1
|
Beverley KM, Barbera N, Levitan I. Dual pattern of cholesterol-induced decoupling of residue-residue interactions of Kir2.2. J Struct Biol 2024; 216:108091. [PMID: 38641256 DOI: 10.1016/j.jsb.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Cholesterol is a negative regulator of a variety of ion channels. We have previously shown that cholesterol suppresses Kir2.2 channels via residue-residue uncoupling on the inter-subunit interfaces within the close state of the channels (3JYC). In this study, we extend this analysis to the other known structure of Kir2.2 that is closer to the open state of Kir2.2 channels (3SPI) and provide additional analysis of the residue distances between the uncoupled residues and cholesterol binding domains in the two conformation states of the channels. We found that the general phenomenon of cholesterol binding leading to uncoupling between specific residues is conserved in both channel states but the specific pattern of the uncoupling residues is distinct between the two states and implies different mechanisms. Specifically, we found that cholesterol binding in the 3SPI state results in an uncoupling of residues in three distinct regions; the transmembrane domain, membrane-cytosolic interface, and the cytosolic domain, with the first two regions forming an envelope around PI(4,5)P2 and cholesterol binding sites and the distal region overlapping with the subunit-subunit interface characterized in our previous study of the disengaged state. We also found that this uncoupling is dependent upon the number of cholesterol molecules bound to the channel. We further generated a mutant channel Kir2.2P187V with a single point mutation in a residue proximal to the PI(4,5)P2 binding site, which is predicted to be uncoupled from other residues in its vicinity upon cholesterol binding and found that this mutation abrogates the sensitivity of Kir2.2 to cholesterol changes in the membrane. These findings suggest that cholesterol binding to this conformation state of Kir2.2 channels may destabilize the PI(4,5)P2 interactions with the channels while in the disengaged state the destabilization occurs where the subunits interact. These findings give insight into the structural mechanistic basis for the functional effects of cholesterol binding to the Kir2.2 channel.
Collapse
Affiliation(s)
- Katie M Beverley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Nicolas Barbera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Center for Public Health Genomics, Department of Biomedical Engineering, School of Engineering &Applied Science, University of Virginia, Charlottesville, VA 22904, USA
| | - Irena Levitan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
2
|
Polák M, Černý J, Novák P. Isotopic Depletion Increases the Spatial Resolution of FPOP Top-Down Mass Spectrometry Analysis. Anal Chem 2024; 96:1478-1487. [PMID: 38226459 PMCID: PMC10831798 DOI: 10.1021/acs.analchem.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
Protein radical labeling, like fast photochemical oxidation of proteins (FPOP), coupled to a top-down mass spectrometry (MS) analysis offers an alternative analytical method for probing protein structure or protein interaction with other biomolecules, for instance, proteins and DNA. However, with the increasing mass of studied analytes, the MS/MS spectra become complex and exhibit a low signal-to-noise ratio. Nevertheless, these difficulties may be overcome by protein isotope depletion. Thus, we aimed to use protein isotope depletion to analyze FPOP-oxidized samples by top-down MS analysis. For this purpose, we prepared isotopically natural (IN) and depleted (ID) forms of the FOXO4 DNA binding domain (FOXO4-DBD) and studied the protein-DNA interaction interface with double-stranded DNA, the insulin response element (IRE), after exposing the complex to hydroxyl radicals. As shown by comparing tandem mass spectra of natural and depleted proteins, the ID form increased the signal-to-noise ratio of useful fragment ions, thereby enhancing the sequence coverage by more than 19%. This improvement in the detection of fragment ions enabled us to detect 22 more oxidized residues in the ID samples than in the IN sample. Moreover, less common modifications were detected in the ID sample, including the formation of ketones and lysine carbonylation. Given the higher quality of ID top-down MSMS data set, these results provide more detailed information on the complex formation between transcription factors and DNA-response elements. Therefore, our study highlights the benefits of isotopic depletion for quantitative top-down proteomics. Data are available via ProteomeXchange with the identifier PXD044447.
Collapse
Affiliation(s)
- Marek Polák
- Institute
of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, 12843 Prague, Czech Republic
| | - Jiří Černý
- Laboratory
of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Petr Novák
- Institute
of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, 12843 Prague, Czech Republic
| |
Collapse
|
3
|
Beverley KM, Levitan I. Cholesterol regulation of mechanosensitive ion channels. Front Cell Dev Biol 2024; 12:1352259. [PMID: 38333595 PMCID: PMC10850386 DOI: 10.3389/fcell.2024.1352259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
The purpose of this review is to evaluate the role of cholesterol in regulating mechanosensitive ion channels. Ion channels discussed in this review are sensitive to two types of mechanical signals, fluid shear stress and/or membrane stretch. Cholesterol regulates the channels primarily in two ways: 1) indirectly through localizing the channels into cholesterol-rich membrane domains where they interact with accessory proteins and/or 2) direct binding of cholesterol to the channel at specified putative binding sites. Cholesterol may also regulate channel function via changes of the biophysical properties of the membrane bilayer. Changes in cholesterol affect both mechanosensitivity and basal channel function. We focus on four mechanosensitive ion channels in this review Piezo, Kir2, TRPV4, and VRAC channels. Piezo channels were shown to be regulated by auxiliary proteins that enhance channel function in high cholesterol domains. The direct binding mechanism was shown in Kir2.1 and TRPV4 where cholesterol inhibits channel function. Finally, cholesterol regulation of VRAC was attributed to changes in the physical properties of lipid bilayer. Additional studies should be performed to determine the physiological implications of these sterol effects in complex cellular environments.
Collapse
Affiliation(s)
- Katie M. Beverley
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Rosi M, Russell B, Kristensen LG, Farquhar ER, Jain R, Abel D, Sullivan M, Costello SM, Dominguez-Martin MA, Chen Y, Marqusee S, Petzold CJ, Kerfeld CA, DePonte DP, Farahmand F, Gupta S, Ralston CY. An automated liquid jet for fluorescence dosimetry and microsecond radiolytic labeling of proteins. Commun Biol 2022; 5:866. [PMID: 36008591 PMCID: PMC9411504 DOI: 10.1038/s42003-022-03775-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
X-ray radiolytic labeling uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation. High flux density beams are essential to overcome radical scavengers. However, conventional sample delivery environments, such as capillary flow, limit the use of a fully unattenuated focused broadband beam. An alternative is to use a liquid jet, and we have previously demonstrated that use of this form of sample delivery can increase labeling by tenfold at an unfocused X-ray source. Here we report the first use of a liquid jet for automated inline quantitative fluorescence dosage characterization and sample exposure at a high flux density microfocused synchrotron beamline. Our approach enables exposure times in single-digit microseconds while retaining a high level of side-chain labeling. This development significantly boosts the method’s overall effectiveness and efficiency, generates high-quality data, and opens up the arena for high throughput and ultrafast time-resolved in situ hydroxyl radical labeling. A high-speed liquid jet delivery system improves the X-ray footprinting and mass spectrometry method to label proteins for structural studies.
Collapse
Affiliation(s)
- Matthew Rosi
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Brandon Russell
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Rohit Jain
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Donald Abel
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Michael Sullivan
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Shawn M Costello
- Biophysics Graduate Program, University of California, Berkeley, CA, USA
| | - Maria Agustina Dominguez-Martin
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, US.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Department of Chemistry, University of California, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, US.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | | | - Farid Farahmand
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US.
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US.
| |
Collapse
|
5
|
Dafun AS, Marcoux J. Structural mass spectrometry of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140813. [PMID: 35750312 DOI: 10.1016/j.bbapap.2022.140813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
6
|
Barbera N, Granados ST, Vanoye CG, Abramova TV, Kulbak D, Ahn SJ, George AL, Akpa BS, Levitan I. Cholesterol-induced suppression of Kir2 channels is mediated by decoupling at the inter-subunit interfaces. iScience 2022; 25:104329. [PMID: 35602957 PMCID: PMC9120057 DOI: 10.1016/j.isci.2022.104329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022] Open
Abstract
Cholesterol is a major regulator of multiple types of ion channels. Although there is increasing information about cholesterol binding sites, the molecular mechanisms through which cholesterol binding alters channel function are virtually unknown. In this study, we used a combination of Martini coarse-grained simulations, a network theory-based analysis, and electrophysiology to determine the effect of cholesterol on the dynamic structure of the Kir2.2 channel. We found that increasing membrane cholesterol reduced the likelihood of contact between specific regions of the cytoplasmic and transmembrane domains of the channel, most prominently at the subunit-subunit interfaces of the cytosolic domains. This decrease in contact was mediated by pairwise interactions of specific residues and correlated to the stoichiometry of cholesterol binding events. The predictions of the model were tested by site-directed mutagenesis of two identified residues-V265 and H222-and high throughput electrophysiology.
Collapse
Affiliation(s)
- Nicolas Barbera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Sara T. Granados
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Carlos Guillermo Vanoye
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tatiana V. Abramova
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Danielle Kulbak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Sang Joon Ahn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Alfred L. George
- Department of Pharmacology; Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Belinda S. Akpa
- Division of Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
- Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Irena Levitan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Pan X, Vachet RW. MEMBRANE PROTEIN STRUCTURES AND INTERACTIONS FROM COVALENT LABELING COUPLED WITH MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2022; 41:51-69. [PMID: 33145813 PMCID: PMC8093322 DOI: 10.1002/mas.21667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 05/31/2023]
Abstract
Membrane proteins are incredibly important biomolecules because they mediate interactions between a cell's external and internal environment. Obtaining information about membrane protein structure and interactions is thus important for understanding these essential biomolecules. Compared with the analyses of water-soluble proteins, the structural analysis of membrane proteins is more challenging owing to their unique chemical properties and the presence of lipid components that are necessary to solubilize them. The combination of covalent labeling (CL) and mass spectrometry (MS) has recently been applied with great success to study membrane protein structure and interactions. These studies have demonstrated the many advantages that CL-MS methods have over other traditional biophysical techniques. In this review, we discuss both amino acid-specific and non-specific labeling approaches and the special considerations needed to address the unique challenges associated with interrogating membrane proteins. This review highlights the aspects of this approach that require special care to be applied correctly and provides a comprehensive review of the membrane protein systems that have been studied by CL-MS. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
|
8
|
Fagnen C, Bannwarth L, Oubella I, Zuniga D, Haouz A, Forest E, Scala R, Bendahhou S, De Zorzi R, Perahia D, Vénien-Bryan C. Integrative Study of the Structural and Dynamical Properties of a KirBac3.1 Mutant: Functional Implication of a Highly Conserved Tryptophan in the Transmembrane Domain. Int J Mol Sci 2021; 23:335. [PMID: 35008764 PMCID: PMC8745282 DOI: 10.3390/ijms23010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
ATP-sensitive potassium (K-ATP) channels are ubiquitously expressed on the plasma membrane of cells in several organs, including the heart, pancreas, and brain, and they govern a wide range of physiological processes. In pancreatic β-cells, K-ATP channels composed of Kir6.2 and SUR1 play a key role in coupling blood glucose and insulin secretion. A tryptophan residue located at the cytosolic end of the transmembrane helix is highly conserved in eukaryote and prokaryote Kir channels. Any mutation on this amino acid causes a gain of function and neonatal diabetes mellitus. In this study, we have investigated the effect of mutation on this highly conserved residue on a KirBac channel (prokaryotic homolog of mammalian Kir6.2). We provide the crystal structure of the mutant KirBac3.1 W46R (equivalent to W68R in Kir6.2) and its conformational flexibility properties using HDX-MS. In addition, the detailed dynamical view of the mutant during the gating was investigated using the in silico method. Finally, functional assays have been performed. A comparison of important structural determinants for the gating mechanism between the wild type KirBac and the mutant W46R suggests interesting structural and dynamical clues and a mechanism of action of the mutation that leads to the gain of function.
Collapse
Affiliation(s)
- Charline Fagnen
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, 4 Ave. des Sciences, 91190 Gif-sur-Yvette, France;
| | - Ludovic Bannwarth
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
| | - Iman Oubella
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
| | - Dania Zuniga
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
| | - Ahmed Haouz
- Institut Pasteur, C2RT-Plate-Forme de Cristallographie CNRS-UMR3528, 75724 Paris, France;
| | - Eric Forest
- CNRS, IBS, CEA, University Grenoble Alpes, 38044 Grenoble, France;
| | - Rosa Scala
- CNRS UMR7370, LP2M, Labex ICST, Faculté de Médecine, University Côte d’Azur, 06560 Nice, France; (R.S.); (S.B.)
| | - Saïd Bendahhou
- CNRS UMR7370, LP2M, Labex ICST, Faculté de Médecine, University Côte d’Azur, 06560 Nice, France; (R.S.); (S.B.)
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgeri 1, 34127 Trieste, Italy;
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, 4 Ave. des Sciences, 91190 Gif-sur-Yvette, France;
| | - Catherine Vénien-Bryan
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
| |
Collapse
|
9
|
Sun J, Liu XR, Li S, He P, Li W, Gross ML. Nanoparticles and photochemistry for native-like transmembrane protein footprinting. Nat Commun 2021; 12:7270. [PMID: 34907205 PMCID: PMC8671412 DOI: 10.1038/s41467-021-27588-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
Mass spectrometry-based footprinting can probe higher order structure of soluble proteins in their native states and serve as a complement to high-resolution approaches. Traditional footprinting approaches, however, are hampered for integral membrane proteins because their transmembrane regions are not accessible to solvent, and they contain hydrophobic residues that are generally unreactive with most chemical reagents. To address this limitation, we bond photocatalytic titanium dioxide (TiO2) nanoparticles to a lipid bilayer. Upon laser irradiation, the nanoparticles produce local concentrations of radicals that penetrate the lipid layer, which is made permeable by a simultaneous laser-initiated Paternò-Büchi reaction. This approach achieves footprinting for integral membrane proteins in liposomes, helps locate both ligand-binding residues in a transporter and ligand-induced conformational changes, and reveals structural aspects of proteins at the flexible unbound state. Overall, this approach proves effective in intramembrane footprinting and forges a connection between material science and biology.
Collapse
Affiliation(s)
- Jie Sun
- grid.4367.60000 0001 2355 7002Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Box 1134, Saint Louis, MO 63130 USA
| | - Xiaoran Roger Liu
- grid.4367.60000 0001 2355 7002Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Box 1134, Saint Louis, MO 63130 USA
| | - Shuang Li
- grid.4367.60000 0001 2355 7002Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Box 8231, St. Louis, MO 63110 USA
| | - Peng He
- grid.4367.60000 0001 2355 7002Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Box 8231, St. Louis, MO 63110 USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Box 8231, St. Louis, MO, 63110, USA.
| | - Michael L. Gross
- grid.4367.60000 0001 2355 7002Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Box 1134, Saint Louis, MO 63130 USA
| |
Collapse
|
10
|
Abstract
Here, we introduce carbocations (R3C+) as laser-initiated footprinting reagents for proteins. We screened seven candidates and selected trifluomethoxy benzyl bromide (TFBB) as an effective precursor for the electrophilic trifluomethoxy benzyl carbocation (TFB+) under laser (248 nm) irradiation on the fast photochemical oxidation of proteins (FPOP) platform. Initial results demonstrate that this electrophilic cation reagent affords residue coverage of nucleophilic amino acids including H, W, M, and S. Further, the addition of TFB+ increases the hydrophobicity of the peptides so that separation of isomeric peptide products by reversed-phase LC is improved, suggesting opportunities for subresidue footprinting. Comparison of apo- and holo-myoglobin footprints shows that the TFB+ footprinting is sensitive to protein conformational change and solvent accessibility. Interestingly, because the TFB+ is amphiphilic, the reagent can potentially footprint membrane proteins as demonstrated for vitamin K epoxide reductase (VKOR) stabilized in a micelle. Not only does footprinting of the extra-membrane domain occur, but also some footprinting of the hydrophobic transmembrane domain is achieved owing to the interaction of TFB+ with the micelle. Carbocation precursors are stable and amenable for tailoring their properties and those of the incipient carbocation, enabling targeting their soluble or membrane-associated or embedded regions and distinguishing between the extra- and trans-membrane domains of membrane proteins.
Collapse
Affiliation(s)
- Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
11
|
Fagnen C, Bannwarth L, Zuniga D, Oubella I, De Zorzi R, Forest E, Scala R, Guilbault S, Bendahhou S, Perahia D, Vénien-Bryan C. Unexpected Gating Behaviour of an Engineered Potassium Channel Kir. Front Mol Biosci 2021; 8:691901. [PMID: 34179097 PMCID: PMC8222812 DOI: 10.3389/fmolb.2021.691901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, we investigated the dynamics and functional characteristics of the KirBac3.1 S129R, a mutated bacterial potassium channel for which the inner pore-lining helix (TM2) was engineered so that the bundle crossing is trapped in an open conformation. The structure of this channel has been previously determined at high atomic resolution. We explored the dynamical characteristics of this open state channel using an in silico method MDeNM that combines molecular dynamics simulations and normal modes. We captured the global and local motions at the mutation level and compared these data with HDX-MS experiments. MDeNM provided also an estimation of the probability of the different opening states that are in agreement with our electrophysiological experiments. In the S129R mutant, the Arg129 mutation releases the two constriction points in the channel that existed in the wild type but interestingly creates another restriction point.
Collapse
Affiliation(s)
- Charline Fagnen
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France.,Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Ludovic Bannwarth
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Dania Zuniga
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Iman Oubella
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eric Forest
- IBS University Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Rosa Scala
- Faculté de Médecine, CNRS UMR7370, LP2M, Labex ICST, University Côte d'Azur, Nice, France
| | - Samuel Guilbault
- Faculté de Médecine, CNRS UMR7370, LP2M, Labex ICST, University Côte d'Azur, Nice, France
| | - Saïd Bendahhou
- Faculté de Médecine, CNRS UMR7370, LP2M, Labex ICST, University Côte d'Azur, Nice, France
| | - David Perahia
- Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Catherine Vénien-Bryan
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Therapeutic Antibodies Targeting Potassium Ion Channels. Handb Exp Pharmacol 2021; 267:507-545. [PMID: 33963460 DOI: 10.1007/164_2021_464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Monoclonal antibodies combine specificity and high affinity binding with excellent pharmacokinetic properties and are rapidly being developed for a wide range of drug targets including clinically important potassium ion channels. Nonetheless, while therapeutic antibodies come with great promise, K+ channels represent particularly difficult targets for biologics development for a variety of reasons that include their dynamic structures and relatively small extracellular loops, their high degree of sequence conservation (leading to immune tolerance), and their generally low-level expression in vivo. The process is made all the more difficult when large numbers of antibody candidates must be screened for a given target, or when lead candidates fail to cross-react with orthologous channels in animal disease models due to their highly selective binding properties. While the number of antibodies targeting potassium channels in preclinical or clinical development is still modest, significant advances in the areas of protein expression and antibody screening are converging to open the field to an avalanche of new drugs. Here, the opportunities and constraints associated with the discovery of antibodies against K+ channels are discussed, with an emphasis on novel technologies that are opening the field to exciting new possibilities for biologics development.
Collapse
|
13
|
Lynch C, Rao S, Sansom MSP. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Chem Rev 2020; 120:10298-10335. [PMID: 32841020 PMCID: PMC7517714 DOI: 10.1021/acs.chemrev.9b00830] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/18/2022]
Abstract
This Review explores the dynamic behavior of water within nanopores and biological channels in lipid bilayer membranes. We focus on molecular simulation studies, alongside selected structural and other experimental investigations. Structures of biological nanopores and channels are reviewed, emphasizing those high-resolution crystal structures, which reveal water molecules within the transmembrane pores, which can be used to aid the interpretation of simulation studies. Different levels of molecular simulations of water within nanopores are described, with a focus on molecular dynamics (MD). In particular, models of water for MD simulations are discussed in detail to provide an evaluation of their use in simulations of water in nanopores. Simulation studies of the behavior of water in idealized models of nanopores have revealed aspects of the organization and dynamics of nanoconfined water, including wetting/dewetting in narrow hydrophobic nanopores. A survey of simulation studies in a range of nonbiological nanopores is presented, including carbon nanotubes, synthetic nanopores, model peptide nanopores, track-etched nanopores in polymer membranes, and hydroxylated and functionalized nanoporous silica. These reveal a complex relationship between pore size/geometry, the nature of the pore lining, and rates of water transport. Wider nanopores with hydrophobic linings favor water flow whereas narrower hydrophobic pores may show dewetting. Simulation studies over the past decade of the behavior of water in a range of biological nanopores are described, including porins and β-barrel protein nanopores, aquaporins and related polar solute pores, and a number of different classes of ion channels. Water is shown to play a key role in proton transport in biological channels and in hydrophobic gating of ion channels. An overall picture emerges, whereby the behavior of water in a nanopore may be predicted as a function of its hydrophobicity and radius. This informs our understanding of the functions of diverse channel structures and will aid the design of novel nanopores. Thus, our current level of understanding allows for the design of a nanopore which promotes wetting over dewetting or vice versa. However, to design a novel nanopore, which enables fast, selective, and gated flow of water de novo would remain challenging, suggesting a need for further detailed simulations alongside experimental evaluation of more complex nanopore systems.
Collapse
Affiliation(s)
- Charlotte
I. Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| |
Collapse
|
14
|
Johnson DT, Punshon-Smith B, Espino JA, Gershenson A, Jones LM. Implementing In-Cell Fast Photochemical Oxidation of Proteins in a Platform Incubator with a Movable XY Stage. Anal Chem 2020; 92:1691-1696. [PMID: 31860269 PMCID: PMC7944481 DOI: 10.1021/acs.analchem.9b04933] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Fast
photochemical oxidation of proteins (FPOP) is a protein footprinting
technique that is being increasingly used in MS-based proteomics.
FPOP is utilized to study protein–protein interactions, protein–ligand
interactions, and protein conformational dynamics. This method has
recently been extended to protein labeling in live cells (IC-FPOP),
allowing the study of protein conformations in the complex cellular
environment. Traditionally, IC-FPOP has been executed using a single
cell flow system, in which hydrodynamic focusing drives cells along
in a single file line, keeping the cells from clumping and thus ensuring
equal exposure to the laser irradiation required for photochemical
oxidation. Here, we introduce a novel platform that allows IC-FPOP
to occur in a sterile incubation system complete with a mobile stage
for XY movement, peristaltic pumps equipped with perfusion lines for
chemical transport, and mirrors for laser beam guidance. This new
system, called Platform Incubator with movable XY stage (PIXY), also
utilizes software enabling automated communication between equipment
and execution of the entire system. Further, comparison with a standard
IC-FPOP flow system results reveal that this platform can successfully
be used in lieu of the flow system while also decreasing the time
to complete analysis of a single sample.
Collapse
Affiliation(s)
- Danté T Johnson
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Benjamin Punshon-Smith
- Technology Research Center , University of Maryland Baltimore County , Catonsville , Maryland 21250 , United States
| | - Jessica A Espino
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
15
|
Bernsteiner H, Zangerl-Plessl EM, Chen X, Stary-Weinzinger A. Conduction through a narrow inward-rectifier K + channel pore. J Gen Physiol 2019; 151:1231-1246. [PMID: 31511304 PMCID: PMC6785732 DOI: 10.1085/jgp.201912359] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
G-protein–gated inwardly rectifying potassium channels are important mediators of inhibitory neurotransmission. Based on microsecond-scale molecular dynamics simulations, Bernsteiner et al. propose novel gating details that may enable K+ flux via a direct knock-on mechanism. Inwardly rectifying potassium (Kir) channels play a key role in controlling membrane potentials in excitable and unexcitable cells, thereby regulating a plethora of physiological processes. G-protein–gated Kir channels control heart rate and neuronal excitability via small hyperpolarizing outward K+ currents near the resting membrane potential. Despite recent breakthroughs in x-ray crystallography and cryo-EM, the gating and conduction mechanisms of these channels are poorly understood. MD simulations have provided unprecedented details concerning the gating and conduction mechanisms of voltage-gated K+ and Na+ channels. Here, we use multi-microsecond–timescale MD simulations based on the crystal structures of GIRK2 (Kir3.2) bound to phosphatidylinositol-4,5-bisphosphate to provide detailed insights into the channel’s gating dynamics, including insights into the behavior of the G-loop gate. The simulations also elucidate the elementary steps that underlie the movement of K+ ions through an inward-rectifier K+ channel under an applied electric field. Our simulations suggest that K+ permeation might occur via direct knock-on, similar to the mechanism recently shown for Kv channels.
Collapse
Affiliation(s)
- Harald Bernsteiner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | |
Collapse
|
16
|
Gupta S, Merriman C, Petzold CJ, Ralston CY, Fu D. Water molecules mediate zinc mobility in the bacterial zinc diffusion channel ZIPB. J Biol Chem 2019; 294:13327-13335. [PMID: 31320477 DOI: 10.1074/jbc.ra119.009239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/17/2019] [Indexed: 11/06/2022] Open
Abstract
Regulated ion diffusion across biological membranes is vital for cell function. In a nanoscale ion channel, the active role of discrete water molecules in modulating hydrodynamic behaviors of individual ions is poorly understood because of the technical challenge of tracking water molecules through the channel. Here we report the results of a hydroxyl radical footprinting analysis of the zinc-selective channel ZIPB from the Gram-negative bacterium, Bordetella bronchiseptica Irradiating ZIPB by microsecond X-ray pulses activated water molecules to form covalent hydroxyl radical adducts at nearby residues, which were identified by bottom-up proteomics to detect residues that interact either with zinc or water in response to zinc binding. We found a series of residues exhibiting reciprocal changes in water accessibility attributed to alternating zinc and water binding. Mapping these residues to the previously reported crystal structure of ZIPB, we identified a water-reactive pathway that superimposed on a zinc translocation pathway consisting of two binuclear metal centers and an interim zinc-binding site. The cotranslocation of zinc and water suggested that pore-lining residues undergo a mode switch between zinc coordination and water binding to confer zinc mobility. The unprecedented details of water-mediated zinc transport identified here highlight an essential role of solvated waters in driving zinc coordination dynamics and transmembrane crossing.
Collapse
Affiliation(s)
- Sayan Gupta
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Chengfeng Merriman
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Christopher J Petzold
- Biological Systems Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Corie Y Ralston
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
17
|
Johnson DT, Di Stefano LH, Jones LM. Fast photochemical oxidation of proteins (FPOP): A powerful mass spectrometry-based structural proteomics tool. J Biol Chem 2019; 294:11969-11979. [PMID: 31262727 DOI: 10.1074/jbc.rev119.006218] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fast photochemical oxidation of proteins (FPOP) is a MS-based method that has proved useful in studies of protein structures, interactions, conformations, and protein folding. The success of this method relies on the irreversible labeling of solvent-exposed amino acid side chains by hydroxyl radicals. FPOP generates these radicals through laser-induced photolysis of hydrogen peroxide. The data obtained provide residue-level resolution of protein structures and interactions on the microsecond timescale, enabling investigations of fast processes such as protein folding and weak protein-protein interactions. An extensive comparison between FPOP and other footprinting techniques gives insight on their complementarity as well as the robustness of FPOP to provide unique structural information once unattainable. The versatility of this method is evidenced by both the heterogeneity of samples that can be analyzed by FPOP and the myriad of applications for which the method has been successfully used: from proteins of varying size to intact cells. This review discusses the wide applications of this technique and highlights its high potential. Applications including, but not limited to, protein folding, membrane proteins, structure elucidation, and epitope mapping are showcased. Furthermore, the use of FPOP has been extended to probing proteins in cells and in vivo These promising developments are also presented herein.
Collapse
Affiliation(s)
- Danté T Johnson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201
| | - Luciano H Di Stefano
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201.
| |
Collapse
|
18
|
Gupta S, Sutter M, Remesh SG, Dominguez-Martin MA, Bao H, Feng XA, Chan LJG, Petzold CJ, Kerfeld CA, Ralston CY. X-ray radiolytic labeling reveals the molecular basis of orange carotenoid protein photoprotection and its interactions with fluorescence recovery protein. J Biol Chem 2019; 294:8848-8860. [PMID: 30979724 DOI: 10.1074/jbc.ra119.007592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/05/2019] [Indexed: 11/06/2022] Open
Abstract
In cyanobacterial photoprotection, the orange carotenoid protein (OCP) is photoactivated under excess light conditions and binds to the light-harvesting antenna, triggering the dissipation of captured light energy. In low light, the OCP relaxes to the native state, a process that is accelerated in the presence of fluorescence recovery protein (FRP). Despite the importance of the OCP in photoprotection, the precise mechanism of photoactivation by this protein is not well-understood. Using time-resolved X-ray-mediated in situ hydroxyl radical labeling, we probed real-time solvent accessibility (SA) changes at key OCP residues during photoactivation and relaxation. We observed a biphasic photoactivation process in which carotenoid migration preceded domain dissociation. We also observed a multiphasic relaxation process, with collapsed domain association preceding the final conformational rearrangement of the carotenoid. Using steady-state hydroxyl radical labeling, we identified sites of interaction between the FRP and OCP. In combination, the findings in this study provide molecular-level insights into the factors driving structural changes during OCP-mediated photoprotection in cyanobacteria, and furnish a basis for understanding the physiological relevance of the FRP-mediated relaxation process.
Collapse
Affiliation(s)
- Sayan Gupta
- From the Molecular Biophysics and Integrated Bioimaging Division
| | - Markus Sutter
- From the Molecular Biophysics and Integrated Bioimaging Division.,the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.,the Environmental Genomics and Systems Biology Division, and
| | - Soumya G Remesh
- From the Molecular Biophysics and Integrated Bioimaging Division
| | - Maria Agustina Dominguez-Martin
- the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Han Bao
- the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Xinyu A Feng
- From the Molecular Biophysics and Integrated Bioimaging Division
| | - Leanne-Jade G Chan
- the Biological Systems and Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720 and
| | - Christopher J Petzold
- the Biological Systems and Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720 and
| | - Cheryl A Kerfeld
- From the Molecular Biophysics and Integrated Bioimaging Division, .,the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.,the Environmental Genomics and Systems Biology Division, and
| | - Corie Y Ralston
- From the Molecular Biophysics and Integrated Bioimaging Division,
| |
Collapse
|
19
|
Gupta S. Using X-ray Footprinting and Mass Spectrometry to Study the Structure and Function of Membrane Proteins. Protein Pept Lett 2019; 26:44-54. [PMID: 30484402 DOI: 10.2174/0929866526666181128142401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/22/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Membrane proteins are crucial for cellular sensory cascades and metabolite transport, and hence are key pharmacological targets. Structural studies by traditional highresolution techniques are limited by the requirements for high purity and stability when handled in high concentration and nonnative buffers. Hence, there is a growing requirement for the use of alternate methods in a complementary but orthogonal approach to study the dynamic and functional aspects of membrane proteins in physiologically relevant conditions. In recent years, significant progress has been made in the field of X-ray radiolytic labeling in combination with mass spectroscopy, commonly known as X-ray Footprinting and Mass Spectrometry (XFMS), which provide residue-specific information on the solvent accessibility of proteins. In combination with both lowresolution biophysical methods and high-resolution structural data, XFMS is capable of providing valuable insights into structure and dynamics of membrane proteins, which have been difficult to obtain by standalone high-resolution structural techniques. The XFMS method has also demonstrated a unique capability for identification of structural waters and their dynamics in protein cavities at both a high degree of spatial and temporal resolution, and thus capable of identifying conformational hot-spots in transmembrane proteins. CONCLUSION We provide a perspective on the place of XFMS amongst other structural biology methods and showcase some of the latest developments in its usage for studying conformational changes in membrane proteins.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
20
|
Bohon J. Development of Synchrotron Footprinting at NSLS and NSLS-II. Protein Pept Lett 2019; 26:55-60. [PMID: 30484397 DOI: 10.2174/0929866526666181128125125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND First developed in the 1990's at the National Synchrotron Light Source, xray synchrotron footprinting is an ideal technique for the analysis of solution-state structure and dynamics of macromolecules. Hydroxyl radicals generated in aqueous samples by intense x-ray beams serve as fine probes of solvent accessibility, rapidly and irreversibly reacting with solvent exposed residues to provide a "snapshot" of the sample state at the time of exposure. Over the last few decades, improvements in instrumentation to expand the technology have continuously pushed the boundaries of biological systems that can be studied using the technique. CONCLUSION Dedicated synchrotron beamlines provide important resources for examining fundamental biological mechanisms of folding, ligand binding, catalysis, transcription, translation, and macromolecular assembly. The legacy of synchrotron footprinting at NSLS has led to significant improvement in our understanding of many biological systems, from identifying key structural components in enzymes and transporters to in vivo studies of ribosome assembly. This work continues at the XFP (17-BM) beamline at NSLS-II and facilities at ALS, which are currently accepting proposals for use.
Collapse
Affiliation(s)
- Jen Bohon
- Center for Synchrotron Biosciences, Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
21
|
Morton SA, Gupta S, Petzold CJ, Ralston CY. Recent Advances in X-Ray Hydroxyl Radical Footprinting at the Advanced Light Source Synchrotron. Protein Pept Lett 2018; 26:70-75. [PMID: 30484401 DOI: 10.2174/0929866526666181128125725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Synchrotron hydroxyl radical footprinting is a relatively new structural method used to investigate structural features and conformational changes of nucleic acids and proteins in the solution state. It was originally developed at the National Synchrotron Light Source at Brookhaven National Laboratory in the late nineties, and more recently, has been established at the Advanced Light Source at Lawrence Berkeley National Laboratory. The instrumentation for this method is an active area of development, and includes methods to increase dose to the samples while implementing high-throughput sample delivery methods. CONCLUSION Improving instrumentation to irradiate biological samples in real time using a sample droplet generator and inline fluorescence monitoring to rapidly determine dose response curves for samples will significantly increase the range of biological problems that can be investigated using synchrotron hydroxyl radical footprinting.
Collapse
Affiliation(s)
- Simon A Morton
- Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sayan Gupta
- Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Christopher J Petzold
- Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Corie Y Ralston
- Molecular Biology and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
22
|
Calabrese AN, Radford SE. Mass spectrometry-enabled structural biology of membrane proteins. Methods 2018; 147:187-205. [DOI: 10.1016/j.ymeth.2018.02.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
|
23
|
Kiselar J, Chance MR. High-Resolution Hydroxyl Radical Protein Footprinting: Biophysics Tool for Drug Discovery. Annu Rev Biophys 2018. [DOI: 10.1146/annurev-biophys-070317-033123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydroxyl radical footprinting (HRF) of proteins with mass spectrometry (MS) is a widespread approach for assessing protein structure. Hydroxyl radicals react with a wide variety of protein side chains, and the ease with which radicals can be generated (by radiolysis or photolysis) has made the approach popular with many laboratories. As some side chains are less reactive and thus cannot be probed, additional specific and nonspecific labeling reagents have been introduced to extend the approach. At the same time, advances in liquid chromatography and MS approaches permit an examination of the labeling of individual residues, transforming the approach to high resolution. Lastly, advances in understanding of the chemistry of the approach have led to the determination of absolute protein topologies from HRF data. Overall, the technology can provide precise and accurate measures of side-chain solvent accessibility in a wide range of interesting and useful contexts for the study of protein structure and dynamics in both academia and industry.
Collapse
Affiliation(s)
- Janna Kiselar
- Center for Proteomics and Bioinformatics, and Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, and Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
24
|
Chea EE, Jones LM. Analyzing the structure of macromolecules in their native cellular environment using hydroxyl radical footprinting. Analyst 2018; 143:798-807. [DOI: 10.1039/c7an01323j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hydroxyl radical footprinting (HRF) has been successfully used to study the structure of both nucleic acids and proteins in live cells.
Collapse
Affiliation(s)
- Emily E. Chea
- Department of Pharmaceutical Sciences
- University of Maryland
- Baltimore
- USA
| | - Lisa M. Jones
- Department of Pharmaceutical Sciences
- University of Maryland
- Baltimore
- USA
| |
Collapse
|
25
|
Calabrese AN, Jackson SM, Jones LN, Beckstein O, Heinkel F, Gsponer J, Sharples D, Sans M, Kokkinidou M, Pearson AR, Radford SE, Ashcroft AE, Henderson PJF. Topological Dissection of the Membrane Transport Protein Mhp1 Derived from Cysteine Accessibility and Mass Spectrometry. Anal Chem 2017; 89:8844-8852. [PMID: 28726379 PMCID: PMC5588088 DOI: 10.1021/acs.analchem.7b01310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
Cys accessibility and quantitative intact mass spectrometry (MS) analyses have been devised to study the topological transitions of Mhp1, the membrane protein for sodium-linked transport of hydantoins from Microbacterium liquefaciens. Mhp1 has been crystallized in three forms (outward-facing open, outward-facing occluded with substrate bound, and inward-facing open). We show that one natural cysteine residue, Cys327, out of three, has an enhanced solvent accessibility in the inward-facing (relative to the outward-facing) form. Reaction of the purified protein, in detergent, with the thiol-reactive N-ethylmalemide (NEM), results in modification of Cys327, suggesting that Mhp1 adopts predominantly inward-facing conformations. Addition of either sodium ions or the substrate 5-benzyl-l-hydantoin (L-BH) does not shift this conformational equilibrium, but systematic co-addition of the two results in an attenuation of labeling, indicating a shift toward outward-facing conformations that can be interpreted using conventional enzyme kinetic analyses. Such measurements can afford the Km for each ligand as well as the stoichiometry of ion-substrate-coupled conformational changes. Mutations that perturb the substrate binding site either result in the protein being unable to adopt outward-facing conformations or in a global destabilization of structure. The methodology combines covalent labeling, mass spectrometry, and kinetic analyses in a straightforward workflow applicable to a range of systems, enabling the interrogation of changes in a protein's conformation required for function at varied concentrations of substrates, and the consequences of mutations on these conformational transitions.
Collapse
Affiliation(s)
| | | | | | - Oliver Beckstein
- Department of Physics, Arizona State University , Tempe, Arizona 85287-1504, United States
| | - Florian Heinkel
- Centre for High-Throughput Biology, University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z4
| | - Joerg Gsponer
- Centre for High-Throughput Biology, University of British Columbia , Vancouver, British Columbia, Canada V6T 1Z4
| | | | - Marta Sans
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg , Hamburg 22761, Germany
| | - Maria Kokkinidou
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg , Hamburg 22761, Germany
| | - Arwen R Pearson
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg , Hamburg 22761, Germany
| | | | | | | |
Collapse
|
26
|
Gupta S, Feng J, Chan LJG, Petzold CJ, Ralston CY. Synchrotron X-ray footprinting as a method to visualize water in proteins. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1056-69. [PMID: 27577756 PMCID: PMC5006651 DOI: 10.1107/s1600577516009024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/03/2016] [Indexed: 05/23/2023]
Abstract
The vast majority of biomolecular processes are controlled or facilitated by water interactions. In enzymes, regulatory proteins, membrane-bound receptors and ion-channels, water bound to functionally important residues creates hydrogen-bonding networks that underlie the mechanism of action of the macromolecule. High-resolution X-ray structures are often difficult to obtain with many of these classes of proteins because sample conditions, such as the necessity of detergents, often impede crystallization. Other biophysical techniques such as neutron scattering, nuclear magnetic resonance and Fourier transform infrared spectroscopy are useful for studying internal water, though each has its own advantages and drawbacks, and often a hybrid approach is required to address important biological problems associated with protein-water interactions. One major area requiring more investigation is the study of bound water molecules which reside in cavities and channels and which are often involved in both the structural and functional aspects of receptor, transporter and ion channel proteins. In recent years, significant progress has been made in synchrotron-based radiolytic labeling and mass spectroscopy techniques for both the identification of bound waters and for characterizing the role of water in protein conformational changes at a high degree of spatial and temporal resolution. Here the latest developments and future capabilities of this method for investigating water-protein interactions and its synergy with other synchrotron-based methods are discussed.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jun Feng
- Experimental Systems, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Leanne Jade G. Chan
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J. Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Oxidative footprinting in the study of structure and function of membrane proteins: current state and perspectives. Biochem Soc Trans 2016; 43:983-94. [PMID: 26517913 DOI: 10.1042/bst20150130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane proteins, such as receptors, transporters and ion channels, control the vast majority of cellular signalling and metabolite exchange processes and thus are becoming key pharmacological targets. Obtaining structural information by usage of traditional structural biology techniques is limited by the requirements for the protein samples to be highly pure and stable when handled in high concentrations and in non-native buffer systems, which is often difficult to achieve for membrane targets. Hence, there is a growing requirement for the use of hybrid, integrative approaches to study the dynamic and functional aspects of membrane proteins in physiologically relevant conditions. In recent years, significant progress has been made in the field of oxidative labelling techniques and in particular the X-ray radiolytic footprinting in combination with mass spectrometry (MS) (XF-MS), which provide residue-specific information on the solvent accessibility of proteins. In combination with both low- and high-resolution data from other structural biology approaches, it is capable of providing valuable insights into dynamics of membrane proteins, which have been difficult to obtain by other structural techniques, proving a highly complementary technique to address structure and function of membrane targets. XF-MS has demonstrated a unique capability for identification of structural waters and conformational changes in proteins at both a high degree of spatial and a high degree of temporal resolution. Here, we provide a perspective on the place of XF-MS among other structural biology methods and showcase some of the latest developments in its usage for studying water-mediated transmembrane (TM) signalling, ion transport and ligand-induced allosteric conformational changes in membrane proteins.
Collapse
|
28
|
Leitner A. Cross-linking and other structural proteomics techniques: how chemistry is enabling mass spectrometry applications in structural biology. Chem Sci 2016; 7:4792-4803. [PMID: 30155128 PMCID: PMC6016523 DOI: 10.1039/c5sc04196a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/25/2016] [Indexed: 01/05/2023] Open
Abstract
The biological function of proteins is heavily influenced by their structures and their organization into assemblies such as protein complexes and regulatory networks. Mass spectrometry (MS) has been a key enabling technology for high-throughput and comprehensive protein identification and quantification on a proteome-wide scale. Besides these essential contributions, MS can also be used to study higher-order structures of biomacromolecules in a variety of ways. In one approach, intact proteins or protein complexes may be directly probed in the mass spectrometer. Alternatively, various forms of solution-phase chemistry are used to introduce modifications in intact proteins and localizing these modifications by MS analysis at the peptide level is used to derive structural information. Here, I will put a spotlight on the central role of chemistry in such mass spectrometry-based methods that bridge proteomics and structural biology, with a particular emphasis on chemical cross-linking of protein complexes.
Collapse
Affiliation(s)
- Alexander Leitner
- Department of Biology , Institute of Molecular Systems Biology , ETH Zurich , Auguste-Piccard-Hof 1 , 8093 Zurich , Switzerland .
| |
Collapse
|
29
|
Abstract
Specific conformations of signaling proteins can serve as “signals” in signal transduction by being recognized by receptors.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC)
- Brussels
- Belgium
- Vrije Universiteit Brussel
- Brussels
| |
Collapse
|
30
|
Gupta S, Guttman M, Leverenz RL, Zhumadilova K, Pawlowski EG, Petzold CJ, Lee KK, Ralston CY, Kerfeld CA. Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc Natl Acad Sci U S A 2015; 112:E5567-74. [PMID: 26385969 PMCID: PMC4611662 DOI: 10.1073/pnas.1512240112] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoprotective mechanisms are of fundamental importance for the survival of photosynthetic organisms. In cyanobacteria, the orange carotenoid protein (OCP), when activated by intense blue light, binds to the light-harvesting antenna and triggers the dissipation of excess captured light energy. Using a combination of small angle X-ray scattering (SAXS), X-ray hydroxyl radical footprinting, circular dichroism, and H/D exchange mass spectrometry, we identified both the local and global structural changes in the OCP upon photoactivation. SAXS and H/D exchange data showed that global tertiary structural changes, including complete domain dissociation, occur upon photoactivation, but with alteration of secondary structure confined to only the N terminus of the OCP. Microsecond radiolytic labeling identified rearrangement of the H-bonding network associated with conserved residues and structural water molecules. Collectively, these data provide experimental evidence for an ensemble of local and global structural changes, upon activation of the OCP, that are essential for photoprotection.
Collapse
Affiliation(s)
- Sayan Gupta
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
| | - Ryan L Leverenz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Kulyash Zhumadilova
- School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Emily G Pawlowski
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | - Christopher J Petzold
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
| | - Corie Y Ralston
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Cheryl A Kerfeld
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
31
|
Espino JA, Mali VS, Jones LM. In Cell Footprinting Coupled with Mass Spectrometry for the Structural Analysis of Proteins in Live Cells. Anal Chem 2015; 87:7971-8. [DOI: 10.1021/acs.analchem.5b01888] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica A. Espino
- Department
of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46204, United States
| | | | - Lisa M. Jones
- Department
of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46204, United States
| |
Collapse
|
32
|
Kaur P, Kiselar J, Yang S, Chance MR. Quantitative protein topography analysis and high-resolution structure prediction using hydroxyl radical labeling and tandem-ion mass spectrometry (MS). Mol Cell Proteomics 2015; 14:1159-68. [PMID: 25687570 DOI: 10.1074/mcp.o114.044362] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 11/06/2022] Open
Abstract
Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca(+2)-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes.
Collapse
Affiliation(s)
- Parminder Kaur
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| | - Janna Kiselar
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| | - Sichun Yang
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| | - Mark R Chance
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| |
Collapse
|
33
|
Aryal P, Sansom MSP, Tucker SJ. Hydrophobic gating in ion channels. J Mol Biol 2015; 427:121-30. [PMID: 25106689 PMCID: PMC4817205 DOI: 10.1016/j.jmb.2014.07.030] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 02/01/2023]
Abstract
Biological ion channels are nanoscale transmembrane pores. When water and ions are enclosed within the narrow confines of a sub-nanometer hydrophobic pore, they exhibit behavior not evident from macroscopic descriptions. At this nanoscopic level, the unfavorable interaction between the lining of a hydrophobic pore and water may lead to stochastic liquid-vapor transitions. These transient vapor states are "dewetted", i.e. effectively devoid of water molecules within all or part of the pore, thus leading to an energetic barrier to ion conduction. This process, termed "hydrophobic gating", was first observed in molecular dynamics simulations of model nanopores, where the principles underlying hydrophobic gating (i.e., changes in diameter, polarity, or transmembrane voltage) have now been extensively validated. Computational, structural, and functional studies now indicate that biological ion channels may also exploit hydrophobic gating to regulate ion flow within their pores. Here we review the evidence for this process and propose that this unusual behavior of water represents an increasingly important element in understanding the relationship between ion channel structure and function.
Collapse
Affiliation(s)
- Prafulla Aryal
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 2JD, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 2JD, UK.
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 2JD, UK.
| |
Collapse
|
34
|
Garneau L, Klein H, Lavoie MF, Brochiero E, Parent L, Sauvé R. Aromatic-aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process. ACTA ACUST UNITED AC 2014; 143:289-307. [PMID: 24470490 PMCID: PMC4001770 DOI: 10.1085/jgp.201311097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interactions between aromatic amino acid residues in the pore helix and S5 transmembrane domain control gating of the Ca2+-activated potassium channel KCa3.1. The Ca2+-activated potassium channel KCa3.1 is emerging as a therapeutic target for a large variety of health disorders. One distinguishing feature of KCa3.1 is that the channel open probability at saturating Ca2+ concentrations (Pomax) is low, typically 0.1–0.2 for KCa3.1 wild type. This observation argues for the binding of Ca2+ to the calmodulin (CaM)–KCa3.1 complex, promoting the formation of a preopen closed-state configuration leading to channel opening. We have previously shown that the KCa3.1 active gate is most likely located at the level of the selectivity filter. As Ca2+-dependent gating of KCa3.1 originates from the binding of Ca2+ to CaM in the C terminus, the hypothesis of a gate located at the level of the selectivity filter requires that the conformational change initiated in the C terminus be transmitted to the S5 and S6 transmembrane helices, with a resulting effect on the channel pore helix directly connected to the selectivity filter. A study was thus undertaken to determine to what extent the interactions between the channel pore helix with the S5 and S6 transmembrane segments contribute to KCa3.1 gating. Molecular dynamics simulations first revealed that the largest contact area between the pore helix and the S5 plus S6 transmembrane helices involves residue F248 at the C-terminal end of the pore helix. Unitary current recordings next confirmed that modulating aromatic–aromatic interactions between F248 and W216 of the S5 transmembrane helical segment and/or perturbing the interactions between F248 and residues in S6 surrounding the glycine hinge G274 cause important changes in Pomax. This work thus provides the first evidence for a key contribution of the pore helix in setting Pomax by stabilizing the channel closed configuration through aromatic–aromatic interactions involving F248 of the pore helix. We propose that the interface pore helix/S5 constitutes a promising site for designing KCa3.1 potentiators.
Collapse
Affiliation(s)
- Line Garneau
- Department of Physiology and Membrane Protein Research Group, 2 Centre de recherche du Centre hospitalier de l'Université de Montréal, and 3 Department of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Zhou M, Robinson CV. Flexible membrane proteins: functional dynamics captured by mass spectrometry. Curr Opin Struct Biol 2014; 28:122-30. [DOI: 10.1016/j.sbi.2014.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/23/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
36
|
Gupta S, Celestre R, Petzold CJ, Chance MR, Ralston C. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:690-9. [PMID: 24971962 PMCID: PMC4073957 DOI: 10.1107/s1600577514007000] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/29/2014] [Indexed: 05/05/2023]
Abstract
X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale.
Collapse
Affiliation(s)
- Sayan Gupta
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Richard Celestre
- Experimental Systems, Advanced Light Source Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Corie Ralston
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Visualizing the kinetic power stroke that drives proton-coupled zinc(II) transport. Nature 2014; 512:101-4. [PMID: 25043033 PMCID: PMC4144069 DOI: 10.1038/nature13382] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/14/2014] [Indexed: 01/30/2023]
Abstract
The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of Escherichia coli. Its transport site receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux. This membrane protein is a well-characterized member of the family of cation diffusion facilitators that occurs at all phylogenetic levels. Here we show, using X-ray-mediated hydroxyl radical labelling of YiiP and mass spectrometry, that Zn(II) binding triggers a highly localized, all-or-nothing change of water accessibility to the transport site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics reveal a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical re-orientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport site enables a stationary proton gradient to facilitate the conversion of zinc-binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active-transport reaction.
Collapse
|
38
|
Growth of large and highly ordered 2D crystals of a K⁺ channel, structural role of lipidic environment. Biophys J 2014; 105:398-408. [PMID: 23870261 DOI: 10.1016/j.bpj.2013.05.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 05/18/2013] [Accepted: 05/29/2013] [Indexed: 02/04/2023] Open
Abstract
2D crystallography has proven to be an excellent technique to determine the 3D structure of membrane proteins. Compared to 3D crystallography, it has the advantage of visualizing the protein in an environment closer to the native one. However, producing good 2D crystals is still a challenge and little statistical knowledge can be gained from literature. Here, we present a thorough screening of 2D crystallization conditions for a prokaryotic inwardly rectifying potassium channel (>130 different conditions). Key parameters leading to very large and well-organized 2D crystals are discussed. In addition, the problem of formation of multilayers during the growth of 2D crystals is also addressed. An intermediate resolution projection map of KirBac3.1 at 6 Å is presented, which sheds (to our knowledge) new light on the structure of this channel in a lipid environment.
Collapse
|
39
|
Samways DSK. Applications for mass spectrometry in the study of ion channel structure and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:237-61. [PMID: 24952185 DOI: 10.1007/978-3-319-06068-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ion channels are intrinsic membrane proteins that form gated ion-permeable pores across biological membranes. Depending on the type, ion channels exhibit sensitivities to a diverse range of stimuli including changes in membrane potential, binding by diffusible ligands, changes in temperature and direct mechanical force. The purpose of these proteins is to facilitate the passive diffusion of ions down their respective electrochemical gradients into and out of the cell, and between intracellular compartments. In doing so, ion channels can affect transmembrane potentials and regulate the intracellular homeostasis of the important second messenger, Ca(2+). The ion channels of the plasma membrane are of particular clinical interest due to their regulation of cell excitability and cytosolic Ca(2+) levels, and the fact that they are most amenable to manipulation by exogenously applied drugs and toxins. A critical step in improving the pharmacopeia of chemicals available that influence the activity of ion channels is understanding how their three-dimensional structure imparts function. Here, progress has been slow relative to that for soluble protein structures in large part due to the limitations of applying conventional structure determination methods, such as X-ray crystallography, nuclear magnetic resonance imaging, and mass spectrometry, to membrane proteins. Although still an underutilized technique in the assessment of membrane protein structure, recent advances have pushed mass spectrometry to the fore as an important complementary approach to studying the structure and function of ion channels. In addition to revealing the subtle conformational changes in ion channel structure that accompany gating and permeation, mass spectrometry is already being used effectively for identifying tissue-specific posttranslational modifications and mRNA splice variants. Furthermore, the use of mass spectrometry for high-throughput proteomics analysis, which has proven so successful for soluble proteins, is already providing valuable insight into the functional interactions of ion channels within the context of the macromolecular-signaling complexes that they inhabit in vivo. In this chapter, the potential for mass spectrometry as a complementary approach to the study of ion channel structure and function will be reviewed with examples of its application.
Collapse
Affiliation(s)
- Damien S K Samways
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA,
| |
Collapse
|
40
|
Bohon J, D’Mello R, Ralston C, Gupta S, Chance MR. Synchrotron X-ray footprinting on tour. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:24-31. [PMID: 24365913 PMCID: PMC3874017 DOI: 10.1107/s1600577513024715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/04/2013] [Indexed: 05/22/2023]
Abstract
Synchrotron footprinting is a valuable technique in structural biology for understanding macromolecular solution-state structure and dynamics of proteins and nucleic acids. Although an extremely powerful tool, there is currently only a single facility in the USA, the X28C beamline at the National Synchrotron Light Source (NSLS), dedicated to providing infrastructure, technology development and support for these studies. The high flux density of the focused white beam and variety of specialized exposure environments available at X28C enables footprinting of highly complex biological systems; however, it is likely that a significant fraction of interesting experiments could be performed at unspecialized facilities. In an effort to investigate the viability of a beamline-flexible footprinting program, a standard sample was taken on tour around the nation to be exposed at several US synchrotrons. This work describes how a relatively simple and transportable apparatus can allow beamlines at the NSLS, CHESS, APS and ALS to be used for synchrotron footprinting in a general user mode that can provide useful results.
Collapse
Affiliation(s)
- Jen Bohon
- Center for Synchrotron Biosciences, Case Western Reserve University, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence e-mail:
| | - Rhijuta D’Mello
- Center for Synchrotron Biosciences, Case Western Reserve University, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Corie Ralston
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sayan Gupta
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
41
|
Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, Gross ML, Blankenship RE. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 2013; 342:1104-7. [PMID: 24288334 PMCID: PMC3947847 DOI: 10.1126/science.1242321] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In photosynthetic organisms, photons are captured by light-harvesting antenna complexes, and energy is transferred to reaction centers where photochemical reactions take place. We describe here the isolation and characterization of a fully functional megacomplex composed of a phycobilisome antenna complex and photosystems I and II from the cyanobacterium Synechocystis PCC 6803. A combination of in vivo protein cross-linking, mass spectrometry, and time-resolved spectroscopy indicates that the megacomplex is organized to facilitate energy transfer but not intercomplex electron transfer, which requires diffusible intermediates and the cytochrome b6f complex. The organization provides a basis for understanding how phycobilisomes transfer excitation energy to reaction centers and how the energy balance of two photosystems is achieved, allowing the organism to adapt to varying ecophysiological conditions.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hao Zhang
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dariusz M. Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mindy Prado
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Guannan He
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E. Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
42
|
Gau BC, Chen J, Gross ML. Fast photochemical oxidation of proteins for comparing solvent-accessibility changes accompanying protein folding: data processing and application to barstar. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1230-8. [PMID: 23485913 PMCID: PMC3663899 DOI: 10.1016/j.bbapap.2013.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 11/21/2022]
Abstract
Mass spectrometry-based protein footprinting reveals regional and even amino-acid structural changes and fills the gap for many proteins and protein interactions that cannot be studied by X-ray crystallography or NMR spectroscopy. Hydroxyl radical-mediated labeling has proven to be particularly informative in this pursuit because many solvent-accessible residues can be labeled by OH in a protein or protein complex, thus providing more coverage than does specific amino-acid modifications. Finding all the OH-labeling sites requires LC/MS/MS analysis of a proteolyzed sample, but data processing is daunting without the help of automated software. We describe here a systematic means for achieving a comprehensive residue-resolved analysis of footprinting data in an efficient manner, utilizing software common to proteomics core laboratories. To demonstrate the method and the utility of OH-mediated labeling, we show that FPOP easily distinguishes the buried and exposed residues of barstar in its folded and unfolded states. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
Affiliation(s)
- Brian C Gau
- Donald Danforth Plant Science Center, Washington University, St. Louis, MO 63132, USA
| | | | | |
Collapse
|
43
|
Konijnenberg A, Butterer A, Sobott F. Native ion mobility-mass spectrometry and related methods in structural biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:1239-56. [PMID: 23246828 DOI: 10.1016/j.bbapap.2012.11.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/19/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022]
Abstract
Mass spectrometry-based methods have become increasingly important in structural biology - in particular for large and dynamic, even heterogeneous assemblies of biomolecules. Native electrospray ionization coupled to ion mobility-mass spectrometry provides access to stoichiometry, size and architecture of noncovalent assemblies; while non-native approaches such as covalent labeling and H/D exchange can highlight dynamic details of protein structures and capture intermediate states. In this overview article we will describe these methods and highlight some recent applications for proteins and protein complexes, with particular emphasis on native MS analysis. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
|
44
|
Conformational dynamics of activation for the pentameric complex of dimeric G protein-coupled receptor and heterotrimeric G protein. Structure 2012; 20:826-40. [PMID: 22579250 DOI: 10.1016/j.str.2012.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 01/08/2023]
Abstract
Photoactivation of rhodopsin (Rho), a G protein-coupled receptor, causes conformational changes that provide a specific binding site for the rod G protein, G(t). In this work we employed structural mass spectrometry techniques to elucidate the structural changes accompanying transition of ground state Rho to photoactivated Rho (Rho(∗)) and in the pentameric complex between dimeric Rho(∗) and heterotrimeric G(t). Observed differences in hydroxyl radical labeling and deuterium uptake between Rho(∗) and the (Rho(∗))(2)-G(t) complex suggest that photoactivation causes structural relaxation of Rho following its initial tightening upon G(t) coupling. In contrast, nucleotide-free G(t) in the complex is significantly more accessible to deuterium uptake allowing it to accept GTP and mediating complex dissociation. Thus, we provide direct evidence that in the critical step of signal amplification, Rho(∗) and G(t) exhibit dissimilar conformational changes when they are coupled in the (Rho(∗))(2)-G(t) complex.
Collapse
|
45
|
Structural rearrangements underlying ligand-gating in Kir channels. Nat Commun 2012; 3:617. [PMID: 22233627 PMCID: PMC4277880 DOI: 10.1038/ncomms1625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022] Open
Abstract
Inward rectifier potassium (Kir) channels are physiologically regulated by a wide range of ligands that all act on a common gate, although structural details of gating are unclear. Here we show, using small molecule fluorescent probes attached to introduced cysteines, the molecular motions associated with gating of KirBac1.1 channels. The accessibility of the probes indicates a major barrier to fluorophore entry to the inner cavity. Changes in FRET between fluorophores attached to KirBac1.1 tetramers show that PIP2-induced closure involves tilting and rotational motions of secondary structural elements of the cytoplasmic domain that couple ligand binding to a narrowing of the cytoplasmic vestibule. The observed ligand-dependent conformational changes in KirBac1.1 provide a general model for ligand-induced Kir channel gating at the molecular level.
Collapse
|
46
|
Bavro VN, De Zorzi R, Schmidt MR, Muniz JRC, Zubcevic L, Sansom MSP, Vénien-Bryan C, Tucker SJ. Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating. Nat Struct Mol Biol 2012; 19:158-63. [PMID: 22231399 PMCID: PMC3272479 DOI: 10.1038/nsmb.2208] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/14/2011] [Indexed: 02/04/2023]
Abstract
KirBac channels are prokaryotic homologs of mammalian inwardly rectifying (Kir) potassium channels, and recent crystal structures of both Kir and KirBac channels have provided major insight into their unique structural architecture. However, all of the available structures are closed at the helix bundle crossing, and therefore the structural mechanisms that control opening of their primary activation gate remain unknown. In this study, we engineered the inner pore-lining helix (TM2) of KirBac3.1 to trap the bundle crossing in an apparently open conformation and determined the crystal structure of this mutant channel to 3.05 Å resolution. Contrary to previous speculation, this new structure suggests a mechanistic model in which rotational 'twist' of the cytoplasmic domain is coupled to opening of the bundle-crossing gate through a network of inter- and intrasubunit interactions that involve the TM2 C-linker, slide helix, G-loop and the CD loop.
Collapse
Affiliation(s)
- Vassiliy N Bavro
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The wealth of available protein structural data provides unprecedented opportunity to study and better understand the underlying principles of protein folding and protein structure evolution. A key to achieving this lies in the ability to analyse these data and to organize them in a coherent classification scheme. Over the past years several protein classifications have been developed that aim to group proteins based on their structural relationships. Some of these classification schemes explore the concept of structural neighbourhood (structural continuum), whereas other utilize the notion of protein evolution and thus provide a discrete rather than continuum view of protein structure space. This chapter presents a strategy for classification of proteins with known three-dimensional structure. Steps in the classification process along with basic definitions are introduced. Examples illustrating some fundamental concepts of protein folding and evolution with a special focus on the exceptions to them are presented.
Collapse
|
48
|
Pan Y, Piyadasa H, O'Neil JD, Konermann L. Conformational dynamics of a membrane transport protein probed by H/D exchange and covalent labeling: the glycerol facilitator. J Mol Biol 2011; 416:400-13. [PMID: 22227391 DOI: 10.1016/j.jmb.2011.12.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 01/22/2023]
Abstract
Glycerol facilitator (GF) is a tetrameric membrane protein responsible for the selective permeation of glycerol and water. Each of the four GF subunits forms a transmembrane channel. Every subunit consists of six helices that completely span the lipid bilayer, as well as two half-helices (TM7 and TM3). X-ray crystallography has revealed that the selectivity of GF is due to its unique amphipathic channel interior. To explore the structural dynamics of GF, we employ hydrogen/deuterium exchange (HDX) and oxidative labeling with mass spectrometry (MS). HDX-MS reveals that transmembrane helices are generally more protected than extramembrane segments, consistent with data previously obtained for other membrane proteins. Interestingly, TM7 does not follow this trend. Instead, this half-helix undergoes rapid deuteration, indicative of a highly dynamic local structure. The oxidative labeling behavior of most GF residues is consistent with the static crystal structure. However, the side chains of C134 and M237 undergo labeling although they should be inaccessible according to the X-ray structure. In agreement with our HDX-MS data, this observation attests to the fact that TM7 is only marginally stable. We propose that the highly mobile nature of TM7 aids in the efficient diffusion of guest molecules through the channel ("molecular lubrication"). In the absence of such dynamics, host-guest molecular recognition would favor semipermanent binding of molecules inside the channel, thereby impeding transport. The current work highlights the complementary nature of HDX, covalent labeling, and X-ray crystallography for the characterization of membrane proteins.
Collapse
Affiliation(s)
- Yan Pan
- Department of Chemistry, The University of Western Ontario, London, ON, Canada N6A 5B7
| | | | | | | |
Collapse
|
49
|
Inanobe A, Nakagawa A, Kurachi Y. Interactions of cations with the cytoplasmic pores of inward rectifier K(+) channels in the closed state. J Biol Chem 2011; 286:41801-41811. [PMID: 21982822 PMCID: PMC3308888 DOI: 10.1074/jbc.m111.278531] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/06/2011] [Indexed: 12/25/2022] Open
Abstract
Ion channels gate at membrane-embedded domains by changing their conformation along the ion conduction pathway. Inward rectifier K(+) (Kir) channels possess a unique extramembrane cytoplasmic domain that extends this pathway. However, the relevance and contribution of this domain to ion permeation remain unclear. By qualitative x-ray crystallographic analysis, we found that the pore in the cytoplasmic domain of Kir3.2 binds cations in a valency-dependent manner and does not allow the displacement of Mg(2+) by monovalent cations or spermine. Electrophysiological analyses revealed that the cytoplasmic pore of Kir3.2 selectively binds positively charged molecules and has a higher affinity for Mg(2+) when it has a low probability of being open. The selective blocking of chemical modification of the side chain of pore-facing residues by Mg(2+) indicates that the mode of binding of Mg(2+) is likely to be similar to that observed in the crystal structure. These results indicate that the Kir3.2 crystal structure has a closed conformation with a negative electrostatic field potential at the cytoplasmic pore, the potential of which may be controlled by conformational changes in the cytoplasmic domain to regulate ion diffusion along the pore.
Collapse
Affiliation(s)
- Atsushi Inanobe
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan.
| | - Atsushi Nakagawa
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshihisa Kurachi
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
50
|
Edvinsson JM, Shah AJ, Palmer LG. Potassium-dependent activation of Kir4.2 K⁺ channels. J Physiol 2011; 589:5949-63. [PMID: 22025665 DOI: 10.1113/jphysiol.2011.220731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The inwardly rectifying potassium channel Kir4.2 is sensitive to changes in the extracellular potassium concentration ([K(+)](o)). This form of regulation is manifest as a slow (tens of minutes) increase in the whole-cell currents when [K(+)](o) is increased. Here we have investigated the mechanism of K(o)(+) sensitivity of Kir4.2 expressed in Xenopus oocytes. Using two-electrode voltage clamp we found that the sensitivity is specific for the homomeric form of the channel and is completely abolished when coexpressed with Kir5.1. Furthermore, unlike Kir1.1, there is no coupling between the intracellular pH sensitivity and K(o)(+) sensitivity, as is evident by introducing a mutation (K66M), which greatly decreases the pH(i) sensitivity while the K(o)(+) sensitivity remains unchanged. K(o)(+)-dependent activation of Kir4.2 does not involve an increase in the surface expression of the channel, nor is there a difference in the open probability between high and low [K(+)] as determined through patch-clamp measurements. We also found that there is an inverse relationship between the rates of both activation and deactivation and [K(+)](o). Using a kinetic model we argue that Kir4.2 exists in at least three states at the plasma membrane: a deactivated state, an intermediate unstable state and an active state, and that [K(+)](o) affects the rate of transition from the intermediate state to the active state.
Collapse
Affiliation(s)
- Johan M Edvinsson
- Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|