1
|
Ayoub N, Upadhyay A, Tête A, Pietrancosta N, Munier-Lehmann H, O'Sullivan TP. Synthesis, evaluation and mechanistic insights of novel IMPDH inhibitors targeting ESKAPEE bacteria. Eur J Med Chem 2024; 280:116920. [PMID: 39369481 DOI: 10.1016/j.ejmech.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Antimicrobial resistance poses a significant threat to global health, necessitating the development of novel therapeutic agents with unique mechanisms of action. Inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme in guanine nucleotide biosynthesis, is a promising target for the discovery of new antimicrobial agents. High-throughput screening studies have previously identified several urea-based leads as potential inhibitors, although many of these are characterised by reduced chemical stability. In this work, we describe the design and synthesis of a series of heteroaryl-susbtituted analogues and the evaluation of their inhibitory potency against IMPDHs. Our screening targets ESKAPEE pathogens, including Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Several analogues with submicromolar inhibitory potency are identified and show no inhibitory potency on human IMPDH nor cytotoxic effects on human cells. Kinetic studies revealed that these molecules act as noncompetitive inhibitors with respect to the substrates and ligand virtual docking simulations provided insights into the binding interactions at the interface of the NAD+ and IMP binding sites on IMPDH.
Collapse
Affiliation(s)
- Nour Ayoub
- Université Paris Cité, INSERM UMRS-1124, Institut Pasteur, Structural Biology and Chemistry Department, F-75006, Paris, France
| | - Amit Upadhyay
- School of Chemistry, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cork, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Arnaud Tête
- Université Paris Cité, INSERM UMRS-1124, F-75006, Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, F-75005, Paris, France; Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), F-75005, Paris, France
| | - Hélène Munier-Lehmann
- Université Paris Cité, INSERM UMRS-1124, Institut Pasteur, Structural Biology and Chemistry Department, F-75006, Paris, France.
| | - Timothy P O'Sullivan
- School of Chemistry, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cork, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Bulvas O, Knejzlík Z, Sýs J, Filimoněnko A, Čížková M, Clarová K, Rejman D, Kouba T, Pichová I. Deciphering the allosteric regulation of mycobacterial inosine-5'-monophosphate dehydrogenase. Nat Commun 2024; 15:6673. [PMID: 39107302 PMCID: PMC11303537 DOI: 10.1038/s41467-024-50933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.
Collapse
Affiliation(s)
- Ondřej Bulvas
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdeněk Knejzlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Sýs
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anatolij Filimoněnko
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Čížková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kamila Clarová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Kouba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Bearne SL. Biochemical communication between filament-forming enzymes: Potential Regulatory Roles of Metabolites in Enzyme Co-assemblies with CTP Synthase. Bioessays 2024; 46:e2400063. [PMID: 38975656 DOI: 10.1002/bies.202400063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 07/09/2024]
Abstract
A host of metabolic enzymes reversibly self-assemble to form membrane-less, intracellular filaments under normal physiological conditions and in response to stress. Often, these enzymes reside at metabolic control points, suggesting that filament formation affords an additional regulatory mechanism. Examples include cytidine-5'-triphosphate (CTP) synthase (CTPS), which catalyzes the rate-limiting step for the de novo biosynthesis of CTP; inosine-5'-monophosphate dehydrogenase (IMPDH), which controls biosynthetic access to guanosine-5'-triphosphate (GTP); and ∆1-pyrroline-5-carboxylate (P5C) synthase (P5CS) that catalyzes the formation of P5C, which links the Krebs cycle, urea cycle, and proline metabolism. Intriguingly, CTPS can exist in co-assemblies with IMPDH or P5CS. Since GTP is an allosteric activator of CTPS, the association of CTPS and IMPDH filaments accords with the need to coordinate pyrimidine and purine biosynthesis. Herein, a hypothesis is presented furnishing a biochemical connection underlying co-assembly of CTPS and P5CS filaments - potent inhibition of CTPS by glutamate γ-semialdehyde, the open-chain form of P5C.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Nabi Afjadi M, Yazdanparast R, Barzegari E. The Impact of Terminal Peptide Extensions of Retinal Inosine 5´Monophosphate Dehydrogenase 1 Isoforms on their DNA-binding Activities. Protein J 2024; 43:592-602. [PMID: 38733555 DOI: 10.1007/s10930-024-10202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
The main structural difference between the mutation-susceptible retinal isoforms of inosine 5´-monophosphate dehydrogenase-1 (IMPDH-1) with the canonical form resides in the C- and N-terminal peptide extensions with unknown structural/functional impacts. In this report, we aimed to experimentally evaluate the functional impact of these extensions on the specific/non-specific single-stranded DNA (ssDNA)-binding activities relative to those of the canonical form. Our in silico findings indicated the possible contribution of the C-terminal segment to the reduced flexibility of the Bateman domain of the enzyme. In addition, the in silico data indicated that the N-terminal tail acts by altering the distance between the tetramers in the concave octamer complex (the native form) of the enzyme. The overall impact of these predicted structural variations became evident, first, through higher Km values with respect to either of the substrates relative to the canonical isoform, as reported previously (Andashti et al. in Mol Cell Biochem 465(1):155-164, 2020). Secondary, the binding of the recombinant mouse retinal isoform IMPDH1 (603) to its specific Rhodopsin target gene was significantly augmented while its binding to non-specific ssDNA was lower than that of the canonical isoform. The DNA-binding activity of the other mouse retinal isoform, IMPDH1(546), to specific and non-specific ssDNA was lower than that of the canonical form most probably due to the in silico predicted rigidity created in the Bateman domain by the C-terminal peptide extension. Furthermore, the DNA binding to the Rhodopsin target gene by each of the IMPDH isoforms influenced in the presence of GTP (Guanosine triphosphate) and ATP (Adenosine triphosphate).
Collapse
Affiliation(s)
- Mohsen Nabi Afjadi
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran.
| | - Ebrahim Barzegari
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran
| |
Collapse
|
5
|
Anashkin VA, Kirillova EA, Orlov VN, Baykov AA. Specific Mutations Reverse Regulatory Effects of Adenosine Phosphates and Increase Their Binding Stoichiometry in CBS Domain-Containing Pyrophosphatase. Int J Mol Sci 2024; 25:5768. [PMID: 38891956 PMCID: PMC11172384 DOI: 10.3390/ijms25115768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory cystathionine β-synthase (CBS) domains are widespread in proteins; however, difficulty in structure determination prevents a comprehensive understanding of the underlying regulation mechanism. Tetrameric microbial inorganic pyrophosphatase containing such domains (CBS-PPase) is allosterically inhibited by AMP and ADP and activated by ATP and cell alarmones diadenosine polyphosphates. Each CBS-PPase subunit contains a pair of CBS domains but binds cooperatively to only one molecule of the mono-adenosine derivatives. We used site-directed mutagenesis of Desulfitobacterium hafniense CBS-PPase to identify the key elements determining the direction of the effect (activation or inhibition) and the "half-of-the-sites" ligand binding stoichiometry. Seven amino acid residues were selected in the CBS1 domain, based on the available X-ray structure of the regulatory domains, and substituted by alanine and other residues. The interaction of 11 CBS-PPase variants with the regulating ligands was characterized by activity measurements and isothermal titration calorimetry. Lys100 replacement reversed the effect of ADP from inhibition to activation, whereas Lys95 and Gly118 replacements made ADP an activator at low concentrations but an inhibitor at high concentrations. Replacement of these residues for alanine increased the stoichiometry of mono-adenosine phosphate binding by twofold. These findings identified several key protein residues and suggested a "two non-interacting pairs of interacting regulatory sites" concept in CBS-PPase regulation.
Collapse
Affiliation(s)
- Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia (V.N.O.)
| | | | | | - Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia (V.N.O.)
| |
Collapse
|
6
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
7
|
Toyoda S, Handa T, Yong H, Takahashi H, Shiwaku H. IMPDH2 forms spots at branching sites and distal ends of astrocyte stem processes. Genes Cells 2024; 29:150-158. [PMID: 38009721 DOI: 10.1111/gtc.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in the de novo GTP biosynthesis pathway. Recent studies suggest that IMPDH2, an isoform of IMPDH, can localize to specific subcellular compartments under certain conditions and regulate site-specific GTP availability and small GTPase activity in invasive cancer cells. However, it is unclear whether IMPDH2 plays a site-specific regulatory role in subcellular functions in healthy cells. In this study, we focused on brain cells and examined the localization pattern of IMPDH2. We discovered that IMPDH2 forms localized spots in the astrocytes of the adult mouse hippocampus. Further analysis of spot distribution in primary astrocyte cultures revealed that IMPDH2 spots are predominantly localized on branching sites and distal ends of astrocyte stem processes. Our findings suggest a potential unidentified role for IMPDH2 and GTP synthesis specifically at specialized nodes of astrocyte branches.
Collapse
Affiliation(s)
- Saori Toyoda
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Takehisa Handa
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Huang Yong
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Hiroki Shiwaku
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| |
Collapse
|
8
|
Hernández-Gómez A, Irisarri I, Fernández-Justel D, Peláez R, Jiménez A, Revuelta JL, Balsera M, Buey RM. GuaB3, an overlooked enzyme in cyanobacteria's toolbox that sheds light on IMP dehydrogenase evolution. Structure 2023; 31:1526-1534.e4. [PMID: 37875114 DOI: 10.1016/j.str.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
IMP dehydrogenase and GMP reductase are enzymes from the same protein family with analogous structures and catalytic mechanisms that have gained attention because of their essential roles in nucleotide metabolism and as potential drug targets. This study focusses on GuaB3, a less-explored enzyme within this family. Phylogenetic analysis uncovers GuaB3's independent evolution from other members of the family and it predominantly occurs in Cyanobacteria. Within this group, GuaB3 functions as a unique IMP dehydrogenase, while its counterpart in Actinobacteria has a yet unknown function. Synechocystis sp. PCC6803 GuaB3 structures demonstrate differences in the active site compared to canonical IMP dehydrogenases, despite shared catalytic mechanisms. These findings highlight the essential role of GuaB3 in Cyanobacteria, provide insights into the diversity and evolution of the IMP dehydrogenase protein family, and reveal a distinctive characteristic in nucleotide metabolism, potentially aiding in combating harmful cyanobacterial blooms-a growing concern for humans and wildlife.
Collapse
Affiliation(s)
- Alejandro Hernández-Gómez
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Iker Irisarri
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - David Fernández-Justel
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Dpto. Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - José Luis Revuelta
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Mónica Balsera
- Department Abiotic Stress, Instituto de Recursos Naturales y Agrobiología (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| |
Collapse
|
9
|
Zamakhov IM, Anashkin VA, Moiseenko AV, Orlov VN, Vorobyeva NN, Sokolova OS, Baykov AA. The Structure and Nucleotide-Binding Characteristics of Regulated Cystathionine β-Synthase Domain-Containing Pyrophosphatase without One Catalytic Domain. Int J Mol Sci 2023; 24:17160. [PMID: 38138989 PMCID: PMC10742508 DOI: 10.3390/ijms242417160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory adenine nucleotide-binding cystathionine β-synthase (CBS) domains are widespread in proteins; however, information on the mechanism of their modulating effects on protein function is scarce. The difficulty in obtaining structural data for such proteins is ascribed to their unusual flexibility and propensity to form higher-order oligomeric structures. In this study, we deleted the most movable domain from the catalytic part of a CBS domain-containing bacterial inorganic pyrophosphatase (CBS-PPase) and characterized the deletion variant both structurally and functionally. The truncated CBS-PPase was inactive but retained the homotetrameric structure of the full-size enzyme and its ability to bind a fluorescent AMP analog (inhibitor) and diadenosine tetraphosphate (activator) with the same or greater affinity. The deletion stabilized the protein structure against thermal unfolding, suggesting that the deleted domain destabilizes the structure in the full-size protein. A "linear" 3D structure with an unusual type of domain swapping predicted for the truncated CBS-PPase by Alphafold2 was confirmed by single-particle electron microscopy. The results suggest a dual role for the CBS domains in CBS-PPase regulation: they allow for enzyme tetramerization, which impedes the motion of one catalytic domain, and bind adenine nucleotides to mitigate or aggravate this effect.
Collapse
Affiliation(s)
- Ilya M. Zamakhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (V.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (V.A.A.)
| | - Andrey V. Moiseenko
- Department of Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (O.S.S.)
| | - Victor N. Orlov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (V.A.A.)
| | - Natalia N. Vorobyeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (V.A.A.)
| | - Olga S. Sokolova
- Department of Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (O.S.S.)
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia (V.A.A.)
| |
Collapse
|
10
|
Romero-Romero ML, Garcia-Seisdedos H. Agglomeration: when folded proteins clump together. Biophys Rev 2023; 15:1987-2003. [PMID: 38192350 PMCID: PMC10771401 DOI: 10.1007/s12551-023-01172-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 01/10/2024] Open
Abstract
Protein self-association is a widespread phenomenon that results in the formation of multimeric protein structures with critical roles in cellular processes. Protein self-association can lead to finite protein complexes or open-ended, and potentially, infinite structures. This review explores the concept of protein agglomeration, a process that results from the infinite self-assembly of folded proteins. We highlight its differences from other better-described processes with similar macroscopic features, such as aggregation and liquid-liquid phase separation. We review the sequence, structural, and biophysical factors influencing protein agglomeration. Lastly, we briefly discuss the implications of agglomeration in evolution, disease, and aging. Overall, this review highlights the need to study protein agglomeration for a better understanding of cellular processes.
Collapse
Affiliation(s)
- M. L. Romero-Romero
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology, Dresden, Germany
| | - H. Garcia-Seisdedos
- Department of Structural and Molecular Biology, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
11
|
Elyasi-Ebli P, Yazdanparast R, Gharaghani S, Barzegari E. Insights on the conformation and appropriate drug-target sites on retinal IMPDH1 using the 604-aa isoform lacking the C-terminal extension. Res Pharm Sci 2023; 18:638-647. [PMID: 39005562 PMCID: PMC11246115 DOI: 10.4103/1735-5362.389951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/05/2023] [Accepted: 08/19/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Retinitis pigmentosa (RP) accounts for 2 percent of global cases of blindness. The RP10 form of the disease results from mutations in isoform 1 of inosine 5'-monophosphate dehydrogenase (IMPDH1), the rate-limiting enzyme in the de novo purine nucleotide synthesis pathway. Retinal photoreceptors contain specific isoforms of IMPDH1 characterized by terminal extensions. Considering previously reported significantly varied kinetics among retinal isoforms, the current research aimed to investigate possible structural explanations and suitable functional sites for the pharmaceutical targeting of IMPDH1 in RP. Experimental approach A recombinant 604-aa IMPDH1 isoform lacking the carboxyl-terminal peptide was produced and underwent proteolytic digestion with α-chymotrypsin. Dimer models of wild type and engineered 604-aa isoform were subjected to molecular dynamics simulation. Findings/Results The IMPDH1 retinal isoform lacking C-terminal peptide was shown to tend to have more rapid proteolysis (~16% digestion in the first two minutes). Our computational data predicted the potential of the amino-terminal peptide to induce spontaneous inhibition of IMPDH1 by forming a novel helix in a GTP binding site. On the other hand, the C-terminal peptide might block the probable inhibitory role of the N-terminal extension. Conclusion and implications According to the findings, augmenting IMPDH1 activity by suppressing its filamentation is suggested as a suitable strategy to compensate for its disrupted activity in RP. This needs specific small molecule inhibitors to target the filament assembly interface of the enzyme.
Collapse
Affiliation(s)
- Parisa Elyasi-Ebli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ebrahim Barzegari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Keppeke GD, Chang CC, Zhang Z, Liu JL. Effect on cell survival and cytoophidium assembly of the adRP-10-related IMPDH1 missense mutation Asp226Asn. Front Cell Dev Biol 2023; 11:1234592. [PMID: 37731818 PMCID: PMC10507268 DOI: 10.3389/fcell.2023.1234592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction: Inosine monophosphate dehydrogenase 1 (IMPDH1) is a critical enzyme in the retina, essential for the correct functioning of photoreceptor cells. Mutations in IMPDH1 have been linked to autosomal dominant retinitis pigmentosa subtype 10 (adRP-10), a genetic eye disorder. Some of these mutations such as the Asp226Asn (D226N) lead to the assembly of large filamentous structures termed cytoophidia. D226N also gives IMPDH1 resistance to feedback inhibition by GDP/GTP. This study aims to emulate the adRP-10 condition with a long-term expression of IMPDH1-D226N in vitro and explore cytoophidium assembly and cell survival. We also assessed whether the introduction of an additional mutation (Y12C) to disrupt the cytoophidium has an attenuating effect on the toxicity caused by the D226N mutation. Results: Expression of IMPDH1-D226N in HEp-2 cells resulted in cytoophidium assembly in ∼70% of the cells, but the presence of the Y12C mutation disrupted the filaments. Long-term cell survival was significantly affected by the presence of the D226N mutation, with a decrease of ∼40% in the cells expressing IMPDH1-D226N when compared to IMPDH1-WT; however, survival was significantly recovered in IMPDH1-Y12C/D226N, with only a ∼10% decrease when compared to IMPDH1-WT. On the other hand, the IMPDH1 expression level in the D226N-positive cells was <30% of that of the IMPDH1-WT-positive cells and only slightly higher in the Y12C/D226N, suggesting that although cell survival in Y12C/D226N was recovered, higher expression levels of the mutated IMPDH1 were not tolerated by the cells in the long term. Conclusion: The IMPDH1-D226N effect on photoreceptor cell survival may be the result of a sum of problems: nucleotide unbalance plus a toxic long-life cytoophidium, supported by the observation that by introducing Y12C in IMPDH1 the cytoophidium was disrupted and cell survival significantly recovered, but not the sensibility to GDP/GTP regulation since higher expression levels of IMPDH1-D226N were not tolerated.
Collapse
Affiliation(s)
- Gerson Dierley Keppeke
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ziheng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Gedeon A, Ayoub N, Brûlé S, Raynal B, Karimova G, Gelin M, Mechaly A, Haouz A, Labesse G, Munier‐Lehmann H. Insight into the role of the Bateman domain at the molecular and physiological levels through engineered IMP dehydrogenases. Protein Sci 2023; 32:e4703. [PMID: 37338125 PMCID: PMC10357500 DOI: 10.1002/pro.4703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Inosine 5'-monophosphate (IMP) dehydrogenase (IMPDH) is an ubiquitous enzyme that catalyzes the NAD+ -dependent oxidation of inosine 5'-monophosphate into xanthosine 5'-monophosphate. This enzyme is formed of two distinct domains, a core domain where the catalytic reaction occurs, and a less-conserved Bateman domain. Our previous studies gave rise to the classification of bacterial IMPDHs into two classes, according to their oligomeric and kinetic properties. MgATP is a common effector but cause to different effects when it binds within the Bateman domain: it is either an allosteric activator for Class I IMPDHs or a modulator of the oligomeric state for Class II IMPDHs. To get insight into the role of the Bateman domain in the dissimilar properties of the two classes, deleted variants of the Bateman domain and chimeras issued from the interchange of the Bateman domain between the three selected IMPDHs have been generated and characterized using an integrative structural biology approach. Biochemical, biophysical, structural, and physiological studies of these variants unveil the Bateman domain as being the carrier of the molecular behaviors of both classes.
Collapse
Affiliation(s)
- Antoine Gedeon
- Institut Pasteur, Université Paris Cité, Unité de Chimie et Biocatalyse, CNRS UMR3523ParisFrance
- Present address:
Institut Pasteur, Université Paris Cité, Unité de Microbiologie Structurale, CNRS UMR3525ParisFrance
| | - Nour Ayoub
- Institut Pasteur, Université Paris Cité, Unité de Chimie et Biocatalyse, CNRS UMR3523ParisFrance
- Present address:
Institut Pasteur, Université Paris Cité, Plate‐Forme de Criblage Chémogénomique et Biologique, CNRS UMR3523ParisFrance
| | - Sébastien Brûlé
- Institut Pasteur, Université Paris Cité, Plate‐Forme de Biophysique Moléculaire, C2RT, CNRS UMR3528ParisFrance
| | - Bertrand Raynal
- Institut Pasteur, Université Paris Cité, Plate‐Forme de Biophysique Moléculaire, C2RT, CNRS UMR3528ParisFrance
| | - Gouzel Karimova
- Institut Pasteur, Université Paris Cité, Unité de Biochimie des Interactions Macromoléculaires, CNRS UMR3528ParisFrance
| | - Muriel Gelin
- Centre de Biologie StructuraleUniversité Montpellier, INSERM, CNRSMontpellierFrance
| | - Ariel Mechaly
- Institut Pasteur, Université Paris Cité, Plate‐Forme de Cristallographie, C2RT, CNRS UMR3528ParisFrance
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, Plate‐Forme de Cristallographie, C2RT, CNRS UMR3528ParisFrance
| | - Gilles Labesse
- Centre de Biologie StructuraleUniversité Montpellier, INSERM, CNRSMontpellierFrance
| | - Hélène Munier‐Lehmann
- Institut Pasteur, Université Paris Cité, Unité de Chimie et Biocatalyse, CNRS UMR3523ParisFrance
- Present address:
Institut Pasteur, Université Paris Cité, Plate‐Forme de Criblage Chémogénomique et Biologique, CNRS UMR3523ParisFrance
| |
Collapse
|
14
|
O'Neill AG, Burrell AL, Zech M, Elpeleg O, Harel T, Edvardson S, Mor-Shaked H, Rippert AL, Nomakuchi T, Izumi K, Kollman JM. Neurodevelopmental disorder mutations in the purine biosynthetic enzyme IMPDH2 disrupt its allosteric regulation. J Biol Chem 2023; 299:105012. [PMID: 37414152 PMCID: PMC10407431 DOI: 10.1016/j.jbc.2023.105012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report the identification of two additional missense variants in IMPDH2 from affected individuals and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.
Collapse
Affiliation(s)
- Audrey G O'Neill
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Simon Edvardson
- Alyn Hospital, Hebrew University School of Medicine, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alyssa L Rippert
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
15
|
O'Neill AG, Burrell AL, Zech M, Elpeleg O, Harel T, Edvardson S, Shaked HM, Rippert AL, Nomakuchi T, Izumi K, Kollman JM. Point mutations in IMPDH2 which cause early-onset neurodevelopmental disorders disrupt enzyme regulation and filament structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532669. [PMID: 36993700 PMCID: PMC10055058 DOI: 10.1101/2023.03.15.532669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report identification of two additional affected individuals with missense variants in IMPDH2 and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.
Collapse
Affiliation(s)
- Audrey G O'Neill
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Simon Edvardson
- Alyn Hospital, Hebrew University School of Medicine, Jerusalem, Israel
| | - Hagar Mor Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alyssa L Rippert
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Covaleda-Cortés G, Mechaly A, Brissac T, Baehre H, Devaux L, England P, Raynal B, Hoos S, Gominet M, Firon A, Trieu-Cuot P, Kaminski PA. The c-di-AMP-binding protein CbpB modulates the level of ppGpp alarmone in Streptococcus agalactiae. FEBS J 2023. [PMID: 36629470 DOI: 10.1111/febs.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Cyclic di-AMP is an essential signalling molecule in Gram-positive bacteria. This second messenger regulates the osmotic pressure of the cell by interacting directly with the regulatory domains, either RCK_C or CBS domains, of several potassium and osmolyte uptake membrane protein systems. Cyclic di-AMP also targets stand-alone CBS domain proteins such as DarB in Bacillus subtilis and CbpB in Listeria monocytogenes. We show here that the CbpB protein of Group B Streptococcus binds c-di-AMP with a very high affinity. Crystal structures of CbpB reveal the determinants of binding specificity and significant conformational changes occurring upon c-di-AMP binding. Deletion of the cbpB gene alters bacterial growth in low potassium conditions most likely due to a decrease in the amount of ppGpp caused by a loss of interaction between CbpB and Rel, the GTP/GDP pyrophosphokinase.
Collapse
Affiliation(s)
- Giovanni Covaleda-Cortés
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| | - Ariel Mechaly
- CNRS-UMR 3528, Crystallography Platform, Center for Technological Resources and Research, Institut Pasteur, Université Paris Cité, France
| | - Terry Brissac
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| | - Heike Baehre
- Research Core Unit Metabolomics, Hannover Medical School, Germany
| | - Laura Devaux
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| | - Patrick England
- CNRS UMR 3528, Molecular Biophysics Platform, Center for Technological Resources and Research, Institut Pasteur, Université Paris Cité, France
| | - Bertrand Raynal
- CNRS UMR 3528, Molecular Biophysics Platform, Center for Technological Resources and Research, Institut Pasteur, Université Paris Cité, France
| | - Sylviane Hoos
- CNRS UMR 3528, Molecular Biophysics Platform, Center for Technological Resources and Research, Institut Pasteur, Université Paris Cité, France
| | - Myriam Gominet
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| | - Arnaud Firon
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| | - Patrick Trieu-Cuot
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| | - Pierre Alexandre Kaminski
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| |
Collapse
|
17
|
Giammarinaro PI, Young MKM, Steinchen W, Mais CN, Hochberg G, Yang J, Stevenson DM, Amador-Noguez D, Paulus A, Wang JD, Bange G. Diadenosine tetraphosphate regulates biosynthesis of GTP in Bacillus subtilis. Nat Microbiol 2022; 7:1442-1452. [PMID: 35953658 PMCID: PMC10439310 DOI: 10.1038/s41564-022-01193-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Diadenosine tetraphosphate (Ap4A) is a putative second messenger molecule that is conserved from bacteria to humans. Nevertheless, its physiological role and the underlying molecular mechanisms are poorly characterized. We investigated the molecular mechanism by which Ap4A regulates inosine-5'-monophosphate dehydrogenase (IMPDH, a key branching point enzyme for the biosynthesis of adenosine or guanosine nucleotides) in Bacillus subtilis. We solved the crystal structure of BsIMPDH bound to Ap4A at a resolution of 2.45 Å to show that Ap4A binds to the interface between two IMPDH subunits, acting as the glue that switches active IMPDH tetramers into less active octamers. Guided by these insights, we engineered mutant strains of B. subtilis that bypass Ap4A-dependent IMPDH regulation without perturbing intracellular Ap4A pools themselves. We used metabolomics, which suggests that these mutants have a dysregulated purine, and in particular GTP, metabolome and phenotypic analysis, which shows increased sensitivity of B. subtilis IMPDH mutant strains to heat compared with wild-type strains. Our study identifies a central role for IMPDH in remodelling metabolism and heat resistance, and provides evidence that Ap4A can function as an alarmone.
Collapse
Affiliation(s)
- Pietro I Giammarinaro
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Megan K M Young
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Wieland Steinchen
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Christopher-Nils Mais
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Georg Hochberg
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Anja Paulus
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gert Bange
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany.
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
18
|
Buey RM, Fernández‐Justel D, Jiménez A, Revuelta JL. The gateway to guanine nucleotides: Allosteric regulation of IMP dehydrogenases. Protein Sci 2022; 31:e4399. [PMID: 36040265 PMCID: PMC9375230 DOI: 10.1002/pro.4399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is an evolutionarily conserved enzyme that mediates the first committed step in de novo guanine nucleotide biosynthetic pathway. It is an essential enzyme in purine nucleotide biosynthesis that modulates the metabolic flux at the branch point between adenine and guanine nucleotides. IMPDH plays key roles in cell homeostasis, proliferation, and the immune response, and is the cellular target of several drugs that are widely used for antiviral and immunosuppressive chemotherapy. IMPDH enzyme is tightly regulated at multiple levels, from transcriptional control to allosteric modulation, enzyme filamentation, and posttranslational modifications. Herein, we review recent developments in our understanding of the mechanisms of IMPDH regulation, including all layers of allosteric control that fine-tune the enzyme activity.
Collapse
Affiliation(s)
- Rubén M. Buey
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - David Fernández‐Justel
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - José L. Revuelta
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| |
Collapse
|
19
|
Chang CC, Peng M, Zhong J, Zhang Z, Keppeke GD, Sung LY, Liu JL. Molecular crowding facilitates bundling of IMPDH polymers and cytoophidium formation. Cell Mol Life Sci 2022; 79:420. [PMID: 35833994 PMCID: PMC11072341 DOI: 10.1007/s00018-022-04448-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
The cytoophidium is a unique type of membraneless compartment comprising of filamentous protein polymers. Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step of de novo GTP biosynthesis and plays critical roles in active cell metabolism. However, the molecular regulation of cytoophidium formation is poorly understood. Here we show that human IMPDH2 polymers bundle up to form cytoophidium-like aggregates in vitro when macromolecular crowders are present. The self-association of IMPDH polymers is suggested to rely on electrostatic interactions. In cells, the increase of molecular crowding with hyperosmotic medium induces cytoophidia, while the decrease of that by the inhibition of RNA synthesis perturbs cytoophidium assembly. In addition to IMPDH, CTPS and PRPS cytoophidium could be also induced by hyperosmolality, suggesting a universal phenomenon of cytoophidium-forming proteins. Finally, our results indicate that the cytoophidium can prolong the half-life of IMPDH, which is proposed to be one of conserved functions of this subcellular compartment.
Collapse
Affiliation(s)
- Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Jiale Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ziheng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Gerson Dierley Keppeke
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, 04023-062, Brazil
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
20
|
Fernández-Justel D, Marcos-Alcalde Í, Abascal F, Vidaña N, Gómez-Puertas P, Jiménez A, Revuelta JL, Buey RM. Diversity of mechanisms to control bacterial GTP homeostasis by the mutually exclusive binding of adenine and guanine nucleotides to IMP dehydrogenase. Protein Sci 2022; 31:e4314. [PMID: 35481629 PMCID: PMC9462843 DOI: 10.1002/pro.4314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate‐limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine‐tuned by post‐translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide‐controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis. PDB Code(s): 7PJI and 7PMZ;
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Nerea Vidaña
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - José L Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
21
|
IMPDH dysregulation in disease: a mini review. Biochem Soc Trans 2022; 50:71-82. [PMID: 35191957 PMCID: PMC9022972 DOI: 10.1042/bst20210446] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
Inosine-5′-monophosphate dehydrogenase (IMPDH) is a highly conserved enzyme in purine metabolism that is tightly regulated on multiple levels. IMPDH has a critical role in purine biosynthesis, where it regulates flux at the branch point between adenine and guanine nucleotide synthesis, but it also has a role in transcription regulation and other moonlighting functions have been described. Vertebrates have two isoforms, IMPDH1 and IMPDH2, and point mutations in each are linked to human disease. Mutations in IMPDH2 in humans are associated with neurodevelopmental disease, but the effects of mutations at the enzyme level have not yet been characterized. Mutations in IMPDH1 lead to retinal degeneration in humans, and recent studies have characterized how they cause functional defects in regulation. IMPDH1 is expressed as two unique splice variants in the retina, a tissue with very high and specific demands for purine nucleotides. Recent studies have revealed functional differences among splice variants, demonstrating that retinal variants up-regulate guanine nucleotide synthesis by reducing sensitivity to feedback inhibition by downstream products. A better understanding of the role of IMPDH1 in the retina and the characterization of an animal disease model will be critical for determining the molecular mechanism of IMPDH1-associated blindness.
Collapse
|
22
|
Burrell AL, Nie C, Said M, Simonet JC, Fernández-Justel D, Johnson MC, Quispe J, Buey RM, Peterson JR, Kollman JM. IMPDH1 retinal variants control filament architecture to tune allosteric regulation. Nat Struct Mol Biol 2022; 29:47-58. [PMID: 35013599 PMCID: PMC9044917 DOI: 10.1038/s41594-021-00706-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/23/2021] [Indexed: 01/06/2023]
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH), a key regulatory enzyme in purine nucleotide biosynthesis, dynamically assembles filaments in response to changes in metabolic demand. Humans have two isoforms: IMPDH2 filaments reduce sensitivity to feedback inhibition, while IMPDH1 assembly remains uncharacterized. IMPDH1 plays a unique role in retinal metabolism, and point mutants cause blindness. Here, in a series of cryogenic-electron microscopy structures we show that human IMPDH1 assembles polymorphic filaments with different assembly interfaces in extended and compressed states. Retina-specific splice variants introduce structural elements that reduce sensitivity to GTP inhibition, including stabilization of the extended filament form. Finally, we show that IMPDH1 disease mutations fall into two classes: one disrupts GTP regulation and the other has no effect on GTP regulation or filament assembly. These findings provide a foundation for understanding the role of IMPDH1 in retinal function and disease and demonstrate the diverse mechanisms by which metabolic enzyme filaments are allosterically regulated.
Collapse
Affiliation(s)
- Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Chuankai Nie
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Meerit Said
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jacqueline C Simonet
- Cancer Epigenetics and Signaling Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Biology, Arcadia University, Glenside, PA, USA
| | - David Fernández-Justel
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Matthew C Johnson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rubén M Buey
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Jeffrey R Peterson
- Cancer Epigenetics and Signaling Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
23
|
Wang S, Chao F, Zhang C, Han D, Xu G, Chen G. Circular RNA circPFKP promotes cell proliferation by activating IMPDH2 in prostate cancer. Cancer Lett 2022; 524:109-120. [PMID: 34673127 DOI: 10.1016/j.canlet.2021.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/22/2022]
Abstract
Prostate cancer (PCa), especially castration-resistant PCa, is a common and fatal disease. circRNAs had been confirmed to affect the proliferation of a variety of malignant tumors. Exploring the role of circRNAs in PCa progression and discovering new therapeutic targets are of great importance for the treatment of PCa. In the present study, we found that the expression of circPFKP was significantly increased in PCa tissues compared with adjacent noncancerous prostate tissues, and was correlated with the D'Amico risk classification, N stage, and prognostic stage group of PCa. CircPFKP promotes the proliferation of PCa cells in vitro and in vivo. Suppressing circPFKP induced the G1/S arrest of PCa cells. Mechanistically, circPFKP interacted with IMPDH2, promoted the biogenesis of guanine nucleotides. Moreover, the replenishment of intracellular guanine nucleotides pool reverses the inhibitory effect of knocking-down circPFKP on PCa cell proliferation. hnRNPF might promote circPFKP generation by binding to flanking Alu elements. Our results identify a novel functional interaction of circPFKP with IMPDH2, which promotes the proliferation of PCa cells.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China; Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Cleghorn WM, Burrell AL, Giarmarco MM, Brock DC, Wang Y, Chambers ZS, Du J, Kollman JM, Brockerhoff SE. A highly conserved zebrafish IMPDH retinal isoform produces the majority of guanine and forms dynamic protein filaments in photoreceptor cells. J Biol Chem 2022; 298:101441. [PMID: 34813793 PMCID: PMC8688572 DOI: 10.1016/j.jbc.2021.101441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/18/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Dominant mutations in human IMPDH1 cause photoreceptor degeneration for reasons that are unknown. Here, we sought to provide some foundational information on Impdh1a in the zebrafish retina. We found that in zebrafish, gene subfunctionalization due to ancestral duplication resulted in a predominant retinal variant expressed exclusively in rod and cone photoreceptors. This variant is structurally and functionally similar to the human IMPDH1 retinal variant and shares a reduced sensitivity to GTP-mediated inhibition. We also demonstrated that Impdh1a forms prominent protein filaments in vitro and in vivo in both rod and cone photoreceptor cell bodies, synapses, and to a lesser degree, in outer segments. These filaments changed length and cellular distribution throughout the day consistent with diurnal changes in both mRNA and protein levels. The loss of Impdh1a resulted in a substantial reduction of guanine levels, although cellular morphology and cGMP levels remained normal. Our findings demonstrate a significant role for IMPDH1 in photoreceptor guanine production and provide fundamental new information on the details of this protein in the zebrafish retina.
Collapse
Affiliation(s)
- Whitney M Cleghorn
- Department of Biochemistry, University of Washington, Seattle, Washington, USA; Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | | | - Daniel C Brock
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Zachary S Chambers
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry, West Virginia University, Morgantown, West Virginia, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, Washington, USA; Department of Ophthalmology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
25
|
Terminal Peptide Extensions Augment the Retinal IMPDH1 Catalytic Activity and Attenuate the ATP-induced Fibrillation Events. Cell Biochem Biophys 2021; 79:221-229. [PMID: 33733369 DOI: 10.1007/s12013-021-00973-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Defects in inosine monophosphate dehydrogenase-1 (IMPDH1) lead to insufficient biosyntheses of purine nucleotides. In eyes, these defects are believed to cause retinitis pigmentosa (RP). Major retinal isoforms of IMPDH1 are structurally distinct from those in other tissues, by bearing terminal extensions. Using recombinant mouse IMPDH1 (mH1), we evaluated the kinetics and oligomerization states of the retinal isoforms. Moreover, we adopted molecular simulation tools to study the possible effect of terminal tails on the function of major enzyme isoforms with the aim to find structural evidence in favor of contradictory observations on retinal IMPDH1 function. Our findings indicated higher catalytic activity for the major mouse retinal isoform (mH1603) along with lower fibrillation capacity under the influence of ATP. However, higher mass oligomerization products were formed by the mH1 (603) isoform in the presence of the enzyme inhibitors such as GTP and/or MPA. Collectively, our findings demonstrate that the structural differences between the retinal isoforms have led to functional variations possibly to justify the retinal cells' requirements.
Collapse
|
26
|
Calise SJ, Chan EKL. Anti-rods/rings autoantibody and IMPDH filaments: an update after fifteen years of discovery. Autoimmun Rev 2020; 19:102643. [PMID: 32805424 DOI: 10.1016/j.autrev.2020.102643] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Autoantibodies to unknown subcellular rod and ring-shaped structures were first discovered in sera from hepatitis C patients in 2005. Early studies showed a strong association between these anti-rods/rings antibodies (anti-RR) and the standard of care interferon-α plus ribavirin combination therapy (IFN/RBV), suggesting that anti-RR are drug-induced autoantibodies. In the context of hepatitis C, anti-RR have been linked with relapse from or lack of response to IFN/RBV in some patient cohorts. However, examples of anti-RR in other diseases and healthy individuals have also been reported over the years, although anti-RR remains a rare autoantibody response in general. The advent of new direct-acting antiviral drugs for chronic hepatitis C and studies of anti-RR from different parts of the world are also beginning to change the perception of anti-RR. The nucleotide biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH) has been identified as the major autoantigen recognized by anti-RR. Coincidentally, the assembly of IMPDH into micron-scale rod and ring-shaped structures was discovered around the same time as anti-RR. Knowledge of the fundamental biological properties and cellular functions of these structures, referred to as "IMPDH filaments" by cell biologists, has advanced in parallel to anti-RR antibodies. Recent studies have revealed that IMPDH filament assembly is a mechanism to prevent feedback inhibition of IMPDH and is therefore important for the increased nucleotide production required in hyperproliferating cells, like activated T cells. Fifteen years later, we review the history and current knowledge in both the anti-RR autoantibody and IMPDH filament fields. TAKE-HOME MESSAGE: Anti-rods/rings are recognized as an example of a drug-induced autoantibody in hepatitis C patients treated with interferon and ribavirin, although new studies suggest anti-rods/rings may be detected in other contexts and may depend on unknown environmental or genetic factors in different populations. Recent data suggest that the assembly of IMPDH into rod and ring structures, the targets of anti-rods/rings autoantibody, is a mechanism for hyperproliferating cells, like activated T cells, to maintain increased guanine nucleotide levels to support rapid cell division.
Collapse
Affiliation(s)
- S John Calise
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA.
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA.
| |
Collapse
|
27
|
Anashkin VA, Salminen A, Orlov VN, Lahti R, Baykov AA. The tetrameric structure of nucleotide-regulated pyrophosphatase and its modulation by deletion mutagenesis and ligand binding. Arch Biochem Biophys 2020; 692:108537. [PMID: 32810477 DOI: 10.1016/j.abb.2020.108537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 11/25/2022]
Abstract
A quarter of prokaryotic Family II inorganic pyrophosphatases (PPases) contain a regulatory insert comprised of two cystathionine β-synthase (CBS) domains and one DRTGG domain in addition to the two catalytic domains that form canonical Family II PPases. The CBS domain-containing PPases (CBS-PPases) are allosterically activated or inhibited by adenine nucleotides that cooperatively bind to the CBS domains. Here we use chemical cross-linking and analytical ultracentrifugation to show that CBS-PPases from Desulfitobacterium hafniense and four other bacterial species are active as 200-250-kDa homotetramers, which seems unprecedented among the four PPase families. The tetrameric structure is stabilized by Co2+, the essential cofactor, pyrophosphate, the substrate, and adenine nucleotides, including diadenosine tetraphosphate. The deletion variants of dhPPase containing only catalytic or regulatory domains are dimeric. Co2+ depletion by incubation with EDTA converts CBS-PPase into inactive tetrameric and dimeric forms. Dissociation of tetrameric CBS-PPase and its catalytic part by dilution renders them inactive. The structure of CBS-PPase tetramer was modelled from the structures of dimeric catalytic and regulatory parts. These findings signify the role of the unique oligomeric structure of CBS-PPase in its multifaced regulation.
Collapse
Affiliation(s)
- Viktor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anu Salminen
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Victor N Orlov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Reijo Lahti
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
28
|
Plana-Bonamaisó A, López-Begines S, Fernández-Justel D, Junza A, Soler-Tapia A, Andilla J, Loza-Alvarez P, Rosa JL, Miralles E, Casals I, Yanes O, de la Villa P, Buey RM, Méndez A. Post-translational regulation of retinal IMPDH1 in vivo to adjust GTP synthesis to illumination conditions. eLife 2020; 9:56418. [PMID: 32254022 PMCID: PMC7176436 DOI: 10.7554/elife.56418] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
We report the in vivo regulation of Inosine-5´-monophosphate dehydrogenase 1 (IMPDH1) in the retina. IMPDH1 catalyzes the rate-limiting step in the de novo synthesis of guanine nucleotides, impacting the cellular pools of GMP, GDP and GTP. Guanine nucleotide homeostasis is central to photoreceptor cells, where cGMP is the signal transducing molecule in the light response. Mutations in IMPDH1 lead to inherited blindness. We unveil a light-dependent phosphorylation of retinal IMPDH1 at Thr159/Ser160 in the Bateman domain that desensitizes the enzyme to allosteric inhibition by GDP/GTP. When exposed to bright light, living mice increase the rate of GTP and ATP synthesis in their retinas; concomitant with IMPDH1 aggregate formation at the outer segment layer. Inhibiting IMPDH activity in living mice delays rod mass recovery. We unveil a novel mechanism of regulation of IMPDH1 in vivo, important for understanding GTP homeostasis in the retina and the pathogenesis of adRP10 IMPDH1 mutations.
Collapse
Affiliation(s)
- Anna Plana-Bonamaisó
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain.,Institut de Neurociències, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - Santiago López-Begines
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics. University of Salamanca, Salamanca, Spain
| | - Alexandra Junza
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.,Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ariadna Soler-Tapia
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Jose Luis Rosa
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - Esther Miralles
- Centres Cientifics i Tecnològics (CCiTUB), University of Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Isidre Casals
- Centres Cientifics i Tecnològics (CCiTUB), University of Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Oscar Yanes
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.,Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Pedro de la Villa
- Physiology Unit, Dept of Systems Biology, School of Medicine, University of Alcalá, Madrid, Spain.,Visual Neurophysiology Group-IRYCIS, Madrid, Spain
| | - Ruben M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics. University of Salamanca, Salamanca, Spain
| | - Ana Méndez
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain.,Institut de Neurociències, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Osaka N, Kanesaki Y, Watanabe M, Watanabe S, Chibazakura T, Takada H, Yoshikawa H, Asai K. Novel (p)ppGpp 0 suppressor mutations reveal an unexpected link between methionine catabolism and GTP synthesis in Bacillus subtilis. Mol Microbiol 2020; 113:1155-1169. [PMID: 32052499 DOI: 10.1111/mmi.14484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 11/29/2022]
Abstract
In bacteria, guanosine (penta)tetra-phosphate ([p]ppGpp) is essential for controlling intracellular metabolism that is needed to adapt to environmental changes, such as amino acid starvation. The (p)ppGpp0 strain of Bacillus subtilis, which lacks (p)ppGpp synthetase, is unable to form colonies on minimal medium. Here, we found suppressor mutations in the (p)ppGpp0 strain, in the purine nucleotide biosynthesis genes, prs, purF and rpoB/C, which encode RNA polymerase core enzymes. In comparing our work with prior studies of ppGpp0 suppressors, we discovered that methionine addition masks the suppression on minimal medium, especially of rpoB/C mutations. Furthermore, methionine addition increases intracellular GTP in rpoB suppressor and this effect is decreased by inhibiting GTP biosynthesis, indicating that methionine addition activated GTP biosynthesis and inhibited growth under amino acid starvation conditions in (p)ppGpp0 backgrounds. Furthermore, we propose that the increase in intracellular GTP levels induced by methionine is due to methionine derivatives that increase the activity of the de novo GTP biosynthesis enzyme, GuaB. Our study sheds light on the potential relationship between GTP homeostasis and methionine metabolism, which may be the key to adapting to environmental changes.
Collapse
Affiliation(s)
- Natsuki Osaka
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Megumi Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | | | - Kei Asai
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
30
|
Nass K, Redecke L, Perbandt M, Yefanov O, Klinge M, Koopmann R, Stellato F, Gabdulkhakov A, Schönherr R, Rehders D, Lahey-Rudolph JM, Aquila A, Barty A, Basu S, Doak RB, Duden R, Frank M, Fromme R, Kassemeyer S, Katona G, Kirian R, Liu H, Majoul I, Martin-Garcia JM, Messerschmidt M, Shoeman RL, Weierstall U, Westenhoff S, White TA, Williams GJ, Yoon CH, Zatsepin N, Fromme P, Duszenko M, Chapman HN, Betzel C. In cellulo crystallization of Trypanosoma brucei IMP dehydrogenase enables the identification of genuine co-factors. Nat Commun 2020; 11:620. [PMID: 32001697 PMCID: PMC6992785 DOI: 10.1038/s41467-020-14484-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
Sleeping sickness is a fatal disease caused by the protozoan parasite Trypanosoma brucei (Tb). Inosine-5’-monophosphate dehydrogenase (IMPDH) has been proposed as a potential drug target, since it maintains the balance between guanylate deoxynucleotide and ribonucleotide levels that is pivotal for the parasite. Here we report the structure of TbIMPDH at room temperature utilizing free-electron laser radiation on crystals grown in living insect cells. The 2.80 Å resolution structure reveals the presence of ATP and GMP at the canonical sites of the Bateman domains, the latter in a so far unknown coordination mode. Consistent with previously reported IMPDH complexes harboring guanosine nucleotides at the second canonical site, TbIMPDH forms a compact oligomer structure, supporting a nucleotide-controlled conformational switch that allosterically modulates the catalytic activity. The oligomeric TbIMPDH structure we present here reveals the potential of in cellulo crystallization to identify genuine allosteric co-factors from a natural reservoir of specific compounds. Trypanosoma brucei inosine-5′-monophosphate dehydrogenase (IMPDH) is an enzyme in the guanine nucleotide biosynthesis pathway and of interest as a drug target. Here the authors present the 2.8 Å room temperature structure of TbIMPDH determined by utilizing X-ray free-electron laser radiation and crystals that were grown in insect cells and find that ATP and GMP are bound at the canonical sites of the Bateman domains.
Collapse
Affiliation(s)
- Karol Nass
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,Paul Scherrer Institute (PSI), Forschungstrasse 111, 5232, Villigen, PSI, Switzerland
| | - Lars Redecke
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany.,German Centre for Infection Research, University of Lübeck, 23562, Lübeck, Germany.,Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestr. 85, 22607, Hamburg, Germany
| | - M Perbandt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761, Hamburg, Germany
| | - O Yefanov
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - M Klinge
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany.,BioAgilytix Europe GmbH, Lademannbogen 10, 22339, Hamburg, Germany
| | - R Koopmann
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str.4, 72076, Tübingen, Germany
| | - F Stellato
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,Dipartimento di Fisica, Università di Roma Tor Vergata and INFN, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - A Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Str., Pushchino, Moscow Region, Russia, 142290
| | - R Schönherr
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestr. 85, 22607, Hamburg, Germany
| | - D Rehders
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany.,BODE Chemie GmbH, Melanchthonstraße 27, 22525, Hamburg, Germany
| | - J M Lahey-Rudolph
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - A Aquila
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - A Barty
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - S Basu
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-160, USA.,European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, Grenoble, France
| | - R B Doak
- Department of Physics, Arizona State University, Tempe, AZ, 85411, USA.,Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - R Duden
- Institute of Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - M Frank
- Biology and Biotechnology Division, Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - R Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-160, USA
| | - S Kassemeyer
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - G Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - R Kirian
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-160, USA
| | - H Liu
- Department of Physics, Arizona State University, Tempe, AZ, 85411, USA.,Complex Systems Division, Beijing Computational Science Research Center, 100193, Beijing, China
| | - I Majoul
- Institute of Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - J M Martin-Garcia
- Center for Applied Structural Discovery (CASD), Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ, 85287, USA
| | - M Messerschmidt
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Center for Applied Structural Discovery (CASD), Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ, 85287, USA
| | - R L Shoeman
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - U Weierstall
- Department of Physics, Arizona State University, Tempe, AZ, 85411, USA
| | - S Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - T A White
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - G J Williams
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Brookhaven National Laboratory (BNL), PO Box 5000, Upton, NY, 11973-5000, USA
| | - C H Yoon
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - N Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ, 85411, USA.,ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - P Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-160, USA
| | - M Duszenko
- Institute of Neurophysiology, University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany
| | - H N Chapman
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - C Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany. .,The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
31
|
Johnson MC, Kollman JM. Cryo-EM structures demonstrate human IMPDH2 filament assembly tunes allosteric regulation. eLife 2020; 9:e53243. [PMID: 31999252 PMCID: PMC7018514 DOI: 10.7554/elife.53243] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) mediates the first committed step in guanine nucleotide biosynthesis and plays important roles in cellular proliferation and the immune response. IMPDH reversibly polymerizes in cells and tissues in response to changes in metabolic demand. Self-assembly of metabolic enzymes is increasingly recognized as a general mechanism for regulating activity, typically by stabilizing specific conformations of an enzyme, but the regulatory role of IMPDH filaments has remained unclear. Here, we report a series of human IMPDH2 cryo-EM structures in both active and inactive conformations. The structures define the mechanism of filament assembly, and reveal how filament-dependent allosteric regulation of IMPDH2 makes the enzyme less sensitive to feedback inhibition, explaining why assembly occurs under physiological conditions that require expansion of guanine nucleotide pools. Tuning sensitivity to an allosteric inhibitor distinguishes IMPDH from other metabolic filaments, and highlights the diversity of regulatory outcomes that can emerge from self-assembly.
Collapse
Affiliation(s)
- Matthew C Johnson
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Justin M Kollman
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| |
Collapse
|
32
|
The functional impact of the C/N-terminal extensions of the mouse retinal IMPDH1 isoforms: a kinetic evaluation. Mol Cell Biochem 2019; 465:155-164. [PMID: 31838626 DOI: 10.1007/s11010-019-03675-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Mutations in the retinal inosine monophosphate dehydrogenase1 (IMPDH1) gene is believed to be one cause of retinitis pigmentosa (RP). The main structural difference between the mutation-susceptible retinal isoforms with canonical one resides in the C- and N-terminal extensions. There are limited studies on the structure and function of terminal peptide extensions of the IMPDH1 retinal isoforms. Using recombinant murine IMPDH1 (mH1), we evaluated the kinetics of the retinal isoforms along with inhibition by some of the purine nucleotides. Molecular modeling tools were also applied to study the probable effect(s) of the terminal peptide tails on the function of the retinal isoforms. Molecular dynamic simulations indicated the possible impact of the end-terminal segments on the enzyme function through interactions with the enzyme's finger domain, affecting its critical pseudo barrel structure. The higher experimentally-determined Km and Ki values of the retinal mIMPDH1 (546) and mIMPDH1 (603) relative to that of the canonical isoform, mIMPDH1 (514), might clearly be due to these interactions. Furthermore and despite of the canonical isoform, the retinal isoforms of mH1 exhibited no NAD+ substrate inhibition. The resent data would certainly provide the ground for future evaluation of the physiological significance of these variations.
Collapse
|
33
|
Park CK, Horton NC. Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation. Biophys Rev 2019; 11:927-994. [PMID: 31734826 PMCID: PMC6874960 DOI: 10.1007/s12551-019-00602-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI endonuclease system are also highlighted.
Collapse
Affiliation(s)
- Chad K. Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Nancy C. Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
34
|
Anashkin VA, Aksenova VA, Salminen A, Lahti R, Baykov AA. Cooperativity in catalysis by canonical family II pyrophosphatases. Biochem Biophys Res Commun 2019; 517:266-271. [DOI: 10.1016/j.bbrc.2019.07.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
|
35
|
Hayward D, Kouznetsova VL, Pierson HE, Hasan NM, Guzman ER, Tsigelny IF, Lutsenko S. ANKRD9 is a metabolically-controlled regulator of IMPDH2 abundance and macro-assembly. J Biol Chem 2019; 294:14454-14466. [PMID: 31337707 DOI: 10.1074/jbc.ra119.008231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Members of a large family of Ankyrin Repeat Domain (ANKRD) proteins regulate numerous cellular processes by binding to specific protein targets and modulating their activity, stability, and other properties. The same ANKRD protein may interact with different targets and regulate distinct cellular pathways. The mechanisms responsible for switches in the ANKRDs' behavior are often unknown. We show that cells' metabolic state can markedly alter interactions of an ANKRD protein with its target and the functional outcomes of this interaction. ANKRD9 facilitates degradation of inosine monophosphate dehydrogenase 2 (IMPDH2), the rate-limiting enzyme in GTP biosynthesis. Under basal conditions ANKRD9 is largely segregated from the cytosolic IMPDH2 in vesicle-like structures. Upon nutrient limitation, ANKRD9 loses its vesicular pattern and assembles with IMPDH2 into rodlike filaments, in which IMPDH2 is stable. Inhibition of IMPDH2 activity with ribavirin favors ANKRD9 binding to IMPDH2 rods. The formation of ANKRD9/IMPDH2 rods is reversed by guanosine, which restores ANKRD9 associations with the vesicle-like structures. The conserved Cys109Cys110 motif in ANKRD9 is required for the vesicle-to-rods transition as well as binding and regulation of IMPDH2. Oppositely to overexpression, ANKRD9 knockdown increases IMPDH2 levels and prevents formation of IMPDH2 rods upon nutrient limitation. Taken together, the results suggest that a guanosine-dependent metabolic switch determines the mode of ANKRD9 action toward IMPDH2.
Collapse
Affiliation(s)
- Dawn Hayward
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Valentina L Kouznetsova
- The Moores Cancer Center, University of California San Diego, La Jolla, California 92093.,San Diego Supercomputer Center University of California San Diego, La Jolla, California 92093
| | - Hannah E Pierson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Nesrin M Hasan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Estefany R Guzman
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Igor F Tsigelny
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,San Diego Supercomputer Center University of California San Diego, La Jolla, California 92093.,Department of Neurosciences, University of California San Diego, La Jolla, California 92093
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
36
|
Principles and characteristics of biological assemblies in experimentally determined protein structures. Curr Opin Struct Biol 2019; 55:34-49. [PMID: 30965224 DOI: 10.1016/j.sbi.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/27/2022]
Abstract
More than half of all structures in the PDB are assemblies of two or more proteins, including both homooligomers and heterooligomers. Structural information on these assemblies comes from X-ray crystallography, NMR, and cryo-EM spectroscopy. The correct assembly in an X-ray structure is often ambiguous, and computational methods have been developed to identify the most likely biologically relevant assembly based on physical properties of assemblies and sequence conservation in interfaces. Taking advantage of the large number of structures now available, some of the most recent methods have relied on similarity of interfaces and assemblies across structures of homologous proteins.
Collapse
|
37
|
Sridharan S, Kurzawa N, Werner T, Günthner I, Helm D, Huber W, Bantscheff M, Savitski MM. Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP. Nat Commun 2019; 10:1155. [PMID: 30858367 PMCID: PMC6411743 DOI: 10.1038/s41467-019-09107-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/22/2019] [Indexed: 02/03/2023] Open
Abstract
Adenosine triphosphate (ATP) plays fundamental roles in cellular biochemistry and was recently discovered to function as a biological hydrotrope. Here, we use mass spectrometry to interrogate ATP-mediated regulation of protein thermal stability and protein solubility on a proteome-wide scale. Thermal proteome profiling reveals high affinity interactions of ATP as a substrate and as an allosteric modulator that has widespread influence on protein complexes and their stability. Further, we develop a strategy for proteome-wide solubility profiling, and discover ATP-dependent solubilization of at least 25% of the insoluble proteome. ATP increases the solubility of positively charged, intrinsically disordered proteins, and their susceptibility for solubilization varies depending on their localization to different membrane-less organelles. Moreover, a few proteins, exhibit an ATP-dependent decrease in solubility, likely reflecting polymer formation. Our data provides a proteome-wide, quantitative insight into how ATP influences protein structure and solubility across the spectrum of physiologically relevant concentrations. ATP can function as a biological hydrotrope, but its global effects on protein solubility have not yet been characterized. Here, the authors quantify the effect of ATP on the thermal stability and solubility of the cellular proteome, providing insights into protein solubility regulation by ATP.
Collapse
Affiliation(s)
- Sindhuja Sridharan
- Genome Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Cellzome, A GSK company, 69117, Heidelberg, Germany
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.,Candidate for joint PhD degree from EMBL and Heidelberg University, Faculty of Biosciences, 69120, Heidelberg, Germany
| | - Thilo Werner
- Cellzome, A GSK company, 69117, Heidelberg, Germany
| | - Ina Günthner
- Cellzome, A GSK company, 69117, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | | | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
| |
Collapse
|
38
|
First-in-class allosteric inhibitors of bacterial IMPDHs. Eur J Med Chem 2019; 167:124-132. [PMID: 30769241 DOI: 10.1016/j.ejmech.2019.01.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/10/2018] [Accepted: 01/27/2019] [Indexed: 01/18/2023]
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) is an essential enzyme in many bacterial pathogens and is considered as a potential drug target for the development of new antibacterial agents. Our recent work has revealed the crucial role of one of the two structural domains (i.e. Bateman domain) in the regulation of the quaternary structure and enzymatic activity of bacterial IMPDHs. Thus, we have screened chemical libraries to search for compounds targeting the Bateman domain and identified first in-class allosteric inhibitors of a bacterial IMPDH. These inhibitors were shown to counteract the activation by the natural positive effector, MgATP, and to block the enzyme in its apo conformation (low affinity for IMP). Our structural studies demonstrate the versatility of the Bateman domain to accommodate totally unrelated chemical scaffolds and pave the way for the development of allosteric inhibitors, an avenue little explored until now.
Collapse
|
39
|
Fernández-Justel D, Núñez R, Martín-Benito J, Jimeno D, González-López A, Soriano EM, Revuelta JL, Buey RM. A Nucleotide-Dependent Conformational Switch Controls the Polymerization of Human IMP Dehydrogenases to Modulate their Catalytic Activity. J Mol Biol 2019; 431:956-969. [PMID: 30664871 DOI: 10.1016/j.jmb.2019.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/29/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in the de novo GTP biosynthetic pathway and plays essential roles in cell proliferation. As a clinical target, IMPDH has been studied for decades, but it has only been within the last years that we are starting to understand the complexity of the mechanisms of its physiological regulation. Here, we report structural and functional insights into how adenine and guanine nucleotides control a conformational switch that modulates the assembly of the two human IMPDH enzymes into cytoophidia and allosterically regulates their catalytic activity. In vitro reconstituted micron-length cytoophidia-like structures show catalytic activity comparable to unassembled IMPDH but, in turn, are more resistant to GTP/GDP allosteric inhibition. Therefore, IMPDH cytoophidia formation facilitates the accumulation of high levels of guanine nucleotides when the cell requires it. Finally, we demonstrate that most of the IMPDH retinopathy-associated mutations abrogate GTP/GDP-induced allosteric inhibition and alter cytoophidia dynamics.
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Rafael Núñez
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jaime Martín-Benito
- Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, 28039 Madrid, Spain
| | - David Jimeno
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Adrián González-López
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Eva María Soriano
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José Luis Revuelta
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - Rubén M Buey
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
40
|
Calise SJ, Abboud G, Kasahara H, Morel L, Chan EKL. Immune Response-Dependent Assembly of IMP Dehydrogenase Filaments. Front Immunol 2018; 9:2789. [PMID: 30555474 PMCID: PMC6283036 DOI: 10.3389/fimmu.2018.02789] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) catalyzes the conversion of IMP to xanthosine monophosphate, the rate-limiting step in de novo guanosine monophosphate (GMP) synthesis. In cultured cells, IMPDH polymerizes into micron-scale filamentous structures when GMP synthesis is inhibited by depletion of purine precursors or by various drugs, including mycophenolic acid, ribavirin, and methotrexate. IMPDH filaments also spontaneously form in undifferentiated mouse embryonic stem cells and induced pluripotent stem cells, hinting they might function in various highly proliferative cell types. Therefore, we investigated IMPDH filament formation in human and murine T cells, which rely heavily on de novo guanine nucleotide synthesis to rapidly proliferate in response to antigenic challenge. We discovered extensive in vivo IMPDH filament formation in mature T cells, B cells, and other proliferating splenocytes of normal, adult B6 mice. Both cortical and medullary thymocytes in young and old mice also showed considerable assembly of IMPDH filaments. We then stimulated primary human peripheral blood mononuclear cells ex vivo with T cell mitogens phytohemagglutinin (PHA), concanavalin A (ConA), or antibodies to CD3 and CD28 for 72 h. We detected IMPDH filaments in 40–60% of T cells after activation compared to 0–10% of unstimulated T cells. Staining of activated T cells for the proliferation marker Ki-67 also showed an association between IMPDH filament formation and proliferation. Additionally, we transferred ovalbumin-specific CD4+ T cells from B6.OT-II mice into B6.Ly5a recipient mice, challenged these mice with ovalbumin, and harvested spleens 6 days later. In these spleens, we identified abundant IMPDH filaments in transferred T cells by immunofluorescence, indicating that IMPDH also polymerizes during in vivo antigen-specific T cell activation. Overall, our data indicate that IMPDH filament formation is a novel aspect of T cell activation and proliferation, and that filaments might be useful morphological markers for T cell activation. The data also suggest that in vivo IMPDH filament formation could be occurring in a variety of proliferating cell types throughout the body. We propose that T cell activation will be a valuable model for future experiments probing the molecular mechanisms that drive IMPDH polymerization, as well as how IMPDH filament formation affects cell function.
Collapse
Affiliation(s)
- S John Calise
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Georges Abboud
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Duong-Ly KC, Kuo YM, Johnson MC, Cote JM, Kollman JM, Soboloff J, Rall GF, Andrews AJ, Peterson JR. T cell activation triggers reversible inosine-5'-monophosphate dehydrogenase assembly. J Cell Sci 2018; 131:jcs.223289. [PMID: 30154209 DOI: 10.1242/jcs.223289] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
T cell-mediated adaptive immunity requires naïve, unstimulated T cells to transition from a quiescent metabolic state into a highly proliferative state upon T cell receptor engagement. This complex process depends on transcriptional changes mediated by Ca2+-dependent NFAT signaling, mTOR-mediated signaling and increased activity of the guanine nucleotide biosynthetic inosine-5'-monophosphate (IMP) dehydrogenase 1 and 2 enzymes (IMPDH1 and IMPDH2, hereafter IMPDH). Inhibitors of these pathways serve as potent immunosuppressants. Unexpectedly, we discovered that all three pathways converge to promote the assembly of IMPDH protein into micron-scale macromolecular filamentous structures in response to T cell activation. Assembly is post-transcriptionally controlled by mTOR and the Ca2+ influx regulator STIM1. Furthermore, IMPDH assembly and catalytic activity were negatively regulated by guanine nucleotide levels, suggesting a negative feedback loop that limits biosynthesis of guanine nucleotides. Filamentous IMPDH may be more resistant to this inhibition, facilitating accumulation of the higher GTP levels required for T cell proliferation.
Collapse
Affiliation(s)
- Krisna C Duong-Ly
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Yin-Ming Kuo
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Matthew C Johnson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Joy M Cote
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Glenn F Rall
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Andrew J Andrews
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jeffrey R Peterson
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
42
|
Chang CC, Keppeke GD, Sung LY, Liu JL. Interfilament interaction between IMPDH and CTPS cytoophidia. FEBS J 2018; 285:3753-3768. [PMID: 30085408 PMCID: PMC6220823 DOI: 10.1111/febs.14624] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/03/2018] [Accepted: 08/03/2018] [Indexed: 11/30/2022]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) and cytidine triphosphate synthase (CTPS) are two metabolic enzymes that perform rate‐limiting steps in the de novo synthesis of purine and pyrimidine nucleotides, respectively. It has been shown that IMPDH and CTPS can comprise a filamentous macrostructure termed the cytoophidium, which may play a role in regulation of their catalytic activity. Although these two proteins may colocalise in the same cytoophidium, how they associate with one another is still elusive. As reported herein, we established a model HeLa cell line coexpressing OFP‐tagged IMPDH2 and GFP‐tagged CTPS1 and recorded the assembly, disassembly and movement of the cytoophidium in live cells. Moreover, by using super‐resolution confocal imaging, we demonstrate how IMPDH‐ and CTPS‐based filaments are aligned or intertwined in the mixed cytoophidium. Collectively, our findings provide a panorama of cytoophidium dynamics and suggest that IMPDH and CTPS cytoophidia may coordinate by interfilament interaction.
Collapse
Affiliation(s)
- Chia-Chun Chang
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Gerson D Keppeke
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ji-Long Liu
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.,School of Life Science and Technology, ShanghaiTech University, China
| |
Collapse
|
43
|
Keppeke GD, Chang CC, Peng M, Chen LY, Lin WC, Pai LM, Andrade LEC, Sung LY, Liu JL. IMP/GTP balance modulates cytoophidium assembly and IMPDH activity. Cell Div 2018; 13:5. [PMID: 29946345 PMCID: PMC6004095 DOI: 10.1186/s13008-018-0038-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in de novo GTP biosynthesis, plays an important role in cell metabolism and proliferation. It has been demonstrated that IMPDH can aggregate into a macrostructure, termed the cytoophidium, in mammalian cells under a variety of conditions. However, the regulation and function of the cytoophidium are still elusive. Results In this study, we report that spontaneous filamentation of IMPDH is correlated with rapid cell proliferation. Intracellular IMP accumulation promoted cytoophidium assembly, whereas elevated GTP level triggered disassociation of aggregates. By using IMPDH2 CBS domain mutant cell models, which are unable to form the cytoophidium, we have determined that the cytoophidium is of the utmost importance for maintaining the GTP pool and normal cell proliferation in the condition that higher IMPDH activity is required. Conclusions Together, our results suggest a novel mechanism whereby cytoophidium assembly upregulates IMPDH activity and mediates guanine nucleotide homeostasis. Electronic supplementary material The online version of this article (10.1186/s13008-018-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerson Dierley Keppeke
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK
| | - Chia Chun Chang
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK.,2Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Min Peng
- 2Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Li-Yu Chen
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK
| | - Wei-Cheng Lin
- 3Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC
| | - Li-Mei Pai
- 3Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC.,4Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC.,5Department of Biochemistry, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC
| | - Luis Eduardo Coelho Andrade
- 6Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP 04023-062 Brazil
| | - Li-Ying Sung
- 2Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC.,7Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan, ROC
| | - Ji-Long Liu
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK.,8School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| |
Collapse
|
44
|
Chacko S, Boshoff HIM, Singh V, Ferraris DM, Gollapalli DR, Zhang M, Lawson AP, Pepi MJ, Joachimiak A, Rizzi M, Mizrahi V, Cuny GD, Hedstrom L. Expanding Benzoxazole-Based Inosine 5'-Monophosphate Dehydrogenase (IMPDH) Inhibitor Structure-Activity As Potential Antituberculosis Agents. J Med Chem 2018; 61:4739-4756. [PMID: 29746130 DOI: 10.1021/acs.jmedchem.7b01839] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New drugs and molecular targets are urgently needed to address the emergence and spread of drug-resistant tuberculosis. Mycobacterium tuberculosis ( Mtb) inosine 5'-monophosphate dehydrogenase 2 ( MtbIMPDH2) is a promising yet controversial potential target. The inhibition of MtbIMPDH2 blocks the biosynthesis of guanine nucleotides, but high concentrations of guanine can potentially rescue the bacteria. Herein we describe an expansion of the structure-activity relationship (SAR) for the benzoxazole series of MtbIMPDH2 inhibitors and demonstrate that minimum inhibitory concentrations (MIC) of ≤1 μM can be achieved. The antibacterial activity of the most promising compound, 17b (Q151), is derived from the inhibition of MtbIMPDH2 as demonstrated by conditional knockdown and resistant strains. Importantly, guanine does not change the MIC of 17b, alleviating the concern that guanine salvage can protect Mtb in vivo. These findings suggest that MtbIMPDH2 is a vulnerable target for tuberculosis.
Collapse
Affiliation(s)
| | - Helena I M Boshoff
- Tuberculosis Research Section , National Institute of Allergy and Infectious Diseases , Bethesda , Maryland 20892 , United States
| | - Vinayak Singh
- Department of Drug Discovery and Development & Institute of Infectious Disease and Molecular Medicine , H3D Drug Discovery and Development Centre, University of Cape Town , Rondebosch , Cape Town 7701 , South Africa
| | - Davide M Ferraris
- Dipartimento di Scienze del Farmaco , Universitá del Piemonte Orientale , Via Bovio 6 , 28100 Novara , Italy
| | | | | | | | | | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Biology , University of Chicago , Chicago , Illinois 60557 , United States.,Structural Biology Center, Biosciences , Argonne National Laboratory , 9700 S. Cass Avenue, Argonne , Illinois 60439 , United States
| | - Menico Rizzi
- Dipartimento di Scienze del Farmaco , Universitá del Piemonte Orientale , Via Bovio 6 , 28100 Novara , Italy
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology , University of Cape Town , Anzio Road , Observatory 7925 , South Africa
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy , University of Houston , Health Building 2, 4849 Calhoun Road , Houston , Texas 77204 , United States
| | | |
Collapse
|
45
|
Interaction of intramembrane metalloprotease SpoIVFB with substrate Pro-σ K. Proc Natl Acad Sci U S A 2017; 114:E10677-E10686. [PMID: 29180425 DOI: 10.1073/pnas.1711467114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intramembrane proteases (IPs) cleave membrane-associated substrates in nearly all organisms and regulate diverse processes. A better understanding of how these enzymes interact with their substrates is necessary for rational design of IP modulators. We show that interaction of Bacillus subtilis IP SpoIVFB with its substrate Pro-σK depends on particular residues in the interdomain linker of SpoIVFB. The linker plus either the N-terminal membrane domain or the C-terminal cystathione-β-synthase (CBS) domain of SpoIVFB was sufficient for the interaction but not for cleavage of Pro-σK Chemical cross-linking and mass spectrometry of purified, inactive SpoIVFB-Pro-σK complex indicated residues of the two proteins in proximity. A structural model of the complex was built via partial homology and by using constraints based on cross-linking data. In the model, the Proregion of Pro-σK loops into the membrane domain of SpoIVFB, and the rest of Pro-σK interacts extensively with the linker and the CBS domain of SpoIVFB. The extensive interaction is proposed to allow coordination between ATP binding by the CBS domain and Pro-σK cleavage by the membrane domain.
Collapse
|
46
|
Pua KH, Stiles DT, Sowa ME, Verdine GL. IMPDH2 Is an Intracellular Target of the Cyclophilin A and Sanglifehrin A Complex. Cell Rep 2017; 18:432-442. [PMID: 28076787 DOI: 10.1016/j.celrep.2016.12.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/21/2016] [Accepted: 12/10/2016] [Indexed: 11/16/2022] Open
Abstract
Natural products have demonstrated utility in the clinic and can also act as probes to understand complex cellular pathways. Sanglifehrin A (SFA) is a mixed polyketide and non-ribosomal peptide synthase natural product with sub-nano-molar affinity for its receptor cyclophilin A (PPIA). It has been shown to behave in vitro as an immune suppressant. Here, we identify inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) as an intracellular target of the PPIA-SFA binary complex. The formation of this ternary complex does not inhibit the enzymatic activity of IMPDH2. Rather, ternary complex formation modulates cell growth through interaction with the cystathionine-β-synthase (CBS) domain of IMPDH2. We further demonstrate that the SFA complex is highly isoform selective for IMPDH2 (versus IMPDH1). This work reveals a role for the CBS domains of IMPDH2 in cellular proliferation, suggesting a more complex role than previously suspected for IMPDH2 in T cell activation and proliferation.
Collapse
Affiliation(s)
- Khian Hong Pua
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Warp Drive Bio, Cambridge, MA 02139, USA
| | - Dylan T Stiles
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Warp Drive Bio, Cambridge, MA 02139, USA
| | - Mathew E Sowa
- Warp Drive Bio, Cambridge, MA 02139, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory L Verdine
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Warp Drive Bio, Cambridge, MA 02139, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
47
|
Anashkin VA, Baykov AA, Lahti R. Enzymes Regulated via Cystathionine β-Synthase Domains. BIOCHEMISTRY (MOSCOW) 2017; 82:1079-1087. [PMID: 29037129 DOI: 10.1134/s0006297917100017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cystathionine β-synthase (CBS) domains discovered 20 years ago can bind different adenosine derivatives (AMP, ADP, ATP, S-adenosylmethionine, NAD, diadenosine polyphosphates) and thus regulate the activities of numerous proteins. Mutations in CBS domains of enzymes and membrane transporters are associated with several hereditary diseases. The regulatory unit is a quartet of CBS domains that belong to one or two polypeptides and usually form a conserved disk-like structure. CBS domains function as "internal inhibitors" in enzymes, and their bound ligands either amplify or attenuate the inhibitory effect. Recent studies have opened a way to understanding the structural basis of enzyme regulation via CBS domains and widened the list of their bound ligands.
Collapse
Affiliation(s)
- V A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | |
Collapse
|
48
|
Benzoxazoles, Phthalazinones, and Arylurea-Based Compounds with IMP Dehydrogenase-Independent Antibacterial Activity against Francisella tularensis. Antimicrob Agents Chemother 2017; 61:AAC.00939-17. [PMID: 28739786 DOI: 10.1128/aac.00939-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
Francisella tularensis is the causative agent of tularemia and a potential biowarfare agent. The virulence of F. tularensis is decreased by deletion of guaB, the gene encoding IMP dehydrogenase (IMPDH), suggesting that this enzyme is a target for antibacterial design. Here we report that F. tularensis growth is blocked by inhibitors of bacterial IMPDHs. Seventeen compounds from two different frameworks, designated the D and Q series, display antibacterial activities with MICs of <1 μM. These compounds are also active against intracellular infections. Surprisingly, antibacterial activity does not correlate with IMPDH inhibition. In addition, the presence of guanine does not affect the antibacterial activity of most compounds, nor does the deletion of guaB These observations suggest that antibacterial activity derives from inhibition of another target(s). Moreover, D compounds display antibacterial activity only against F. tularensis, suggesting the presence of a unique target or uptake mechanism. A ΔguaB mutant resistant to compound D73 contained a missense mutation (Gly45Cys) in nuoB, which encodes a subunit of bacterial complex I. Overexpression of the nuoB mutant conferred resistance to D73 in both wild-type and ΔguaB strains. This strain was not resistant to Q compounds, suggesting that a different off-target mechanism operates for these compounds. Several Q compounds are also effective against Mycobacterium tuberculosis, in which a second target has also been implicated, in addition to IMPDH. The fortuitous presence of multiple targets with overlapping structure-activity relationships presents an intriguing opportunity for the development of robust antibiotics that may avoid the emergence of resistance.
Collapse
|
49
|
Anthony SA, Burrell AL, Johnson MC, Duong-Ly KC, Kuo YM, Simonet JC, Michener P, Andrews A, Kollman JM, Peterson JR. Reconstituted IMPDH polymers accommodate both catalytically active and inactive conformations. Mol Biol Cell 2017; 28:mbc.E17-04-0263. [PMID: 28794265 PMCID: PMC5620369 DOI: 10.1091/mbc.e17-04-0263] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 01/01/2023] Open
Abstract
Several metabolic enzymes undergo reversible polymerization into macromolecular assemblies. The function of these assemblies is often unclear but in some cases they regulate enzyme activity and metabolic homeostasis. The guanine nucleotide biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH) forms octamers that polymerize into helical chains. In mammalian cells, IMPDH filaments can associate into micron-length assemblies. Polymerization and enzyme activity are regulated in part by binding of purine nucleotides to an allosteric regulatory domain. ATP promotes octamer polymerization, whereas GTP promotes a compact, inactive conformation whose ability to polymerize is unknown. Also unclear is whether polymerization directly alters IMPDH catalytic activity. To address this, we identified point mutants of human IMPDH2 that either prevent or promote polymerization. Unexpectedly, we found that polymerized and non-assembled forms of recombinant IMPDH have comparable catalytic activity, substrate affinity, and GTP sensitivity and validated this finding in cells. Electron microscopy revealed that substrates and allosteric nucleotides shift the equilibrium between active and inactive conformations in both the octamer and the filament. Unlike other metabolic filaments, which selectively stabilize active or inactive conformations, recombinant IMPDH filaments accommodate multiple states. These conformational states are finely tuned by substrate availability and purine balance, while polymerization may allow cooperative transitions between states.
Collapse
Affiliation(s)
- Sajitha A Anthony
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195
| | - Matthew C Johnson
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195
| | - Krisna C Duong-Ly
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Yin-Ming Kuo
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Jacqueline C Simonet
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Peter Michener
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102
| | - Andrew Andrews
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195
| | - Jeffrey R Peterson
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
50
|
Despotović D, Brandis A, Savidor A, Levin Y, Fumagalli L, Tawfik DS. Diadenosine tetraphosphate (Ap4A) - an E. coli alarmone or a damage metabolite? FEBS J 2017; 284:2194-2215. [PMID: 28516732 DOI: 10.1111/febs.14113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022]
Abstract
Under stress, metabolism is changing: specific up- or down-regulation of proteins and metabolites occurs as well as side effects. Distinguishing specific stress-signaling metabolites (alarmones) from side products (damage metabolites) is not trivial. One example is diadenosine tetraphosphate (Ap4A) - a side product of aminoacyl-tRNA synthetases found in all domains of life. The earliest observations suggested that Ap4A serves as an alarmone for heat stress in Escherichia coli. However, despite 50 years of research, the signaling mechanisms associated with Ap4A remain unknown. We defined a set of criteria for distinguishing alarmones from damage metabolites to systematically classify Ap4A. In a nutshell, no indications for a signaling cascade that is triggered by Ap4A were found; rather, we found that Ap4A is efficiently removed in a constitutive, nonregulated manner. Several fold perturbations in Ap4A concentrations have no effect, yet accumulation at very high levels is toxic due to disturbance of zinc homeostasis, and also because Ap4A's structural overlap with ATP can result in spurious binding and inactivation of ATP-binding proteins. Overall, Ap4A met all criteria for a damage metabolite. While we do not exclude any role in signaling, our results indicate that the damage metabolite option should be considered as the null hypothesis when examining Ap4A and other metabolites whose levels change upon stress.
Collapse
Affiliation(s)
- Dragana Despotović
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|