1
|
Luo R, Zeng X, Li P, Hu S, Qi X. TTBK2 T3290C mutation in spinocerebellar ataxia 11 interferes with ciliogenesis. Transl Neurosci 2024; 15:20220353. [PMID: 39380965 PMCID: PMC11459611 DOI: 10.1515/tnsci-2022-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
This study aimed to elucidate the impact of the TTBK2 T3290C mutation (MUT) associated with Spinocerebellar Ataxia 11 (SCA11) on TTBK2 expression, function, and ciliogenesis. Lymphocytes were isolated from peripheral blood samples of SCA11 family members with the MUT and healthy controls (wild-type, WT). HEK-293 cells transfected with either WT or MUT TTBK2 plasmids were used to assess the MUT's impact on TTBK2 protein expression, enzymatic activity, and its binding to Cep164 protein. Mouse embryonic fibroblast cells transfected with WT or MUT TTBK2 plasmids examined the MUT's effect on cilia formation. Clinically, there was no significant difference in the expression of TTBK2 between the SCA11 patients and healthy individuals. The TTBK2 T3290C MUT did not affect protein expression or enzymatic activity but did reduce ciliary formation in embryonic cells and decreased binding affinity to Cep164. Therefore, our data suggested that the TTBK2 T3290C MUT in SCA11 may impair ciliogenesis by weakening the interaction with Cep164.
Collapse
Affiliation(s)
- Ruiqing Luo
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Xiaoxia Zeng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Ping Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Shuai Hu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Xueliang Qi
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
2
|
Binó L, Čajánek L. Tau tubulin kinase 1 and 2 regulate ciliogenesis and human pluripotent stem cells-derived neural rosettes. Sci Rep 2023; 13:12884. [PMID: 37558899 PMCID: PMC10412607 DOI: 10.1038/s41598-023-39887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Primary cilia are key regulators of embryo development and tissue homeostasis. However, their mechanisms and functions, particularly in the context of human cells, are still unclear. Here, we analyzed the consequences of primary cilia modulation for human pluripotent stem cells (hPSCs) proliferation and differentiation. We report that neither activation of the cilia-associated Hedgehog signaling pathway nor ablation of primary cilia by CRISPR gene editing to knockout Tau Tubulin Kinase 2 (TTBK2), a crucial ciliogenesis regulator, affects the self-renewal of hPSCs. Further, we show that TTBK1, a related kinase without previous links to ciliogenesis, is upregulated during hPSCs-derived neural rosette differentiation. Importantly, we demonstrate that while TTBK1 fails to localize to the mother centriole, it regulates primary cilia formation in the differentiated, but not the undifferentiated hPSCs. Finally, we show that TTBK1/2 and primary cilia are implicated in the regulation of the size of hPSCs-derived neural rosettes.
Collapse
Affiliation(s)
- Lucia Binó
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic
| | - Lukáš Čajánek
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
3
|
Fushimi T, Kobayashi T, Itoh H. CEP164-GLI2 association ensures the hedgehog signaling in pancreatic cancer cells. Biochem Biophys Res Commun 2023; 666:179-185. [PMID: 37199136 DOI: 10.1016/j.bbrc.2023.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Hedgehog (Hh) signaling is involved in multiple biological events including development and cancers. It is processed through primary cilia, which are assembled from the mother centriole in most mammalian cells. Pancreatic ductal adenocarcinoma (PDAC) cells generally lose their primary cilia; thus, the Hh signaling pathway is postulated to be independent of the organelle in PDAC. We previously reported that the mother centriole-specific protein, centrosomal protein 164 (CEP164), is required for centriolar localization of the GLI2 transcription factor in Hh signaling and for suppressing the expression of Hh-target genes. In this study, we demonstrated the physical interaction between CEP164 and GLI2, and delineated their binding modes at the mother centriole. The ectopically expressed GLI2-binding region of CEP164 reduced the centriolar GLI2 localization and enhanced the expression of Hh-target genes in PDAC cells. Furthermore, similar phenotypes were observed in PDAC cells lacking primary cilia. These results suggest that the CEP164-GLI2 association at the mother centriole is responsible for controlling Hh signaling, independent of primary cilia in PDAC cells.
Collapse
Affiliation(s)
- Toshihiko Fushimi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tetsuo Kobayashi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Department of Pathology and Oncology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Hiroshi Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
4
|
Devlin LA, Coles J, Jackson CL, Barroso-Gil M, Green B, Walker WT, Thomas NS, Thompson J, Rock SA, Neatu R, Powell L, Molinari E, Wilson IJ, Cordell HJ, Olinger E, Miles CG, Sayer JA, Wheway G, Lucas JS. Biallelic variants in CEP164 cause a motile ciliopathy-like syndrome. Clin Genet 2023; 103:330-334. [PMID: 36273371 PMCID: PMC10099168 DOI: 10.1111/cge.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/21/2022] [Accepted: 10/15/2022] [Indexed: 02/04/2023]
Abstract
Ciliopathies may be classed as primary or motile depending on the underlying ciliary defect and are usually considered distinct clinical entities. Primary ciliopathies are associated with multisystem syndromes typically affecting the brain, kidney, and eye, as well as other organ systems such as the liver, skeleton, auditory system, and metabolism. Motile ciliopathies are a heterogenous group of disorders with defects in specialised motile ciliated tissues found within the lung, brain, and reproductive system, and are associated with primary ciliary dyskinesia, bronchiectasis, infertility and rarely hydrocephalus. Primary and motile cilia share defined core ultra-structures with an overlapping proteome, and human disease phenotypes can reflect both primary and motile ciliopathies. CEP164 encodes a centrosomal distal appendage protein vital for primary ciliogenesis. Human CEP164 mutations are typically described in patients with nephronophthisis-related primary ciliopathies but have also been implicated in motile ciliary dysfunction. Here we describe a patient with an atypical motile ciliopathy phenotype and biallelic CEP164 variants. This work provides further evidence that CEP164 mutations can contribute to both primary and motile ciliopathy syndromes, supporting their functional and clinical overlap, and informs the investigation and management of CEP164 ciliopathy patients.
Collapse
Affiliation(s)
- Laura A Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Janice Coles
- Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Claire L Jackson
- Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Miguel Barroso-Gil
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ben Green
- Department of Respiratory Medicine, University Hospitals NHS Trust, Portsmouth, UK
| | - Woolf T Walker
- Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - N Simon Thomas
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury NSF Foundation Trust, Salisbury District Hospital, Salisbury, UK
| | - James Thompson
- Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Simon A Rock
- North East Innovation Lab, The Newcastle upon Tyne Hospitals NHS Foundation Trust, The Biosphere, Newcastle upon Tyne, UK
| | - Ruxandra Neatu
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Powell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Ian J Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eric Olinger
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Colin G Miles
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Renal Services Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
5
|
Ma D, Wang F, Teng J, Huang N, Chen J. Structure and function of distal and subdistal appendages of the mother centriole. J Cell Sci 2023; 136:286880. [PMID: 36727648 DOI: 10.1242/jcs.260560] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Centrosomes are composed of centrioles surrounded by pericentriolar material. The two centrioles in G1 phase are distinguished by the localization of their appendages in the distal and subdistal regions; the centriole possessing both types of appendage is older and referred to as the mother centriole, whereas the other centriole lacking appendages is the daughter centriole. Both distal and subdistal appendages in vertebrate cells consist of multiple proteins assembled in a hierarchical manner. Distal appendages function mainly in the initial process of ciliogenesis, and subdistal appendages are involved in microtubule anchoring, mitotic spindle regulation and maintenance of ciliary signaling. Mutations in genes encoding components of both appendage types are implicated in ciliopathies and developmental defects. In this Review, we discuss recent advances in knowledge regarding the composition and assembly of centriolar appendages, as well as their roles in development and disease.
Collapse
Affiliation(s)
- Dandan Ma
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Reed M, Takemaru KI, Ying G, Frederick JM, Baehr W. Deletion of CEP164 in mouse photoreceptors post-ciliogenesis interrupts ciliary intraflagellar transport (IFT). PLoS Genet 2022; 18:e1010154. [PMID: 36074756 PMCID: PMC9488791 DOI: 10.1371/journal.pgen.1010154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/20/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Centrosomal protein of 164 kDa (CEP164) is located at distal appendages of primary cilia and is necessary for basal body (BB) docking to the apical membrane. To investigate the function of photoreceptor CEP164 before and after BB docking, we deleted CEP164 during retina embryonic development (Six3Cre), in postnatal rod photoreceptors (iCre75) and in mature retina using tamoxifen induction (Prom1-ETCre). BBs dock to the cell cortex during postnatal day 6 (P6) to extend a connecting cilium (CC) and an axoneme. P6 retina-specific knockouts (retCep164-/-) are unable to dock BBs, thereby preventing formation of CC or outer segments (OSs). In rod-specific knockouts (rodCep164-/-), Cre expression starts after P7 and CC/OS form. P16 rodCep164-/- rods have nearly normal OS lengths, and maintain OS attachment through P21 despite loss of CEP164. Intraflagellar transport components (IFT88, IFT57 and IFT140) were reduced at P16 rodCep164-/- BBs and CC tips and nearly absent at P21, indicating impaired intraflagellar transport. Nascent OS discs, labeled with a fluorescent dye on P14 and P18 and harvested on P19, showed continued rodCep164-/- disc morphogenesis but absence of P14 discs mid-distally, indicating OS instability. Tamoxifen induction with PROM1ETCre;Cep164F/F (tamCep164-/-) adult mice affected maintenance of both rod and cone OSs. The results suggest that CEP164 is key towards recruitment and stabilization of IFT-B particles at the BB/CC. IFT impairment may be the main driver of ciliary malfunction observed with hypomorphic CEP164 mutations.
Collapse
Affiliation(s)
- Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Ken-Ichi Takemaru
- Stony Brook University, Department of Pharmacological Sciences, Stony Brook, New York, United States of America
| | - Guoxin Ying
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Jeanne M. Frederick
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
7
|
How CEP164 ciliopathy mutations impair ciliogenesis. Structure 2022; 30:4-5. [PMID: 34995479 DOI: 10.1016/j.str.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CEP164 recruits TTBK2 to the distal end of centrioles to allow primary cilium formation. In this issue of Structure, Rosa e Silva et al. (2022) present co-crystallized structures that show the molecular basis of this recruitment and define how ciliopathy mutations in CEP164 disrupt the CEP164-TTBK2 complex.
Collapse
|
8
|
Vieira LQ. Microbiomes: human and environment. Biophys Rev 2021; 13:883-884. [PMID: 34904020 PMCID: PMC8654501 DOI: 10.1007/s12551-021-00908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Mansour F, Boivin FJ, Shaheed IB, Schueler M, Schmidt-Ott KM. The Role of Centrosome Distal Appendage Proteins (DAPs) in Nephronophthisis and Ciliogenesis. Int J Mol Sci 2021; 22:ijms222212253. [PMID: 34830133 PMCID: PMC8621283 DOI: 10.3390/ijms222212253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The primary cilium is found in most mammalian cells and plays a functional role in tissue homeostasis and organ development by modulating key signaling pathways. Ciliopathies are a group of genetically heterogeneous disorders resulting from defects in cilia development and function. Patients with ciliopathic disorders exhibit a range of phenotypes that include nephronophthisis (NPHP), a progressive tubulointerstitial kidney disease that commonly results in end-stage renal disease (ESRD). In recent years, distal appendages (DAPs), which radially project from the distal end of the mother centriole, have been shown to play a vital role in primary ciliary vesicle docking and the initiation of ciliogenesis. Mutations in the genes encoding these proteins can result in either a complete loss of the primary cilium, abnormal ciliary formation, or defective ciliary signaling. DAPs deficiency in humans or mice commonly results in NPHP. In this review, we outline recent advances in our understanding of the molecular functions of DAPs and how they participate in nephronophthisis development.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12613 Giza, Egypt;
| | - Felix J. Boivin
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Iman B. Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12613 Giza, Egypt;
| | - Markus Schueler
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Correspondence: (M.S.); (K.M.S.-O.)
| | - Kai M. Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Correspondence: (M.S.); (K.M.S.-O.)
| |
Collapse
|