney HEK293 cells were treated with Rg1 (10−12M, 10−8M), 17ß-estradiol (10−8M), or vehicle. Immunoprecipitation was conducted to investigate the interactions between signaling protein and ER in MCF-7 cells. To determine the roles of these signaling proteins in the actions of Rg1, small interfering RNA or their inhibitors were applied. Results Rg1 rapidly induced ERα translocation to plasma membrane via caveolin-1 and the formation of signaling complex involving linker protein (Shc), insulin-like growth factor-I receptor, modulator of nongenomic activity of ER (MNAR), ERα, and cellular nonreceptor tyrosine kinase (c-Src) in MCF-7 cells. The induction of extracellular signal-regulated protein kinase and mitogen-activated protein kinase kinase (MEK) phosphorylation in MCF-7 cells by Rg1 was suppressed by cotreatment with small interfering RNA against these signaling proteins. The stimulatory effects of Rg1 on MEK phosphorylation in these cells were suppressed by both PP2 (Src kinase inhibitor) and AG1478 [epidermal growth factor receptor (EGFR) inhibitor]. In addition, Rg1-induced estrogenic activities, EGFR and MEK phosphorylation in MCF-7 cells were abolished by cotreatment with G15 (G protein-coupled estrogen receptor-1 antagonist). The increase in intracellular cyclic AMP accumulation, but not Ca mobilization, in MCF-7 cells by Rg1 could be abolished by G15. Conclusion Ginsenoside Rg1 exerted estrogenic actions by rapidly inducing the formation of ER containing signalosome in MCF-7 cells. Additionally, Rg1 could activate EGFR and c-Src ER-independently and exert estrogenic effects via rapid activation of membrane-associated ER and G protein-coupled estrogen receptor.
Collapse
|
32
|
SRC Increases MYC mRNA Expression in Estrogen Receptor-Positive Breast Cancer via mRNA Stabilization and Inhibition of p53 Function. Mol Cell Biol 2018; 38:MCB.00463-17. [PMID: 29263157 DOI: 10.1128/mcb.00463-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
The transcription factor gene MYC is important in breast cancer, and its mRNA is maintained at a high level even in the absence of gene amplification. The mechanism(s) underlying increased MYC mRNA expression is unknown. Here, we demonstrate that MYC mRNA was stabilized upon estrogen stimulation of estrogen receptor-positive breast cancer cells via SRC-dependent effects on a recently described RNA-binding protein, IMP1 with an N-terminal deletion (ΔN-IMP1). We also show that loss of the tumor suppressor p53 increased MYC mRNA levels even in the absence of estrogen stimulation. However, in cells with wild-type p53, SRC acted to overcome p53-mediated inhibition of estrogen-stimulated cell cycle entry and progression. SRC thus promotes cell proliferation in two ways: by stabilizing MYC mRNA and by inhibiting p53 function. Since estrogen receptor-positive breast cancers typically express wild-type p53, these studies establish a rationale for p53 status to be predictive for effective SRC inhibitor treatment in this subtype of breast cancer.
Collapse
|
33
|
Lopez-Pier MA, Lipovka Y, Koppinger MP, Harris PR, Konhilas JP. The clinical impact of estrogen loss on cardiovascular disease in menopausal females. MEDICAL RESEARCH ARCHIVES 2018; 6:1663. [PMID: 32149188 PMCID: PMC7059770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
According to the CDC (2017), more women than men have died from heart disease over the last 20-25 years. On the contrary, premenopausal women are protected against heart and cardiovascular disease (CVD) compared to men. Following menopause, there is sharp rise in CVD mortality and morbidity in women compared to men indicating that women lose protection against CVD during menopause. This loss of CVD protection in women drives the CDC statistics. Life expectance of women has now reached 82 (almost 35 years longer than at the turn of the 20th century). Yet, women typically undergo menopause at 50-60 years of age, which means that women spend over 40% of their life in menopause. Therefore, menopausal women, and associated CVD risk, must be considered as distinct from an aging or senescent woman. Despite longstanding knowledge that premenopausal women are protected from CVD, our fundamental understanding regarding the shift in CVD risk with menopause remains inadequate and impedes our ability to develop sex-specific therapeutic strategies to combat menopausal susceptibility to CVD. This review provides a critical overview of clinical trials attempting to address CVD susceptibility postmenopausal using hormone replacement therapy. Next, we outline key deficiencies in pre-clinical menopause models and introduce an alternative to overcome these deficiencies. Finally, we discuss a novel connection between AMPK and estrogen-dependent pathways that may serve as a potential solution to increased CVD susceptibility in menopausal women.
Collapse
Affiliation(s)
- Marissa A Lopez-Pier
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85724, U.S.A
- The BIO5 Research Institute, University of Arizona, Tucson, AZ 85724, U.S.A
| | - Yulia Lipovka
- Department of Physiology, University of Arizona, Tucson, AZ 85724, U.S.A. Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, U.S.A
| | - Matthew P Koppinger
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724, U.S.A
| | - Preston R Harris
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724, U.S.A
| | - John P Konhilas
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85724, U.S.A
- The BIO5 Research Institute, University of Arizona, Tucson, AZ 85724, U.S.A
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85724, U.S.A
- Department of Physiology, University of Arizona, Tucson, AZ 85724, U.S.A. Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, U.S.A
| |
Collapse
|
34
|
Wang Y, Sun J, Zhang K, Hu X, Sun Y, Sheng J, Fu X. Black tea and D. candidum extracts play estrogenic activity via estrogen receptor α-dependent signaling pathway. Am J Transl Res 2018; 10:114-125. [PMID: 29422998 PMCID: PMC5801351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/28/2017] [Indexed: 06/08/2023]
Abstract
In recent years, phytoestrogens have been shown as useful selective estrogen receptor modulators. The estrogen-like effects of black tea (BT) and D. candidum (DC), as well as the combination of the two herbs, have remained largely elusive. This study aims to investigate the phytoestrogenic effect of BT and DC extract, and the possible mechanism. The effects on T47D (ER+ cell line) proliferation were evaluated by using MTT assay. The S phase proportion of ER+ cells was determined by using flow cytometry. The estrogen antagonist ICI 182,780 was applied to block the ER function. The activation of ER-mediated PI3K/AKT and ERK signal pathways were observed by using western blot. Expression of ERα and PGR, as well as PS2 and Cyclin D1 were detected by using western blot and real-time quantitative PCR. Firstly, our results found that BT and DC extracts promoted cell proliferation in ER-positive cells, and this effect was ER-dependent. Besides, BT and DC extracts increased the S-phase cell number. Next, PI3K, AKT and ERK pathways below ER were activated by phytoestrogen treatment, and this activation was blocked by the ER antagonist. Moreover, prolonged BT and DC treatments increased the expression of ESR1 and PGR. Consistently, the mRNA levels of not only ESR1 and PGR but also estrogen-dependent effectors ps2 and cyclin D1, were increased by phytoestrogens and blocked by ICI 182,780. Taken Together, BT and DC extracts have phytoestrogenic effects, and this may provide new ideas and experimental basis for the development and application of phytoestrogens.
Collapse
Affiliation(s)
- Yongsen Wang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin UniversityChangchun 130012, China
| | - Jing Sun
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin UniversityChangchun 130012, China
| | - Kun Zhang
- The Second Hospital, Jilin UniversityChangchun 130041, China
| | - Xin Hu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin UniversityChangchun 130012, China
| | - Yuchu Sun
- School of Animal Sciences, Jilin UniversityChangchun 130012, China
| | - Jun Sheng
- Key Laboratory of Pu-Er Tea Science, Ministry of Education, Yunnan Agricultural UniversityKunming 650201, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin UniversityChangchun 130012, China
| |
Collapse
|
35
|
Melissa PSW, Phelim YVC, Navaratnam V, Yoke Yin C. DNA Microarray Analysis of Estrogen Responsive Genes in Ishikawa Cells by Glabridin. BIOCHEMISTRY INSIGHTS 2017; 10:1178626417721676. [PMID: 28804245 PMCID: PMC5533267 DOI: 10.1177/1178626417721676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/15/2017] [Indexed: 12/04/2022]
Abstract
Based on a previous study, glabridin displayed a dose-dependent increase in estrogenic activity and cell proliferative activity in Ishikawa cells. However, when treated in combination with 17β-E2, synergistic estrogenic effect was observed but without the same synergistic increase in cell proliferative effect. This study aimed to identify the estrogen and nonestrogen-regulated activities induced by glabridin and in combination with 17β-E2 in comparison with 17β-E2. The results showed that 10 µM glabridin and the combination treatment of 100 nM glabridin with 1 nM 17β-E2 regulated both the genomic and nongenomic estrogen pathways to possibly provide benefits of estrogens in cardiovascular, circulatory, and vasculature systems. Meanwhile, the combination of 100 nM glabridin with 1 nM 17β-E2 seems to be more suitable to be used as an estrogen replacement. Finally, the results of this study have added on to the present knowledge of glabridin’s function as a phytoestrogen and suggested new ideas for the usage of glabridin.
Collapse
Affiliation(s)
- Poh Su Wei Melissa
- Division of Medicine, Pharmacy and Health Sciences, School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Yong Voon Chen Phelim
- Division of Medicine, Pharmacy and Health Sciences, School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Chia Yoke Yin
- Division of Medicine, Pharmacy and Health Sciences, School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
36
|
Fan S, Liao Y, Liu C, Huang Q, Liang H, Ai B, Fu S, Zhou S. Estrogen promotes tumor metastasis via estrogen receptor beta-mediated regulation of matrix-metalloproteinase-2 in non-small cell lung cancer. Oncotarget 2017; 8:56443-56459. [PMID: 28915603 PMCID: PMC5593574 DOI: 10.18632/oncotarget.16992] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
In non–small cell lung cancer (NSCLC), estrogen significantly promotes NSCLC cell growth via estrogen receptor beta (ERβ). However, the effects by which ERβ contributes to metastasis in NSCLC have not been previously reported. This study aims at defining whether the stimulation of ERβ promotes NSCLC metastasis in vitro and in vivo. Here, Our results showed that estrogen and ERβ agonist enhanced aggressiveness of two lung cancer cell lines (A549 and H1793) and promoted murine lung metastasis formation. ER-inhibitor Fulvestrant treatment or ERβ-knockdown significantly suppressed the migration, invasion and nodule formation of NSCLC cells. The expression level of ERβ protein was analyzed in matched samples of metastatic lymph node and primary tumor tissues from the same individuals, and we found significantly higher levels of ERβ were expressed in lymph node compared to primary tumor tissues. Moreover, Studies on both surgical biopsies and on lung cancer cells revealed that the expression level of ERβ and matrix-metalloproteinase-2 (MMP-2) were associated. Furthermore, inhibition of ERβ resulted in down-regulation of MMP-2 expression. Taken together, our results demonstrate that activation of ERβ in lung cancer cells promotes tumor metastasis through increasing expression of invasiveness-associated MMP-2. These results also highlight the therapeutic potential of inhibition of ERβin the treatment of advanced NSCLC.
Collapse
Affiliation(s)
- Sheng Fan
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yongde Liao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Changyu Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Quanfu Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Bo Ai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Shegnling Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Sheng Zhou
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
37
|
Farman HH, Wu J, Gustafsson KL, Windahl SH, Kim SH, Katzenellenbogen JA, Ohlsson C, Lagerquist MK. Extra-nuclear effects of estrogen on cortical bone in males require ERαAF-1. J Mol Endocrinol 2017; 58:105-111. [PMID: 28057769 PMCID: PMC5278601 DOI: 10.1530/jme-16-0209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 01/02/2023]
Abstract
Estradiol (E2) signaling via estrogen receptor alpha (ERα) is important for the male skeleton as demonstrated by ERα inactivation in both mice and man. ERα mediates estrogenic effects not only by translocating to the nucleus and affecting gene transcription but also by extra-nuclear actions e.g., triggering cytoplasmic signaling cascades. ERα contains various domains, and the role of activation function 1 (ERαAF-1) is known to be tissue specific. The aim of this study was to determine the importance of extra-nuclear estrogen effects for the skeleton in males and to determine the role of ERαAF-1 for mediating these effects. Five-month-old male wild-type (WT) and ERαAF-1-inactivated (ERαAF-10) mice were orchidectomized and treated with equimolar doses of 17β-estradiol (E2) or an estrogen dendrimer conjugate (EDC), which is incapable of entering the nucleus and thereby only initiates extra-nuclear ER actions or their corresponding vehicles for 3.5 weeks. As expected, E2 treatment increased cortical thickness and trabecular bone volume per total volume (BV/TV) in WT males. EDC treatment increased cortical thickness in WT males, whereas no effect was detected in trabecular bone. In ERαAF-10 males, E2 treatment increased cortical thickness, but did not affect trabecular bone. Interestingly, the effect of EDC on cortical bone was abolished in ERαAF-10 mice. In conclusion, extra-nuclear estrogen signaling affects cortical bone mass in males, and this effect is dependent on a functional ERαAF-1. Increased knowledge regarding estrogen signaling mechanisms in the regulation of the male skeleton may aid the development of new treatment options for male osteoporosis.
Collapse
Affiliation(s)
- H H Farman
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - J Wu
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K L Gustafsson
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - S H Windahl
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - S H Kim
- Department of ChemistryUniversity of Illinois, Urbana, Illinois, USA
| | | | - C Ohlsson
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M K Lagerquist
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
IGF-IR cooperates with ERα to inhibit breast cancer cell aggressiveness by regulating the expression and localisation of ECM molecules. Sci Rep 2017; 7:40138. [PMID: 28079144 PMCID: PMC5228153 DOI: 10.1038/srep40138] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022] Open
Abstract
IGF-IR is highly associated with the behaviour of breast cancer cells. In ERα-positive breast cancer, IGF-IR is present at high levels. In clinical practice, prolonged treatment with anti-estrogen agents results in resistance to the therapy with activation of alternative signaling pathways. Receptor Tyrosine Kinases, and especially IGF-IR, have crucial roles in these processes. Here, we report a nodal role of IGF-IR in the regulation of ERα-positive breast cancer cell aggressiveness and the regulation of expression levels of several extracellular matrix molecules. In particular, activation of IGF-IR, but not EGFR, in MCF-7 breast cancer cells results in the reduction of specific matrix metalloproteinases and their inhibitors. In contrast, IGF-IR inhibition leads to the depletion by endocytosis of syndecan-4. Global important changes in cell adhesion receptors, which include integrins and syndecan-4 triggered by IGF-IR inhibition, regulate adhesion and invasion. Cell function assays that were performed in MCF-7 cells as well as their ERα-suppressed counterparts indicate that ER status is a major determinant of IGF-IR regulatory role on cell adhesion and invasion. The strong inhibitory role of IGF-IR on breast cancer cells aggressiveness for which E2-ERα signaling pathway seems to be essential, highlights IGF-IR as a major molecular target for novel therapeutic strategies.
Collapse
|
39
|
Chantalat E, Boudou F, Laurell H, Palierne G, Houtman R, Melchers D, Rochaix P, Filleron T, Stella A, Burlet-Schiltz O, Brouchet A, Flouriot G, Métivier R, Arnal JF, Fontaine C, Lenfant F. The AF-1-deficient estrogen receptor ERα46 isoform is frequently expressed in human breast tumors. Breast Cancer Res 2016; 18:123. [PMID: 27927249 PMCID: PMC5142410 DOI: 10.1186/s13058-016-0780-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/12/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND To date, all studies conducted on breast cancer diagnosis have focused on the expression of the full-length 66-kDa estrogen receptor alpha (ERα66). However, much less attention has been paid to a shorter 46-kDa isoform (ERα46), devoid of the N-terminal region containing the transactivation function AF-1. Here, we investigated the expression levels of ERα46 in breast tumors in relation to tumor grade and size, and examined the mechanism of its generation and its specificities of coregulatory binding and its functional activities. METHODS Using approaches combining immunohistochemistry, Western blotting, and proteomics, antibodies allowing ERα46 detection were identified and the expression levels of ERα46 were quantified in 116 ERα-positive human breast tumors. ERα46 expression upon cellular stress was studied, and coregulator bindings, transcriptional, and proliferative response were determined to both ERα isoforms. RESULTS ERα46 was expressed in over 70% of breast tumors at variable levels which sometimes were more abundant than ERα66, especially in differentiated, lower-grade, and smaller-sized tumors. We also found that ERα46 can be generated via internal ribosome entry site-mediated translation in the context of endoplasmic reticulum stress. The binding affinities of both unliganded and fully-activated receptors towards co-regulator peptides revealed that the respective potencies of ERα46 and ERα66 differ significantly, contributing to the differential transcriptional activity of target genes to 17β estradiol (E2). Finally, increasing amounts of ERα46 decrease the proliferation rate of MCF7 tumor cells in response to E2. CONCLUSIONS We found that, besides the full-length ERα66, the overlooked ERα46 isoform is also expressed in a majority of breast tumors. This finding highlights the importance of the choice of antibodies used for the diagnosis of breast cancer, which are able or not to detect the ERα46 isoform. In addition, since the function of both ERα isoforms differs, this work underlines the need to develop new technologies in order to discriminate ERα66 and ERα46 expression in breast cancer diagnosis which could have potential clinical relevance.
Collapse
Affiliation(s)
- Elodie Chantalat
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France.,Pôle IUC Oncopole CHU, Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse cedex 9, France
| | - Frédéric Boudou
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France
| | - Henrik Laurell
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France
| | - Gaëlle Palierne
- UMR CNRS 6290, Institut de Genétique et Développement de Rennes, Equipe SP@RTE, Rennes, 35042 Cedex, France
| | - René Houtman
- PamGene International B.V, P.O. Box 1345, 5200, BJ, 's-Hertogenbosch, The Netherlands
| | - Diana Melchers
- PamGene International B.V, P.O. Box 1345, 5200, BJ, 's-Hertogenbosch, The Netherlands
| | - Philippe Rochaix
- Pôle IUC Oncopole CHU, Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse cedex 9, France
| | - Thomas Filleron
- Pôle IUC Oncopole CHU, Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse cedex 9, France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne Brouchet
- Pôle IUC Oncopole CHU, Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse cedex 9, France
| | - Gilles Flouriot
- INSERM U1085, IRSET (Institut de Recherche en Santé, Environnement et Travail), Université de Rennes 1, 35000, Rennes, France
| | - Raphaël Métivier
- UMR CNRS 6290, Institut de Genétique et Développement de Rennes, Equipe SP@RTE, Rennes, 35042 Cedex, France
| | - Jean-François Arnal
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France
| | - Coralie Fontaine
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France
| | - Françoise Lenfant
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France.
| |
Collapse
|
40
|
Wang X, Chen Q, Huang X, Zou F, Fu Z, Chen Y, Li Y, Wang Z, Liu L. Effects of 17β-estradiol and tamoxifen on gastric cancer cell proliferation and apoptosis and ER-α36 expression. Oncol Lett 2016; 13:57-62. [PMID: 28123522 PMCID: PMC5244966 DOI: 10.3892/ol.2016.5424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/15/2016] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the effects of 17β-estradiol and tamoxifen, an agonist and inhibitor of the estrogen receptor (ER), respectively, on the proliferation and apoptosis of gastric cancer cells, as well as the messenger (m)RNA expression levels of ER-α36. Nested reverse transcription-polymerase chain reaction (RT-PCR) confirmed that ER-α36 was expressed in the BGC823, MKN45 and SGC7901 human gastric cancer cell lines. Subsequently, the BGC823 cell line was stimulated with various concentrations of 17β-estradiol or tamoxifen for 24 or 48 h, and the proliferation, apoptosis and mRNA expression levels of ER-α36 were determined by water-soluble tetrazolium (WST)-1 assay, flow cytometry and RT-quantitative PCR, respectively. The activity of BGC823 cells was significantly increased following treatment with 10−12 mol/l 17β-estradiol for 24 h (P=0.013), as compared with the control, and reached a peak at 48 h (P=0.002). Notably, the activity of BGC823 cells was decreased with increasing concentrations of 17β-estradiol, although it remained higher compared with that of the control. In the tamoxifen-treated groups, the cell activity decreased as the drug concentration increased. The apoptosis rate was markedly reduced in the 17β-estradiol group after 24 h (10−12 mol/l, P=0.013; 10−11 mol/l, P=0.023; and 10−10 mol/l, P=0.017) and after 48 h (10−12 mol/l, P=0.002; 10−11 mol/l, P=0.011; and 10−10 mol/l, P=0.033), whereas the rate of apoptosis increased as the tamoxifen concentration increased (24 h: 5×10−6 mol/l, P=0.002; and 10−5 mol/l, P=0.001; and 48 h: 5×10−6 mol/l, P=0.014 and 10−5 mol/l, P=0.0021), as compared with the control group. The mRNA expression levels of ER-α36 were significantly increased after 24 h of treatment with 10−12 mol/l (P=0.024), 10−11 mol/l (P=0.0113) and 10−10 mol/l (P=0.0037) 17β-estradiol compared with the control group when the concentration of 17β-estradiol was low, and the same was observed after 48 h of treatment 10−12 mol/l (P=0.0164), 10−11 mol/l (P=0.0342) and 10−10 mol/l (P=0.0198) 17β-estradiol. The mRNA expression levels of ER-α36 were significantly decreased with increasing concentrations of tamoxifen after 24 h (5×10−6 mol/l, P=0.0233; and 10−5 mol/l, P=0.007) and after 48 h (5×10−6 mol/l, P=0.001; and 10−5 mol/l, P=0.0153). In addition, the ability of tamoxifen to inhibit the growth of gastric cancer cells was concentration-dependent. The results of the present study suggested that gastric cancer cells were sensitive to the effects of 17β-estradiol and tamoxifen, and that tamoxifen is able to induce gastric cancer cell apoptosis. The expression levels of ER-α36 were upregulated, and the growth of gastric cancer cells was increased, following treatment with 17β-estradiol, thus suggesting that gastric cancer tumors are stimulated by estrogen.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China; Department of Pathology, Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Qiuyue Chen
- Department of Pathology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xuan Huang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China; Department of Pathology, Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Feng Zou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China; Department of Pathology, Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China; Department of Pathology, Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Ying Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Yan Li
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China; Department of Pathology, Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Zhaoyi Wang
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, NE 68178, USA
| | - Lijiang Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China; Department of Pathology, Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| |
Collapse
|
41
|
Kuzu OF, Noory MA, Robertson GP. The Role of Cholesterol in Cancer. Cancer Res 2016; 76:2063-70. [PMID: 27197250 DOI: 10.1158/0008-5472.can-15-2613] [Citation(s) in RCA: 445] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022]
Abstract
The roles played by cholesterol in cancer development and the potential of therapeutically targeting cholesterol homeostasis is a controversial area in the cancer community. Several epidemiologic studies report an association between cancer and serum cholesterol levels or statin use, while others suggest that there is not one. Furthermore, the Cancer Genome Atlas (TCGA) project using next-generation sequencing has profiled the mutational status and expression levels of all the genes in diverse cancers, including those involved in cholesterol metabolism, providing correlative support for a role of the cholesterol pathway in cancer development. Finally, preclinical studies tend to more consistently support the role of cholesterol in cancer, with several demonstrating that cholesterol homeostasis genes can modulate development. Because of space limitations, this review provides selected examples of the epidemiologic, TCGA, and preclinical data, focusing on alterations in cholesterol homeostasis and its consequent effect on patient survival. In melanoma, this focused analysis demonstrated that enhanced expression of cholesterol synthesis genes was associated with decreased patient survival. Collectively, the studies in melanoma and other cancer types suggested a potential role of disrupted cholesterol homeostasis in cancer development but additional studies are needed to link population-based epidemiological data, the TCGA database results, and preclinical mechanistic evidence to concretely resolve this controversy. Cancer Res; 76(8); 2063-70. ©2016 AACR.
Collapse
Affiliation(s)
- Omer F Kuzu
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Mohammad A Noory
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania. The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
42
|
Abstract
Estrogen receptor alpha (ERα) is a critical player in development and function of the female reproductive system. Perturbations in ERα response can affect wide-ranging aspects of health in humans as well as in livestock and wildlife. Because of its long-known and broad impact, ERα mechanisms of action continue to be the focus on cutting-edge research efforts. Consequently, novel insights have greatly advanced understanding of every aspect of estrogen signaling. In this review, we attempt to briefly outline the current understanding of ERα mediated mechanisms in the context of the female reproductive system.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Wipawee Winuthayanon
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Kenneth S Korach
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
43
|
Raquet MA, Measey GJ, Exbrayat JM. Annual variation of ovarian structures of Boulengerula taitana (Loveridge 1935), a Kenyan caecilian. AFR J HERPETOL 2015. [DOI: 10.1080/21564574.2015.1103787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M. A. Raquet
- Université de Lyon, UMRS 449, Laboratoire de Biologie générale, UCLy, Reproduction et développement comparé, EPHE, 25 rue du Plat, F-69288 Lyon cedex, France
| | - G. J. Measey
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - J. M. Exbrayat
- Université de Lyon, UMRS 449, Laboratoire de Biologie générale, UCLy, Reproduction et développement comparé, EPHE, 25 rue du Plat, F-69288 Lyon cedex, France
| |
Collapse
|
44
|
Park JW, Zhao L, Webb P, Cheng SY. Src-dependent phosphorylation at Y406 on the thyroid hormone receptor β confers the tumor suppressor activity. Oncotarget 2015; 5:10002-16. [PMID: 25275301 PMCID: PMC4259401 DOI: 10.18632/oncotarget.2487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Association studies suggest that the thyroid hormone receptor β1 (TRβ1) could function as a tumor suppressor in cancer cells. However, the underlying molecular mechanisms remain to be elucidated. We explored how TRβ1 acted as a tumor suppressor in breast cancer MDA cells. Proliferation and invasiveness were markedly inhibited in cells stably expressing TRβ1 (MDA-TRβ1 cells). cSrc-phosphorylated TRβ1 at Y406 signaled T3-induced degradation. Mutation of Y406 to Phe (TRβ1Y406F) did not affect T3 binding affinity, but blocked T3-induced degradation in cells. Importantly, cell-based studies showed that TRβ1Y406F lost the inhibitory effects by TRβ1 on cell proliferation and invasion. Consistently, in xenograft models, MDA-TRβ1 cells exhibited significantly slower tumor growth rates than those of Neo control cells. In contrast, the tumor growth rates of MDA-TRβ1Y406F cells were indistinguishable from those of Neo control cells. We further showed that markedly more TRβ1Y406F than TRβ1 was physically associated with cSrc in cells, leading to constitutive activation of cSrc-FAK-ERK signaling. In contrast, degradation of T3-bound TRβ1 complexed with cSrc attenuated signaling to decrease cell proliferation and invasiveness, thus confirming TRβ1 as a tumor suppressor. Thus, the present studies suggested that TRβ1 could be tested as a novel potential therapeutic target.
Collapse
Affiliation(s)
- Jeong Won Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul Webb
- Houston Methodist Research Institute, Houston, TX
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
45
|
Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease. Anal Cell Pathol (Amst) 2015; 2015:975495. [PMID: 26258011 PMCID: PMC4518167 DOI: 10.1155/2015/975495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/05/2015] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most common type of cancer for women worldwide with a lifetime risk amounting to a staggering total of 10%. It is well established that the endogenous synthesis of insulin-like growth factor (IGF) and epidermal growth factor (EGF) polypeptide growth factors are closely correlated to malignant transformation and all the steps of the breast cancer metastatic cascade. Numerous studies have demonstrated that both estrogens and growth factors stimulate the proliferation of steroid-dependent tumor cells, and that the interaction between these signaling pathways occurs at several levels. Importantly, the majority of breast cancer cases are estrogen receptor- (ER-) positive which have a more favorable prognosis and pattern of recurrence with endocrine therapy being the backbone of treatment. Unfortunately, the majority of patients progress to endocrine therapy resistant disease (acquired resistance) whereas a proportion of patients may fail to respond to initial therapy (de novo resistance). The IGF-I and EGF downstream signaling pathways are closely involved in the process of progression to therapy resistant disease. Modifications in the bioavailability of these growth factors contribute critically to disease progression. In the present review therefore, we will discuss in depth how IGF and EGF signaling participate in breast cancer pathogenesis and progression to endocrine resistant disease.
Collapse
|
46
|
Fiocchetti M, Camilli G, Acconcia F, Leone S, Ascenzi P, Marino M. ERβ-dependent neuroglobin up-regulation impairs 17β-estradiol-induced apoptosis in DLD-1 colon cancer cells upon oxidative stress injury. J Steroid Biochem Mol Biol 2015; 149:128-37. [PMID: 25683270 DOI: 10.1016/j.jsbmb.2015.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/20/2015] [Accepted: 02/10/2015] [Indexed: 11/18/2022]
Abstract
Besides other mechanism(s) 17β-estradiol (E2) facilitates neuronal survival by increasing, via estrogen receptor β (ERβ), the levels of neuroglobin (NGB) an anti-apoptotic protein. In contrast, E2 could exert protective effects in cancer cells by activating apoptosis when the ERβ level prevails on that of ERα as in colon cancer cell lines. These apparently contrasting results raise the possibility that E2-induced NGB up-regulation could regulate the ERβ activities shunning this receptor subtype to trigger an apoptotic cascade in neurons but not in non-neuronal cells. Here, human colorectal adenocarcinoma cell line (DLD-1) that only expresses ERβ and HeLa cells transiently transfected with ERβ encoding vector has been used to verify this hypothesis. In addition, neuroblastoma SK-N-BE cells were used as positive control. Surprisingly, E2 also induced NGB up-regulation, in a dose- and time-dependent manner, in DLD-1 cells. The ERβ-mediated activation of p38/MAPK was necessary for this E2 effect. E2 induced NGB re-allocation in mitochondria where, subsequently to an oxidative stress injury (i.e., 100μM H2O2), NGB interacted with cytochrome c preventing its release into the cytosol and the activation of an apoptotic cascade. As a whole, these results demonstrate that E2-induced NGB up-regulation could act as an oxidative stress sensor, which does not oppose to the pro-apoptotic E2 effect in ERβ-containing colon cancer cells unless a rise of oxidative stress occurs. These results support the concept that oxidative stress plays a critical role in E2-induced carcinogenesis and further open an important scenario to develop novel therapeutic strategies that target NGB against E2-related cancers.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Giulia Camilli
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Filippo Acconcia
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Stefano Leone
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy
| | - Maria Marino
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| |
Collapse
|
47
|
Bagati A, Koch Z, Bofinger D, Goli H, Weiss LS, Dau R, Thomas M, Zucker SN. A Modified In vitro Invasion Assay to Determine the Potential Role of Hormones, Cytokines and/or Growth Factors in Mediating Cancer Cell Invasion. J Vis Exp 2015:51480. [PMID: 25938644 PMCID: PMC4541604 DOI: 10.3791/51480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Blood serum serves as a chemoattractant towards which cancer cells migrate and invade, facilitating their intravasation into microvessels. However, the actual molecules towards which the cells migrate remain elusive. This modified invasion assay has been developed to identify targets which drive cell migration and invasion. This technique compares the invasion index under three conditions to determine whether a specific hormone, growth factor, or cytokine plays a role in mediating the invasive potential of a cancer cell. These conditions include i) normal fetal bovine serum (FBS), ii) charcoal-stripped FBS (CS-FBS), which removes hormones, growth factors, and cytokines and iii) CS-FBS + molecule (denoted "X"). A significant change in cell invasion with CS-FBS as compared to FBS, indicates the involvement of hormones, cytokines or growth factors in mediating the change. Individual molecules can then be added back to CS-FBS to assay their ability to reverse or rescue the invasion phenotype. Furthermore, two or more factors can be combined to evaluate the additive or synergistic effects of multiple molecules in driving or inhibiting invasion. Overall, this method enables the investigator to determine whether hormones, cytokines, and/or growth factors play a role in cell invasion by serving as chemoattractants or inhibitors of invasion for a particular type of cancer cell or a specific mutant. By identifying specific chemoattractants and inhibitors, this modified invasion assay may help to elucidate signaling pathways that direct cancer cell invasion.
Collapse
Affiliation(s)
- Archis Bagati
- Department of Cell Stress Biology, Roswell Park Cancer Institute
| | - Zethan Koch
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College
| | - Diane Bofinger
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College
| | - Haneesha Goli
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College
| | - Laura S Weiss
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College
| | - Rosie Dau
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College
| | - Megha Thomas
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College
| | - Shoshanna N Zucker
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College;
| |
Collapse
|
48
|
Kusch A, Schmidt M, Gürgen D, Postpieszala D, Catar R, Hegner B, Davidson MM, Mahmoodzadeh S, Dragun D. 17ß-Estradiol regulates mTORC2 sensitivity to rapamycin in adaptive cardiac remodeling. PLoS One 2015; 10:e0123385. [PMID: 25880554 PMCID: PMC4399939 DOI: 10.1371/journal.pone.0123385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Adaptive cardiac remodeling is characterized by enhanced signaling of mTORC2 downstream kinase Akt. In females, 17ß-estradiol (E2), as well as Akt contribute essentially to sex-related premenopausal cardioprotection. Pharmacologic mTOR targeting with rapamycin is increasingly used for various clinical indications, yet burdened with clinical heterogeneity in therapy responses. The drug inhibits mTORC1 and less-so mTORC2. In male rodents, rapamycin decreases maladaptive cardiac hypertrophy whereas it leads to detrimental dilative cardiomyopathy in females. We hypothesized that mTOR inhibition could interfere with 17β-estradiol (E2)-mediated sexual dimorphism and adaptive cell growth and tested responses in murine female hearts and cultured female cardiomyocytes. Under physiological in vivo conditions, rapamycin compromised mTORC2 function only in female, but not in male murine hearts. In cultured female cardiomyocytes, rapamycin impaired simultaneously IGF-1 induced activation of both mTOR signaling branches, mTORC1 and mTORC2 only in presence of E2. Use of specific estrogen receptor (ER)α- and ERβ-agonists indicated involvement of both estrogen receptors (ER) in rapamycin effects on mTORC1 and mTORC2. Classical feedback mechanisms common in tumour cells with upregulation of PI3K signaling were not involved. E2 effect on Akt-pS473 downregulation by rapamycin was independent of ERK as shown by sequential mTOR and MEK-inhibition. Furthermore, regulatory mTORC2 complex defining component rictor phosphorylation at Ser1235, known to interfere with Akt-substrate binding to mTORC2, was not altered. Functionally, rapamycin significantly reduced trophic effect of E2 on cell size. In addition, cardiomyocytes with reduced Akt-pS473 under rapamycin treatment displayed decreased SERCA2A mRNA and protein expression suggesting negative functional consequences on cardiomyocyte contractility. Rictor silencing confirmed regulation of SERCA2A expression by mTORC2 in E2-cultured female cardiomyocytes. These data highlight a novel modulatory function of E2 on rapamycin effect on mTORC2 in female cardiomyocytes and regulation of SERCA2A expression by mTORC2. Conceivably, rapamycin abrogates the premenopausal “female advantage”.
Collapse
Affiliation(s)
- Angelika Kusch
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Maria Schmidt
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Dennis Gürgen
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Postpieszala
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Björn Hegner
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Merci M. Davidson
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Shokoufeh Mahmoodzadeh
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Duska Dragun
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
49
|
Lojkin I, Rubinek T, Orsulic S, Schwarzmann O, Karlan BY, Bose S, Wolf I. Reduced expression and growth inhibitory activity of the aging suppressor klotho in epithelial ovarian cancer. Cancer Lett 2015; 362:149-57. [PMID: 25827069 DOI: 10.1016/j.canlet.2015.03.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/22/2022]
Abstract
Klotho is an anti-aging transmembrane protein, which can be shed and function as a hormone. Accumulating data indicate klotho as a tumor suppressor in a wide array of malignancies, and we identified klotho as an inhibitor of the insulin-like growth factor (IGF-1) pathway in cancer cells. As this pathway is significant in the development of epithelial ovarian cancer (EOC) we studied klotho expression and activity in this tumor. Klotho mRNA levels were reduced in 16 of 19 EOC cell lines and immunohistochemistry analysis revealed high expression in normal ovaries, and reduced expression in 100 of 241 high grade papillary-serous adenocarcinoma of the ovaries, fallopian tubes and peritoneum. Reduced expression was associated with wild-type BRCA status. Klotho reduced EOC cell viability, enhanced cisplatin sensitivity, and reduced expression of mesenchymal markers. Finally, klotho inhibited IGF-1 pathway activation and inhibited transcriptional activity of the estrogen receptor. In conclusion, klotho is silenced in a substantial subset of the tumors and restoring its expression slows growth of EOC cells and inhibits major signaling pathways. As klotho is a hormone, treatment with klotho may serve as a novel treatment for EOC.
Collapse
Affiliation(s)
- Irina Lojkin
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tami Rubinek
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sandra Orsulic
- Women's Cancer Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Omer Schwarzmann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Beth Y Karlan
- Women's Cancer Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shikha Bose
- Department of Pathology & Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ido Wolf
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
50
|
Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biol 2015; 43:42-60. [PMID: 25728938 DOI: 10.1016/j.matbio.2015.02.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 12/29/2022]
Abstract
The 17β-estradiol (E2)/estrogen receptor alpha (ERα) signaling pathway is one of the most important pathways in hormone-dependent breast cancer. E2 plays pivotal roles in cancer cell growth, survival, and architecture as well as in gene expression regulatory mechanisms. In this study, we established stably transfected MCF-7 cells by knocking down the ERα gene (designated as MCF-7/SP10+ cells), using specific shRNA lentiviral particles, and compared them with the control cells (MCF-7/c). Interestingly, ERα silencing in MCF-7 cells strongly induced cellular phenotypic changes accompanied by significant changes in gene and protein expression of several markers typical of epithelial to mesenchymal transition (EMT). Notably, these cells exhibited enhanced cell proliferation, migration and invasion. Moreover, ERα suppression strongly affected the gene and protein expression of EGFR and HER2 receptor tyrosine kinases, and various extracellular matrix (ECM) effectors, including matrix metalloproteinases and their endogenous inhibitors (MMPs/TIMPs) and components of the plasminogen activation system. The action caused by E2 in MCF-7/c cells in the expression of HER2, MT1-MMP, MMP1, MMP9, uPA, tPA, and PAI-1 was abolished in MCF-7/SP10+ cells lacking ERα. These data suggested a regulatory role for the E2/ERα pathway in respect to the composition and activity of the extracellular proteolytic molecular network. Notably, loss of ERα promoted breast cancer cell migration and invasion by inducing changes in the expression levels of certain matrix macromolecules (especially uPA, tPA, PAI-1) through the EGFR-ERK signaling pathway. In conclusion, loss of ERα in breast cancer cells results in a potent EMT characterized by striking changes in the expression profile of specific matrix macromolecules highlighting the potential nodal role of matrix effectors in breast cancer endocrine resistance.
Collapse
|