1
|
Kotev M, Diaz Gonzalez C. Molecular Dynamics and Other HPC Simulations for Drug Discovery. Methods Mol Biol 2024; 2716:265-291. [PMID: 37702944 DOI: 10.1007/978-1-0716-3449-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
High performance computing (HPC) is taking an increasingly important place in drug discovery. It makes possible the simulation of complex biochemical systems with high precision in a short time, thanks to the use of sophisticated algorithms. It promotes the advancement of knowledge in fields that are inaccessible or difficult to access through experimentation and it contributes to accelerating the discovery of drugs for unmet medical needs while reducing costs. Herein, we report how computational performance has evolved over the past years, and then we detail three domains where HPC is essential. Molecular dynamics (MD) is commonly used to explore the flexibility of proteins, thus generating a better understanding of different possible approaches to modulate their activity. Modeling and simulation of biopolymer complexes enables the study of protein-protein interactions (PPI) in healthy and disease states, thus helping the identification of targets of pharmacological interest. Virtual screening (VS) also benefits from HPC to predict in a short time, among millions or billions of virtual chemical compounds, the best potential ligands that will be tested in relevant assays to start a rational drug design process.
Collapse
Affiliation(s)
- Martin Kotev
- Evotec SE, Integrated Drug Discovery, Molecular Architects, Campus Curie, Toulouse, France
| | | |
Collapse
|
2
|
Duran-Frigola M, Cigler M, Winter GE. Advancing Targeted Protein Degradation via Multiomics Profiling and Artificial Intelligence. J Am Chem Soc 2023; 145:2711-2732. [PMID: 36706315 PMCID: PMC9912273 DOI: 10.1021/jacs.2c11098] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/28/2023]
Abstract
Only around 20% of the human proteome is considered to be druggable with small-molecule antagonists. This leaves some of the most compelling therapeutic targets outside the reach of ligand discovery. The concept of targeted protein degradation (TPD) promises to overcome some of these limitations. In brief, TPD is dependent on small molecules that induce the proximity between a protein of interest (POI) and an E3 ubiquitin ligase, causing ubiquitination and degradation of the POI. In this perspective, we want to reflect on current challenges in the field, and discuss how advances in multiomics profiling, artificial intelligence, and machine learning (AI/ML) will be vital in overcoming them. The presented roadmap is discussed in the context of small-molecule degraders but is equally applicable for other emerging proximity-inducing modalities.
Collapse
Affiliation(s)
- Miquel Duran-Frigola
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
- Ersilia
Open Source Initiative, 28 Belgrave Road, CB1 3DE, Cambridge, United Kingdom
| | - Marko Cigler
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| |
Collapse
|
3
|
Lensink MF, Brysbaert G, Mauri T, Nadzirin N, Velankar S, Chaleil RAG, Clarence T, Bates PA, Kong R, Liu B, Yang G, Liu M, Shi H, Lu X, Chang S, Roy RS, Quadir F, Liu J, Cheng J, Antoniak A, Czaplewski C, Giełdoń A, Kogut M, Lipska AG, Liwo A, Lubecka EA, Maszota-Zieleniak M, Sieradzan AK, Ślusarz R, Wesołowski PA, Zięba K, Del Carpio Muñoz CA, Ichiishi E, Harmalkar A, Gray JJ, Bonvin AMJJ, Ambrosetti F, Vargas Honorato R, Jandova Z, Jiménez-García B, Koukos PI, Van Keulen S, Van Noort CW, Réau M, Roel-Touris J, Kotelnikov S, Padhorny D, Porter KA, Alekseenko A, Ignatov M, Desta I, Ashizawa R, Sun Z, Ghani U, Hashemi N, Vajda S, Kozakov D, Rosell M, Rodríguez-Lumbreras LA, Fernandez-Recio J, Karczynska A, Grudinin S, Yan Y, Li H, Lin P, Huang SY, Christoffer C, Terashi G, Verburgt J, Sarkar D, Aderinwale T, Wang X, Kihara D, Nakamura T, Hanazono Y, Gowthaman R, Guest JD, Yin R, Taherzadeh G, Pierce BG, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Sun Y, Zhu S, Shen Y, Park T, Woo H, Yang J, Kwon S, Won J, Seok C, Kiyota Y, Kobayashi S, Harada Y, Takeda-Shitaka M, Kundrotas PJ, Singh A, Vakser IA, Dapkūnas J, Olechnovič K, Venclovas Č, Duan R, Qiu L, Xu X, Zhang S, Zou X, Wodak SJ. Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment. Proteins 2021; 89:1800-1823. [PMID: 34453465 PMCID: PMC8616814 DOI: 10.1002/prot.26222] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70-75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70-80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.
Collapse
Affiliation(s)
- Marc F Lensink
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Guillaume Brysbaert
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Théo Mauri
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Nurul Nadzirin
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | | | - Tereza Clarence
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Bin Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Guangbo Yang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Ming Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xufeng Lu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Raj S Roy
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Farhan Quadir
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Anna Antoniak
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Artur Giełdoń
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Mateusz Kogut
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Adam Liwo
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | | | | | - Rafał Ślusarz
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Patryk A Wesołowski
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Karolina Zięba
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Eiichiro Ichiishi
- International University of Health and Welfare Hospital (IUHW Hospital), Nasushiobara City, Japan
| | - Ameya Harmalkar
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey J Gray
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexandre M J J Bonvin
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Francesco Ambrosetti
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rodrigo Vargas Honorato
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Zuzana Jandova
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Brian Jiménez-García
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Panagiotis I Koukos
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Siri Van Keulen
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Charlotte W Van Noort
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Manon Réau
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jorge Roel-Touris
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Innopolis University, Russia
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Kathryn A Porter
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Andrey Alekseenko
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Institute of Computer-Aided Design of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Ignatov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Israel Desta
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Ryota Ashizawa
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Zhuyezi Sun
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Nasser Hashemi
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Mireia Rosell
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de la Rioja - Gobierno de La Rioja, Logrono, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Luis A Rodríguez-Lumbreras
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de la Rioja - Gobierno de La Rioja, Logrono, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Juan Fernandez-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de la Rioja - Gobierno de La Rioja, Logrono, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Sergei Grudinin
- Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Peicong Lin
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tsukasa Nakamura
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yuya Hanazono
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki, Japan
| | - Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Johnathan D Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Ghazaleh Taherzadeh
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | | | - Zhen Cao
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Romina Oliva
- University of Naples "Parthenope", Napoli, Italy
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
| | - Shaowen Zhu
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
| | - Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Yang
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jonghun Won
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yasuomi Kiyota
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | | | - Yoshiki Harada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | | | - Petras J Kundrotas
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Amar Singh
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Ilya A Vakser
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rui Duan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Shuang Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Xiaoqin Zou
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
4
|
Soltanikazemi E, Quadir F, Roy RS, Guo Z, Cheng J. Distance-based reconstruction of protein quaternary structures from inter-chain contacts. Proteins 2021; 90:720-731. [PMID: 34716620 PMCID: PMC8816881 DOI: 10.1002/prot.26269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022]
Abstract
Predicting the quaternary structure of protein complex is an important problem. Inter‐chain residue‐residue contact prediction can provide useful information to guide the ab initio reconstruction of quaternary structures. However, few methods have been developed to build quaternary structures from predicted inter‐chain contacts. Here, we develop the first method based on gradient descent optimization (GD) to build quaternary structures of protein dimers utilizing inter‐chain contacts as distance restraints. We evaluate GD on several datasets of homodimers and heterodimers using true/predicted contacts and monomer structures as input. GD consistently performs better than both simulated annealing and Markov Chain Monte Carlo simulation. Starting from an arbitrarily quaternary structure randomly initialized from the tertiary structures of protein chains and using true inter‐chain contacts as input, GD can reconstruct high‐quality structural models for homodimers and heterodimers with average TM‐score ranging from 0.92 to 0.99 and average interface root mean square distance from 0.72 Å to 1.64 Å. On a dataset of 115 homodimers, using predicted inter‐chain contacts as restraints, the average TM‐score of the structural models built by GD is 0.76. For 46% of the homodimers, high‐quality structural models with TM‐score ≥ 0.9 are reconstructed from predicted contacts. There is a strong correlation between the quality of the reconstructed models and the precision and recall of predicted contacts. Only a moderate precision or recall of inter‐chain contact prediction is needed to build good structural models for most homodimers. Moreover, GD improves the quality of quaternary structures predicted by AlphaFold2 on a Critical Assessment of Techniques for Protein Structure Prediction–Critical Assessments of Predictions of Interactions dataset.
Collapse
Affiliation(s)
- Elham Soltanikazemi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Farhan Quadir
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Raj S Roy
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Zhiye Guo
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
5
|
Rosell M, Fernández-Recio J. Docking approaches for modeling multi-molecular assemblies. Curr Opin Struct Biol 2020; 64:59-65. [PMID: 32615514 PMCID: PMC7324114 DOI: 10.1016/j.sbi.2020.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
Computational docking approaches aim to overcome the limited availability of experimental structural data on protein-protein interactions, which are key in biology. The field is rapidly moving from the traditional docking methodologies for modeling of binary complexes to more integrative approaches using template-based, data-driven modeling of multi-molecular assemblies. We will review here the predictive capabilities of current docking methods in blind conditions, based on the results from the most recent community-wide blind experiments. Integration of template-based and ab initio docking approaches is emerging as the optimal strategy for modeling protein complexes and multimolecular assemblies. We will also review the new methodological advances on ab initio docking and integrative modeling.
Collapse
Affiliation(s)
- Mireia Rosell
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Juan Fernández-Recio
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain; Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain.
| |
Collapse
|
6
|
Singh A, Dauzhenka T, Kundrotas PJ, Sternberg MJE, Vakser IA. Application of docking methodologies to modeled proteins. Proteins 2020; 88:1180-1188. [PMID: 32170770 DOI: 10.1002/prot.25889] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/15/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
Protein docking is essential for structural characterization of protein interactions. Besides providing the structure of protein complexes, modeling of proteins and their complexes is important for understanding the fundamental principles and specific aspects of protein interactions. The accuracy of protein modeling, in general, is still less than that of the experimental approaches. Thus, it is important to investigate the applicability of docking techniques to modeled proteins. We present new comprehensive benchmark sets of protein models for the development and validation of protein docking, as well as a systematic assessment of free and template-based docking techniques on these sets. As opposed to previous studies, the benchmark sets reflect the real case modeling/docking scenario where the accuracy of the models is assessed by the modeling procedure, without reference to the native structure (which would be unknown in practical applications). We also expanded the analysis to include docking of protein pairs where proteins have different structural accuracy. The results show that, in general, the template-based docking is less sensitive to the structural inaccuracies of the models than the free docking. The near-native docking poses generated by the template-based approach, typically, also have higher ranks than those produces by the free docking (although the free docking is indispensable in modeling the multiplicity of protein interactions in a crowded cellular environment). The results show that docking techniques are applicable to protein models in a broad range of modeling accuracy. The study provides clear guidelines for practical applications of docking to protein models.
Collapse
Affiliation(s)
- Amar Singh
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Taras Dauzhenka
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Michael J E Sternberg
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA.,Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
7
|
Lensink MF, Nadzirin N, Velankar S, Wodak SJ. Modeling protein‐protein, protein‐peptide, and protein‐oligosaccharide complexes: CAPRI 7th edition. Proteins 2020; 88:916-938. [DOI: 10.1002/prot.25870] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Marc F. Lensink
- University of Lille, CNRS UMR8576 UGSF, Unité de Glycobiologie Structurale et Fonctionnelle F‐59000 Lille France
| | - Nurul Nadzirin
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome Campus Cambridge UK
| | - Sameer Velankar
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome Campus Cambridge UK
| | | |
Collapse
|
8
|
Lensink MF, Brysbaert G, Nadzirin N, Velankar S, Chaleil RAG, Gerguri T, Bates PA, Laine E, Carbone A, Grudinin S, Kong R, Liu RR, Xu XM, Shi H, Chang S, Eisenstein M, Karczynska A, Czaplewski C, Lubecka E, Lipska A, Krupa P, Mozolewska M, Golon Ł, Samsonov S, Liwo A, Crivelli S, Pagès G, Karasikov M, Kadukova M, Yan Y, Huang SY, Rosell M, Rodríguez-Lumbreras LA, Romero-Durana M, Díaz-Bueno L, Fernandez-Recio J, Christoffer C, Terashi G, Shin WH, Aderinwale T, Subraman SRMV, Kihara D, Kozakov D, Vajda S, Porter K, Padhorny D, Desta I, Beglov D, Ignatov M, Kotelnikov S, Moal IH, Ritchie DW, de Beauchêne IC, Maigret B, Devignes MD, Echartea MER, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Cao Y, Shen Y, Baek M, Park T, Woo H, Seok C, Braitbard M, Bitton L, Scheidman-Duhovny D, Dapkūnas J, Olechnovič K, Venclovas Č, Kundrotas PJ, Belkin S, Chakravarty D, Badal VD, Vakser IA, Vreven T, Vangaveti S, Borrman T, Weng Z, Guest JD, Gowthaman R, Pierce BG, Xu X, Duan R, Qiu L, Hou J, Merideth BR, Ma Z, Cheng J, Zou X, Koukos PI, Roel-Touris J, Ambrosetti F, Geng C, Schaarschmidt J, Trellet ME, Melquiond ASJ, Xue L, Jiménez-García B, van Noort CW, Honorato RV, Bonvin AMJJ, Wodak SJ. Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment. Proteins 2019; 87:1200-1221. [PMID: 31612567 PMCID: PMC7274794 DOI: 10.1002/prot.25838] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022]
Abstract
We present the results for CAPRI Round 46, the third joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo-oligomers and 6 heterocomplexes. Eight of the homo-oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher-order assemblies. These were more difficult to model, as their prediction mainly involved "ab-initio" docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance "gap" was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template-based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.
Collapse
Affiliation(s)
- Marc F. Lensink
- University of Lille, CNRS UMR8576 UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Guillaume Brysbaert
- University of Lille, CNRS UMR8576 UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nurul Nadzirin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Tereza Gerguri
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Paul A. Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Elodie Laine
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, Paris, France
| | - Alessandra Carbone
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sergei Grudinin
- Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Ran-Ran Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xi-Ming Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Emilia Lubecka
- Institute of Informatics, Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, Gdańsk, Poland
| | | | - Paweł Krupa
- Polish Academy of Sciences, Institute of Physics, Warsaw, Poland
| | | | - Łukasz Golon
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| | | | - Guillaume Pagès
- Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
| | | | - Maria Kadukova
- Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mireia Rosell
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), Logroño, Spain
| | - Luis A. Rodríguez-Lumbreras
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), Logroño, Spain
| | | | | | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), Logroño, Spain
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Woong-Hee Shin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | | | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | - Dima Kozakov
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Department of Chemistry, Boston University, Boston, Massachusetts
| | - Kathryn Porter
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Dzmitry Padhorny
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Israel Desta
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Mikhail Ignatov
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Sergey Kotelnikov
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Iain H. Moal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | - Didier Barradas-Bautista
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Zhen Cao
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University of Naples “Parthenope”, Napoli, Italy
| | - Yue Cao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Merav Braitbard
- Department of Biological Chemistry, Institute of Live Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lirane Bitton
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dina Scheidman-Duhovny
- Department of Biological Chemistry, Institute of Live Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Petras J. Kundrotas
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Saveliy Belkin
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Devlina Chakravarty
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Varsha D. Badal
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Ilya A. Vakser
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Thom Vreven
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sweta Vangaveti
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Tyler Borrman
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Johnathan D. Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Rui Duan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jie Hou
- Department of Computer Science, University of Missouri, Columbia, Missouri
| | - Benjamin Ryan Merideth
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia, Missouri
| | - Zhiwei Ma
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia, Missouri
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia, Missouri
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Panagiotis I. Koukos
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jorge Roel-Touris
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Francesco Ambrosetti
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cunliang Geng
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jörg Schaarschmidt
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mikael E. Trellet
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Adrien S. J. Melquiond
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Li Xue
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Brian Jiménez-García
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Charlotte W. van Noort
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rodrigo V. Honorato
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandre M. J. J. Bonvin
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
9
|
Molecular Docking Analysis of 120 Potential HPV Therapeutic Epitopes Using a New Analytical Method. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09985-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Dapkūnas J, Olechnovič K, Venclovas Č. Structural modeling of protein complexes: Current capabilities and challenges. Proteins 2019; 87:1222-1232. [PMID: 31294859 DOI: 10.1002/prot.25774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/21/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022]
Abstract
Proteins frequently interact with each other, and the knowledge of structures of the corresponding protein complexes is necessary to understand how they function. Computational methods are increasingly used to provide structural models of protein complexes. Not surprisingly, community-wide Critical Assessment of protein Structure Prediction (CASP) experiments have recently started monitoring the progress in this research area. We participated in CASP13 with the aim to evaluate our current capabilities in modeling of protein complexes and to gain a better understanding of factors that exert the largest impact on these capabilities. To model protein complexes in CASP13, we applied template-based modeling, free docking and hybrid techniques that enabled us to generate models of the topmost quality for 27 of 42 multimers. If templates for protein complexes could be identified, we modeled the structures with reasonable accuracy by straightforward homology modeling. If only partial templates were available, it was nevertheless possible to predict the interaction interfaces correctly or to generate acceptable models for protein complexes by combining template-based modeling with docking. If no templates were available, we used rigid-body docking with limited success. However, in some free docking models, despite the incorrect subunit orientation and missed interface contacts, the approximate location of protein binding sites was identified correctly. Apparently, our overall performance in docking was limited by the quality of monomer models and by the imperfection of scoring methods. The impact of human intervention on our results in modeling of protein complexes was significant indicating the need for improvements of automatic methods.
Collapse
Affiliation(s)
- Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
11
|
Hadarovich A, Anishchenko I, Tuzikov AV, Kundrotas PJ, Vakser IA. Gene ontology improves template selection in comparative protein docking. Proteins 2018; 87:245-253. [PMID: 30520123 DOI: 10.1002/prot.25645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/21/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Structural characterization of protein-protein interactions is essential for our ability to study life processes at the molecular level. Computational modeling of protein complexes (protein docking) is important as the source of their structure and as a way to understand the principles of protein interaction. Rapidly evolving comparative docking approaches utilize target/template similarity metrics, which are often based on the protein structure. Although the structural similarity, generally, yields good performance, other characteristics of the interacting proteins (eg, function, biological process, and localization) may improve the prediction quality, especially in the case of weak target/template structural similarity. For the ranking of a pool of models for each target, we tested scoring functions that quantify similarity of Gene Ontology (GO) terms assigned to target and template proteins in three ontology domains-biological process, molecular function, and cellular component (GO-score). The scoring functions were tested in docking of bound, unbound, and modeled proteins. The results indicate that the combined structural and GO-terms functions improve the scoring, especially in the twilight zone of structural similarity, typical for protein models of limited accuracy.
Collapse
Affiliation(s)
- Anna Hadarovich
- Computational Biology Program, The University of Kansas, Lawrence, Kansas.,United Institute of Informatics Problems, National Academy of Sciences, Minsk, Belarus
| | - Ivan Anishchenko
- Computational Biology Program, The University of Kansas, Lawrence, Kansas
| | - Alexander V Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences, Minsk, Belarus
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas.,Department of Molecular Biosciences, The University of Kansas, Kansas, Lawrence
| |
Collapse
|
12
|
Kundrotas PJ, Anishchenko I, Badal VD, Das M, Dauzhenka T, Vakser IA. Modeling CAPRI targets 110-120 by template-based and free docking using contact potential and combined scoring function. Proteins 2018; 86 Suppl 1:302-310. [PMID: 28905425 PMCID: PMC5820180 DOI: 10.1002/prot.25380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/25/2017] [Accepted: 09/10/2017] [Indexed: 01/12/2023]
Abstract
The paper presents analysis of our template-based and free docking predictions in the joint CASP12/CAPRI37 round. A new scoring function for template-based docking was developed, benchmarked on the Dockground resource, and applied to the targets. The results showed that the function successfully discriminates the incorrect docking predictions. In correctly predicted targets, the scoring function was complemented by other considerations, such as consistency of the oligomeric states among templates, similarity of the biological functions, biological interface relevance, etc. The scoring function still does not distinguish well biological from crystal packing interfaces, and needs further development for the docking of bundles of α-helices. In the case of the trimeric targets, sequence-based methods did not find common templates, despite similarity of the structures, suggesting complementary use of structure- and sequence-based alignments in comparative docking. The results showed that if a good docking template is found, an accurate model of the interface can be built even from largely inaccurate models of individual subunits. Free docking however is very sensitive to the quality of the individual models. However, our newly developed contact potential detected approximate locations of the binding sites.
Collapse
Affiliation(s)
- Petras J. Kundrotas
- Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Varsha D. Badal
- Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Madhurima Das
- Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Taras Dauzhenka
- Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Ilya A. Vakser
- Center for Computational Biology and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
13
|
Barradas-Bautista D, Rosell M, Pallara C, Fernández-Recio J. Structural Prediction of Protein–Protein Interactions by Docking: Application to Biomedical Problems. PROTEIN-PROTEIN INTERACTIONS IN HUMAN DISEASE, PART A 2018; 110:203-249. [DOI: 10.1016/bs.apcsb.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Guven-Maiorov E, Tsai CJ, Ma B, Nussinov R. Prediction of Host-Pathogen Interactions for Helicobacter pylori by Interface Mimicry and Implications to Gastric Cancer. J Mol Biol 2017; 429:3925-3941. [PMID: 29106933 PMCID: PMC7906438 DOI: 10.1016/j.jmb.2017.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
Abstract
There is a strong correlation between some pathogens and certain cancer types. One example is Helicobacter pylori and gastric cancer. Exactly how they contribute to host tumorigenesis is, however, a mystery. Pathogens often interact with the host through proteins. To subvert defense, they may mimic host proteins at the sequence, structure, motif, or interface levels. Interface similarity permits pathogen proteins to compete with those of the host for a target protein and thereby alter the host signaling. Detection of host-pathogen interactions (HPIs) and mapping the re-wired superorganism HPI network-with structural details-can provide unprecedented clues to the underlying mechanisms and help therapeutics. Here, we describe the first computational approach exploiting solely interface mimicry to model potential HPIs. Interface mimicry can identify more HPIs than sequence or complete structural similarity since it appears more common than the other mimicry types. We illustrate the usefulness of this concept by modeling HPIs of H. pylori to understand how they modulate host immunity, persist lifelong, and contribute to tumorigenesis. H. pylori proteins interfere with multiple host pathways as they target several host hub proteins. Our results help illuminate the structural basis of resistance to apoptosis, immune evasion, and loss of cell junctions seen in H. pylori-infected host cells.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Buyong Ma
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
15
|
Nakamura T, Oda T, Fukasawa Y, Tomii K. Template-based quaternary structure prediction of proteins using enhanced profile-profile alignments. Proteins 2017; 86 Suppl 1:274-282. [PMID: 29178285 PMCID: PMC5836938 DOI: 10.1002/prot.25432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/11/2017] [Accepted: 11/22/2017] [Indexed: 12/26/2022]
Abstract
Proteins often exist as their multimeric forms when they function as so‐called biological assemblies consisting of the specific number and arrangement of protein subunits. Consequently, elucidating biological assemblies is necessary to improve understanding of protein function. Template‐Based Modeling (TBM), based on known protein structures, has been used widely for protein structure prediction. Actually, TBM has become an increasingly useful approach in recent years because of the increased amounts of information related to protein amino acid sequences and three‐dimensional structures. An apparently similar situation exists for biological assembly structure prediction as protein complex structures in the PDB increase, although the inference of biological assemblies is not a trivial task. Many methods using TBM, including ours, have been developed for protein structure prediction. Using enhanced profile–profile alignments, we participated in the 12th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP12), as the FONT team (Group # 480). Herein, we present experimental procedures and results of retrospective analyses using our approach for the Quaternary Structure Prediction category of CASP12. We performed profile–profile alignments of several types, based on FORTE, our profile–profile alignment algorithm, to identify suitable templates. Results show that these alignment results enable us to find templates in almost all possible cases. Moreover, we have come to understand the necessity of developing a model selection method that provides improved accuracy. Results also demonstrate that, to some extent, finding templates of protein complexes is useful even for MEDIUM and HARD assembly prediction.
Collapse
Affiliation(s)
- Tsukasa Nakamura
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Toshiyuki Oda
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yoshinori Fukasawa
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.,Biotechnology Research Institute for Drug Discovery (BRD), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
16
|
Lensink MF, Velankar S, Baek M, Heo L, Seok C, Wodak SJ. The challenge of modeling protein assemblies: the CASP12-CAPRI experiment. Proteins 2017; 86 Suppl 1:257-273. [PMID: 29127686 DOI: 10.1002/prot.25419] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
Abstract
We present the quality assessment of 5613 models submitted by predictor groups from both CAPRI and CASP for the total of 15 most tractable targets from the second joint CASP-CAPRI protein assembly prediction experiment. These targets comprised 12 homo-oligomers and 3 hetero-complexes. The bulk of the analysis focuses on 10 targets (of CAPRI Round 37), which included all 3 hetero-complexes, and whose protein chains or the full assembly could be readily modeled from structural templates in the PDB. On average, 28 CAPRI groups and 10 CASP groups (including automatic servers), submitted models for each of these 10 targets. Additionally, about 16 groups participated in the CAPRI scoring experiments. A range of acceptable to high quality models were obtained for 6 of the 10 Round 37 targets, for which templates were available for the full assembly. Poorer results were achieved for the remaining targets due to the lower quality of the templates available for the full complex or the individual protein chains, highlighting the unmet challenge of modeling the structural adjustments of the protein components that occur upon binding or which must be accounted for in template-based modeling. On the other hand, our analysis indicated that residues in binding interfaces were correctly predicted in a sizable fraction of otherwise poorly modeled assemblies and this with higher accuracy than published methods that do not use information on the binding partner. Lastly, the strengths and weaknesses of the assessment methods are evaluated and improvements suggested.
Collapse
Affiliation(s)
- Marc F Lensink
- University Lille, CNRS UMR8576 UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Lim Heo
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Shoshana J Wodak
- VIB Structural Biology Research Center, VUB, Pleinlaan 2, Brussels, Belgium
| |
Collapse
|
17
|
Dapkūnas J, Olechnovič K, Venclovas Č. Modeling of protein complexes in CAPRI Round 37 using template-based approach combined with model selection. Proteins 2017; 86 Suppl 1:292-301. [DOI: 10.1002/prot.25378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/25/2017] [Accepted: 09/10/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Justas Dapkūnas
- Institute of Biotechnology, Vilnius University, Saulėtekio 7; Vilnius LT-10257 Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Vilnius University, Saulėtekio 7; Vilnius LT-10257 Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, Saulėtekio 7; Vilnius LT-10257 Lithuania
| |
Collapse
|
18
|
Anishchenko I, Kundrotas PJ, Vakser IA. Modeling complexes of modeled proteins. Proteins 2017; 85:470-478. [PMID: 27701777 PMCID: PMC5313347 DOI: 10.1002/prot.25183] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/22/2016] [Accepted: 10/02/2016] [Indexed: 12/21/2022]
Abstract
Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å Cα RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ivan Anishchenko
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Petras J. Kundrotas
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Ilya A. Vakser
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas 66047, USA
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
19
|
Launay G, Ceres N, Martin J. Non-interacting proteins may resemble interacting proteins: prevalence and implications. Sci Rep 2017; 7:40419. [PMID: 28084410 PMCID: PMC5289270 DOI: 10.1038/srep40419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
The vast majority of proteins do not form functional interactions in physiological conditions. We have considered several sets of protein pairs from S. cerevisiae with no functional interaction reported, denoted as non-interacting pairs, and compared their 3D structures to available experimental complexes. We identified some non-interacting pairs with significant structural similarity with experimental complexes, indicating that, even though they do not form functional interactions, they have compatible structures. We estimate that up to 8.7% of non-interacting protein pairs could have compatible structures. This number of interactions exceeds the number of functional interactions (around 0.2% of the total interactions) by a factor 40. Network analysis suggests that the interactions formed by non-interacting pairs with compatible structures could be particularly hazardous to the protein-protein interaction network. From a structural point of view, these interactions display no aberrant structural characteristics, and are even predicted as relatively stable and enriched in potential physical interactors, suggesting a major role of regulation to prevent them.
Collapse
Affiliation(s)
- Guillaume Launay
- Univ Lyon, CNRS, UMR 5086 MMSB, 7 passage du Vercors F-69367, Lyon, France
| | - Nicoletta Ceres
- Univ Lyon, CNRS, UMR 5086 MMSB, 7 passage du Vercors F-69367, Lyon, France
| | - Juliette Martin
- Univ Lyon, CNRS, UMR 5086 MMSB, 7 passage du Vercors F-69367, Lyon, France
| |
Collapse
|
20
|
Conservation of coevolving protein interfaces bridges prokaryote-eukaryote homologies in the twilight zone. Proc Natl Acad Sci U S A 2016; 113:15018-15023. [PMID: 27965389 DOI: 10.1073/pnas.1611861114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein-protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein-protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein-protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein-protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach.
Collapse
|
21
|
Yu J, Andreani J, Ochsenbein F, Guerois R. Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35. Proteins 2016; 85:378-390. [PMID: 27701780 DOI: 10.1002/prot.25180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 11/06/2022]
Abstract
Computational protein-protein docking is of great importance for understanding protein interactions at the structural level. Critical assessment of prediction of interactions (CAPRI) experiments provide the protein docking community with a unique opportunity to blindly test methods based on real-life cases and help accelerate methodology development. For CAPRI Rounds 28-35, we used an automatic docking pipeline integrating the coarse-grained co-evolution-based potential InterEvScore. This score was developed to exploit the information contained in the multiple sequence alignments of binding partners and selectively recognize co-evolved interfaces. Together with Zdock/Frodock for rigid-body docking, SOAP-PP for atomic potential and Rosetta applications for structural refinement, this pipeline reached high performance on a majority of targets. For protein-peptide docking and interfacial water position predictions, we also explored different means of taking evolutionary information into account. Overall, our group ranked 1st by correctly predicting 10 targets, composed of 1 High, 7 Medium and 2 Acceptable predictions. Excellent and Outstanding levels of accuracy were reached for each of the two water prediction targets, respectively. Altogether, in 15 out of 18 targets in total, evolutionary information, either through co-evolution or conservation analyses, could provide key constraints to guide modeling towards the most likely assemblies. These results open promising perspectives regarding the way evolutionary information can be valuable to improve docking prediction accuracy. Proteins 2017; 85:378-390. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, F-91198, France
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, F-91198, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, F-91198, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, F-91198, France
| |
Collapse
|
22
|
Yu J, Guerois R. PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets. Bioinformatics 2016; 32:3760-3767. [PMID: 27551106 DOI: 10.1093/bioinformatics/btw533] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/22/2016] [Accepted: 08/10/2016] [Indexed: 12/14/2022] Open
Abstract
MOTIVATION Protein-protein docking methods are of great importance for understanding interactomes at the structural level. It has become increasingly appealing to use not only experimental structures but also homology models of unbound subunits as input for docking simulations. So far we are missing a large scale assessment of the success of rigid-body free docking methods on homology models. RESULTS We explored how we could benefit from comparative modelling of unbound subunits to expand docking benchmark datasets. Starting from a collection of 3157 non-redundant, high X-ray resolution heterodimers, we developed the PPI4DOCK benchmark containing 1417 docking targets based on unbound homology models. Rigid-body docking by Zdock showed that for 1208 cases (85.2%), at least one correct decoy was generated, emphasizing the efficiency of rigid-body docking in generating correct assemblies. Overall, the PPI4DOCK benchmark contains a large set of realistic cases and provides new ground for assessing docking and scoring methodologies. AVAILABILITY AND IMPLEMENTATION Benchmark sets can be downloaded from http://biodev.cea.fr/interevol/ppi4dock/ CONTACT: guerois@cea.frSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| |
Collapse
|
23
|
Kawabata T. HOMCOS: an updated server to search and model complex 3D structures. ACTA ACUST UNITED AC 2016; 17:83-99. [PMID: 27522608 PMCID: PMC5274653 DOI: 10.1007/s10969-016-9208-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 08/05/2016] [Indexed: 01/18/2023]
Abstract
The HOMCOS server (http://homcos.pdbj.org) was updated for both searching and modeling the 3D complexes for all molecules in the PDB. As compared to the previous HOMCOS server, the current server targets all of the molecules in the PDB including proteins, nucleic acids, small compounds and metal ions. Their binding relationships are stored in the database. Five services are available for users. For the services “Modeling a Homo Protein Multimer” and “Modeling a Hetero Protein Multimer”, a user can input one or two proteins as the queries, while for the service “Protein-Compound Complex”, a user can input one chemical compound and one protein. The server searches similar molecules by BLAST and KCOMBU. Based on each similar complex found, a simple sequence-replaced model is quickly generated by replacing the residue names and numbers with those of the query protein. A target compound is flexibly superimposed onto the template compound using the program fkcombu. If monomeric 3D structures are input as the query, then template-based docking can be performed. For the service “Searching Contact Molecules for a Query Protein”, a user inputs one protein sequence as the query, and then the server searches for its homologous proteins in PDB and summarizes their contacting molecules as the predicted contacting molecules. The results are summarized in “Summary Bars” or “Site Table”display. The latter shows the results as a one-site-one-row table, which is useful for annotating the effects of mutations. The service “Searching Contact Molecules for a Query Compound” is also available.
Collapse
Affiliation(s)
- Takeshi Kawabata
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
24
|
Rigid-Docking Approaches to Explore Protein-Protein Interaction Space. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 160:33-55. [PMID: 27830312 DOI: 10.1007/10_2016_41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein-protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein-protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this. Protein-protein rigid docking has been utilized by several projects, docking-based approaches having the advantages that they can suggest binding poses of predicted binding partners which would help in understanding the interaction mechanisms and that comparing docking results of both non-binders and binders can lead to understanding the specificity of protein-protein interactions from structural viewpoints. In this review we focus on explaining current computational prediction methods to predict pairwise direct protein-protein interactions that form protein complexes.
Collapse
|
25
|
Muratcioglu S, Guven-Maiorov E, Keskin Ö, Gursoy A. Advances in template-based protein docking by utilizing interfaces towards completing structural interactome. Curr Opin Struct Biol 2015; 35:87-92. [PMID: 26539658 DOI: 10.1016/j.sbi.2015.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 11/27/2022]
Abstract
The increase in the number of structurally determined protein complexes strengthens template-based docking (TBD) methods for modelling protein-protein interactions (PPIs). These methods utilize the known structures of protein complexes as templates to predict the quaternary structure of the target proteins. The templates may be partial or complete structures. Interface based (partial) methods have recently gained interest due in part to the observation that the interface regions are reusable. We describe how available template interfaces can be used to obtain the structural models of protein interactions. Despite the agreement that a majority of the protein complexes can be modelled using the available Protein Data Bank (PDB) structures, a handful of studies argue that we need more template proteins to increase the structural coverage of PPIs. We also discuss the performance of the interface TBD methods at large scale, and the significance of capturing multiple conformations for improving accuracy.
Collapse
Affiliation(s)
- Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, 34450 Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, 34450 Istanbul, Turkey
| | - Emine Guven-Maiorov
- Department of Chemical and Biological Engineering, Koc University, 34450 Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, 34450 Istanbul, Turkey
| | - Özlem Keskin
- Department of Chemical and Biological Engineering, Koc University, 34450 Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, 34450 Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, 34450 Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, 34450 Istanbul, Turkey.
| |
Collapse
|
26
|
Tsuji T, Yoda T, Shirai T. Deciphering Supramolecular Structures with Protein-Protein Interaction Network Modeling. Sci Rep 2015; 5:16341. [PMID: 26549015 PMCID: PMC4637837 DOI: 10.1038/srep16341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/09/2015] [Indexed: 11/30/2022] Open
Abstract
Many biological molecules are assembled into supramolecules that are essential to perform complicated functions in the cell. However, experimental information about the structures of supramolecules is not sufficient at this point. We developed a method of predicting and modeling the structures of supramolecules in a biological network by combining structural data of the Protein Data Bank (PDB) and interaction data in IntAct databases. Templates for binary complexes in IntAct were extracted from PDB. Modeling was attempted by assembling binary complexes with superposed shared subunits. A total of 3,197 models were constructed, and 1,306 (41% of the total) contained at least one subunit absent from experimental structures. The models also suggested 970 (25% of the total) experimentally undetected subunit interfaces, and 41 human disease-related amino acid variants were mapped onto these model-suggested interfaces. The models demonstrated that protein-protein interaction network modeling is useful to fill the information gap between biological networks and structures.
Collapse
Affiliation(s)
- Toshiyuki Tsuji
- Nagahama Institute of Bio-Science and Technology, and Japan Science and Technology Agency, Bioinformatics Research Division, Nagahama, Shiga 526-0829, Japan
| | - Takao Yoda
- Nagahama Institute of Bio-Science and Technology, and Japan Science and Technology Agency, Bioinformatics Research Division, Nagahama, Shiga 526-0829, Japan
| | - Tsuyoshi Shirai
- Nagahama Institute of Bio-Science and Technology, and Japan Science and Technology Agency, Bioinformatics Research Division, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
27
|
Anishchenko I, Kundrotas PJ, Tuzikov AV, Vakser IA. Structural templates for comparative protein docking. Proteins 2015; 83:1563-70. [PMID: 25488330 DOI: 10.1002/prot.24736] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/15/2014] [Accepted: 11/26/2014] [Indexed: 11/07/2022]
Abstract
Structural characterization of protein-protein interactions is important for understanding life processes. Because of the inherent limitations of experimental techniques, such characterization requires computational approaches. Along with the traditional protein-protein docking (free search for a match between two proteins), comparative (template-based) modeling of protein-protein complexes has been gaining popularity. Its development puts an emphasis on full and partial structural similarity between the target protein monomers and the protein-protein complexes previously determined by experimental techniques (templates). The template-based docking relies on the quality and diversity of the template set. We present a carefully curated, nonredundant library of templates containing 4950 full structures of binary complexes and 5936 protein-protein interfaces extracted from the full structures at 12 Å distance cut-off. Redundancy in the libraries was removed by clustering the PDB structures based on structural similarity. The value of the clustering threshold was determined from the analysis of the clusters and the docking performance on a benchmark set. High structural quality of the interfaces in the template and validation sets was achieved by automated procedures and manual curation. The library is included in the Dockground resource for molecular recognition studies at http://dockground.bioinformatics.ku.edu.
Collapse
Affiliation(s)
- Ivan Anishchenko
- Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, 66047.,United Institute of Informatics Problems, National Academy of Sciences, Minsk, 220012, Belarus
| | - Petras J Kundrotas
- Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, 66047
| | - Alexander V Tuzikov
- United Institute of Informatics Problems, National Academy of Sciences, Minsk, 220012, Belarus
| | - Ilya A Vakser
- Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, 66047.,Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, 66045
| |
Collapse
|