1
|
Penning TM, Covey DF. 5β-Dihydrosteroids: Formation and Properties. Int J Mol Sci 2024; 25:8857. [PMID: 39201544 PMCID: PMC11354470 DOI: 10.3390/ijms25168857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
5β-Dihydrosteroids are produced by the reduction of Δ4-3-ketosteroids catalyzed by steroid 5β-reductase (AKR1D1). By analogy with steroid 5α-reductase, genetic deficiency exists in AKR1D1 which leads to errors in newborn metabolism and in this case to bile acid deficiency. Also, like the 5α-dihydrosteroids (e.g., 5α-dihydrotestosterone), the 5β-dihydrosteroids produced by AKR1D1 are not inactive but regulate ligand access to nuclear receptors, can act as ligands for nuclear and membrane-bound receptors, and regulate ion-channel opening. For example, 5β-reduction of cortisol and cortisone yields the corresponding 5β-dihydroglucocorticoids which are inactive on the glucocorticoid receptor (GR) and provides an additional mechanism of pre-receptor regulation of ligands for the GR in liver cells. By contrast, 5β-pregnanes can act as neuroactive steroids at the GABAA and NMDA receptors and at low-voltage-activated calcium channels, act as tocolytic agents, have analgesic activity and act as ligands for PXR, while bile acids act as ligands for FXR and thereby control cholesterol homeostasis. The 5β-androstanes also have potent vasodilatory properties and work through blockade of Ca2+ channels. Thus, a preference for 5β-dihydrosteroids to work at the membrane level exists via a variety of mechanisms. This article reviews the field and identifies gaps in knowledge to be addressed in future research.
Collapse
Affiliation(s)
- Trevor M. Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19061, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Gu J, Zhou D. Long non-coding RNA MEG3 knockdown represses airway smooth muscle cells proliferation and migration via sponging miR-143-3p/FGF9 in asthma. J Cardiothorac Surg 2024; 19:314. [PMID: 38824534 PMCID: PMC11143653 DOI: 10.1186/s13019-024-02798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Asthma is a respiratory disease characterized by airway remodeling. We aimed to find out the role and mechanism of lncRNA MEG3 in asthma. METHODS We established a cellular model of asthma by inducing human airway smooth muscle cells (HASMCs) with PDGF-BB, and detected levels of lncRNA MEG3, miR-143-3p and FGF9 in HASMCs through qRT-PCR. The functions of lncRNA MEG3 or miR-143-3p on HASMCs were explored by cell transfection. The binding sites of miR-143-3p and FGF9 were subsequently analyzed with bioinformatics software, and validated with dual-luciferase reporter assay. MTT, 5-Ethynyl-2'-deoxyuridine (EdU) assay, and Transwell were used to detect the effects of lncRNA MEG3 or miR-143-3p on proliferation and migration of HASMCs. QRT-PCR and western blot assay were used to evaluate the level of proliferation-related marker PCNA in HASMCs. RESULTS The study found that lncRNA MEG3 negatively correlated with miR-143-3p, and miR-143-3p could directly target with FGF9. Silence of lncRNA MEG3 can suppress migration and proliferation of PDGF-BB-induced HASMCs via increasing miR-143-3p. Further mechanistic studies revealed that miR-143-3p negatively regulated FGF9 expression in HASMCs. MiR-143-3p could inhibit PDGF-BB-induced HASMCs migration and proliferation through downregulating FGF9. CONCLUSION LncRNA MEG3 silencing could inhibit the migration and proliferation of HASMCs through regulating miR-143-3p/FGF9 signaling axis. These results imply that lncRNA MEG3 plays a protective role against asthma.
Collapse
Affiliation(s)
- Jiaying Gu
- Department of Pulmonary and Critical Care Medicine, Wuhan Fourth Hospital, No. 76 Jiefang Avenue, Qiaokou District, Wuhan, 430000, China
| | - Dengfeng Zhou
- Department of Pulmonary and Critical Care Medicine, Wuhan Fourth Hospital, No. 76 Jiefang Avenue, Qiaokou District, Wuhan, 430000, China.
| |
Collapse
|
3
|
Carbajal-García A, Reyes-García J, Díaz-Hernández V, Casas-Hernández MF, Flores-Murrieta FJ, Montaño LM. Testosterone Enhances K V Currents and Airway Smooth Muscle Relaxation Induced by ATP and UTP through P2Y 4 Receptors and Adenylyl Cyclase Pathway. Int J Mol Sci 2024; 25:4652. [PMID: 38731872 PMCID: PMC11083821 DOI: 10.3390/ijms25094652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Numerous studies suggest the involvement of adenosine-5'-triphosphate (ATP) and similar nucleotides in the pathophysiology of asthma. Androgens, such as testosterone (TES), are proposed to alleviate asthma symptoms in young men. ATP and uridine-5'-triphosphate (UTP) relax the airway smooth muscle (ASM) via purinergic P2Y2 and P2Y4 receptors and K+ channel opening. We previously demonstrated that TES increased the expression of voltage-dependent K+ (KV) channels in ASM. This study investigates how TES may potentiate ASM relaxation induced by ATP and UTP. Tracheal tissues treated with or without TES (control group) from young male guinea pigs were used. In organ baths, tracheas exposed to TES (40 nM for 48 h) showed enhanced ATP- and UTP-evoked relaxation. Tetraethylammonium, a K+ channel blocker, annulled this effect. Patch-clamp experiments in tracheal myocytes showed that TES also increased ATP- and UTP-induced K+ currents, and this effect was abolished with flutamide (an androgen receptor antagonist). KV channels were involved in this phenomenon, which was demonstrated by inhibition with 4-aminopyridine. RB2 (an antagonist of almost all P2Y receptors except for P2Y2), as well as N-ethylmaleimide and SQ 22,536 (inhibitors of G proteins and adenylyl cyclase, respectively), attenuated the enhancement of the K+ currents induced by TES. Immunofluorescence and immunohistochemistry studies revealed that TES did not modify the expression of P2Y4 receptors or COX-1 and COX-2, while we have demonstrated that this androgen augmented the expression of KV1.2 and KV1.5 channels in ASM. Thus, TES leads to the upregulation of P2Y4 signaling and KV channels in guinea pig ASM, enhancing ATP and UTP relaxation responses, which likely limits the severity of bronchospasm in young males.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.C.-G.); (J.R.-G.); (M.F.C.-H.)
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.C.-G.); (J.R.-G.); (M.F.C.-H.)
| | - Verónica Díaz-Hernández
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - María F. Casas-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.C.-G.); (J.R.-G.); (M.F.C.-H.)
| | - Francisco Javier Flores-Murrieta
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.C.-G.); (J.R.-G.); (M.F.C.-H.)
| |
Collapse
|
4
|
Mohammed SAH, Mirdamadi M, Szucs KF, Gaspar R. Non-genomic actions of steroid hormones on the contractility of non-vascular smooth muscles. Biochem Pharmacol 2024; 222:116063. [PMID: 38373593 DOI: 10.1016/j.bcp.2024.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/03/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Steroid hormones play an important role in physiological processes. The classical pathway of steroid actions is mediated by nuclear receptors, which regulate genes to modify biological processes. Non-genomic pathways of steroid actions are also known, mediated by cell membrane-located seven transmembrane domain receptors. Sex steroids and glucocorticoids have several membrane receptors already identified to mediate their rapid actions. However, mineralocorticoids have no identified membrane receptors, although their rapid actions are also measurable. In non-vascular smooth muscles (bronchial, uterine, gastrointestinal, and urinary), the rapid actions of steroids are mediated through the modification of the intracellular Ca2+ level by various Ca-channels and the cAMP and IP3 system. The non-genomic action can be converted into a genomic one, suggesting that these distinct pathways may interconnect, resulting in convergence between them. Sex steroids mostly relax all the non-vascular smooth muscles, except androgens and progesterone, which contract colonic and urinary bladder smooth muscles, respectively. Corticosteroids also induce relaxation in bronchial and uterine tissues, but their actions on gastrointestinal and urinary bladder smooth muscles have not been investigated yet. Bile acids also contribute to the smooth muscle contractility. Although the therapeutic application of the rapid effects of steroid hormones and their analogues for smooth muscle contractility disorders seems remote, the actions and mechanism discovered so far are promising. Further research is needed to expand our knowledge in this field by using existing experience. One of the greatest challenges is to separate genomic and non-genomic effects, but model molecules are available to start this line of research.
Collapse
Affiliation(s)
- Saif-Alnasr H Mohammed
- Department of Pharmacology and Pharmacotherapy, Albert-Szent-Györgyi Medical School, University of Szeged, Hungary
| | - Mohsen Mirdamadi
- Department of Pharmacology and Pharmacotherapy, Albert-Szent-Györgyi Medical School, University of Szeged, Hungary
| | - Kalman F Szucs
- Department of Pharmacology and Pharmacotherapy, Albert-Szent-Györgyi Medical School, University of Szeged, Hungary
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Albert-Szent-Györgyi Medical School, University of Szeged, Hungary.
| |
Collapse
|
5
|
Jin S, Li Y, Luo C, Cheng X, Tao W, Li H, Wang W, Qin M, Xie G, Han F. Corydalis tomentella Franch. Exerts anti-inflammatory and analgesic effects by regulating the calcium signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117499. [PMID: 38042392 DOI: 10.1016/j.jep.2023.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis tomentella Franch. is a perennial cespitose plant commonly used to treat stomachaches as a folk medicine. The C. tomentella total alkaloids have good protective effects against acute liver injury and potential anti-hepatoma and anti-Alzheimer's disease activities. AIM OF THE STUDY To establish an effective purification process for total alkaloids from C. tomentella and investigate the mechanism of their anti-inflammatory effects. MATERIALS AND METHODS Corydalis tomentella were purified using macroporous resin. Then the crude and purified C. tomentella extracts (cCTE and pCTE) were qualitatively analyzed using UPLC-Triple-TOF-MS/MS. The cCTE and pCTE were used to investigate and compare their anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW264.7 cells. Doses at 100, 200 and 400 mg/kg/d of pCTE were used to study their anti-inflammatory and analgesic activities in mice with xylene-induced ear swelling and acetic acid-induced writhing tests. Content of nitric oxide (NO), interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were determined both in RAW264.7 cells and mice. Network pharmacology was used to predict the anti-inflammatory mechanism of C. tomentella, and the key enzymes were validated using qPCR and Western Blot analysis. Concentration of intracellular Ca2+ was detected using flow cytometric analysis. RESULTS The C. tomentella total alkaloid purity increased from 6.29% to 47.34% under optimal purification conditions. A total of 54 alkaloids were identified from CTE. Both cCTE and pCTE could suppress the LPS-induced production of NO, IL-6, IL-1β, and TNF-α in RAW264.7 cells. The pCTE exhibited a more potent anti-inflammatory effect; it also inhibited pain induced by xylene and acetic acid in mice. The calcium signaling pathway is associated with the anti-inflammatory and analgesic activities of C. tomentella. The mRNA expression of nitric oxide synthase (NOS) 2, NOS3 and calmodulin1 (CALM1) was regulated by C. tomentella through the reduction of inflammation-induced Ca2+ influx, and it also exhibited a more pronounced effect than the positive control (L-NG-nitro arginine methyl ester). CONCLUSIONS Purified C. tomentella extract shows anti-inflammatory effect both in vitro and in vivo. It exerts anti-inflammatory and analgesic effects through the calcium signaling pathway by down-regulating NOS2 and CALM1 expression and up-regulating NOS3 expression in LPS-induced RAW264.7 cells, and decreasing intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Shuyi Jin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yveting Li
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Chuan Luo
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China.
| | - Xinyi Cheng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Tao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hongting Li
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wanli Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Han
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China.
| |
Collapse
|
6
|
Lejeune S, Kaushik A, Parsons ES, Chinthrajah S, Snyder M, Desai M, Manohar M, Prunicki M, Contrepois K, Gosset P, Deschildre A, Nadeau K. Untargeted metabolomic profiling in children identifies novel pathways in asthma and atopy. J Allergy Clin Immunol 2024; 153:418-434. [PMID: 38344970 DOI: 10.1016/j.jaci.2023.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Asthma and other atopic disorders can present with varying clinical phenotypes marked by differential metabolomic manifestations and enriched biological pathways. OBJECTIVE We sought to identify these unique metabolomic profiles in atopy and asthma. METHODS We analyzed baseline nonfasted plasma samples from a large multisite pediatric population of 470 children aged <13 years from 3 different sites in the United States and France. Atopy positivity (At+) was defined as skin prick test result of ≥3 mm and/or specific IgE ≥ 0.35 IU/mL and/or total IgE ≥ 173 IU/mL. Asthma positivity (As+) was based on physician diagnosis. The cohort was divided into 4 groups of varying combinations of asthma and atopy, and 6 pairwise analyses were conducted to best assess the differential metabolomic profiles between groups. RESULTS Two hundred ten children were classified as At-As-, 42 as At+As-, 74 as At-As+, and 144 as At+As+. Untargeted global metabolomic profiles were generated through ultra-high-performance liquid chromatography-tandem mass spectroscopy. We applied 2 independent machine learning classifiers and short-listed 362 metabolites as discriminant features. Our analysis showed the most diverse metabolomic profile in the At+As+/At-As- comparison, followed by the At-As+/At-As- comparison, indicating that asthma is the most discriminant condition associated with metabolomic changes. At+As+ metabolomic profiles were characterized by higher levels of bile acids, sphingolipids, and phospholipids, and lower levels of polyamine, tryptophan, and gamma-glutamyl amino acids. CONCLUSION The At+As+ phenotype displays a distinct metabolomic profile suggesting underlying mechanisms such as modulation of host-pathogen and gut microbiota interactions, epigenetic changes in T-cell differentiation, and lower antioxidant properties of the airway epithelium.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France.
| | - Abhinav Kaushik
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Ella S Parsons
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Manisha Desai
- Quantitative Science Unit, Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Monali Manohar
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Mary Prunicki
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Philippe Gosset
- University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Antoine Deschildre
- University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Kari Nadeau
- Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| |
Collapse
|
7
|
Gochicoa‐Rangel L, Chávez J, Del‐Río‐Hidalgo R, Guerrero‐Zúñiga S, Mora‐Romero U, Benítez‐Pérez R, Rodríguez‐Moreno L, Torre‐Bouscoulet L, Vargas MH. Lung function is related to salivary cytokines and hormones in healthy children. An exploratory cross-sectional study. Physiol Rep 2023; 11:e15861. [PMID: 38086735 PMCID: PMC10716032 DOI: 10.14814/phy2.15861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 12/17/2023] Open
Abstract
Pulmonary mechanics has been traditionally viewed as determined by lung size and physical factors such as frictional forces and tissue viscoelastic properties, but few information exists regarding potential influences of cytokines and hormones on lung function. Concentrations of 28 cytokines and hormones were measured in saliva from clinically healthy scholar children, purposely selected to include a wide range of body mass index (BMI). Lung function was assessed by impulse oscillometry, spirometry, and diffusing capacity for carbon monoxide, and expressed as z-score or percent predicted. Ninety-six scholar children (55.2% female) were enrolled. Bivariate analysis showed that almost all lung function variables correlated with one or more cytokine or hormone, mainly in boys, but only some of them remained statistically significant in the multiple regression analyses. Thus, after adjusting by height, age, and BMI, salivary concentrations of granulocyte-macrophage colony-stimulating factor (GM-CSF) in boys were associated with zR5-R20 and reactance parameters (zX20, zFres, and zAX), while glucagon inversely correlated with resistances (zR5 and zR20). Thus, in physiological conditions, part of the mechanics of breathing might be influenced by some cytokines and hormones, including glucagon and GM-CSF. This endogenous influence is a novel concept that warrants in-depth characterization.
Collapse
Affiliation(s)
- Laura Gochicoa‐Rangel
- Departamento de Fisiología RespiratoriaInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Instituto de Desarrollo e Innovación en Fisiología RespiratoriaMexico CityMexico
| | - Jaime Chávez
- Departamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Rodrigo Del‐Río‐Hidalgo
- Departamento de Fisiología RespiratoriaInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Present address:
Servicio de PediatríaNuevo Hospital CivilGuadalajaraMexico
| | - Selene Guerrero‐Zúñiga
- Departamento de Fisiología RespiratoriaInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Uri Mora‐Romero
- Departamento de Fisiología RespiratoriaInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
- Present address:
Servicio de Neumología PediátricaHospital PueblaPueblaMexico
| | - Rosaura Benítez‐Pérez
- Departamento de Fisiología RespiratoriaInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | | | | | - Mario H. Vargas
- Departamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| |
Collapse
|
8
|
Liang Y, Chen X, Yin J, Liu X, Liu S, Sun W, Wang X, Yao H, Xiao L. Dihydrotestosterone mediates the inflammation effect under lipopolysaccharides in bovine endometrial epithelial cells via AR blockading TLR4/MyD88 signaling pathway. Anim Reprod Sci 2023; 255:107292. [PMID: 37406563 DOI: 10.1016/j.anireprosci.2023.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Dihydrotestosterone (DHT) is a potent nonaromatizable 5α-reduced androgen with both positive and negative effect on inflammation process. However, it remains unknown whether DHT can regulate Lipopolysaccharides (LPS)-induced inflammation in bovine endometrial epithelial cells (bEECs). Here, we demonstrated that the DHT biosynthesis ability and androgen receptors (AR) expression is defective in bovine endometrial with endometritis, which aggravates endometrial inflammation. In vitro study, we established a LPS-induced inflammation model in bEECs, and found that DHT inhibited the TLR4 and MyD88 protein as well as TNF-α, IL-1β, and IL-6 mRNA of bEECs in a dose-dependent manner. Moreover, the anti-inflammation effect of DHT was blocked by AR inhibitor flutamide. Together, we demonstrated that supplementing DHT can alleviate the inflammation response of bEECs caused by LPS, which is associated with AR regulating the inhibition of TLR4/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Yixuan Liang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xingyi Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jie Yin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xinyi Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Shiwei Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Wanxu Sun
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| | - Hua Yao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
9
|
Reyes-García J, Díaz-Hernández V, Carbajal-García A, Casas-Hernández MF, Sommer B, Montaño LM. Theophylline-Induced Relaxation Is Enhanced after Testosterone Treatment via Increased K V1.2 and K V1.5 Protein Expression in Guinea Pig Tracheal Smooth Muscle. Int J Mol Sci 2023; 24:ijms24065884. [PMID: 36982957 PMCID: PMC10059212 DOI: 10.3390/ijms24065884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/30/2023] Open
Abstract
Theophylline is a drug commonly used to treat asthma due to its anti-inflammatory and bronchodilatory properties. Testosterone (TES) has been suggested to reduce the severity of asthma symptoms. This condition affects boys more than girls in childhood, and this ratio reverses at puberty. We reported that guinea pig tracheal tissue chronic exposure to TES increases the expression of β2-adrenoreceptors and enhances salbutamol-induced K+ currents (IK+). Herein, we investigated whether the upregulation of K+ channels can enhance the relaxation response to methylxanthines, including theophylline. Chronic incubation of guinea pig tracheas with TES (40 nM, 48 h) enhanced the relaxation induced by caffeine, isobutylmethylxanthine, and theophylline, an effect that was abolished by tetraethylammonium. In tracheal myocytes, chronic incubation with TES increased theophylline-induced IK+; flutamide reversed this effect. The increase in IK+ was blocked by 4-aminopyridine by ~82%, whereas iberiotoxin reduced IK+ by ~17%. Immunofluorescence studies showed that chronic TES exposure increased the expression of KV1.2 and KV1.5 in airway smooth muscle (ASM). In conclusion, chronic exposure to TES in guinea pig ASM promotes upregulation of KV1.2 and KV1.5 and enhances theophylline relaxation response. Therefore, gender should be considered when prescribing methylxanthines, as teenage boys and males are likely to respond better than females.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Verónica Díaz-Hernández
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - María F Casas-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Bettina Sommer
- Laboratorio de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
10
|
Perusquía M. Androgens and Non-Genomic vascular responses in hypertension. Biochem Pharmacol 2022; 203:115200. [PMID: 35926652 DOI: 10.1016/j.bcp.2022.115200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/02/2022]
Abstract
Arterial hypertension is a global public health concern. In the last few years, the interest in androgen deficiency has been growing, and the association between androgens and high blood pressure (BP) is still controversial. One purpose of this review was to summarize the available findings in order to clarify whether male sex steroid hormones have beneficial or harmful effect on BP. The second purpose was to enhance the recognition of the acute non-genomic sex-independent vasorelaxing effect of androgens. Remarkably, BP variation is expected to be a consequence of the androgen-induced vasorelaxation which reduces systemic BP; hence the in vivo vasodepressor, hypotensive, and antihypertensive responses of androgens were also analyzed. This article reviews the current understanding of the physiological regulation of vascular smooth muscle contractility by androgens. Additionally, it summarizes older and more recent data on androgens, and some of the possible underlying mechanisms of relaxation, structural-functional differences in the androgen molecules, and their designing ability to induce vasorelaxation. The clinical relevance of these findings in terms of designing future therapeutics mainly the 5-reduced metabolite of testosterone, 5β-dihydrotestosterone, is also highlighted. Literature collected through a PubMed database search, as well as our experimental work, was used for the present review.
Collapse
Affiliation(s)
- Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México.
| |
Collapse
|
11
|
Losada-García A, Cortés-Ramírez SA, Cruz-Burgos M, Morales-Pacheco M, Cruz-Hernández CD, Gonzalez-Covarrubias V, Perez-Plascencia C, Cerbón MA, Rodríguez-Dorantes M. Hormone-Related Cancer and Autoimmune Diseases: A Complex Interplay to be Discovered. Front Genet 2022; 12:673180. [PMID: 35111194 PMCID: PMC8801914 DOI: 10.3389/fgene.2021.673180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Neoplasic transformation is a continuous process that occurs in the body. Even before clinical signs, the immune system is capable of recognizing these aberrant cells and reacting to suppress them. However, transformed cells acquire the ability to evade innate and adaptive immune defenses through the secretion of molecules that inhibit immune effector functions, resulting in tumor progression. Hormones have the ability to modulate the immune system and are involved in the pathogenesis of autoimmune diseases, and cancer. Hormones can control both the innate and adaptive immune systems in men and women. For example androgens reduce immunity through modulating the production of pro-inflammatory and anti-inflammatory mediators. Women are more prone than men to suffer from autoimmune diseases such as systemic lupus erythematosus, psoriasis and others. This is linked to female hormones modulating the immune system. Patients with autoimmune diseases consistently have an increased risk of cancer, either as a result of underlying immune system dysregulation or as a side effect of pharmaceutical treatments. Epidemiological data on cancer incidence emphasize the link between the immune system and cancer. We outline and illustrate the occurrence of hormone-related cancer and its relationship to the immune system or autoimmune diseases in this review. It is obvious that some observations are contentious and require explanation of molecular mechanisms and validation. As a result, future research should clarify the molecular pathways involved, including any causal relationships, in order to eventually allocate information that will aid in the treatment of hormone-sensitive cancer and autoimmune illness.
Collapse
Affiliation(s)
- A Losada-García
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - SA Cortés-Ramírez
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - M Cruz-Burgos
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - M Morales-Pacheco
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | - Carlos Perez-Plascencia
- Unidad de Genómica y Cáncer, Subdirección de Investigación Básica, INCan, SSA and Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - MA Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - M Rodríguez-Dorantes
- Laboratorio de Oncogenomica Instituto Nacional de Medicina Genomica, Mexico City, Mexico
- *Correspondence: M Rodríguez-Dorantes,
| |
Collapse
|
12
|
Could Lower Testosterone in Older Men Explain Higher COVID-19 Morbidity and Mortalities? Int J Mol Sci 2022; 23:ijms23020935. [PMID: 35055119 PMCID: PMC8781054 DOI: 10.3390/ijms23020935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/08/2023] Open
Abstract
The health scourge imposed on humanity by the COVID-19 pandemic seems not to recede. This fact warrants refined and novel ideas analyzing different aspects of the illness. One such aspect is related to the observation that most COVID-19 casualties were older males, a tendency also noticed in the epidemics of SARS-CoV in 2003 and the Middle East respiratory syndrome in 2012. This gender-related difference in the COVID-19 death toll might be directly involved with testosterone (TEST) and its plasmatic concentration in men. TEST has been demonstrated to provide men with anti-inflammatory and immunological advantages. As the plasmatic concentration of this androgen decreases with age, the health benefit it confers also diminishes. Low plasmatic levels of TEST can be determinant in the infection’s outcome and might be related to a dysfunctional cell Ca2+ homeostasis. Not only does TEST modulate the activity of diverse proteins that regulate cellular calcium concentrations, but these proteins have also been proven to be necessary for the replication of many viruses. Therefore, we discuss herein how TEST regulates different Ca2+-handling proteins in healthy tissues and propose how low TEST concentrations might facilitate the replication of the SARS-CoV-2 virus through the lack of modulation of the mechanisms that regulate intracellular Ca2+ concentrations.
Collapse
|
13
|
Role of Sex Hormones at Different Physiobiological Conditions and Therapeutic Potential in MBD2 Mediated Severe Asthma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7097797. [PMID: 35096261 PMCID: PMC8799366 DOI: 10.1155/2021/7097797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
Sex hormone has become a “hot topic” to evaluate the hormonal therapeutic potential in severe asthma. Th17 cell is one of the main influencing factors involved in the pathogenesis of severe asthma, hence also called as kernel of severe asthma, and Th17 subtype of non-T2 asthma is less responsive (resistance) to inhaled corticosteroid (ICS), so severe in nature. Methyl-CpG binding domain protein 2 (MBD2) is overexpressed and regulates the Th17 differentiation, showing the possibility of therapeutic target in treating Th17 mediated severe asthma. Sex hormone fluctuates at the different physiobiological conditions of the human body and affects the asthma pathobiology showing its role in asthma prevalence, severity, remission, and therapy. This review briefly overviews the sex hormones, their influence in asthma at the different physiobiological conditions of human body, and MBD2 severe asthma connection with the possible therapeutic potential of sex steroids in MBD2 mediated Th17 predominant severe asthma. Male sex hormone tends to show a beneficial effect and possibly downregulates the expression of Th17 cells via regulating MBD2 through a mechanism distinct from corticosteroid treatment and guides us towards discovery of new therapeutic agent, reduces the asthma-related complications, and promotes long-term survival by lowering the risk of therapy-resistant issues of old age severe asthma.
Collapse
|
14
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
15
|
Hu T, Wei Z, Ju Q, Chen W. Sexualhormone und Akne: Aktueller Stand. J Dtsch Dermatol Ges 2021; 19:509-516. [PMID: 33861017 DOI: 10.1111/ddg.14426_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Tingting Hu
- Abteilung Dermatologie, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Ziyu Wei
- Abteilung Dermatologie, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Qiang Ju
- Abteilung Dermatologie, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - WenChieh Chen
- Abteilung Dermatologie und Allergologie, Technische Universität München, München, Germany
| |
Collapse
|
16
|
Hu T, Wei Z, Ju Q, Chen W. Sex hormones and acne: State of the art. J Dtsch Dermatol Ges 2021; 19:509-515. [PMID: 33576151 DOI: 10.1111/ddg.14426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023]
Abstract
Acne is an androgen-dependent inflammatory disease of sebaceous follicles. Herein, we reviewed and discussed the underlying pathways of androgen biosynthesis and metabolism, non-genomic regulation of androgen receptor expression and function, posttranslational regulation of androgen excess in acne and acne-associated syndromes, such as polycystic ovary syndrome, and congenital adrenal hyperplasia. We provide insights into the involvement of sex hormones, particularly androgens, in skin homeostasis and acne pathogenesis, including comedogenesis, lipogenesis, microbiota, and inflammation. Advanced understanding of the action mechanisms of classical acne treatment and new development of antiandrogens, both topical and systemic, are also highlighted.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Dermatology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ziyu Wei
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Ju
- Department of Dermatology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - WenChieh Chen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| |
Collapse
|
17
|
Becerra-Diaz M, Song M, Heller N. Androgen and Androgen Receptors as Regulators of Monocyte and Macrophage Biology in the Healthy and Diseased Lung. Front Immunol 2020; 11:1698. [PMID: 32849595 PMCID: PMC7426504 DOI: 10.3389/fimmu.2020.01698] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Androgens, the predominant male sex hormones, drive the development and maintenance of male characteristics by binding to androgen receptor (AR). As androgens are systemically distributed throughout the whole organism, they affect many tissues and cell types in addition to those in male sexual organs. It is now clear that the immune system is a target of androgen action. In the lungs, many immune cells express ARs and are responsive to androgens. In this review, we describe the effects of androgens and ARs on lung myeloid immune cells-monocytes and macrophages-as they relate to health and disease. In particular, we highlight the effect of androgens on lung diseases, such as asthma, chronic obstructive pulmonary disease and lung fibrosis. We also discuss the therapeutic use of androgens and how circulating androgens correlate with lung disease. In addition to human studies, we also discuss how mouse models have helped to uncover the effect of androgens on monocytes and macrophages in lung disease. Although the role of estrogen and other female hormones has been broadly analyzed in the literature, we focus on the new perspectives of androgens as modulators of the immune system that target myeloid cells during lung inflammation.
Collapse
Affiliation(s)
| | | | - Nicola Heller
- Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
18
|
Kunhamu Karatt T, Sathiq MA, Laya S. Is 9β-dehydrohalogenation of betamethasone and dexamethasone hindering the detection of banned co-eluting meprednisone? A reverse-phase chiral liquid chromatography high-resolution mass spectrometry approach. Steroids 2020; 155:108572. [PMID: 31904376 DOI: 10.1016/j.steroids.2019.108572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/04/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022]
Abstract
Mass spectral analysis of dexamethasone and betamethasone reveal intense signals at m/z 373.19994 (using a Thermo Q Exactive high-resolution mass spectrometer coupled with Dionex UltiMate 3000 UHPLC + operated in the positive ion mode), matching the signal of meprednisone, the 11-oxo version of methylprednisolone, along with its parent signal; possibly due to dehydrohalogenation of these drugs at MS. The parent mass of meprednisone is exactly same as that of dehydrohalogenated mass of dexamethasone and betamethasone; and are co-eluting, displaying same mass spectra. Specifically when they are administered together, identifying meprednisone (a drug for which there is zero tolerance in some regions of the world), is a great challenge with currently available techniques because it could be easily mistaken for dexamethasone or betamethasone, drugs allowed at certain threshold limits for therapeutic considerations. False negative results could be obtained in conventional reverse-phase chromatography and are liable to be abused; hence, establishing "zero tolerance" limits for these compounds often proves ineffective. In this paper, present an effective and reliable analytical method for simultaneously separating and identifying dexamethasone, betamethasone and meprednisone in equine urine and plasma using chiral liquid chromatography-electrospray ionization-mass spectrometry. From the various columns screened, the Lux i-Cellulose-5 chiral column produced high-quality results with extremely good separation. During this study, it is quite evident that dehydrohalogenation occurs only in the mass ionization source; the compounds are very stable in-vivo/in-vitro and do not break down either on-column or during sample preparation.
Collapse
Affiliation(s)
- Tajudheen Kunhamu Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, PO Box 597, Dubai, United Arab Emirates; Post Graduate and Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, India.
| | - M Anwar Sathiq
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, India.
| | - Saraswathy Laya
- Department of Chemistry, College of Science, United Arab Emirates University, PO Box 17551, Al Ain, United Arab Emirates
| |
Collapse
|