1
|
Tafelski S, Wandrey JD, Shaqura M, Hong X, Beyer A, Schäfer M, Mousa SA. Translation of Experimental Findings from Animal to Human Biology: Identification of Neuronal Mineralocorticoid and Glucocorticoid Receptors in a Sectioned Main Nerve Trunk of the Leg. Cells 2023; 12:1785. [PMID: 37443819 PMCID: PMC10340435 DOI: 10.3390/cells12131785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The activation of the mineralocorticoid (MR) and glucocorticoid (GR) receptors on peripheral sensory neurons seems to modify pain perception through both direct non-genomic and indirect genomic pathways. These distinct subpopulations of sensory neurons are not known for peripheral human nerves. Therefore, we examined MR and GR on subpopulations of sensory neurons in sectioned human and rat peripheral nerves. Real-time PCR (RT-PCR) and double immunofluorescence confocal analysis of MR and GR with the neuronal markers PGP9.5, neurofilament 200 (NF200), and the potential pain signaling molecules CGRP, Nav1.8, and TRPV1 were performed in human and rat nerve tissue. We evaluated mechanical hyperalgesia after intrathecal administration of GR and MR agonists. We isolated MR- and GR-specific mRNA from human peripheral nerves using RT-PCR. Our double immunofluorescence analysis showed that the majority of GR colocalized with NF200 positive, myelinated, mechanoreceptive A-fibers and, to a lesser extent, with peripheral peptidergic CGRP-immunoreactive sensory nerve fibers in humans and rats. However, the majority of MR colocalized with CGRP in rat as well as human nerve tissue. Importantly, there was an abundant colocalization of MR with the pain signaling molecules TRPV1, CGRP, and Nav1.8 in human as well as rat nerve tissue. The intrathecal application of the GR agonist reduced, and intrathecal administration of an MR agonist increased, mechanical hyperalgesia in rats. Altogether, these findings support a translational approach in mammals that aims to explain the modulation of sensory information through MR and GR activation. Our findings show a significant overlap between humans and rats in MR and GR expression in peripheral sensory neurons.
Collapse
Affiliation(s)
- Sascha Tafelski
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan D. Wandrey
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Mohammed Shaqura
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Xueqi Hong
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Antje Beyer
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Michael Schäfer
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Shaaban A. Mousa
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
2
|
Mousa SA, Dehe L, Aboryag N, Shaqura M, Beyer A, Schäfer M, Treskatsch S. Identification of glucocorticoid receptors as potential modulators of parasympathetic and sympathetic neurons within rat intracardiac ganglia. Front Neuroanat 2022; 16:902738. [PMID: 36213610 PMCID: PMC9539283 DOI: 10.3389/fnana.2022.902738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Emerging evidences indicate that glucocorticoid receptors (GR) play a regulatory role in cardiac function, particularly with regard to the autonomic nervous system. Therefore, this study aimed to demonstrate the expression and the precise anatomical location of GR in relation to the parasympathetic and sympathetic innervations of the heart. Methods The present study used tissue samples from rat heart atria to perform conventional reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, and double immunofluorescence confocal analysis of GR with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP) as well as the mineralocorticoid receptor (MR). Results Double immunofluorescence labeling revealed that GRs were co-expressed with VAChT in parasympathetic principal neuronal somata and nerve terminals innervating atrium. Also, GR colocalized with the sympathetic neuronal marker TH in a cluster of small intensely fluorescent (SIF) cells, on intracardiac nerve terminals and in the atrial myocardium. GR immunoreactivity was scarcely identified on CGRP-immunoreactive sensory nerve terminals. Approximately 20% of GR immunoreactive neuronal somata co-localized with MR. Finally, conventional RT-PCR and Western blot confirmed the presence of GR and MR in rat heart atria. Conclusion This study provides evidence for the existence of GR predominantly on cardiac parasympathetic neurons and TH-immunoreactive SIF cells suggesting a functional role of cardiac GR on cardiovascular function by modulation of the cardiac autonomic nervous system.
Collapse
Affiliation(s)
- Shaaban A. Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Lukas Dehe
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Noureddin Aboryag
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Antje Beyer
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
3
|
Upregulation of Mineralocorticoid Receptor Contributes to Development of Salt-Sensitive Hypertension after Ischemia-Reperfusion Injury in Rats. Int J Mol Sci 2022; 23:ijms23147831. [PMID: 35887178 PMCID: PMC9324399 DOI: 10.3390/ijms23147831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The ischemia-reperfusion injury (IRI) of rat kidneys is used as a model of acute kidney injury. Salt-sensitive hypertension occurs in rats after IRI, and the distal nephrons play important roles in the development of this condition. We investigated the role of the mineralocorticoid receptor (MR) in the progression of IRI-induced salt-sensitive hypertension in rats. Fourteen days after right-side nephrectomy, IRI was induced by clamping the left renal artery, with sham surgery performed as a control. IRI rats were provided with normal water or water with 1.0% NaCl (IRI/NaCl), or they were implanted with an osmotic mini-pump to infuse vehicle or aldosterone (IRI/Aldo). Esaxerenone, a non-steroidal MR blocker (MRB), was administered to IRI/NaCl and IRI/Aldo rats for 6 weeks. MR expression increased by day 7 post-IRI. Blood pressure and urinary protein excretion increased in IRI/NaCl and IRI/Aldo rats over the 6-week period, but these effects were negated by MRB administration. The MRB attenuated the expression of the gamma-epithelial sodium channel (ENaC) and renal damage. The ENaC inhibitor, amiloride, ameliorated hypertension and renal damage in IRI/NaCl and IRI/Aldo rats. Our findings thus showed that MR upregulation may play a pivotal role in ENaC-mediated sodium uptake in rats after IRI, resulting in the development of salt-sensitive hypertension in response to salt overload or the activation of the renin-angiotensin-aldosterone system.
Collapse
|
4
|
Behar-Cohen F, Jaisser F, Zhao M. Letter to the Editor From Behar-Cohen et al.: "The Cortisol Response of Male and Female Choroidal Endothelial Cells: Implications for Central Serous Chorioretinopathy". J Clin Endocrinol Metab 2022; 107:e2204-e2205. [PMID: 34922389 DOI: 10.1210/clinem/dgab908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, 75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin Ophthalmopole, 75014 Paris, France
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, 75006 Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, 75006 Paris, France
| |
Collapse
|
5
|
Brinks J, van Dijk EHC, Notenboom RGE, Quax PHA, Boon CJF, Meijer OC. Response to Letter to the Editor From Behar-Cohen et al.: The Cortisol Response of Male and Female Choroidal Endothelial Cells: Implications for Central Serous Chorioretinopathy. J Clin Endocrinol Metab 2022; 107:e2213-e2214. [PMID: 34922346 PMCID: PMC9016433 DOI: 10.1210/clinem/dgab910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Joost Brinks
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Elon H C van Dijk
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Robbert G E Notenboom
- Department of Anatomy and Embryology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, 1100 DD Amsterdam-Zuidoost, the Netherlands
| | - Onno C Meijer
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
- Department of Medicine, Division of Endocrinology and Metabolism, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
- Correspondence: Onno C. Meijer, PhD, Leiden University Medical Center, Department of Medicine, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
6
|
Amaya JM, Viho EMG, Sips HCM, Lalai RA, Sahut‐Barnola I, Dumontet T, Montanier N, Pereira AM, Martinez A, Meijer OC. Gene expression changes in the brain of a Cushing's syndrome mouse model. J Neuroendocrinol 2022; 34:e13125. [PMID: 35365898 PMCID: PMC9287025 DOI: 10.1111/jne.13125] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022]
Abstract
Excess glucocorticoid exposure affects emotional and cognitive brain functions. The extreme form, Cushing's syndrome, is adequately modelled in the AdKO2.0 mouse, consequential to adrenocortical hypertrophy and hypercorticosteronemia. We previously reported that the AdKO2.0 mouse brain undergoes volumetric changes that resemble closely those of Cushing's syndrome human patients, as well as changes in expression of glial related marker proteins. In the present work, the expression of genes related to glial and neuronal cell populations and functions was assessed in regions of the anterior brain, hippocampus, amygdala and hypothalamus. Glucocorticoid target genes were consistently regulated, including CRH mRNA suppression in the hypothalamus and induction in amygdala and hippocampus, even if glucocorticoid receptor protein was downregulated. Expression of glial genes was also affected in the AdKO2.0 mouse brain, indicating a different activation status in glial cells. Generic markers for neuronal cell populations, and cellular integrity were only slightly affected. Our findings highlight the vulnerability of glial cell populations to chronic high levels of circulating glucocorticoids.
Collapse
Affiliation(s)
- Jorge Miguel Amaya
- Department of Internal Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Eva M. G. Viho
- Department of Internal Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Hetty C. M. Sips
- Department of Internal Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Reshma A. Lalai
- Department of Internal Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Isabelle Sahut‐Barnola
- Génétique Reproduction et DéveloppementUniversité Clermont‐Auvergne, CNRS, INSERMClermont‐FerrandFrance
| | - Typhanie Dumontet
- Génétique Reproduction et DéveloppementUniversité Clermont‐Auvergne, CNRS, INSERMClermont‐FerrandFrance
| | - Nathanaëlle Montanier
- Génétique Reproduction et DéveloppementUniversité Clermont‐Auvergne, CNRS, INSERMClermont‐FerrandFrance
| | - Alberto M. Pereira
- Department of Internal Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Antoine Martinez
- Génétique Reproduction et DéveloppementUniversité Clermont‐Auvergne, CNRS, INSERMClermont‐FerrandFrance
| | - Onno C. Meijer
- Department of Internal Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
7
|
Dehe L, Mousa SA, Aboryag N, Shaqura M, Beyer A, Schäfer M, Treskatsch S. Identification of Mineralocorticoid Receptors, Aldosterone, and Its Processing Enzyme CYP11B2 on Parasympathetic and Sympathetic Neurons in Rat Intracardiac Ganglia. Front Neuroanat 2022; 15:802359. [PMID: 35087382 PMCID: PMC8786913 DOI: 10.3389/fnana.2021.802359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Recent interest has focused on the mineralocorticoid receptor (MR) and its impact on the myocardium and the performance of the heart. However, there is a lack of evidence about MR expression and its endogenous ligand aldosterone synthesis with specific regard to the intrinsic cardiac nervous system. Therefore, we looked for evidence of MR and aldosterone in sympathetic and parasympathetic neurons of intracardiac ganglia. Tissue samples from rat heart atria were subjected to conventional reverse-transcriptase polymerase chain reaction (PCR), Western blot, and double immunofluorescence confocal analysis of MR, corticosterone-inactivating enzyme 11β-hydroxysteroid-dehydrogenase-2 (11β-HSD2), aldosterone, and its processing enzyme CYP11B2 together with the neuronal markers vesicular acetylcholine transporter (VAChT) and tyrosine hydroxylase (TH). Our results demonstrated MR, 11β-HSD2, and CYP11B2 specific mRNA and protein bands in rat heart atria. Double immunofluorescence labeling revealed coexpression of MR immunoreactivity with VAChT in large diameter parasympathetic principal neurons. In addition, MR immunoreactivity was identified in TH-immunoreactive small intensely fluorescent (SIF) cells and in nearby VAChT- and TH-immunoreactive nerve terminals. Interestingly, the aldosterone and its synthesizing enzyme CYP11B2 and 11β-HSD2 colocalized in MR– immunoreactive neurons of intracardiac ganglia. Overall, this study provides first evidence for the existence of not only local expression of MR, but also of 11β-HSD2 and aldosterone with its processing enzyme CYP11B2 in the neurons of the cardiac autonomic nervous system, suggesting a possible modulatory role of the mineralocorticoid system on the endogenous neuronal activity on heart performance.
Collapse
Affiliation(s)
- Lukas Dehe
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| | - Shaaban A. Mousa
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
- *Correspondence: Shaaban A. Mousa,
| | - Noureddin Aboryag
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| | - Mohammed Shaqura
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| | - Antje Beyer
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Schäfer
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Michaud V, Deodhar M, Arwood M, Al Rihani SB, Dow P, Turgeon J. ACE2 as a Therapeutic Target for COVID-19; its Role in Infectious Processes and Regulation by Modulators of the RAAS System. J Clin Med 2020; 9:E2096. [PMID: 32635289 PMCID: PMC7408699 DOI: 10.3390/jcm9072096] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is the recognized host cell receptor responsiblefor mediating infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2bound to tissue facilitates infectivity of SARS-CoV-2; thus, one could argue that decreasing ACE2tissue expression would be beneficial. However, ACE2 catalytic activity towards angiotensin I (AngI) and II (Ang II) mitigates deleterious effects associated with activation of the renin-angiotensinaldosteronesystem (RAAS) on several organs, including a pro-inflammatory status. At the tissuelevel, SARS-CoV-2 (a) binds to ACE2, leading to its internalization, and (b) favors ACE2 cleavage toform soluble ACE2: these actions result in decreased ACE2 tissue levels. Preserving tissue ACE2activity while preventing ACE2 shredding is expected to circumvent unrestrained inflammatoryresponse. Concerns have been raised around RAAS modulators and their effects on ACE2expression or catalytic activity. Various cellular and animal models report conflicting results invarious tissues. However, recent data from observational and meta-analysis studies in SARS-CoV-2-infected patients have concluded that RAAS modulators do not increase plasma ACE2 levels orsusceptibility to infection and are not associated with more severe diseases. This review presentsour current but evolving knowledge of the complex interplay between SARS-CoV-2 infection, ACE2levels, modulators of RAAS activity and the effects of RAAS modulators on ACE2 expression.
Collapse
Affiliation(s)
- Veronique Michaud
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Malavika Deodhar
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
| | - Meghan Arwood
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
| | - Sweilem B Al Rihani
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
| | - Pamela Dow
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
| | - Jacques Turgeon
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
9
|
Hauck JS, Lowe J, Rastogi N, McElhanon KE, Petrosino JM, Peczkowski KK, Chadwick AN, Zins JG, Accornero F, Janssen PML, Weisleder NL, Rafael-Fortney JA. Mineralocorticoid receptor antagonists improve membrane integrity independent of muscle force in muscular dystrophy. Hum Mol Genet 2020; 28:2030-2045. [PMID: 30759207 DOI: 10.1093/hmg/ddz039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Mineralocorticoid receptor (MR) drugs have been used clinically for decades to treat cardiovascular diseases. MR antagonists not only show preclinical efficacy for heart in Duchenne muscular dystrophy (DMD) models but also improve skeletal muscle force and muscle membrane integrity. The mechanisms of action of MR antagonists in skeletal muscles are entirely unknown. Since MR are present in many cell types in the muscle microenvironment, it is critical to define cell-intrinsic functions in each cell type to ultimately optimize antagonist efficacy for use in the widest variety of diseases. We generated a new conditional knockout of MR in myofibers and quantified cell-intrinsic mechanistic effects on functional and histological parameters in a DMD mouse model. Skeletal muscle MR deficiency led to improved respiratory muscle force generation and less deleterious fibrosis but did not reproduce MR antagonist efficacy on membrane susceptibility to induced damage. Surprisingly, acute application of MR antagonist to muscles led to improvements in membrane integrity after injury independent of myofiber MR. These data demonstrate that MR antagonists are efficacious to dystrophic skeletal muscles through both myofiber intrinsic effects on muscle force and downstream fibrosis and extrinsic functions on membrane stability. MR antagonists may therefore be applicable for treating more general muscle weakness and possibly other conditions that result from cell injuries.
Collapse
Affiliation(s)
| | | | | | - Kevin E McElhanon
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Jennifer M Petrosino
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | | | | | | - Federica Accornero
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | | - Noah L Weisleder
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | |
Collapse
|
10
|
Mitsuishi Y, Shibata H, Kurihara I, Kobayashi S, Yokota K, Murai-Takeda A, Hayashi T, Jo R, Nakamura T, Morisaki M, Itoh H. Epidermal growth factor receptor/extracellular signal-regulated kinase pathway enhances mineralocorticoid receptor transcriptional activity through protein stabilization. Mol Cell Endocrinol 2018; 473:89-99. [PMID: 29391190 DOI: 10.1016/j.mce.2018.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Activation of mineralocorticoid receptor (MR) is evoked by aldosterone, and it induces hypertension and cardiovascular disease when it's concomitant with excessive salt loading. We have proposed the notion of "MR-associated hypertension", in which add-on therapy of MR blockers is effective even though serum aldosterone level is within normal range. To elucidate its underlying molecular mechanism, we focused on the effect of epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) activation on MR activity. Epidermal growth factor (EGF) administration increased MR transcriptional activity through EGFR/ERK pathway and increased protein level by counteracting MR ubiquitylation in vitro. EGF administration in vivo also increased MR protein level and target gene expression in kidney, which were decreased by EGFR inhibitor. In addition, the administration of EGFR inhibitor lowered systolic blood pressure and MR activity in DOCA/salt-treated mice. In conclusion, EGFR/ERK pathway activation is considered as one of the underlying mechanisms of aberrant MR activation and EGFR/ERK pathway blockade could be an alternative approach for the prevention of MR-related cardiovascular events.
Collapse
Affiliation(s)
- Yuko Mitsuishi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirotaka Shibata
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasamamachi, Yufu 879-5593, Oita, Japan.
| | - Isao Kurihara
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sakiko Kobayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenichi Yokota
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayano Murai-Takeda
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Diabetes Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, 3-19-18 Nishishimbashi, Minato-ku, Tokyo 105-8471, Japan
| | - Rie Jo
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshifumi Nakamura
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuha Morisaki
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
11
|
Schreier B, Wolf A, Hammer S, Pohl S, Mildenberger S, Rabe S, Gekle M, Zipprich A. The selective mineralocorticoid receptor antagonist eplerenone prevents decompensation of the liver in cirrhosis. Br J Pharmacol 2018; 175:2956-2967. [PMID: 29682743 DOI: 10.1111/bph.14341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/27/2018] [Accepted: 03/08/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The mineralocorticoid receptor (MR) contributes to fibrosis in various tissues, and MR antagonists, like eplerenone, are used to prevent fibrosis. The role of MR antagonists in hepatic fibrosis and cirrhosis is unknown. Here, we investigated the role of MRs and eplerenone in cirrhosis development. EXPERIMENTAL APPROACH Liver fibrosis (5 weeks) and cirrhosis, without (8 weeks) and with ascites (12 weeks), were induced by CCl4 in rats and comprehensively analysed. The effect of eplerenone on the development of cirrhosis with ascites was assessed. MR expression, cellular and subcellular distribution and impact of hypoxia were investigated in vivo and ex vivo. Primary rat hepatocytes and cell lines were used to investigate MR trafficking and transcriptional activity mechanistically. KEY RESULTS In cirrhosis with ascites, MR mRNA and protein expressions were reduced in hepatocytes of hypoxic areas. While in normoxic areas MRs were mainly cytosolic, the remaining MRs in hypoxic areas were mainly localized in the nuclei, indicating activation followed by translocation and degradation. Accordingly, eplerenone treatment prevented nuclear MR translocation and the worsening of cirrhosis. Exposing hepatocytes ex vivo to hypoxia induced nuclear MR translocation and enhanced transcriptional MR activity at response elements of the NF-κB pathway. CONCLUSIONS AND IMPLICATIONS We showed for the first time that hypoxia leads to a pathogenetic ligand-independent activation of hepatic MRs during cirrhosis resulting in their nuclear translocation and transcriptional activation of the NF-κB pathway. Treatment with eplerenone prevented the worsening of cirrhosis by blocking this ligand-independent activation of the MR.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius Bernstein Institute of Physiology, Medical School, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Anja Wolf
- Laboratory of Molecular Hepatology, Clinic of Internal Medicine I, Martin Luther University of Halle-Wittenberg, Halle, Germany.,Julius Bernstein Institute of Physiology, Medical School, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Stefanie Hammer
- Laboratory of Molecular Hepatology, Clinic of Internal Medicine I, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Sabine Pohl
- Laboratory of Molecular Hepatology, Clinic of Internal Medicine I, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Sigrid Mildenberger
- Julius Bernstein Institute of Physiology, Medical School, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Sindy Rabe
- Julius Bernstein Institute of Physiology, Medical School, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Medical School, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Alexander Zipprich
- Laboratory of Molecular Hepatology, Clinic of Internal Medicine I, Martin Luther University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
12
|
Lowe J, Floyd KT, Rastogi N, Schultz EJ, Chadwick JA, Swager SA, Zins JG, Kadakia FK, Smart S, Gomez-Sanchez EP, Gomez-Sanchez CE, Raman SV, Janssen PML, Rafael-Fortney JA. Similar efficacy from specific and non-specific mineralocorticoid receptor antagonist treatment of muscular dystrophy mice. J Neuromuscul Dis 2018; 3:395-404. [PMID: 27822449 DOI: 10.3233/jnd-160173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Combined treatment with an angiotensin-converting enzyme inhibitor and a mineralocorticoid receptor (MR) antagonist improved cardiac and skeletal muscle function and pathology in a mouse model of Duchenne muscular dystrophy. MR is present in limb and respiratory skeletal muscles and functions as a steroid hormone receptor. OBJECTIVE The goals of the current study were to compare the efficacy of the specific MR antagonist eplerenone with the non-specific MR antagonist spironolactone, both in combination with the angiotensin-converting enzyme inhibitor lisinopril. METHODS Three groups of n=18 dystrophin-deficient, utrophin-haploinsufficient male mice were given chow containing: lisinopril plus spironolactone, lisinopril plus eplerenone, or no drug, from four to 20 weeks-of-age. Eighteen C57BL/10 male mice were used as wild-type controls. In vivo measurements included cardiac magnetic resonance imaging, conscious electrocardiography, and grip strength. From each mouse in the study, diaphragm, extensor digitorum longus, and cardiac papillary muscle force was measured ex vivo, followed by histological quantification of muscle damage in heart, diaphragm, quadriceps, and abdominal muscles. MR protein levels were also verified in treated muscles. RESULTS Treatment with specific and non-specific MR antagonists did not result in any adverse effects to dystrophic skeletal muscles or heart. Both treatments resulted in similar functional and pathological improvements across a wide array of parameters. MR protein levels were not reduced by treatment. CONCLUSIONS These data suggest that spironolactone and eplerenone show similar effects in dystrophic mice and support the clinical development of MR antagonists for treating skeletal muscles in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Jeovanna Lowe
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kyle T Floyd
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Neha Rastogi
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Eric J Schultz
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jessica A Chadwick
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sarah A Swager
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jonathan G Zins
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Feni K Kadakia
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Suzanne Smart
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Elise P Gomez-Sanchez
- Dept. of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Celso E Gomez-Sanchez
- Dept. of Internal Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Subha V Raman
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jill A Rafael-Fortney
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Hirohama D, Ayuzawa N, Ueda K, Nishimoto M, Kawarazaki W, Watanabe A, Shimosawa T, Marumo T, Shibata S, Fujita T. Aldosterone Is Essential for Angiotensin II-Induced Upregulation of Pendrin. J Am Soc Nephrol 2017; 29:57-68. [PMID: 29021385 DOI: 10.1681/asn.2017030243] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
The renin-angiotensin-aldosterone system has an important role in the control of fluid homeostasis and BP during volume depletion. Dietary salt restriction elevates circulating angiotensin II (AngII) and aldosterone levels, increasing levels of the Cl-/HCO3- exchanger pendrin in β-intercalated cells and the Na+-Cl- cotransporter (NCC) in distal convoluted tubules. However, the independent roles of AngII and aldosterone in regulating these levels remain unclear. In C57BL/6J mice receiving a low-salt diet or AngII infusion, we evaluated the membrane protein abundance of pendrin and NCC; assessed the phosphorylation of the mineralocorticoid receptor, which selectively inhibits aldosterone binding in intercalated cells; and measured BP by radiotelemetry in pendrin-knockout and wild-type mice. A low-salt diet or AngII infusion upregulated NCC and pendrin levels, decreased the phosphorylation of mineralocorticoid receptor in β-intercalated cells, and increased plasma aldosterone levels. Notably, a low-salt diet did not alter BP in wild-type mice, but significantly decreased BP in pendrin-knockout mice. To dissect the roles of AngII and aldosterone, we performed adrenalectomies in mice to remove aldosterone from the circulation. In adrenalectomized mice, AngII infusion again upregulated NCC expression, but did not affect pendrin expression despite the decreased phosphorylation of mineralocorticoid receptor. By contrast, AngII and aldosterone coadministration markedly elevated pendrin levels in adrenalectomized mice. Our results indicate that aldosterone is necessary for AngII-induced pendrin upregulation, and suggest that pendrin contributes to the maintenance of normal BP in cooperation with NCC during activation of the renin-angiotensin-aldosterone system by dietary salt restriction.
Collapse
Affiliation(s)
- Daigoro Hirohama
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan;
| | - Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kohei Ueda
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Atsushi Watanabe
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Takeshi Marumo
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shigeru Shibata
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; .,CREST, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
14
|
Jiménez-Canino R, Lorenzo-Díaz F, Jaisser F, Farman N, Giraldez T, Alvarez de la Rosa D. Histone Deacetylase 6-Controlled Hsp90 Acetylation Significantly Alters Mineralocorticoid Receptor Subcellular Dynamics But Not its Transcriptional Activity. Endocrinology 2016; 157:2515-32. [PMID: 27100623 DOI: 10.1210/en.2015-2055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily that transduces the biological effects of corticosteroids. Its best-characterized role is to enhance transepithelial sodium reabsorption in response to increased aldosterone levels. In addition, MR participates in other aldosterone- or glucocorticoid-controlled processes such as cardiovascular homeostasis, adipocyte differentiation or neurogenesis, and regulation of neuronal activity in the hippocampus. Like other steroid receptors, MR forms cytosolic heterocomplexes with heat shock protein (Hsp) 90), Hsp70, and other proteins such as immunophilins. Interaction with Hsp90 is thought to maintain MR in a ligand-binding competent conformation and to regulate ligand-dependent and -independent nucleocytoplasmatic shuttling. It has previously been shown that acetylation of residue K295 in Hsp90 regulates its interaction with the androgen receptor and glucocorticoid receptor (GR). In this work we hypothesized that Hsp90 acetylation provides a regulatory step to modulate MR cellular dynamics and activity. We used Hsp90 acetylation mimic mutant K295Q or nonacetylatable mutant K295R to examine whether MR nucleocytoplasmatic shuttling and gene transactivation are affected. Furthermore, we manipulated endogenous Hsp90 acetylation levels by controlling expression or activity of histone deacetylase 6 (HDAC6), the enzyme responsible for deacetylation of Hsp90-K295. Our data demonstrates that HDAC6-mediated Hsp90 acetylation regulates MR cellular dynamics but it does not alter its function. This stands in contrast with the down-regulation of GR by HDAC6, suggesting that Hsp90 acetylation may play a role in balancing relative MR and GR activity when both factors are co-expressed in the same cell.
Collapse
Affiliation(s)
- Rubén Jiménez-Canino
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Fabián Lorenzo-Díaz
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Frederic Jaisser
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Nicolette Farman
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Teresa Giraldez
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Diego Alvarez de la Rosa
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| |
Collapse
|
15
|
Chadwick JA, Hauck JS, Lowe J, Shaw JJ, Guttridge DC, Gomez-Sanchez CE, Gomez-Sanchez EP, Rafael-Fortney JA. Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target. FASEB J 2015; 29:4544-54. [PMID: 26178166 DOI: 10.1096/fj.15-276782] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Early treatment with heart failure drugs lisinopril and spironolactone improves skeletal muscle pathology in Duchenne muscular dystrophy (DMD) mouse models. The angiotensin converting enzyme inhibitor lisinopril and mineralocorticoid receptor (MR) antagonist spironolactone indirectly and directly target MR. The presence and function of MR in skeletal muscle have not been explored. MR mRNA and protein are present in all tested skeletal muscles from both wild-type mice and DMD mouse models. MR expression is cell autonomous in both undifferentiated myoblasts and differentiated myotubes from mouse and human skeletal muscle cultures. To test for MR function in skeletal muscle, global gene expression analysis was conducted on human myotubes treated with MR agonist (aldosterone; EC50 1.3 nM) or antagonist (spironolactone; IC50 1.6 nM), and 53 gene expression differences were identified. Five differences were conserved in quadriceps muscles from dystrophic mice treated with spironolactone plus lisinopril (IC50 0.1 nM) compared with untreated controls. Genes down-regulated more than 2-fold by MR antagonism included FOS, ANKRD1, and GADD45B, with known roles in skeletal muscle, in addition to NPR3 and SERPINA3, bona fide targets of MR in other tissues. MR is a novel drug target in skeletal muscle and use of clinically safe antagonists may be beneficial for muscle diseases.
Collapse
Affiliation(s)
- Jessica A Chadwick
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - J Spencer Hauck
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jeovanna Lowe
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jeremiah J Shaw
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Denis C Guttridge
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Celso E Gomez-Sanchez
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Elise P Gomez-Sanchez
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jill A Rafael-Fortney
- *Department of Molecular and Cellular Biochemistry, Department of Physiology and Cell Biology, Department of Molecular Virology, Immunology, and Medical Genetics College of Medicine, The Ohio State University, Columbus, Ohio, USA; and Department of Internal Medicine and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
16
|
Yang J, Fuller PJ, Morgan J, Shibata H, Clyne CD, Young MJ. GEMIN4 functions as a coregulator of the mineralocorticoid receptor. J Mol Endocrinol 2015; 54:149-60. [PMID: 25555524 DOI: 10.1530/jme-14-0078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily. Pathological activation of the MR causes cardiac fibrosis and heart failure, but clinical use of MR antagonists is limited by the renal side effect of hyperkalemia. Coregulator proteins are known to be critical for nuclear receptor-mediated gene expression. Identification of coregulators, which mediate MR activity in a tissue-specific manner, may allow for the development of novel tissue-selective MR modulators that confer cardiac protection without adverse renal effects. Our earlier studies identified a consensus motif among MR-interacting peptides, MPxLxxLL. Gem (nuclear organelle)-associated protein 4 (GEMIN4) is one of the proteins that contain this motif. Transient transfection experiments in HEK293 and H9c2 cells demonstrated that GEMIN4 repressed agonist-induced MR transactivation in a cell-specific manner. Furthermore, overexpression of GEMIN4 significantly decreased, while knockdown of GEMIN4 increased, the mRNA expression of specific endogenous MR target genes. A physical interaction between GEMIN4 and MR is suggested by their nuclear co-localization upon agonist treatment. These findings indicate that GEMIN4 functions as a novel coregulator of the MR.
Collapse
Affiliation(s)
- Jun Yang
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Peter J Fuller
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - James Morgan
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Hirotaka Shibata
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Colin D Clyne
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Morag J Young
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| |
Collapse
|
17
|
Chen J, Gomez-Sanchez CE, Penman A, May PJ, Gomez-Sanchez E. Expression of mineralocorticoid and glucocorticoid receptors in preautonomic neurons of the rat paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 2014; 306:R328-40. [PMID: 24381176 PMCID: PMC3949076 DOI: 10.1152/ajpregu.00506.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/23/2013] [Indexed: 01/12/2023]
Abstract
Activation of mineralocorticoid receptors (MR) of the hypothalamic paraventricular nucleus (PVN) increases sympathetic excitation. To determine whether MR and glucocorticoid receptors (GR) are expressed in preautonomic neurons of the PVN and how they relate to endogenous aldosterone levels in healthy rats, retrograde tracer was injected into the intermediolateral cell column at T4 to identify preautonomic neurons in the PVN. Expression of MR, GR, 11-β hydroxysteroid dehydrogenase1 and 2 (11β-HSD1, 2), and hexose-6-phosphate dehydrogenase (H6PD) required for 11β-HSD1 reductase activity was assessed by immunohistochemistry. RT-PCR and Western blot analysis were used to determine MR gene and protein expression. Most preautonomic neurons were in the caudal mediocellular region of PVN, and most expressed MR; none expressed GR. 11β-HSD1, but not 11β-HSD2 nor H6PD immunoreactivity, was detected in the PVN. In rats with chronic low or high sodium intakes, the low-sodium diet was associated with significantly higher plasma aldosterone, MR mRNA and protein expression, and c-Fos immunoreactivity within labeled preautonomic neurons. Plasma corticosterone and sodium and expression of tonicity-responsive enhancer binding protein in the PVN did not differ between groups, suggesting osmotic adaptation to the altered sodium intake. These results suggest that MR within preautonomic neurons in the PVN directly participate in the regulation of sympathetic nervous system drive, and aldosterone may be a relevant ligand for MR in preautonomic neurons of the PVN under physiological conditions. Dehydrogenase activity of 11β-HSD1 occurs in the absence of H6PD, which regenerates NADP(+) from NADPH and may increase MR gene expression under physiological conditions.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurobiology and Anatomical Science, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | |
Collapse
|
18
|
Mineralocorticoid receptor activation as an etiological factor in kidney diseases. Clin Exp Nephrol 2013; 18:16-23. [DOI: 10.1007/s10157-013-0827-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
|
19
|
Abstract
Mineralocorticoid receptors (MR) exist in many tissues, in which they mediate diverse functions crucial to normal physiology, including tissue repair and electrolyte and fluid homeostasis. However, inappropriate activation of MR within these tissues, and especially in the brain, causes hypertension and pathological vascular, cardiac, and renal remodeling. MR binds aldosterone, cortisol and corticosterone with equal affinity. In aldosterone-target cells, co-expression with the 11β-hydroxysteroid dehydrogenase 2 (HSD2) allows aldosterone specifically to activate MR. Aldosterone levels are excessive in primary aldosteronism, but in conditions with increased oxidative stress, like CHF, obesity and diabetes, MR may also be inappropriately activated by glucocorticoids. Unlike thiazide diuretics, MR antagonists are diuretics that do not cause insulin resistance. Addition of MR antagonists to standard treatment for hypertension and cardiac or renal disease decreases end-organ pathology and sympathetic nerve activation (SNA), and increases quality of life indices.
Collapse
|
20
|
Strategies for managing ACTH dependent mineralocorticoid excess induced by abiraterone. Cancer Treat Rev 2013; 39:966-73. [PMID: 23582279 DOI: 10.1016/j.ctrv.2013.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/01/2013] [Accepted: 03/06/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Abiraterone strongly inhibits androgen synthesis but may lead to an increase in mineralocorticoid hormones that may impair its long term tolerability in patients with prostate cancer. How to implement available therapies in the management and prevention of these potential side effects is a matter of current clinical research. METHODS The acute and long term consequences of mineralocorticoid excess and the effects of available treatments have been reviewed. Prospective studies in which abiraterone was employed were identified to assess the frequency and severity of the mineralocorticoid excess syndrome and the efficacy of ameliorating therapeutic approaches. RESULTS Glucocorticoids to inhibit the ACTH increase that drives mineralocorticoid synthesis and mineralocorticoid receptor (MR) antagonists can be used in the management of the abiraterone-induced mineralocorticoid excess syndrome. Phase I and II trials of abiraterone without additional therapies revealed that mineralocorticoid excess symptoms occur in the majority of patients. Eplerenone, a specific MR antagonist, seems to be effective but it does not control the mineralocorticoid excess. Glucorticoid supplementation to control ACTH drive is therefore needed. In several randomized trials the addition of prednisone (10mg daily) to abiraterone was not able to prevent mineralocorticoid excess syndrome in many cases and thus cannot be considered the gold standard. CONCLUSION At present, the best conceivable treatment for managing the abiraterone-induced mineralocorticoid excess consists of the administration of glucocorticoid replacement at the lowest effective dose ± MR antagonists and salt deprivation. The drug doses should be modulated by monitoring blood pressure, fluid retention and potassium levels during therapy.
Collapse
|
21
|
Tiberio L, Nascimbeni R, Villanacci V, Casella C, Fra A, Vezzoli V, Furlan L, Meyer G, Parrinello G, Baroni MD, Salerni B, Schiaffonati L. The decrease of mineralcorticoid receptor drives angiogenic pathways in colorectal cancer. PLoS One 2013; 8:e59410. [PMID: 23555666 PMCID: PMC3610652 DOI: 10.1371/journal.pone.0059410] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/13/2013] [Indexed: 12/03/2022] Open
Abstract
Angiogenesis plays a crucial role in tumor growth and progression. Low expression of mineralocorticoid receptor (MR) in several malignant tumors correlates with disease recurrence and overall survival. Previous studies have shown that MR expression is decreased in colorectal cancer (CRC). Here we hypothesize that decreased MR expression can contribute to angiogenesis and poor patient survival in colorectal malignancies. In a cohort of CRC patients, we analyzed tumor MR expression, its correlation with tumor microvascular density and its impact on survival. Subsequently, we interrogated the role of MR in angiogenesis in an in vitro model, based on the colon cancer cell line HCT116, ingenierized to re-express a physiologically controlled MR. In CRC, decreased MR expression was associated with increased microvascular density and poor patient survival. In pchMR transfected HCT116, aldosterone or natural serum steroids largely inhibited mRNA expression levels of both VEGFA and its receptor 2/KDR. In CRC, MR activation may significantly decrease angiogenesis by directly inhibiting dysregulated VEGFA and hypoxia-induced VEGFA mRNA expression. In addition, MR activation attenuates the expression of the VEGF receptor 2/KDR, possibly dampening the activation of a VEGFA/KDR dependent signaling pathway important for the survival of tumor cells under hypoxic conditions.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- * E-mail: (MDB); (LT)
| | - Riccardo Nascimbeni
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- First Unit of General Surgery, Brescia City Hospital, Brescia, Italy
| | | | - Claudio Casella
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- First Unit of General Surgery, Brescia City Hospital, Brescia, Italy
| | - Anna Fra
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Vezzoli
- Department of BioSciences, University of Milano, Milan, Italy
| | - Lucia Furlan
- Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | - Giuliano Meyer
- Department of BioSciences, University of Milano, Milan, Italy
| | - Giovanni Parrinello
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio D. Baroni
- Department of Biology, University of Padova, Padova, Italy
- * E-mail: (MDB); (LT)
| | - Bruno Salerni
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- First Unit of General Surgery, Brescia City Hospital, Brescia, Italy
| | - Luisa Schiaffonati
- Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| |
Collapse
|
22
|
Benter IF, Babiker F, Al-Rashdan I, Yousif M, Akhtar S. RU28318, an aldosterone antagonist, in combination with an ACE inhibitor and angiotensin receptor blocker attenuates cardiac dysfunction in diabetes. J Diabetes Res 2013; 2013:427693. [PMID: 24066305 PMCID: PMC3771425 DOI: 10.1155/2013/427693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIMS We evaluated the effects of RU28318 (RU), a selective mineralocorticoid receptor (MR) antagonist, Captopril (Capt), an angiotensin converting enzyme inhibitor, and Losartan (Los), an angiotensin receptor blocker, alone or in combination with ischemia/reperfusion- (I/R-) induced cardiac dysfunction in hearts obtained from normal and diabetic rats. METHODS Isolated hearts were perfused for 30 min and then subjected to 30 min of global ischemia (I) followed by a period of 30 min of reperfusion (R). Drugs were administered for 30 min either before or after ischemia. Drug regimens tested were RU, Capt, Los, RU + Capt, RU + Los, Capt + Los, and RU + Capt + Los (Triple). Recovery of cardiac hemodynamics was evaluated. RESULTS Recovery of cardiac function was up to 5-fold worse in hearts obtained from diabetic animals compared to controls. Treatment with RU was generally better in preventing or reversing ischemia-induced cardiac dysfunction in normal hearts compared to treatment with Capt or Los alone. In diabetic hearts, RU was generally similarly effective as Capt or Los treatment. CONCLUSIONS RU treatment locally might be considered as an effective therapy or preventative measure in cardiac I/R injury. Importantly, RU was the most effective at improving -dP/dt (a measure of diastolic function) when administered to diabetic hearts after ischemia.
Collapse
Affiliation(s)
- Ibrahim F. Benter
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Fawzi Babiker
- Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
- *Fawzi Babiker:
| | - Ibrahim Al-Rashdan
- Department of Medicine, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Mariam Yousif
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Saghir Akhtar
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| |
Collapse
|
23
|
|