1
|
Antoine JC. Inflammatory sensory neuronopathies. Rev Neurol (Paris) 2024; 180:1037-1046. [PMID: 38472032 DOI: 10.1016/j.neurol.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 03/14/2024]
Abstract
Inflammatory sensory neuronopathies are rare disorders mediated by dysimmune mechanisms targeting sensory neurons in the dorsal root ganglia. They constitute a heterogeneous group of disorders with acute, subacute, or chronic courses, and occur with cancer, systemic autoimmune diseases, notably Sjögren syndrome, and viral infections but a noticeable proportion of them remains isolated. Identifying inflammatory sensory neuronopathies is crucial because they have the potential to be stabilized or even to improve with immunomodulatory or immunosuppressant treatments provided that the treatment is applied at an early stage of the disease, before a definitive degeneration of neurons. Biomarkers, and notably antibodies, are crucial for this early identification, which is the first step to develop therapeutic trials.
Collapse
Affiliation(s)
- J-C Antoine
- Department of Neurology, University Hospital of Saint-Etienne, 42055 Saint-Étienne cedex, France.
| |
Collapse
|
2
|
Guo L, Huang P, Li Z, Shin YC, Yan P, Lu M, Chen M, Xiao Y. Auto-inhibition and activation of a short Argonaute-associated TIR-APAZ defense system. Nat Chem Biol 2024; 20:512-520. [PMID: 37932527 DOI: 10.1038/s41589-023-01478-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Short prokaryotic Ago accounts for most prokaryotic Argonaute proteins (pAgos) and is involved in defending bacteria against invading nucleic acids. Short pAgo associated with TIR-APAZ (SPARTA) has been shown to oligomerize and deplete NAD+ upon guide-mediated target DNA recognition. However, the molecular basis of SPARTA inhibition and activation remains unknown. In this study, we determined the cryogenic electron microscopy structures of Crenotalea thermophila SPARTA in its inhibited, transient and activated states. The SPARTA monomer is auto-inhibited by its acidic tail, which occupies the guide-target binding channel. Guide-mediated target binding expels this acidic tail and triggers substantial conformational changes to expose the Ago-Ago dimerization interface. As a result, SPARTA assembles into an active tetramer, where the four TIR domains are rearranged and packed to form NADase active sites. Together with biochemical evidence, our results provide a panoramic vision explaining SPARTA auto-inhibition and activation and expand understanding of pAgo-mediated bacterial defense systems.
Collapse
Affiliation(s)
- Lijie Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Pingping Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhaoxing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Young-Cheul Shin
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Purui Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Meirong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, China.
| |
Collapse
|
3
|
Olina A, Agapov A, Yudin D, Sutormin D, Galivondzhyan A, Kuzmenko A, Severinov K, Aravin AA, Kulbachinskiy A. Bacterial Argonaute Proteins Aid Cell Division in the Presence of Topoisomerase Inhibitors in Escherichia coli. Microbiol Spectr 2023; 11:e0414622. [PMID: 37102866 PMCID: PMC10269773 DOI: 10.1128/spectrum.04146-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Prokaryotic Argonaute (pAgo) proteins are guide-dependent nucleases that function in host defense against invaders. Recently, it was shown that TtAgo from Thermus thermophilus also participates in the completion of DNA replication by decatenating chromosomal DNA. Here, we show that two pAgos from cyanobacteria Synechococcus elongatus (SeAgo) and Limnothrix rosea (LrAgo) are active in heterologous Escherichia coli and aid cell division in the presence of the gyrase inhibitor ciprofloxacin, depending on the host double-strand break repair machinery. Both pAgos are preferentially loaded with small guide DNAs (smDNAs) derived from the sites of replication termination. Ciprofloxacin increases the amounts of smDNAs from the termination region and from the sites of genomic DNA cleavage by gyrase, suggesting that smDNA biogenesis depends on DNA replication and is stimulated by gyrase inhibition. Ciprofloxacin enhances asymmetry in the distribution of smDNAs around Chi sites, indicating that it induces double-strand breaks that serve as a source of smDNA during their processing by RecBCD. While active in E. coli, SeAgo does not protect its native host S. elongatus from ciprofloxacin. These results suggest that pAgo nucleases may help to complete replication of chromosomal DNA by promoting chromosome decatenation or participating in the processing of gyrase cleavage sites, and may switch their functional activities depending on the host species. IMPORTANCE Prokaryotic Argonautes (pAgos) are programmable nucleases with incompletely understood functions in vivo. In contrast to eukaryotic Argonautes, most studied pAgos recognize DNA targets. Recent studies suggested that pAgos can protect bacteria from invader DNA and counteract phage infection and may also have other functions including possible roles in DNA replication, repair, and gene regulation. Here, we have demonstrated that two cyanobacterial pAgos, SeAgo and LrAgo, can assist DNA replication and facilitate cell division in the presence of topoisomerase inhibitors in Escherichia coli. They are specifically loaded with small guide DNAs from the region of replication termination and protect the cells from the action of the gyrase inhibitor ciprofloxacin, suggesting that they help to complete DNA replication and/or repair gyrase-induced breaks. The results show that pAgo proteins may serve as a backup to topoisomerases under conditions unfavorable for DNA replication and may modulate the resistance of host bacterial strains to antibiotics.
Collapse
Affiliation(s)
- Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Aleksei Agapov
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Denis Yudin
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Dmitry Sutormin
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | - Anton Kuzmenko
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, Russia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | | | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Jiang S, Zhang X, Li DL, Wang TT, Ma F, Zhang CY. Construction of a gold nanoparticle-based single-molecule biosensor for simple and sensitive detection of Argonaute 2 activity. J Mater Chem B 2022; 10:5594-5601. [PMID: 35796467 DOI: 10.1039/d2tb00802e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Argonaute 2 (Ago2) is an essential component of the RNA-induced silencing complex (RISC) and it participates in diverse physiological processes, while dysregulation of Ago2 activity is closely linked to a variety of human diseases including cancers. The reported Ago2 assays often suffer from laborious procedures, complicated reaction schemes, and unsatisfactory sensitivity. Herein, we develop a new gold nanoparticle (AuNP)-based single-molecule biosensor for simple and sensitive detection of Ago2 activity. The Ago2-responsive AuNP nanoprobe is constructed through the self-assembly of multiple Cy5-labeled signal probes onto the AuNP, in which the Cy5 fluorescence is efficiently quenched by the AuNP. Target Ago2 can bind with guide RNA to form an active RISC, inducing the cyclic cleavage of the signal probes and the release of Cy5 moieties from the AuNP nanoprobe. The released Cy5 molecules can be simply quantified by single-molecule counting. This single-molecule biosensor enables detection of Ago2 activity with the involvement of only a single AuNP nanoprobe, eliminating the use of any extra antibodies and protein enzymes. This single-molecule biosensor achieves good specificity and high sensitivity with a detection limit of 9.1 pM, and it can be exploited for the screening of Ago2 inhibitors, Ago2 kinetic analysis, and the imaging of intracellular Ago2 activity in live cells, holding great promise in Ago2-related biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Dong-Ling Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Ting-Ting Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
5
|
Leitão AL, Enguita FJ. A Structural View of miRNA Biogenesis and Function. Noncoding RNA 2022; 8:ncrna8010010. [PMID: 35202084 PMCID: PMC8874510 DOI: 10.3390/ncrna8010010] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
Micro-RNAs (miRNAs) are a class of non-coding RNAs (ncRNAs) that act as post-transcriptional regulators of gene expression. Since their discovery in 1993, they have been the subject of deep study due to their involvement in many important biological processes. Compared with other ncRNAs, miRNAs are generated from devoted transcriptional units which are processed by a specific set of endonucleases. The contribution of structural biology methods for understanding miRNA biogenesis and function has been essential for the dissection of their roles in cell biology and human disease. In this review, we summarize the application of structural biology for the characterization of the molecular players involved in miRNA biogenesis (processors and effectors), starting from the X-ray crystallography methods to the more recent cryo-electron microscopy protocols.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- MEtRICs, Department of Sciences and Technology of Biomass, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
6
|
Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021; 178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jason L Andresen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Yuan Z, Prasla Z, Lee FEH, Bedi B, Sutliff RL, Sadikot RT. MicroRNA-155 Modulates Macrophages' Response to Non-Tuberculous Mycobacteria through COX-2/PGE2 Signaling. Pathogens 2021; 10:920. [PMID: 34451384 PMCID: PMC8398909 DOI: 10.3390/pathogens10080920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/01/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) have been recognized as a causative agent of various human diseases, including severe infections in immunocompromised patients, such as people living with HIV. The most common species identified is the Mycobacterium avium-intracellulare complex (MAI/MAC), accounting for a majority of infections. Despite abundant information detailing the clinical significance of NTM, little is known about host-pathogen interactions in NTM infection. MicroRNAs (miRs) serve as important post-transcriptional regulators of gene expression. Using a microarray profile, we found that the expression of miR-155 and cyclo-oxygenase 2 (COX-2) is significantly increased in bone-marrow-derived macrophages from mice and human monocyte-derived macrophages from healthy volunteers that are infected with NTM. Antagomir against miR-155 effectively suppressed expression of COX-2 and reduced Prostaglandin E2(PGE2) secretion, suggesting that COX-2/PGE2 expression is dependent on miR-155. Mechanistically, we found that inhibition of NF-κB activity significantly reduced miR-155/COX-2 expression in infected macrophages. Most importantly, blockade of COX-2, E-prostanoid receptors (EP2 and EP4) enhanced killing of MAI in macrophages. These findings provide novel mechanistic insights into the role of miR-155/COX-2/PGE2 signalling and suggest that induction of these pathways enhances survival of mycobacteria in macrophages. Defining host-pathogen interactions can lead to novel immunomodulatory therapies for NTM infections which are difficult to treat.
Collapse
Affiliation(s)
- Zhihong Yuan
- VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zohra Prasla
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (Z.P.); (F.E.-H.L.); (B.B.); (R.L.S.)
| | - Frances Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (Z.P.); (F.E.-H.L.); (B.B.); (R.L.S.)
| | - Brahmchetna Bedi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (Z.P.); (F.E.-H.L.); (B.B.); (R.L.S.)
| | - Roy L. Sutliff
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (Z.P.); (F.E.-H.L.); (B.B.); (R.L.S.)
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Arraes FBM, Martins-de-Sa D, Noriega Vasquez DD, Melo BP, Faheem M, de Macedo LLP, Morgante CV, Barbosa JARG, Togawa RC, Moreira VJV, Danchin EGJ, Grossi-de-Sa MF. Dissecting protein domain variability in the core RNA interference machinery of five insect orders. RNA Biol 2020; 18:1653-1681. [PMID: 33302789 DOI: 10.1080/15476286.2020.1861816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-mediated gene silencing can be used to control specific insect pest populations. Unfortunately, the variable efficiency in the knockdown levels of target genes has narrowed the applicability of this technology to a few species. Here, we examine the current state of knowledge regarding the miRNA (micro RNA) and siRNA (small interfering RNA) pathways in insects and investigate the structural variability at key protein domains of the RNAi machinery. Our goal was to correlate domain variability with mechanisms affecting the gene silencing efficiency. To this end, the protein domains of 168 insect species, encompassing the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera, were analysed using our pipeline, which takes advantage of meticulous structure-based sequence alignments. We used phylogenetic inference and the evolutionary rate coefficient (K) to outline the variability across domain regions and surfaces. Our results show that four domains, namely dsrm, Helicase, PAZ and Ribonuclease III, are the main contributors of protein variability in the RNAi machinery across different insect orders. We discuss the potential roles of these domains in regulating RNAi-mediated gene silencing and the role of loop regions in fine-tuning RNAi efficiency. Additionally, we identified several order-specific singularities which indicate that lepidopterans have evolved differently from other insect orders, possibly due to constant coevolution with plants and viruses. In conclusion, our results highlight several variability hotspots that deserve further investigation in order to improve the application of RNAi technology in the control of insect pests.
Collapse
Affiliation(s)
| | - Diogo Martins-de-Sa
- Departamento De Biologia Celular, Universidade De Brasília, Brasília-DF, Brazil
| | - Daniel D Noriega Vasquez
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Catholic University of Brasília, Brasília-DF, Brazil
| | - Bruno Paes Melo
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Viçosa University, UFV, Viçosa-MG, Brazil
| | - Muhammad Faheem
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Department of Biological Sciences, National University of Medical Sciences, Punjab, Pakistan
| | | | - Carolina Vianna Morgante
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Embrapa Semiarid, Petrolina-PE, Brazil.,National Institute of Science and Technology, Jakarta Embrapa-Brazil
| | | | - Roberto Coiti Togawa
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil
| | - Valdeir Junio Vaz Moreira
- Biotechnology Center, Brazil.,Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Departamento De Biologia Celular, Universidade De Brasília, Brasília-DF, Brazil
| | - Etienne G J Danchin
- National Institute of Science and Technology, Jakarta Embrapa-Brazil.,INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Catholic University of Brasília, Brasília-DF, Brazil.,National Institute of Science and Technology, Jakarta Embrapa-Brazil
| |
Collapse
|
9
|
Wongtrakool C, Ko J, Jang AJ, Grooms K, Chang S, Sylber C, Kosmider B, Bahmed K, Blackburn MR, Sutliff RL, Hart CM, Park C, Nyunoya T, Passineau MJ, Lu Q, Kang BY. MicroRNA-98 reduces nerve growth factor expression in nicotine-induced airway remodeling. J Biol Chem 2020; 295:18051-18064. [PMID: 33082140 PMCID: PMC11843582 DOI: 10.1074/jbc.ra119.012019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 09/27/2020] [Indexed: 11/06/2022] Open
Abstract
Evolving evidence suggests that nicotine may contribute to impaired asthma control by stimulating expression of nerve growth factor (NGF), a neurotrophin associated with airway remodeling and airway hyperresponsiveness. We explored the hypothesis that nicotine increases NGF by reducing lung fibroblast (LF) microRNA-98 (miR-98) and PPARγ levels, thus promoting airway remodeling. Levels of NGF, miR-98, PPARγ, fibronectin 1 (FN1), endothelin-1 (EDN1, herein referred to as ET-1), and collagen (COL1A1 and COL3A1) were measured in human LFs isolated from smoking donors, in mouse primary LFs exposed to nicotine (50 μg/ml), and in whole lung homogenates from mice chronically exposed to nicotine (100 μg/ml) in the drinking water. In selected studies, these pathways were manipulated in LFs with miR-98 inhibitor (anti-miR-98), miR-98 overexpression (miR-98 mimic), or the PPARγ agonist rosiglitazone. Compared with unexposed controls, nicotine increased NGF, FN1, ET-1, COL1A1, and COL3A1 expression in human and mouse LFs and mouse lung homogenates. In contrast, nicotine reduced miR-98 levels in LFs in vitro and in lung homogenates in vivo Treatment with anti-miR-98 alone was sufficient to recapitulate increases in NGF, FN1, and ET-1, whereas treatment with a miR-98 mimic significantly suppressed luciferase expression in cells transfected with a luciferase reporter linked to the putative seed sequence in the NGF 3'UTR and also abrogated nicotine-induced increases in NGF, FN1, and ET-1 in LFs. Similarly, rosiglitazone increased miR-98 and reversed nicotine-induced increases in NGF, FN1, and ET-1. Taken together, these findings demonstrate that nicotine-induced increases in NGF and other markers of airway remodeling are negatively regulated by miR-98.
Collapse
Affiliation(s)
- Cherry Wongtrakool
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Junsuk Ko
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas, USA
| | - Andrew J Jang
- Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Kora Grooms
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah Chang
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cory Sylber
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Beata Kosmider
- Center for Inflammation, Translational and Clinical Lung Research, Department of Thoracic Medicine and Surgery, and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karim Bahmed
- Center for Inflammation, Translational and Clinical Lung Research, Department of Thoracic Medicine and Surgery, and Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas, USA
| | - Roy L Sutliff
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA
| | - C Michael Hart
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Changwon Park
- Department of Cellular and Molecular Physiology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J Passineau
- Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center/Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Bum-Yong Kang
- Department of Medicine, Atlanta Veterans Affairs Healthcare System and Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
10
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
11
|
Thapa P, Shanmugam N, Pokrzywa W. Ubiquitin Signaling Regulates RNA Biogenesis, Processing, and Metabolism. Bioessays 2019; 42:e1900171. [PMID: 31778250 DOI: 10.1002/bies.201900171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/29/2019] [Indexed: 12/17/2022]
Abstract
The fate of eukaryotic proteins, from their synthesis to destruction, is supervised by the ubiquitin-proteasome system (UPS). The UPS is the primary pathway responsible for selective proteolysis of intracellular proteins, which is guided by covalent attachment of ubiquitin to target proteins by E1 (activating), E2 (conjugating), and E3 (ligating) enzymes in a process known as ubiquitylation. The UPS can also regulate protein synthesis by influencing multiple steps of RNA (ribonucleic acid) metabolism. Here, recent publications concerning the interplay between the UPS and different types of RNA are reviewed. This interplay mainly involves specific RNA-binding E3 ligases that link RNA-dependent processes with protein ubiquitylation. The emerging understanding of their modes of RNA binding, their RNA targets, and their molecular and cellular functions are primarily focused on. It is discussed how the UPS adapted to interact with different types of RNA and how RNA molecules influence the ubiquitin signaling components.
Collapse
Affiliation(s)
- Pankaj Thapa
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| | - Nilesh Shanmugam
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| |
Collapse
|
12
|
Song H, Xing C, Lu W, Liu Z, Wang X, Cheng J, Zhang Q. Rapid evolution of piRNA pathway and its transposon targets in Japanese flounder (Paralichthys olivaceus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100609. [PMID: 31362144 DOI: 10.1016/j.cbd.2019.100609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/06/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
Piwi-interacting RNA (piRNA) pathway is essential for germline specification, gametogenesis, and genome integrity as defense against transposable elements (TEs). This pathway has been suggested to have undergone rapid adaptive evolution in spite of its conserved role in TE silencing. However, with diverse sexual development patterns, piRNA pathway evolution and its adaptation to transposon activity in teleost lineages remain less known. This study illustrated the evolutionary significance of piRNA pathway via a systematic comparative analysis on diverse teleosts, including flatfish lineages. Molecular evolution of piRNA pathway and microRNA/small interfering RNA pathway genes indicated a faster evolution of piRNA pathway in teleosts than in mammals. Positive selection was detected at the PAZ (Piwi-Argonaute-Zwille) domain involved in Piwi-piRNA interaction, thereby suggesting that the amino acid substitutions were adaptive to their functions in teleost piRNA pathway. Notably, Piwil1 evolved faster in Japanese flounder than in other teleosts, and the piRNA pathway genes expressed higher in testes than in ovaries. In addition, gonadal transcriptomic analysis revealed male under-represented TE families mainly from DNA transposons, which were the potential targets of the complex formed by male-biased Piwi genes and male over-represented piRNAs in Japanese flounder testes. The potential piRNA-TE regulatory relationships suggested that the rapidly evolved piRNA pathway in Japanese flounder was likely involved in the regulation of transposon activity in germlines and could play important roles in Japanese flounder gonadal development and spermatogenesis.
Collapse
Affiliation(s)
- Haofei Song
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Changjin Xing
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Zeyu Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
13
|
Application of Locked Nucleic Acid Oligonucleotides for siRNA Preclinical Bioanalytics. Sci Rep 2019; 9:3566. [PMID: 30837588 PMCID: PMC6401054 DOI: 10.1038/s41598-019-40187-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Despite the exquisite potential of siRNA as a therapeutic, the mechanism(s) responsible for the robust indirect exposure-response relationships have not been fully elucidated. To understand the siRNA properties linked to potent activity, requires the disposition of siRNA to be characterized. A technical challenge in the characterization is the detection and quantitation of siRNA from biological samples. Described herein, a Locked Nucleic Acid (LNA) Hybridization-Ligation ECL ELISA was designed for ultra-sensitive quantification of both sense and antisense strands of siRNA independent of structural modifica-tions. This assay was applied to measure siRNA in serum and tissue homogenate in preclinical species. We observed rapid clearance of siRNA from the systemic circulation which contrasted the prolonged accumulation within the tissue. The assay was also able to distinguish and quantify free siRNA from RNA-induced silencing complex (RISC) and Argonaute 2 (Ago2) associated with therapeutic siRNA. We utilized an orthogonal method, LC-MS, to investigate 3′ exonuclease activity toward the antisense strand metabolism. Taken together, we have demonstrated that the LNA Hybridization-Ligation ECL ELISA is arobust analytical method with direct application to measuring the exposure of siRNA therapeutics seamlessly across biological matrices.
Collapse
|
14
|
Wang H, Wang B, Liu J, Li A, Zhu H, Wang X, Zhang Q. Piwil1 gene is regulated by hypothalamic-pituitary-gonadal axis in turbot (Scophthalmus maximus): A different effect in ovaries and testes. Gene 2018. [PMID: 29524575 DOI: 10.1016/j.gene.2018.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As constituent factors of Piwi-interacting RNA (piRNA) pathways, Piwi proteins are essential for germline maintenance and gonadal development. Previous studies show that Piwi-piRNA pathways could be regulated by hypothalamic-pituitary-gonadal (HPG) axis, however, related studies have not been reported in marine species. Here we reported the identification of turbot (Scophthalmus maximus) piwil1 gene, which was abundantly expressed in testis and ovary in a tissue-specific manner. Phylogenetic and genomic structure analyses revealed that piwil1 was conserved in its sequence and function during vertebrate evolution. We also investigated the effects of HPG axis hormones, including human chorionic gonadotropin (hCG), estradiol-17β (E2) and 17α-methyltestosterone (MT), on gonadal piwil1 expression via in vivo and in vitro approaches. In ovary, hCG and E2 suppressed piwil1 expression both in vivo and in vitro, and MT increased piwil1 expression in vivo. In testis, hCG had upregulating effects on piwil1 expression in vivo and in vitro, and MT also increased piwil1 expression in vitro. In addition, E2 suppressed expression of piwil1 in vivo. These results indicated that the decreased or increased expression of piwil1 regulated by hormones might play a crucial role during gonadal differentiation and development in S. maximus.
Collapse
Affiliation(s)
- Huizhen Wang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Bo Wang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Aoyun Li
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong, China
| | - He Zhu
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong, China
| | - XuBo Wang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, Shandong, China.
| |
Collapse
|
15
|
Zhang D, Ma F, Leng J, Zhang CY. A dual signal amplification-assisted DNAzyme biosensor for ultrasensitive detection of Argonaute 2 activity. Chem Commun (Camb) 2018; 54:13678-13681. [DOI: 10.1039/c8cc08553f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop a new dual-signal amplification-assisted DNAzyme biosensor for sensitive detection of Argonaute 2 (Ago2) activity.
Collapse
Affiliation(s)
- Dandan Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Fei Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Junhong Leng
- Jinan Maternity and Child Care Hospital
- Jinan 250000
- China
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
16
|
Qu J, Zhao M, Hsiang T, Feng X, Zhang J, Huang C. Identification and Characterization of Small Noncoding RNAs in Genome Sequences of the Edible Fungus Pleurotus ostreatus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2503023. [PMID: 27703969 PMCID: PMC5040776 DOI: 10.1155/2016/2503023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/21/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
Abstract
Noncoding RNAs (ncRNAs) have been identified in many fungi. However, no genome-scale identification of ncRNAs has been inventoried for basidiomycetes. In this research, we detected 254 small noncoding RNAs (sncRNAs) in a genome assembly of an isolate (CCEF00389) of Pleurotus ostreatus, which is a widely cultivated edible basidiomycetous fungus worldwide. The identified sncRNAs include snRNAs, snoRNAs, tRNAs, and miRNAs. SnRNA U1 was not found in CCEF00389 genome assembly and some other basidiomycetous genomes by BLASTn. This implies that if snRNA U1 of basidiomycetes exists, it has a sequence that varies significantly from other organisms. By analyzing the distribution of sncRNA loci, we found that snRNAs and most tRNAs (88.6%) were located in pseudo-UTR regions, while miRNAs are commonly found in introns. To analyze the evolutionary conservation of the sncRNAs in P. ostreatus, we aligned all 254 sncRNAs to the genome assemblies of some other Agaricomycotina fungi. The results suggest that most sncRNAs (77.56%) were highly conserved in P. ostreatus, and 20% were conserved in Agaricomycotina fungi. These findings indicate that most sncRNAs of P. ostreatus were not conserved across Agaricomycotina fungi.
Collapse
Affiliation(s)
- Jibin Qu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Xiaoxing Feng
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Micro & Nano Research Institute of IC and System Applications, Shenzhen, Guangdong, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| |
Collapse
|
17
|
Tao W, Sun L, Chen J, Shi H, Wang D. Genomic identification, rapid evolution, and expression of Argonaute genes in the tilapia, Oreochromis niloticus. Dev Genes Evol 2016; 226:339-48. [PMID: 27491892 DOI: 10.1007/s00427-016-0554-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022]
Abstract
Argonaute proteins are key components of the small RNA-induced silencing complex and have multiple roles in RNA-directed regulatory pathways. Argonaute genes can be divided into two subfamilies: the Ago (interacting with microRNA/small interfering RNA) and Piwi subfamilies (interacting with piwi-interacting RNAs (piRNAs)). In the present study, genome-wide analyses firstly yielded the identification of different members of Agos and Piwis in the tilapia, coelacanth, spotted gar, and elephant shark. The additional teleost Ago3b was generated following the fish-specific genome duplication event. Selective pressure analysis on Agos and Piwis between cichlids and other teleosts showed an accelerated evolution of Piwil1 in the cichlid lineages, and the positive selected sites were located in the region of PIWI domain, suggesting that these amino acid substitutions are adapt to targeted cleavage of messenger RNA (mRNA) in cichlids. Ago1 and Ago4 were detected at higher levels at 5 days after hatching (dah) in both ovaries and testes compared with other stages, supporting the previously reported requirement of Ago-mediated pathways to clear the maternal mRNAs during the early embryogenesis. The Piwis were abundantly expressed in tilapia testes, indicating their essential roles in male germline, especially in spermatogenesis. Notable expression of Piwis was also detected in skeletal muscle, indicating that piRNA pathway may not only be confined to development and maintenance of the germline but may also play important roles in somatic tissues. The expression of Piwil1 and Piwil2 was examined by quantitative PCR (qPCR) and in situ hybridization (ISH) to validate the spatial and temporal expression profiles. Taken together, these results present a thorough overview of tilapia Argonaute family and provide a new perspective on the evolution and function of this family in teleosts.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715, Chongqing, People's Republic of China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715, Chongqing, People's Republic of China
| | - Jinlin Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715, Chongqing, People's Republic of China
| | - Hongjuan Shi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715, Chongqing, People's Republic of China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, 400715, Chongqing, People's Republic of China.
| |
Collapse
|
18
|
Choi KR, Lee SY. CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnol Adv 2016; 34:1180-1209. [PMID: 27566508 DOI: 10.1016/j.biotechadv.2016.08.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022]
Abstract
Throughout the decades of its history, the advances in bacteria-based bio-industries have coincided with great leaps in strain engineering technologies. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems are now revolutionizing biotechnology as well as biology. Diverse technologies have been derived from CRISPR/Cas systems in bacteria, yet the applications unfortunately have not been actively employed in bacteria as extensively as in eukaryotic organisms. A recent trend of engineering less explored strains in industrial microbiology-metabolic engineering, synthetic biology, and other related disciplines-is demanding facile yet robust tools, and various CRISPR technologies have potential to cater to the demands. Here, we briefly review the science in CRISPR/Cas systems and the milestone inventions that enabled numerous CRISPR technologies. Next, we describe CRISPR/Cas-derived technologies for bacterial strain development, including genome editing and gene expression regulation applications. Then, other CRISPR technologies possessing great potential for industrial applications are described, including typing and tracking of bacterial strains, virome identification, vaccination of bacteria, and advanced antimicrobial approaches. For each application, we note our suggestions for additional improvements as well. In the same context, replication of CRISPR/Cas-based chromosome imaging technologies developed originally in eukaryotic systems is introduced with its potential impact on studying bacterial chromosomal dynamics. Also, the current patent status of CRISPR technologies is reviewed. Finally, we provide some insights to the future of CRISPR technologies for bacterial systems by proposing complementary techniques to be developed for the use of CRISPR technologies in even wider range of applications.
Collapse
Affiliation(s)
- Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea.
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea; BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm 2970, Denmark.
| |
Collapse
|
19
|
Russell SJ, Stalker L, Gilchrist G, Backx A, Molledo G, Foster RA, LaMarre J. Identification of PIWIL1 Isoforms and Their Expression in Bovine Testes, Oocytes, and Early Embryos. Biol Reprod 2016; 94:75. [PMID: 26911426 DOI: 10.1095/biolreprod.115.136721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
PIWI proteins are members of the larger Argonaute family and bind to specific 24-32 nucleotide RNAs called PIWI-interacting RNAs (piRNAs). PIWI-interacting RNAs direct PIWI-mediated suppression of retrotransposon expression in the male germline in humans and mice, but their roles in bovine reproduction and embryogenesis are unknown. Although the majority of research in mammals has focused on the functions of PIWI proteins during spermatogenesis, this family of proteins and their associated piRNAs have recently been identified in early embryos. The goals of this study were to characterize the expression of PIWIL1 in bovine testis, oocytes, and early embryos. A full-lengthPIWIL1transcript and protein was found in the testis, specifically in the germs cells of mature seminiferous tubules. RNA-immunoprecipitation demonstrated the presence of putative piRNAs with a mean length of 30 nucleotides bound to PIWIL1 in testes. 3'-Rapid amplification of cDNA ends analysis ofPIWIL1transcripts in testes and oocytes revealed two shorter isoforms in addition to the full-length transcript that was only present in testes. TruncatedPIWIL1isoforms in oocytes and testes were confirmed through amplification of their unique intronic fragments. Expression profiling ofPIWIL1through early embryogenesis demonstrated peak mRNA expression at the 2-cell stage with decreasing levels through to the blastocyst. PIWIL1-YFP fusion plasmids were produced for each isoform and expressed in HEK 293 cells, demonstrating nuclear exclusion and size-specific banding of the different isoforms. These data represent the first comprehensive characterization of PIWIL1 in bovine, revealing functional similarities with PIWIL1 in other species and suggest tissue-specific expression of several isoforms.
Collapse
Affiliation(s)
- Stewart J Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Leanne Stalker
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Graham Gilchrist
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Alanna Backx
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Gonzalo Molledo
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
20
|
Wang Y, Liu J, Wu G, Yang F. Manipulations in HIWI level exerts influence on the proliferation of human non-small cell lung cancer cells. Exp Ther Med 2016; 11:1971-1976. [PMID: 27168836 DOI: 10.3892/etm.2016.3106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 12/21/2015] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality worldwide, although molecular imaging techniques, including fludeoxyglucose positron emission tomography, have markedly improved the diagnosis of lung cancer. HIWI is a member of the human piwi family, members of which are known for their roles in RNA silencing. HIWI has been shown to serve a crucial function in stem cell self-renewal, and previous studies have reported HIWI overexpression in lung cancers. Furthermore, HIWI has been proposed to regulate the maintenance of cancer stem cell populations in lung cancers. The present study investigated the mRNA and protein expression levels of HIWI in non-small cell lung cancer (NSCLC) specimens harvested from 57 patients, using reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Subsequently, the HIWI expression level was manipulated using gain-of-function and loss-of-function strategies, and the role of HIWI in the proliferation of human A549 NSCLC cells was investigated using Cell Counting Kit-8 and colony formation assays. The mRNA and protein expression levels of HIWI were significantly upregulated in the intratumor NSCLC specimens, as compared with the peritumor specimens. Furthermore, the mRNA and protein expression levels of HIWI in A549 cells were successfully manipulated using the two strategies. Overexpression and knockout of HIWI were associated with the promotion and inhibition of A549 cell proliferation, respectively. The results of the present study suggested that HIWI is overexpressed in NSCLC tissues and demonstrated that upregulation of HIWI may promote the growth of lung cancer cells; thus suggesting that HIWI may have an oncogenic role in lung cancer.
Collapse
Affiliation(s)
- Yuguang Wang
- Department of Magnetic Resonance Imaging, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Magnetic Resonance Imaging, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Jia Liu
- Department of Stomatology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Guangyao Wu
- Department of Magnetic Resonance Imaging, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fang Yang
- Department of Physiology, Basic Medical School of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
21
|
Fang X, Qi Y. RNAi in Plants: An Argonaute-Centered View. THE PLANT CELL 2016; 28:272-85. [PMID: 26869699 PMCID: PMC4790879 DOI: 10.1105/tpc.15.00920] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/29/2015] [Accepted: 02/10/2016] [Indexed: 05/18/2023]
Abstract
Argonaute (AGO) family proteins are effectors of RNAi in eukaryotes. AGOs bind small RNAs and use them as guides to silence target genes or transposable elements at the transcriptional or posttranscriptional level. Eukaryotic AGO proteins share common structural and biochemical properties and function through conserved core mechanisms in RNAi pathways, yet plant AGOs have evolved specialized and diversified functions. This Review covers the general features of AGO proteins and highlights recent progress toward our understanding of the mechanisms and functions of plant AGOs.
Collapse
Affiliation(s)
- Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
22
|
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that have been found highly conserved among species. MiRNAs are able to negatively regulate gene expression through base pairing of 3' UTRs of their target genes. Therefore, miRNAs have been shown to play an important role in regulating various cellular activities. Over the past decade, substantial evidences have been obtained to show that miRNAs are aberrantly expressed in human malignancies and could act as "OncomiRs" or "Tumor suppressor miRs". In recent years, increasing number of studies have demonstrated the involvement of miRNAs in cancer metastasis. Many studies have shown that microRNAs could directly target genes playing a central role in epithelia-mesenchymal-transition (EMT), a cellular transformation process that allows cancer cells to acquire motility and invasiveness. EMT is considered an essential step driving the early phase of cancer metastasis. This review will summarize the recent findings and characterization of miRNAs that are involved in the regulation of EMT, migration, invasion and metastasis of cancer cells. Lastly, we will discuss potential use of miRNAs as diagnostic and prognostic biomarkers as well as therapeutic targets for cancer.
Collapse
Affiliation(s)
- Shih-Hsuan Chan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan.
| | - Lu-Hai Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan.
| |
Collapse
|
23
|
Xian Z, Huang W, Yang Y, Tang N, Zhang C, Ren M, Li Z. miR168 influences phase transition, leaf epinasty, and fruit development via SlAGO1s in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6655-66. [PMID: 25378580 DOI: 10.1093/jxb/eru387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis thaliana, Argonaute1 (AGO1) interacts with miR168 to modulate the small RNA regulatory pathway. However, the underlying mechanism of regulation and relationship between AGO1 and miR168 is poorly understood in the cash crop Solanum lycopersicum (tomato). We previously found that SlAGO1A and SlAGO1B were cleaved by miR168 in tomato. In this study, we show that SlAGO1A and SlAGO1B accumulate in miR168-sponge transgenic plants, and that expression of miR168-resistant SlAGO1A (4m-SlAGO1A) and SlAGO1B (4m-SlAGO1B) in tomato results in a series of defects affecting growth rate, floral timing, leaves, and fruit. Accumulation of miR156 was found when 4m-SlAGO1A was at an early developmental stage compared to the wild type and original SlAGO1A transgenic plants, and miR172 was highly expressed in adult 4m-SlAGO1A compared to the controls. In addition, the expression of multiple small RNAs was altered in 4m-SlAGO1A. Taken together, our data provide novel insights into the interaction between SlAGO1s and miR168 in determining growth rate, phase change, leaf epinasty, fruit initiation and expansion, and other developmental processes in tomato.
Collapse
Affiliation(s)
- Zhiqiang Xian
- Genetic Engineering Research Centre, School of Life Sciences, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wei Huang
- Genetic Engineering Research Centre, School of Life Sciences, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yingwu Yang
- Genetic Engineering Research Centre, School of Life Sciences, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ning Tang
- Genetic Engineering Research Centre, School of Life Sciences, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chao Zhang
- Genetic Engineering Research Centre, School of Life Sciences, Chongqing University, Chongqing 400044, People's Republic of China
| | - Maozhi Ren
- Genetic Engineering Research Centre, School of Life Sciences, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhengguo Li
- Genetic Engineering Research Centre, School of Life Sciences, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
24
|
Xie Y, Yang Y, Ji D, Zhang D, Yao X, Zhang X. Hiwi downregulation, mediated by shRNA, reduces the proliferation and migration of human hepatocellular carcinoma cells. Mol Med Rep 2014; 11:1455-61. [PMID: 25370791 DOI: 10.3892/mmr.2014.2847] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/28/2014] [Indexed: 11/05/2022] Open
Abstract
The Piwi subfamily is one of two Argonaute family proteins, which are characterized by the presence of Piwi and Piwi‑Argonaute‑Zwille domains, and are well known for their role in RNA silencing. Hiwi, a human member of the Piwi subfamily, is restricted to the germ line, where it binds Piwi‑interacting RNAs and functions in stem cell self‑renewal and gametogenesis. Previous reports have indicated that abnormal Hiwi expression may be associated with a poor prognosis of numerous types of human cancer, including hepatocellular carcinoma (HCC). However, little is currently known about the oncogenic role of Hiwi in HCC. In the present study, it was confirmed that Hiwi is overexpressed at both the mRNA and protein level, in HCC specimens, as well as in MHCC97L and MHCC97H HCC cell lines. A lentivirus‑mediated small hairpin rna (shRNA) targeting Hiwi was constructed and used to infect MHCC97L and MHCC97H cells. Relative Hiwi mRNA and protein expression levels were determined by quantitative polymerase chain reaction and western blot analysis, respectively. Cell proliferation, migration and invasion were determined using cell count, scratch and Transwell assays, respectively. Hiwi mRNA and protein expression was significantly downregulated in HCC cells in response to transduction with the lentivirus‑mediated shRNA. Furthermore, the proliferative, migrative and invasive properties of the shRNA‑transduced cells were significantly decreased. Therefore, Hiwi downregulation mediated by shRNA, may reduce the proliferation and migration of HCC cells. These results indicate that Hiwi may have an important role in the progression of HCC and may be a target for anticancer therapy.
Collapse
Affiliation(s)
- Yingjun Xie
- Department of Hepatobiliary‑Pancreatic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yongsheng Yang
- Department of Hepatobiliary‑Pancreatic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Degang Ji
- Department of Hepatobiliary‑Pancreatic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dan Zhang
- Department of Hepatobiliary‑Pancreatic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xiaoxiao Yao
- Department of Hepatobiliary‑Pancreatic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xuewen Zhang
- Department of Hepatobiliary‑Pancreatic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
25
|
Wang DW, Wang ZH, Wang LL, Song Y, Zhang GZ. Overexpression of hiwi promotes growth of human breast cancer cells. Asian Pac J Cancer Prev 2014; 15:7553-8. [PMID: 25292027 DOI: 10.7314/apjcp.2014.15.18.7553] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The Piwi subfamily comprises two argonaute (Ago) family proteins, which are defined by the presence of PAZ and Piwi domains, with well known roles in RNA silencing. Hiwi, a human Piwi subfamily member, has been shown to play essential roles in stem cell self-renewal and gametogenesis. Recently, accumulating reports have indicated that abnormal hiwi expression is associated with poorer prognosis of multiple types of human cancers, including examples in the breast. However, little is known about details of the oncogenic role of hiwi in breast cancers. In present study, we confirmed overexpression of hiwi in breast cancer specimens and breast cancer cell lines at both mRNA and protein levels. Thus both RT-qPCR and Western blot data revealed significantly higher hiwi in intratumor than peritumor specimens, overexpression being associated with tumor size, lymph node metastasis and histological grade. Hiwi overexpression was also identified in breast cancer cell lines, MDA- MB-231 and MCF-7, and gain-of-function and loss-of-function strategies were adopted to identify the role of hiwi in the MCF-7 cell growth. Results demonstrated that hiwi expression in MCF-7 cells was significantly up- or down- regulated by the two strategies. We next evaluated the influence of hiwi overexpression or knockdown on the growth of breast cancer cells. Both cell count and colony formation assays confirmed promoting roles of hiwi in MCF-7 cells, which could be inhibited by hiwi specific blockage by siRNAs. In summary, the present study confirmed overexpression of hiwi in breast cancer specimens and breast cancer cell lines, and provided evidence of promotion by hiwi of cell growth. The results imply an oncogenic role of hiwi in breast cancers.
Collapse
Affiliation(s)
- Da-Wei Wang
- Central Research Department, China-Japan Union Hospital of Jilin University, Changchun, P.R. China E-mail :
| | | | | | | | | |
Collapse
|
26
|
Yang L, Li X, Jiang S, Qiu L, Zhou F, Liu W, Jiang S. Characterization of Argonaute2 gene from black tiger shrimp (Penaeus monodon) and its responses to immune challenges. FISH & SHELLFISH IMMUNOLOGY 2014; 36:261-9. [PMID: 24262300 DOI: 10.1016/j.fsi.2013.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 05/06/2023]
Abstract
Argonaute2 binds to a short guide RNA (microRNA or short interfering RNA) and guides RNAs direct RISC to complementary mRNAs that are targets for RISC-mediated gene silencing. Here we identified and characterized Argonaute2 from black tiger shrimp Penaeus monodon (designated as PmAgo2). The full-length cDNA of PmAgo2 contained a 5' untranslated region (UTR) of 106 bp, an open reading frame (ORF) of 2616 bp and a 3' UTR of 123 bp. The predicted PmAgo2 protein is 99.4 KDa with the theoretical isoelectric point of 9.54. PmAgo2 shared the highest similarity of amino acid with Marsupenaeus japonicus Argonaute2 and Litopenaeus vannamei Argonaute2, at 69.0% and 68.5%, respectively. Phylogenic analysis showed PmAgo2 clustered with shrimp Argonaute2, and closed to the group of insects. Real-time quantitative PCR showed that PmAgo2 was widely expressed in almost all examined tissues except eyestalk, with high expression in lymph and haemocyte. mRNA expression also revealed that PmAgo2 was significantly up-regulated by Staphylococcus aureus and White Spot Syndrome Virus (WSSV) in hepatopancreas. Furthermore, our study also confirmed that dsRNA and ssRNA homologous poly (I:C) and R848 activated the expression of PmAgo2. The result indicated that PmAgo2 responded to both bacterial infection and viral infection, especially, it may induce an ssRNA-mediated RNAi with other core members of siRNA pathway in black tiger shrimp.
Collapse
Affiliation(s)
- Lishi Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Xiaolan Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; College of Animal Science, South China Agriculture University, Guangzhou 510642, PR China
| | - Song Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Falin Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wenjing Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Shigui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| |
Collapse
|
27
|
Xian Z, Yang Y, Huang W, Tang N, Wang X, Li Z. Molecular cloning and characterisation of SlAGO family in tomato. BMC PLANT BIOLOGY 2013; 13:126. [PMID: 24011258 PMCID: PMC3847217 DOI: 10.1186/1471-2229-13-126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 08/30/2013] [Indexed: 05/27/2023]
Abstract
BACKGROUND AGO (Argonaute) protein participates in plant developmental processes and virus defense as a core element of transcriptional regulator or/and post-transcriptional regulator in RNA induced silencing complex (RISC), which is guided by small RNAs to repress target genes expression. Previously, it was revealed that 15 putative AGO genes in tomato genome. RESULTS In present study, out of 15 detected SlAGO genes, only SlAGO4C and SlAGO15 couldn't be detected in roots, stems, leaves, buds, flowers and fruit of tomato by 30 cycles of PCR. SlAGO7 could be detected in early stage of fruit (-2 dpa, 0 dpa and 4 dpa), but it was significantly down-regulated in fruit collected on the 6 days post anthesis. Moreover, SlAGO5 could only be detected in reproductive tissues and SlAGO4D was specifically detected in fruit. According to blast result with miRNA database, three SlAGO genes harbored complementary sequences to miR168 (SlAGO1A and SlAGO1B) or miR403 (SlAGO2A). 5' RACE (Rapid amplification of cDNA ends) mapping was used to detect the 3' cleavage products of SlAGO mRNAs. In addition, subcellular localization of SlAGO proteins was detected. Our results showed that most SlAGO proteins localized to nucleus and cytoplasm. Importantly, nuclear membrane localization of AGO proteins was observed. Furthermore, mutated miR168 complementary site of SlAGO1A resulted in expanded localization of SlAGO1A, indicating that miR168 regulated localization of SlAGO1A. CONCLUSIONS Our results contribute to demonstration of potential roles of these newly isolated AGO family in tomato developmental processes and proved the conserved relationships between AGO genes and miRNAs in tomato, which might play important roles in tomato development and virus defense.
Collapse
Affiliation(s)
- Zhiqiang Xian
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 400044, People’s Republic of China
| | - Yingwu Yang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 400044, People’s Republic of China
| | - Wei Huang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 400044, People’s Republic of China
| | - Ning Tang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 400044, People’s Republic of China
| | - Xinyu Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 400044, People’s Republic of China
| | - Zhengguo Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 400044, People’s Republic of China
| |
Collapse
|
28
|
Wei K, Wu L, Chen Y, Lin Y, Wang Y, Liu X, Xie D. Argonaute protein as a linker to command center of physiological processes. Chin J Cancer Res 2013; 25:430-41. [PMID: 23997530 DOI: 10.3978/j.issn.1000-9604.2013.08.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 12/17/2012] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate gene expression by binding to target mRNAs with perfect or imperfect complementarity, recruiting an Argonaute (AGO) protein complex that usually results in degradation or translational repression of the target mRNA. AGO proteins function as the Slicer enzyme in miRNA and small interfering RNA (siRNA) pathways involved in human physiological and pathophysiological processes, such as antiviral responses and disease formation. Although the past decade has witnessed rapid advancement in studies of AGO protein functions, to further elucidate the molecular mechanism of AGO proteins in cellular function and biochemical process is really a challenging area for researchers. In order to understand the molecular causes underlying the pathological processes, we mainly focus on five fundamental problems of AGO proteins, including evolution, functional domain, subcellular location, post-translational modification and protein-protein interactions. Our discussion highlight their roles in early diagnosis, disease prevention, drug target identification, drug response, etc.
Collapse
Affiliation(s)
- Kaifa Wei
- Department of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang GH, Jiang L, Zhu L, Cheng TC, Niu WH, Yan YF, Xia QY. Characterization of Argonaute family members in the silkworm, Bombyx mori. INSECT SCIENCE 2013; 20:78-91. [PMID: 23955828 DOI: 10.1111/j.1744-7917.2012.01555.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Argonaute protein family is a highly conserved group of proteins, which have been implicated in RNA silencing in both plants and animals. Here, four members of the Argonaute family were systemically identified based on the genome sequence of Bombyx mori. Based on their sequence similarity, BmAgo1 and BmAgo2 belong to the Ago subfamily, while BmAgo3 and BmPiwi are in the Piwi subfamily. Phylogenetic analysis reveals that silkworm Argonaute family members are conserved in insects. Conserved amino acid residues involved in recognition of the 5' end of the small RNA guide strand and of the conserved (aspartate, aspartate and histidine [DDH]) motif present in their PIWI domains suggest that these four Argonaute family members may have conserved slicer activities. The results of microarray expression analysis show that there is a low expression level for B. mori Argonaute family members in different tissues and different developmental stages, except for BmPiwi. All four B. mori Argonaute family members are upregulated upon infection with B. mori nucleopolyhedrovirus. The complete coding sequence of BmPiwi, the homolog of Drosophila piwi, was cloned and its expression occurred mainly in the area where spermatogonia and spermatocytes appear. Our results provide an overview of the B. mori Argonaute family members and suggest that they may have multiple roles. In addition, this is also the first report, to our knowledge, of the response of RNA silencing machinery to DNA virus infection in insects.
Collapse
Affiliation(s)
- Gen-Hong Wang
- State Key Laboratory of Silkworm Genome Biology, School of Biotechnology, Southwest, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Barnard AC, Nijhof AM, Fick W, Stutzer C, Maritz-Olivier C. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface. Genes (Basel) 2012; 3:702-41. [PMID: 24705082 PMCID: PMC3899984 DOI: 10.3390/genes3040702] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/06/2023] Open
Abstract
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase.
Collapse
Affiliation(s)
| | - Ard M Nijhof
- Institut für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany.
| | - Wilma Fick
- Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa.
| | - Christian Stutzer
- Department of Biochemistry, University of Pretoria, Pretoria, 0002, South Africa.
| | | |
Collapse
|
31
|
Nakanishi K, Weinberg DE, Bartel DP, Patel DJ. Structure of yeast Argonaute with guide RNA. Nature 2012; 486:368-74. [PMID: 22722195 PMCID: PMC3853139 DOI: 10.1038/nature11211] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/11/2012] [Indexed: 01/07/2023]
Abstract
The RNA-induced silencing complex, comprising Argonaute and guide RNA, mediates RNA interference. Here we report the 3.2 Å crystal structure of Kluyveromyces polysporus Argonaute (KpAGO) fortuitously complexed with guide RNA originating from small-RNA duplexes autonomously loaded by recombinant KpAGO. Despite their diverse sequences, guide-RNA nucleotides 1-8 are positioned similarly, with sequence-independent contacts to bases, phosphates and 2'-hydroxyl groups pre-organizing the backbone of nucleotides 2-8 in a near-A-form conformation. Compared with prokaryotic Argonautes, KpAGO has numerous surface-exposed insertion segments, with a cluster of conserved insertions repositioning the N domain to enable full propagation of guide-target pairing. Compared with Argonautes in inactive conformations, KpAGO has a hydrogen-bond network that stabilizes an expanded and repositioned loop, which inserts an invariant glutamate into the catalytic pocket. Mutation analyses and analogies to ribonuclease H indicate that insertion of this glutamate finger completes a universally conserved catalytic tetrad, thereby activating Argonaute for RNA cleavage.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - David E. Weinberg
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P. Bartel
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
32
|
Wei KF, Wu LJ, Chen J, Chen YF, Xie DX. Structural evolution and functional diversification analyses of argonaute protein. J Cell Biochem 2012; 113:2576-85. [DOI: 10.1002/jcb.24133] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation. Proc Natl Acad Sci U S A 2011; 109:523-8. [PMID: 22173636 DOI: 10.1073/pnas.1118859109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The generation of mature functional RNAs from nascent transcripts requires the precise and coordinated action of numerous RNAs and proteins. One such protein family, the ribonuclease III (RNase III) endonucleases, includes Rnt1, which functions in fungal ribosome and spliceosome biogenesis, and Dicer, which generates the siRNAs of the RNAi pathway. The recent discovery of small RNAs in Candida albicans led us to investigate the function of C. albicans Dicer (CaDcr1). CaDcr1 is capable of generating siRNAs in vitro and is required for siRNA generation in vivo. In addition, CaDCR1 complements a Dicer knockout in Saccharomyces castellii, restoring RNAi-mediated gene repression. Unexpectedly, deletion of the C. albicans CaDCR1 results in a severe slow-growth phenotype, whereas deletion of another core component of the RNAi pathway (CaAGO1) has little effect on growth, suggesting that CaDCR1 may have an essential function in addition to producing siRNAs. Indeed CaDcr1, the sole functional RNase III enzyme in C. albicans, has additional functions: it is required for cleavage of the 3' external transcribed spacer from unprocessed pre-rRNA and for processing the 3' tail of snRNA U4. Our results suggest two models whereby the RNase III enzymes of a fungal ancestor, containing both a canonical Dicer and Rnt1, evolved through a series of gene-duplication and gene-loss events to generate the variety of RNase III enzymes found in modern-day budding yeasts.
Collapse
|
34
|
Abstract
RNA interference (RNAi) is a powerful research tool that has enabled molecular insights into gene activity, pathway analysis, partial loss-of-function phenotypes, and large-scale genomic discovery of gene function. While RNAi works extremely well in the non-parasitic nematode C. elegans, it is also especially useful in organisms that lack facile genetic analysis. Extensive genetic analysis of the mechanisms, delivery and regulation of RNAi in C. elegans has provided mechanistic and phenomenological insights into why RNAi is so effective in this species. These insights are useful for the testing and development of RNAi in other nematodes, including parasitic nematodes where more effective RNAi would be extremely useful. Here, we review the current advances in C. elegans for RNA delivery methods, regulation of cell autonomous and systemic RNAi phenomena, and implications of enhanced RNAi mutants. These discussions, with a focus on mechanism and cross-species application, provide new perspectives for optimizing RNAi in other species.
Collapse
|
35
|
Butora G, Kenski DM, Cooper AJ, Fu W, Qi N, Li JJ, Flanagan WM, Davies IW. Nucleoside Optimization for RNAi: A High-Throughput Platform. J Am Chem Soc 2011; 133:16766-9. [DOI: 10.1021/ja2068774] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabor Butora
- Department of Process Chemistry, Merck & Co., Rahway, New Jersey 07065, United States
| | - Denise M. Kenski
- Department of RNA Sciences, Sirna (a wholly owned subsidiary of Merck and Co.), 1700 Owens Street, Fourth Floor, San Francisco, California 94158, United States
| | - Abby J. Cooper
- Department of RNA Sciences, Sirna (a wholly owned subsidiary of Merck and Co.), 1700 Owens Street, Fourth Floor, San Francisco, California 94158, United States
| | - Wenlang Fu
- Department of Process Chemistry, Merck & Co., Rahway, New Jersey 07065, United States
| | - Ning Qi
- Department of Process Chemistry, Merck & Co., Rahway, New Jersey 07065, United States
| | - Jenny J. Li
- Department of RNA Sciences, Sirna (a wholly owned subsidiary of Merck and Co.), 1700 Owens Street, Fourth Floor, San Francisco, California 94158, United States
| | - W. Michael Flanagan
- Department of RNA Sciences, Sirna (a wholly owned subsidiary of Merck and Co.), 1700 Owens Street, Fourth Floor, San Francisco, California 94158, United States
| | - Ian W. Davies
- Department of Process Chemistry, Merck & Co., Rahway, New Jersey 07065, United States
| |
Collapse
|
36
|
Kitagishi Y, Okumura N, Yoshida H, Tateishi C, Nishimura Y, Matsuda S. Dicer functions in aquatic species. JOURNAL OF AMINO ACIDS 2011; 2011:782187. [PMID: 22312469 PMCID: PMC3268030 DOI: 10.4061/2011/782187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/02/2011] [Indexed: 12/04/2022]
Abstract
Dicer is an RNase III enzyme with two catalytic subunits, which catalyzes the cleavage of double-stranded RNA to small interfering RNAs and micro-RNAs, which are mainly involved in invasive nucleic acid defense and endogenous genes regulation. Dicer is abundantly expressed in embryos, indicating the importance of the protein in early embryonic development. In addition, Dicer is thought to be involved in defense mechanism against foreign nucleic acids such as viruses. This paper will mainly focus on the recent progress of Dicer-related research and discuss potential RNA interference pathways in aquatic species.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Pinpointing the expression of piRNAs and function of the PIWI protein subfamily during spermatogenesis in the mouse. Dev Biol 2011; 355:215-26. [PMID: 21539824 DOI: 10.1016/j.ydbio.2011.04.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/17/2011] [Indexed: 01/20/2023]
Abstract
PIWI proteins and piRNAs have been linked to transposon silencing in the primordial mouse testis, but their function in the adult testis remains elusive. Here we report the cytological characterization of piRNAs in the adult mouse testis and the phenotypic analysis of Miwi(-/-); Mili(-/-) mice. We show that piRNAs are specifically present in germ cells, especially abundant in spermatocytes and early round spermatids, regardless of the type of the genomic sequences to which they correspond. piRNAs and PIWI proteins are present in both the cytoplasm and nucleus. In the cytoplasm, they are enriched in the chromatoid body; whereas in the nucleus they are enriched in the dense body, a male-specific organelle associated with synapsis and the formation of the XY body during meiosis. Moreover, by generating Miwi(-/-); Mili(-/-) mice, which lack all PIWI proteins in the adult, we show that PIWI proteins and presumably piRNAs in the adult are required only for spermatogenesis. Spermatocytes without PIWI proteins are arrested at the pachytene stage, when the sex chromosomes undergo transcriptional silencing to form the XY body. These results pinpoint a function of the PIWI protein subfamily to meiosis during spermatogenesis.
Collapse
|
38
|
Lambert NJ, Gu SG, Zahler AM. The conformation of microRNA seed regions in native microRNPs is prearranged for presentation to mRNA targets. Nucleic Acids Res 2011; 39:4827-35. [PMID: 21335607 PMCID: PMC3113585 DOI: 10.1093/nar/gkr077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs control gene expression by post-transcriptional down-regulation of their target mRNAs. Complementarity between the seed region (nucleotides 2-8) of a microRNA and the 3'-UTR of its target mRNA is the key determinant in recognition. However, the structural basis of the ability of the seed region to dominate target recognition in eukaryotic argonaute complexes has not been directly demonstrated. To better understand this problem, we performed chemical probing of microRNAs held in native argonaute-containing complexes isolated from Caenorhabditis elegans. Direct probing of the RNA backbone in isolated native microRNP complexes shows that the conformation of the seed region is uniquely constrained, while the rest of the microRNA structure is conformationally flexible. Probing the Watson-Crick edges of the bases shows that bases 2-4 are largely inaccessible to solvent, while seed region bases 5-8 are readily modified; collectively our probing results suggest a model in which these bases are primed for initiating base pairing with the target mRNA. In addition, an unusual DMS reactivity with U at position 6 is observed. We propose that interaction of miRNAs with argonaute proteins pre-organizes the structure of the seed sequence for specific recognition of target mRNAs.
Collapse
Affiliation(s)
- Nicole J Lambert
- Department of MCD Biology and the Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
39
|
Paciello G, Acquaviva A, Ficarra E, Deriu MA, Macii E. A molecular dynamics study of a miRNA:mRNA interaction. J Mol Model 2011; 17:2895-906. [DOI: 10.1007/s00894-011-0991-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 01/24/2011] [Indexed: 12/25/2022]
|
40
|
Ahn JW, Yin CJ, Liu JR, Jeong WJ. Cucumber mosaic virus 2b protein inhibits RNA silencing pathways in green alga Chlamydomonas reinhardtii. PLANT CELL REPORTS 2010; 29:967-75. [PMID: 20532888 DOI: 10.1007/s00299-010-0882-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 05/10/2023]
Abstract
The functions of RNA silencing are repression of endogenous gene expression and antiviral defense in plants and animals. Cucumber mosaic virus 2b (CMV2b) is a suppressor of RNA silencing in higher plants. In the present study, we evaluated the RNA silencing suppressor activity of CMV2b in Chlamydomonas reinhardtii. Before transformation, we modified CMV2b codons to increase the GC content for optimal expression in C. reinhardtii. Inhibition of Maa7 silencing was detected in CMV2b-expressing Maa7-IR44 strains, indicating that CMV2b suppressed siRNA pathways in C. reinhardtii as in higher plants. In addition, mRNA expression targeted for cleavage by miRNA was significantly higher in CMV2b-expressing strains, but increased accumulation of miRNA was not detected. These results indicate that the suppression of miRNA pathways is mediated by CMV2b in C. reinhardtii. Interestingly, expression of both Argonaute 1 (AGO1) and Dicer-like 1 (DCL1), regulated by a bidirectional promoter, was reduced in CMV2b-expressing strains, suggesting that CMV2b may affect transcription factors involved in RNA silencing pathways. Furthermore, reduction of AGO2 and AGO3 expression was detected in CMV2b-expressing strains. Taken together, our results demonstrate that CMV2b may suppress both siRNA and miRNA pathways, and also impair AGOs and DCL1 expression in C. reinhardtii.
Collapse
Affiliation(s)
- Joon-Woo Ahn
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon, 305-806, Korea
| | | | | | | |
Collapse
|
41
|
Svoboda P, Stein P. RNAi experiments in mouse oocytes and early embryos. Cold Spring Harb Protoc 2010; 2009:pdb.top56. [PMID: 20147032 DOI: 10.1101/pdb.top56] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The discovery of RNA interference (RNAi) in 1998 ushered in a new era in biology. RNAi currently serves as a favorite approach for inhibition of gene function in many areas of research. This article provides a brief review of RNAi and discussion of the benefits and drawbacks of using long double-stranded RNA (dsRNA) in mammalian oocytes and early embryos. We also provide an introduction to protocols for RNAi experiments in mouse, including preparation and microinjection of dsRNA into mouse oocytes and early embryos, and preparation and testing of constructs for transgenic RNAi based on long hairpin RNA expression.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
42
|
Abstract
RNA interference (RNAi), a gene-silencing pathway triggered by double-stranded RNA, is conserved in diverse eukaryotic species but has been lost in the model budding yeast Saccharomyces cerevisiae. Here, we show that RNAi is present in other budding yeast species, including Saccharomyces castellii and Candida albicans. These species use noncanonical Dicer proteins to generate small interfering RNAs, which mostly correspond to transposable elements and Y' subtelomeric repeats. In S. castellii, RNAi mutants are viable but have excess Y' messenger RNA levels. In S. cerevisiae, introducing Dicer and Argonaute of S. castellii restores RNAi, and the reconstituted pathway silences endogenous retrotransposons. These results identify a previously unknown class of Dicer proteins, bring the tool of RNAi to the study of budding yeasts, and bring the tools of budding yeast to the study of RNAi.
Collapse
MESH Headings
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression Profiling
- Genes, Fungal
- Genetic Loci
- Mutation
- Open Reading Frames
- RNA Interference
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Repetitive Sequences, Nucleic Acid
- Retroelements
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Saccharomyces/genetics
- Saccharomyces/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomycetales/genetics
- Saccharomycetales/metabolism
- Sequence Analysis, RNA
- Transcription, Genetic
- Transformation, Genetic
Collapse
Affiliation(s)
- Ines A. Drinnenberg
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David E. Weinberg
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kathleen T. Xie
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey P. Mower
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Kenneth H. Wolfe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gerald R. Fink
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P. Bartel
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Curry S, Kotik-Kogan O, Conte MR, Brick P. Getting to the end of RNA: structural analysis of protein recognition of 5' and 3' termini. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:653-66. [PMID: 19619683 DOI: 10.1016/j.bbagrm.2009.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
The specific recognition by proteins of the 5' and 3' ends of RNA molecules is an important facet of many cellular processes, including RNA maturation, regulation of translation initiation and control of gene expression by degradation and RNA interference. The aim of this review is to survey recent structural analyses of protein binding domains that specifically bind to the extreme 5' or 3' termini of RNA. For reasons of space and because their interactions are also governed by catalytic considerations, we have excluded enzymes that modify the 5' and 3' extremities of RNA. It is clear that there is enormous structural diversity among the proteins that have evolved to bind to the ends of RNA molecules. Moreover, they commonly exhibit conformational flexibility that appears to be important for binding and regulation of the interaction. This flexibility has sometimes complicated the interpretation of structural results and presents significant challenges for future investigations.
Collapse
Affiliation(s)
- Stephen Curry
- Biophysics Section, Blackett Laboratory, Imperial College, Exhibition Road, London, SW7 2AZ, UK.
| | | | | | | |
Collapse
|
44
|
Whole-genome tiling array analysis of Mycobacterium leprae RNA reveals high expression of pseudogenes and noncoding regions. J Bacteriol 2009; 191:3321-7. [PMID: 19286800 DOI: 10.1128/jb.00120-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Whole-genome sequence analysis of Mycobacterium leprae has revealed a limited number of protein-coding genes, with half of the genome composed of pseudogenes and noncoding regions. We previously showed that some M. leprae pseudogenes are transcribed at high levels and that their expression levels change following infection. In order to clarify the RNA expression profile of the M. leprae genome, a tiling array in which overlapping 60-mer probes cover the entire 3.3-Mbp genome was designed. The array was hybridized with M. leprae RNA from the SHR/NCrj-rnu nude rat, and the results were compared to results from an open reading frame array and confirmed by reverse transcription-PCR. RNA expression was detected from genes, pseudogenes, and noncoding regions. The signal intensities obtained from noncoding regions were higher than those from pseudogenes. Expressed noncoding regions include the M. leprae unique repetitive sequence RLEP and other sequences without any homology to known functional noncoding RNAs. Although the biological functions of RNA transcribed from M. leprae pseudogenes and noncoding regions are not known, RNA expression analysis will provide insights into the bacteriological significance of the species. In addition, our study suggests that M. leprae will be a useful model organism for the study of the molecular mechanism underlying the creation of pseudogenes and the role of microRNAs derived from noncoding regions.
Collapse
|
45
|
Krulko I, Ustyanenko D, Polischuk V. Role of siRNAs and miRNAs in the processes of RNA-mediated gene silencing during viral infections. CYTOL GENET+ 2009; 43:63-72. [PMID: 32214541 PMCID: PMC7089099 DOI: 10.3103/s0095452709010113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/1995] [Indexed: 11/30/2022]
Abstract
Phenomenon of RNA-induced gene silencing is a highly conservative mechanism among eukaryotic organisms. Several classes of small RNAs (siRNAs and miRNAs) 21-25 nt in length, which play a significant role in the processes of development of an organism, occurred important components of antiviral defence in animals and plants. This review shortly describes the main stages of gene silencing mechanism, features of antiviral RNA silencing in plants, invertebrates, mammals, ways of suppression of RNA-interference by viruses, as well as possible approaches of utilization of abovementioned phenomenon for struggling against viral infections.
Collapse
Affiliation(s)
- I. Krulko
- Taras Shevchenko Kyiv National University, ul. Volodymyrska 64, Kyiv, 01033 Ukraine
| | - D. Ustyanenko
- Taras Shevchenko Kyiv National University, ul. Volodymyrska 64, Kyiv, 01033 Ukraine
| | - V. Polischuk
- Taras Shevchenko Kyiv National University, ul. Volodymyrska 64, Kyiv, 01033 Ukraine
| |
Collapse
|
46
|
Abstract
Sexually transmitted viral infections have the potential to be prevented and treated by topical viricides. Here, Wu et al. (2009) demonstrate that cholesterol-conjugated small interfering RNAs (siRNAs) targeting a cellular receptor combined with an antiviral siRNA when topically applied to mucosal tissue blocked lethal herpes virus infections in mice.
Collapse
Affiliation(s)
- J J Rossi
- Department of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
47
|
Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 2009; 456:921-6. [PMID: 19092929 DOI: 10.1038/nature07666] [Citation(s) in RCA: 431] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 11/25/2008] [Indexed: 02/07/2023]
Abstract
Here we report on a 3.0 A crystal structure of a ternary complex of wild-type Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-nucleotide guide DNA and a 20-nucleotide target RNA containing cleavage-preventing mismatches at the 10-11 step. The seed segment (positions 2 to 8) adopts an A-helical-like Watson-Crick paired duplex, with both ends of the guide strand anchored in the complex. An arginine, inserted between guide-strand bases 10 and 11 in the binary complex, locking it in an inactive conformation, is released on ternary complex formation. The nucleic-acid-binding channel between the PAZ- and PIWI-containing lobes of argonaute widens on formation of a more open ternary complex. The relationship of structure to function was established by determining cleavage activity of ternary complexes containing position-dependent base mismatch, bulge and 2'-O-methyl modifications. Consistent with the geometry of the ternary complex, bulges residing in the seed segments of the target, but not the guide strand, were better accommodated and their complexes were catalytically active.
Collapse
|
48
|
Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ. Structure of the guide-strand-containing argonaute silencing complex. Nature 2008; 456:209-13. [PMID: 18754009 PMCID: PMC4689319 DOI: 10.1038/nature07315] [Citation(s) in RCA: 410] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Accepted: 08/06/2008] [Indexed: 12/12/2022]
Abstract
The slicer activity of the RNA-induced silencing complex is associated with argonaute, the RNase H-like PIWI domain of which catalyses guide-strand-mediated sequence-specific cleavage of target messenger RNA. Here we report on the crystal structure of Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-base DNA guide strand, thereby identifying the nucleic-acid-binding channel positioned between the PAZ- and PIWI-containing lobes, as well as the pivot-like conformational changes associated with complex formation. The bound guide strand is anchored at both of its ends, with the solvent-exposed Watson-Crick edges of stacked bases 2 to 6 positioned for nucleation with the mRNA target, whereas two critically positioned arginines lock bases 10 and 11 at the cleavage site into an unanticipated orthogonal alignment. Biochemical studies indicate that key amino acid residues at the active site and those lining the 5'-phosphate-binding pocket made up of the Mid domain are critical for cleavage activity, whereas alterations of residues lining the 2-nucleotide 3'-end-binding pocket made up of the PAZ domain show little effect.
Collapse
Affiliation(s)
- Yanli Wang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
49
|
Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 2008; 9:451. [PMID: 18826656 PMCID: PMC2576257 DOI: 10.1186/1471-2164-9-451] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 10/01/2008] [Indexed: 12/11/2022] Open
Abstract
Background Important developmental processes in both plants and animals are partly regulated by genes whose expression is modulated at the post-transcriptional level by processes such as RNA interference (RNAi). Dicers, Argonautes and RNA-dependent RNA polymerases (RDR) form the core components that facilitate gene silencing and have been implicated in the initiation and maintenance of the trigger RNA molecules, central to process of RNAi. Investigations in eukaryotes have revealed that these proteins are encoded by variable number of genes with plants showing relatively higher number in each gene family. To date, no systematic expression profiling of these genes in any of the organisms has been reported. Results In this study, we provide a complete analysis of rice Dicer-like, Argonaute and RDR gene families including gene structure, genomic localization and phylogenetic relatedness among gene family members. We also present microarray-based expression profiling of these genes during 14 stages of reproductive and 5 stages of vegetative development and in response to cold, salt and dehydration stress. We have identified 8 Dicer-like (OsDCLs), 19 Argonaute (OsAGOs) and 5 RNA-dependent RNA polymerase (OsRDRs) genes in rice. Based on phylogeny, each of these genes families have been categorized into four subgroups. Although most of the genes express both in vegetative and reproductive organs, 2 OsDCLs, 14 OsAGOs and 3 OsRDRs were found to express specifically/preferentially during stages of reproductive development. Of these, 2 OsAGOs exhibited preferential up-regulation in seeds. One of the Argonautes (OsAGO2) also showed specific up-regulation in response to cold, salt and dehydration stress. Conclusion This investigation has identified 23 rice genes belonging to DCL, Argonaute and RDR gene families that could potentially be involved in reproductive development-specific gene regulatory mechanisms. These data provide an insight into probable domains of activity of these genes and a basis for further, more detailed investigations aimed at understanding the contribution of individual components of RNA silencing machinery during reproductive phase of plant development.
Collapse
|
50
|
Rüdel S, Flatley A, Weinmann L, Kremmer E, Meister G. A multifunctional human Argonaute2-specific monoclonal antibody. RNA (NEW YORK, N.Y.) 2008; 14:1244-53. [PMID: 18430891 PMCID: PMC2390805 DOI: 10.1261/rna.973808] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/18/2008] [Indexed: 05/24/2023]
Abstract
Small regulatory RNAs including small interfering RNAs (siRNAs), microRNAs (miRNAs), or Piwi interacting RNAs (piRNAs) guide regulation of gene expression in many different organisms. The Argonaute (Ago) protein family constitutes the cellular binding partners of such small RNAs and regulates gene expression on the levels of transcription, mRNA stability, or translation. Due to the lack of highly specific and potent monoclonal antibodies directed against the different Ago proteins, biochemical analyses such as Ago complex purification and characterization rely on overexpression of tagged Ago proteins. Here, we report the generation and functional characterization of a highly specific monoclonal anti-Ago2 antibody termed anti-Ago2(11A9). We show that anti-Ago2(11A9) is specific for human Ago2 and detects Ago2 in Western blots as well as in immunoprecipitation experiments. We further demonstrate that Ago2 can be efficiently eluted from our antibody by a competing peptide. Finally, we show that anti-Ago2(11A9) recognizes Ago2 in immunofluorescence experiments, and we find that Ago2 not only localizes to cytoplasmic processing bodies (P-bodies) and the diffuse cytoplasm but also to the nucleus. With the anti-Ago2(11A9) antibody we have generated a potent tool that is useful for many biochemical or cell biological applications.
Collapse
Affiliation(s)
- Sabine Rüdel
- Center for Integrated Protein Science Munich, Laboratory of RNA Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|