1
|
Tessmer MH, Canarie ER, Stoll S. Comparative evaluation of spin-label modeling methods for protein structural studies. Biophys J 2022; 121:3508-3519. [PMID: 35957530 PMCID: PMC9515001 DOI: 10.1016/j.bpj.2022.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Site-directed spin-labeling electron paramagnetic resonance spectroscopy is a powerful technique for the investigation of protein structure and dynamics. Accurate spin-label modeling methods are essential to make full quantitative use of site-directed spin-labeling electron paramagnetic resonance data for protein modeling and model validation. Using a set of double electron-electron resonance data from seven different site pairs on maltodextrin/maltose-binding protein under two different conditions using five different spin labels, we compare the ability of two widely used spin-label modeling methods, based on accessible volume sampling and rotamer libraries, to predict experimental distance distributions. We present a spin-label modeling approach inspired by canonical side-chain modeling methods and compare modeling accuracy with the established methods.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington
| | | | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington.
| |
Collapse
|
2
|
Del Alamo D, Meiler J, Mchaourab HS. Principles of Alternating Access in LeuT-fold Transporters: Commonalities and Divergences. J Mol Biol 2022; 434:167746. [PMID: 35843285 DOI: 10.1016/j.jmb.2022.167746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/15/2022]
Abstract
Found in all domains of life, transporters belonging to the LeuT-fold class mediate the import and exchange of hydrophilic and charged compounds such as amino acids, metals, and sugar molecules. Nearly two decades of investigations on the eponymous bacterial transporter LeuT have yielded a library of high-resolution snapshots of its conformational cycle linked by solution-state experimental data obtained from multiple techniques. In parallel, its topology has been observed in symporters and antiporters characterized by a spectrum of substrate specificities and coupled to gradients of distinct ions. Here we review and compare mechanistic models of transport for LeuT, its well-studied homologs, as well as functionally distant members of the fold, emphasizing the commonalities and divergences in alternating access and the corresponding energy landscapes. Our integrated summary illustrates how fold conservation, a hallmark of the LeuT fold, coincides with divergent choreographies of alternating access that nevertheless capitalize on recurrent structural motifs. In addition, it highlights the knowledge gap that hinders the leveraging of the current body of research into detailed mechanisms of transport for this important class of membrane proteins.
Collapse
Affiliation(s)
- Diego Del Alamo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA. https://twitter.com/DdelAlamo
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Leipzig University, Leipzig, DE, USA. https://twitter.com/MeilerLab
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Prokaryotic Solute/Sodium Symporters: Versatile Functions and Mechanisms of a Transporter Family. Int J Mol Sci 2021; 22:ijms22041880. [PMID: 33668649 PMCID: PMC7918813 DOI: 10.3390/ijms22041880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The solute/sodium symporter family (SSS family; TC 2.A.21; SLC5) consists of integral membrane proteins that use an existing sodium gradient to drive the uphill transport of various solutes, such as sugars, amino acids, vitamins, or ions across the membrane. This large family has representatives in all three kingdoms of life. The human sodium/iodide symporter (NIS) and the sodium/glucose transporter (SGLT1) are involved in diseases such as iodide transport defect or glucose-galactose malabsorption. Moreover, the bacterial sodium/proline symporter PutP and the sodium/sialic acid symporter SiaT play important roles in bacteria–host interactions. This review focuses on the physiological significance and structural and functional features of prokaryotic members of the SSS family. Special emphasis will be given to the roles and properties of proteins containing an SSS family domain fused to domains typically found in bacterial sensor kinases.
Collapse
|
4
|
van‘t Klooster JS, Bianchi F, Doorn RB, Lorenzon M, Lusseveld JH, Punter CM, Poolman B. Extracellular loops matter - subcellular location and function of the lysine transporter Lyp1 from Saccharomyces cerevisiae. FEBS J 2020; 287:4401-4414. [PMID: 32096906 PMCID: PMC7687128 DOI: 10.1111/febs.15262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 12/01/2022]
Abstract
Yeast amino acid transporters of the APC superfamily are responsible for the proton motive force-driven uptake of amino acids into the cell, which for most secondary transporters is a reversible process. The l-lysine proton symporter Lyp1 of Saccharomyces cerevisiae is special in that the Michaelis constant from out-to-in transport ( K m out → in ) is much lower than K m in → out , which allows accumulation of l-lysine to submolar concentration. It has been proposed that high intracellular lysine is part of the antioxidant mechanism of the cell. The molecular basis for the unique kinetic properties of Lyp1 is unknown. We compared the sequence of Lyp1 with APC para- and orthologues and find structural features that set Lyp1 apart, including differences in extracellular loop regions. We screened the extracellular loops by alanine mutagenesis and determined Lyp1 localization and activity and find positions that affect either the localization or activity of Lyp1. Half of the affected mutants are located in the extension of extracellular loop 3 or in a predicted α-helix in extracellular loop 4. Our data indicate that extracellular loops not only connect the transmembrane helices but also serve functionally important roles.
Collapse
Affiliation(s)
- Joury S. van‘t Klooster
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| | - Frans Bianchi
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| | - Ruben B. Doorn
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| | - Mirco Lorenzon
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| | - Jarnick H. Lusseveld
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| | - Christiaan M. Punter
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| | - Bert Poolman
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenThe Netherlands
| |
Collapse
|
5
|
Zhekova HR, Sakuma T, Johnson R, Concilio SC, Lech PJ, Zdravkovic I, Damergi M, Suksanpaisan L, Peng KW, Russell SJ, Noskov S. Mapping of Ion and Substrate Binding Sites in Human Sodium Iodide Symporter (hNIS). J Chem Inf Model 2020; 60:1652-1665. [PMID: 32134653 DOI: 10.1021/acs.jcim.9b01114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human sodium iodide symporter (hNIS) is a theranostic reporter gene which concentrates several clinically approved SPECT and PET radiotracers and plays an essential role for the synthesis of thyroid hormones as an iodide transporter in the thyroid gland. Development of hNIS mutants which could enhance translocation of the desired imaging ions is currently underway. Unfortunately, it is hindered by lack of understanding of the 3D organization of hNIS and its relation to anion transport. There are no known crystal structures of hNIS in any of its conformational states. Homology modeling can be very effective in such situations; however, the low sequence identity between hNIS and relevant secondary transporters with available experimental structures makes the choice of a template and the generation of 3D models nontrivial. Here, we report a combined application of homology modeling and molecular dynamics refining of the hNIS structure in its semioccluded state. The modeling was based on templates from the LeuT-fold protein family and was done with emphasis on the refinement of the substrate-ion binding pocket. The consensus model developed in this work is compared to available biophysical and biochemical experimental data for a number of different LeuT-fold proteins. Some functionally important residues contributing to the formation of putative binding sites and permeation pathways for the cotransported Na+ ions and I- substrate were identified. The model predictions were experimentally tested by generation of mutant versions of hNIS and measurement of relative (to WT hNIS) 125I- uptake of 35 hNIS variants.
Collapse
Affiliation(s)
- Hristina R Zhekova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Toshie Sakuma
- Imanis Life Sciences, Rochester, Minnesota 55901, United States.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Ryan Johnson
- Imanis Life Sciences, Rochester, Minnesota 55901, United States
| | - Susanna C Concilio
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Patrycja J Lech
- Imanis Life Sciences, Rochester, Minnesota 55901, United States
| | - Igor Zdravkovic
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mirna Damergi
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Kah-Whye Peng
- Imanis Life Sciences, Rochester, Minnesota 55901, United States.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Stephen J Russell
- Imanis Life Sciences, Rochester, Minnesota 55901, United States.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Sergei Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
The contribution of modern EPR to structural biology. Emerg Top Life Sci 2018; 2:9-18. [PMID: 33525779 PMCID: PMC7288997 DOI: 10.1042/etls20170143] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 02/08/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy combined with site-directed spin labelling is applicable to biomolecules and their complexes irrespective of system size and in a broad range of environments. Neither short-range nor long-range order is required to obtain structural restraints on accessibility of sites to water or oxygen, on secondary structure, and on distances between sites. Many of the experiments characterize a static ensemble obtained by shock-freezing. Compared with characterizing the dynamic ensemble at ambient temperature, analysis is simplified and information loss due to overlapping timescales of measurement and system dynamics is avoided. The necessity for labelling leads to sparse restraint sets that require integration with data from other methodologies for building models. The double electron–electron resonance experiment provides distance distributions in the nanometre range that carry information not only on the mean conformation but also on the width of the native ensemble. The distribution widths are often inconsistent with Anfinsen's concept that a sequence encodes a single native conformation defined at atomic resolution under physiological conditions.
Collapse
|
7
|
Jeschke G. MMM: A toolbox for integrative structure modeling. Protein Sci 2017; 27:76-85. [PMID: 28799219 DOI: 10.1002/pro.3269] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 01/17/2023]
Abstract
Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples.
Collapse
Affiliation(s)
- Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, CH-8093, Switzerland
| |
Collapse
|
8
|
The Synergetic Effects of Combining Structural Biology and EPR Spectroscopy on Membrane Proteins. CRYSTALS 2017. [DOI: 10.3390/cryst7040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein structures as provided by structural biology such as X-ray crystallography, cryo-electron microscopy and NMR spectroscopy are key elements to understand the function of a protein on the molecular level. Nonetheless, they might be error-prone due to crystallization artifacts or, in particular in case of membrane-imbedded proteins, a mostly artificial environment. In this review, we will introduce different EPR spectroscopy methods as powerful tools to complement and validate structural data gaining insights in the dynamics of proteins and protein complexes such that functional cycles can be derived. We will highlight the use of EPR spectroscopy on membrane-embedded proteins and protein complexes ranging from receptors to secondary active transporters as structural information is still limited in this field and the lipid environment is a particular challenge.
Collapse
|
9
|
Bracher S, Schmidt CC, Dittmer SI, Jung H. Core Transmembrane Domain 6 Plays a Pivotal Role in the Transport Cycle of the Sodium/Proline Symporter PutP. J Biol Chem 2016; 291:26208-26215. [PMID: 27793991 DOI: 10.1074/jbc.m116.753103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Indexed: 12/21/2022] Open
Abstract
Crystal structures of transporters with a LeuT-type structural fold assign core transmembrane domain 6 (TM6') a central role in substrate binding and translocation. Here, the function of TM6' in the sodium/proline symporter PutP, a member of the solute/sodium symporter family, was investigated. A complete scan of TM6' identified eight amino acids as particularly important for PutP function. Of these residues, Tyr-248, His-253, and Arg-257 impact sodium binding, whereas Arg-257 and Ala-260 may participate in interactions leading to closure of the inner gate. Furthermore, the previous suggestion of an involvement of Trp-244, Tyr-248, and Pro-252 in proline binding is further supported. In addition, substitution of Gly-245, Gly-247, and Gly-250 affects the amount of PutP in the membrane. A Cys accessibility analysis suggests an involvement of the inner half of TM6' in the formation of a hydrophilic pathway that is open to the inside in the absence of ligands and closed in the presence of sodium and proline. In conclusion, the results demonstrate that TM6' plays a central role in substrate binding and release on the inner side of the membrane also in PutP and extend the knowledge on functionally relevant amino acids in transporters with a LeuT-type structural fold.
Collapse
Affiliation(s)
- Susanne Bracher
- From the Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
| | - Claudia C Schmidt
- From the Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
| | - Sophie I Dittmer
- From the Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
| | - Heinrich Jung
- From the Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
| |
Collapse
|
10
|
Joseph B, Tormyshev VM, Rogozhnikova OY, Akhmetzyanov D, Bagryanskaya EG, Prisner TF. Selective High-Resolution Detection of Membrane Protein-Ligand Interaction in Native Membranes Using Trityl-Nitroxide PELDOR. Angew Chem Int Ed Engl 2016; 55:11538-42. [DOI: 10.1002/anie.201606335] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Benesh Joseph
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Victor M. Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
- Novosibirsk State University; Novosibirsk 630090 Russia
| | - Olga Yu. Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Dmitry Akhmetzyanov
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Thomas F. Prisner
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
11
|
Joseph B, Tormyshev VM, Rogozhnikova OY, Akhmetzyanov D, Bagryanskaya EG, Prisner TF. Selective High-Resolution Detection of Membrane Protein-Ligand Interaction in Native Membranes Using Trityl-Nitroxide PELDOR. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benesh Joseph
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Victor M. Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
- Novosibirsk State University; Novosibirsk 630090 Russia
| | - Olga Yu. Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Dmitry Akhmetzyanov
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Thomas F. Prisner
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
12
|
Membrane transporters studied by EPR spectroscopy: structure determination and elucidation of functional dynamics. Biochem Soc Trans 2016; 44:905-15. [DOI: 10.1042/bst20160024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/19/2022]
Abstract
During their mechanistic cycles membrane transporters often undergo extensive conformational changes, sampling a range of orientations, in order to complete their function. Such membrane transporters present somewhat of a challenge to conventional structural studies; indeed, crystallization of membrane-associated proteins sometimes require conditions that vary vastly from their native environments. Moreover, this technique currently only allows for visualization of single selected conformations during any one experiment. EPR spectroscopy is a magnetic resonance technique that offers a unique opportunity to study structural, environmental and dynamic properties of such proteins in their native membrane environments, as well as readily sampling their substrate-binding-induced dynamic conformational changes especially through complementary computational analyses. Here we present a review of recent studies that utilize a variety of EPR techniques in order to investigate both the structure and dynamics of a range of membrane transporters and associated proteins, focusing on both primary (ABC-type transporters) and secondary active transporters which were key interest areas of the late Professor Stephen Baldwin to whom this review is dedicated.
Collapse
|
13
|
Bracher S, Guérin K, Polyhach Y, Jeschke G, Dittmer S, Frey S, Böhm M, Jung H. Glu-311 in External Loop 4 of the Sodium/Proline Transporter PutP Is Crucial for External Gate Closure. J Biol Chem 2016; 291:4998-5008. [PMID: 26728461 DOI: 10.1074/jbc.m115.675306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 12/17/2022] Open
Abstract
The available structural information on LeuT and structurally related transporters suggests that external loop 4 (eL4) and the outer end of transmembrane domain (TM) 10' participate in the reversible occlusion of the outer pathway to the solute binding sites. Here, the functional significance of eL4 and the outer region of TM10' are explored using the sodium/proline symporter PutP as a model. Glu-311 at the tip of eL4, and various amino acids around the outer end of TM10' are identified as particularly crucial for function. Substitutions at these sites inhibit the transport cycle, and affect in part ligand binding. In addition, changes at selected sites induce a global structural alteration in the direction of an outward-open conformation. It is suggested that interactions between the tip of eL4 and the peptide backbone at the end of TM10' participate in coordinating conformational alterations underlying the alternating access mechanism of transport. Together with the structural information on LeuT-like transporters, the results further specify the idea that common design and functional principles are maintained across different transport families.
Collapse
Affiliation(s)
- Susanne Bracher
- From the Department of Biology 1, Division of Microbiology, Ludwig Maximilians University Munich, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany and
| | - Kamila Guérin
- the ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Yevhen Polyhach
- the ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Gunnar Jeschke
- the ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Sophie Dittmer
- From the Department of Biology 1, Division of Microbiology, Ludwig Maximilians University Munich, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany and
| | - Sabine Frey
- From the Department of Biology 1, Division of Microbiology, Ludwig Maximilians University Munich, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany and
| | - Maret Böhm
- From the Department of Biology 1, Division of Microbiology, Ludwig Maximilians University Munich, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany and
| | - Heinrich Jung
- From the Department of Biology 1, Division of Microbiology, Ludwig Maximilians University Munich, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany and
| |
Collapse
|
14
|
Khelashvili G, Stanley N, Sahai MA, Medina J, LeVine MV, Shi L, De Fabritiis G, Weinstein H. Spontaneous inward opening of the dopamine transporter is triggered by PIP2-regulated dynamics of the N-terminus. ACS Chem Neurosci 2015; 6:1825-37. [PMID: 26255829 PMCID: PMC4653762 DOI: 10.1021/acschemneuro.5b00179] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
We
present the dynamic mechanism of concerted motions in a full-length
molecular model of the human dopamine transporter (hDAT), a member
of the neurotransmitter/sodium symporter (NSS) family, involved in
state-to-state transitions underlying function. The findings result
from an analysis of unbiased atomistic molecular dynamics simulation
trajectories (totaling >14 μs) of the hDAT molecule immersed
in lipid membrane environments with or without phosphatidylinositol
4,5-biphosphate (PIP2) lipids. The N-terminal region of
hDAT (N-term) is shown to have an essential mechanistic role in correlated
rearrangements of specific structural motifs relevant to state-to-state
transitions in the hDAT. The mechanism involves PIP2-mediated
electrostatic interactions between the N-term and the intracellular
loops of the transporter molecule. Quantitative analyses of collective
motions in the trajectories reveal that these interactions correlate
with the inward-opening dynamics of hDAT and are allosterically coupled
to the known functional sites of the transporter. The observed large-scale
motions are enabled by specific reconfiguration of the network of
ionic interactions at the intracellular end of the protein. The isomerization
to the inward-facing state in hDAT is accompanied by concomitant movements
in the extracellular vestibule and results in the release of an Na+ ion from the Na2 site and destabilization of the substrate
dopamine in the primary substrate binding S1 site. The dynamic mechanism
emerging from the findings highlights the involvement of the PIP2-regulated interactions between the N-term and the intracellular
loop 4 in the functionally relevant conformational transitions that
are also similar to those found to underlie state-to-state transitions
in the leucine transporter (LeuT), a prototypical bacterial homologue
of the NSS.
Collapse
Affiliation(s)
- George Khelashvili
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
| | - Nathaniel Stanley
- Computational
Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona
Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Michelle A. Sahai
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
| | - Jaime Medina
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
| | - Michael V. LeVine
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
| | - Lei Shi
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
- HRH
Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute of Computational
Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| | - Gianni De Fabritiis
- Computational
Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona
Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Harel Weinstein
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
- HRH
Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute of Computational
Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| |
Collapse
|
15
|
Fehr N, Dietz C, Polyhach Y, von Hagens T, Jeschke G, Paulsen H. Modeling of the N-terminal Section and the Lumenal Loop of Trimeric Light Harvesting Complex II (LHCII) by Using EPR. J Biol Chem 2015; 290:26007-20. [PMID: 26316535 PMCID: PMC4646254 DOI: 10.1074/jbc.m115.669804] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/26/2015] [Indexed: 12/31/2022] Open
Abstract
The major light harvesting complex II (LHCII) of green plants plays a key role in the absorption of sunlight, the regulation of photosynthesis, and in preventing photodamage by excess light. The latter two functions are thought to involve the lumenal loop and the N-terminal domain. Their structure and mobility in an aqueous environment are only partially known. Electron paramagnetic resonance (EPR) has been used to measure the structure of these hydrophilic protein domains in detergent-solubilized LHCII. A new technique is introduced to prepare LHCII trimers in which only one monomer is spin-labeled. These heterogeneous trimers allow to measure intra-molecular distances within one LHCII monomer in the context of a trimer by using double electron-electron resonance (DEER). These data together with data from electron spin echo envelope modulation (ESEEM) allowed to model the N-terminal protein section, which has not been resolved in current crystal structures, and the lumenal loop domain. The N-terminal domain covers only a restricted area above the superhelix in LHCII, which is consistent with the "Velcro" hypothesis to explain thylakoid grana stacking (Standfuss, J., van Terwisscha Scheltinga, A. C., Lamborghini, M., and Kühlbrandt, W. (2005) EMBO J. 24, 919-928). The conformation of the lumenal loop domain is surprisingly different between LHCII monomers and trimers but not between complexes with and without neoxanthin bound.
Collapse
Affiliation(s)
- Niklas Fehr
- From the Department of General Botany, Johannes Gutenberg-University, 55128 Mainz, Germany and
| | - Carsten Dietz
- From the Department of General Botany, Johannes Gutenberg-University, 55128 Mainz, Germany and
| | - Yevhen Polyhach
- the Department of Physical Chemistry, ETH Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Tona von Hagens
- the Department of Physical Chemistry, ETH Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Gunnar Jeschke
- the Department of Physical Chemistry, ETH Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Harald Paulsen
- From the Department of General Botany, Johannes Gutenberg-University, 55128 Mainz, Germany and
| |
Collapse
|
16
|
Rannversson H, Wilson P, Kristensen KB, Sinning S, Kristensen AS, Strømgaard K, Andersen J. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation. J Biol Chem 2015; 290:14582-94. [PMID: 25903124 DOI: 10.1074/jbc.m114.629071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Indexed: 12/20/2022] Open
Abstract
The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu(406) is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT.
Collapse
Affiliation(s)
- Hafsteinn Rannversson
- From the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen and
| | - Pamela Wilson
- From the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen and
| | - Kristina Birch Kristensen
- the Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark
| | - Steffen Sinning
- the Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark
| | - Anders Skov Kristensen
- From the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen and
| | - Kristian Strømgaard
- From the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen and
| | - Jacob Andersen
- From the Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen and
| |
Collapse
|
17
|
Klare JP, Steinhoff HJ. Spin Labeling Studies of Transmembrane Signaling and Transport. Methods Enzymol 2015; 564:315-47. [DOI: 10.1016/bs.mie.2015.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Quick M, Shi L. The sodium/multivitamin transporter: a multipotent system with therapeutic implications. VITAMINS AND HORMONES 2015; 98:63-100. [PMID: 25817866 PMCID: PMC5530880 DOI: 10.1016/bs.vh.2014.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The Na(+)/multivitamin transporter (SMVT) is a member of the solute:sodium symporter family that catalyzes the Na(+)-dependent uptake of the structurally diverse water-soluble vitamins pantothenic acid (vitamin B5) and biotin (vitamin H), α-lipoic acid-a vitamin-like substance with strong antioxidant properties-and iodide. The organic substrates of SMVT play central roles in the cellular metabolism and are, therefore, essential for normal human health and development. For example, biotin deficiency leads to growth retardation, dermatological disorders, and neurological disorders. Animal studies have shown that biotin deficiency during pregnancy is directly correlated to embryonic growth retardation, congenital malformation, and death of the embryo. This chapter focuses on the structural and functional features of the human isoform of SMVT (hSMVT); the discovery of which was greatly facilitated by the cloning and expression of hSMVT in tractable expression systems. Special emphasis will be given to mechanistic implications of the transport process of hSMVT that will inform our understanding of the molecular determinants of hSMVT-mediated transport in dynamic context to alleviate the development and optimization of hSMVT as a multipotent platform for drug delivery.
Collapse
Affiliation(s)
- Matthias Quick
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, USA.
| | - Lei Shi
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, USA
| |
Collapse
|
19
|
Conformational cycle and ion-coupling mechanism of the Na+/hydantoin transporter Mhp1. Proc Natl Acad Sci U S A 2014; 111:14752-7. [PMID: 25267652 DOI: 10.1073/pnas.1410431111] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ion-dependent transporters of the LeuT-fold couple the uptake of physiologically essential molecules to transmembrane ion gradients. Defined by a conserved 5-helix inverted repeat that encodes common principles of ion and substrate binding, the LeuT-fold has been captured in outward-facing, occluded, and inward-facing conformations. However, fundamental questions relating to the structural basis of alternating access and coupling to ion gradients remain unanswered. Here, we used distance measurements between pairs of spin labels to define the conformational cycle of the Na(+)-coupled hydantoin symporter Mhp1 from Microbacterium liquefaciens. Our results reveal that the inward-facing and outward-facing Mhp1 crystal structures represent sampled intermediate states in solution. Here, we provide a mechanistic context for these structures, mapping them into a model of transport based on ion- and substrate-dependent conformational equilibria. In contrast to the Na(+)/leucine transporter LeuT, our results suggest that Na(+) binding at the conserved second Na(+) binding site does not change the energetics of the inward- and outward-facing conformations of Mhp1. Comparative analysis of ligand-dependent alternating access in LeuT and Mhp1 lead us to propose that different coupling schemes to ion gradients may define distinct conformational mechanisms within the LeuT-fold class.
Collapse
|