1
|
Fournier L, Guarnera E, Kolmar H, Becker S. Allosteric antibodies: a novel paradigm in drug discovery. Trends Pharmacol Sci 2024:S0165-6147(24)00218-9. [PMID: 39562213 DOI: 10.1016/j.tips.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
Allostery represents a fundamental mechanism in protein regulation, enabling modulation of protein function from sites distal to the active site. While traditionally explored in the context of small molecules, allosteric modulation is gaining traction as a main mode of action in the realm of antibodies, which offer enhanced specificity and reduced toxicity. This review delves into the rapidly growing field of allosteric antibodies, highlighting recent therapeutic advancements and novel druggability avenues. We also explore the potential of these antibodies as innovative tools in drug discovery and discuss contemporary strategies for designing novel allosteric antibodies, leveraging state-of-the-art computational approaches.
Collapse
Affiliation(s)
- Léxane Fournier
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Darmstadt, Germany; Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Enrico Guarnera
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany.
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Stefan Becker
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Darmstadt, Germany.
| |
Collapse
|
2
|
Tee WV, Lim SJM, Berezovsky IN. Toward the Design of Allosteric Effectors: Gaining Comprehensive Control of Drug Properties and Actions. J Med Chem 2024; 67:17191-17206. [PMID: 39326868 PMCID: PMC11472305 DOI: 10.1021/acs.jmedchem.4c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
While the therapeutic potential of allosteric drugs is increasingly realized, the discovery of effectors is largely incidental. The rational design of allosteric effectors requires new state-of-the-art approaches to account for the distinct characteristics of allosteric ligands and their modes of action. We present a broadly applicable computational framework for obtaining allosteric site-effector pairs, providing targeted, highly specific, and tunable regulation to any functional site. We validated the framework using the main protease from SARS-CoV-2 and the K-RasG12D oncoprotein. High-throughput per-residue quantification of the energetics of allosteric signaling and effector binding revealed known drugs capable of inducing the required modulation upon binding. Starting from fragments of known well-characterized drugs, allosteric effectors and binding sites were designed and optimized simultaneously to achieve targeted and specific signaling to distinct functional sites, such as, for example, the switch regions of K-RasG12D. The generic framework proposed in this work will be instrumental in developing allosteric therapies aligned with a precision medicine approach.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Sylvester J. M. Lim
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Igor N. Berezovsky
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
- Department
of Biological Sciences (DBS), National University
of Singapore (NUS), 8
Medical Drive, Singapore 117579, Singapore
| |
Collapse
|
3
|
Ose NJ, Campitelli P, Modi T, Kazan IC, Kumar S, Ozkan SB. Some mechanistic underpinnings of molecular adaptations of SARS-COV-2 spike protein by integrating candidate adaptive polymorphisms with protein dynamics. eLife 2024; 12:RP92063. [PMID: 38713502 PMCID: PMC11076047 DOI: 10.7554/elife.92063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.
Collapse
Affiliation(s)
- Nicholas James Ose
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - I Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple UniversityPhiladelphiaUnited States
- Department of Biology, Temple UniversityPhiladelphiaUnited States
- Center for Genomic Medicine Research, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Sefika Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State UniversityTempeUnited States
| |
Collapse
|
4
|
Samsudin F, Zuzic L, Marzinek JK, Bond PJ. Mechanisms of allostery at the viral surface through the eyes of molecular simulation. Curr Opin Struct Biol 2024; 84:102761. [PMID: 38142635 DOI: 10.1016/j.sbi.2023.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
The outermost surface layer of any virus is formed by either a capsid shell or envelope. Such layers have traditionally been thought of as immovable structures, but it is becoming apparent that they cannot be viewed exclusively as static architectures protecting the viral genome. A limited number of proteins on the virion surface must perform a multitude of functions in order to orchestrate the viral life cycle, and allostery can regulate their structures at multiple levels of organization, spanning individual molecules, protomers, large oligomeric assemblies, or entire viral surfaces. Here, we review recent contributions from the molecular simulation field to viral surface allostery, with a particular focus on the trimeric spike glycoprotein emerging from the coronavirus surface, and the icosahedral flaviviral envelope complex. As emerging viral pathogens continue to pose a global threat, an improved understanding of viral dynamics and allosteric regulation will prove crucial in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Firdaus Samsudin
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, 07-01 Matrix, 138671, Singapore
| | - Lorena Zuzic
- Department of Chemistry, Langelandsgade 140, Aarhus University, Aarhus 8000, Denmark
| | - Jan K Marzinek
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, 07-01 Matrix, 138671, Singapore
| | - Peter J Bond
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, 07-01 Matrix, 138671, Singapore; Department of Biological Sciences, 16 Science Drive 4, National University of Singapore, 117558, Singapore.
| |
Collapse
|
5
|
Tee WV, Berezovsky IN. Allosteric drugs: New principles and design approaches. Curr Opin Struct Biol 2024; 84:102758. [PMID: 38171188 DOI: 10.1016/j.sbi.2023.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Focusing on an important biomedical implication of allostery - design of allosteric drugs, we describe characteristics of allosteric sites, effectors, and their modes of actions distinguishing them from the orthosteric counterparts and calling for new principles and protocols in the quests for allosteric drugs. We show the importance of considering both binding affinity and allosteric signaling in establishing the structure-activity relationships (SARs) toward design of allosteric effectors, arguing that pairs of allosteric sites and their effector ligands - the site-effector pairs - should be generated and adjusted simultaneously in the framework of what we call directed design protocol. Key ideas and approaches for designing allosteric effectors including reverse perturbation, targeted and agnostic analysis are also discussed here. Several promising computational approaches are highlighted, along with the need for and potential advantages of utilizing generative models to facilitate discovery/design of new allosteric drugs.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671.
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| |
Collapse
|
6
|
Boonserm P, Somsoros W, Khunrae P, Charupanit K, Limsakul P, Sutthibutpong T. Allosteric Signal within the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein Mediated by a Class 3 Monoclonal Antibody Revealed through Molecular Dynamics Simulations and Protein Residue Networks. ACS OMEGA 2024; 9:4684-4694. [PMID: 38313482 PMCID: PMC10831861 DOI: 10.1021/acsomega.3c07947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
This study investigated the allosteric action within the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein caused by class 3 monoclonal antibody (mAb) binding. As the emergence of SARS-CoV-2 variants has raised concerns about the effectiveness of treatments by antibodies, targeting the highly conserved class 3 epitopes has become an alternative strategy of antibody design. Simulations of explicitly solvated RBD of the BA.2.75 omicron subvariants were carried out both in the presence and in the absence of bebtelovimab, as a model example of class 3 monoclonal antibodies against the RBD of the SARS-CoV-2 spike protein. The comparative analysis showed that bebtelovimab's binding on two α helices at the epitope region disrupted the nearby interaction network, which triggered a denser interaction network formation on the opposite side of the receptor-binding motif (RBM) region and resulted in a "close" conformation that could prevent the ACE2 binding. A better understanding of this allosteric action could lead to the development of alternative mAbs for further variants of concern. In terms of computational techniques, the communicability matrix could serve as a tool to visualize the effects of allostery, as the pairs of amino acids or secondary structures with high communicability could pinpoint the possible sites to transfer the allosteric signal. Additionally, the communicability gain/loss matrix could help elucidate the consequences of allosteric actions, which could be employed along with other allostery quantification techniques in some previous studies.
Collapse
Affiliation(s)
- Patamalai Boonserm
- Department
of Microbiology, Faculty of Science, King
Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Wasusit Somsoros
- Department
of Microbiology, Faculty of Science, King
Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pongsak Khunrae
- Department
of Microbiology, Faculty of Science, King
Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Krit Charupanit
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Praopim Limsakul
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center
of Excellence for Trace Analysis and Biosensor (TAB-CoE), Faculty
of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thana Sutthibutpong
- Theoretical
and Computational Physics Group, Department of Physics, Faculty of
Science, King Mongkut’s University
of Technology Thonburi, Bangkok 10140, Thailand
- Center
of
Excellence in Theoretical and Computational Science (TACS-CoE), Faculty
of Science, King Mongkut’s University
of Technology Thonburi, Bangkok 10140, Thailand
| |
Collapse
|
7
|
Ose NJ, Campitelli P, Modi T, Can Kazan I, Kumar S, Banu Ozkan S. Some mechanistic underpinnings of molecular adaptations of SARS-COV-2 spike protein by integrating candidate adaptive polymorphisms with protein dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557827. [PMID: 37745560 PMCID: PMC10515954 DOI: 10.1101/2023.09.14.557827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 Spike (S) protein. With this approach, we first identified Candidate Adaptive Polymorphisms (CAPs) of the SARS-CoV-2 Spike protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.
Collapse
Affiliation(s)
- Nicholas J. Ose
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - I. Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S. Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
8
|
He J, Liu X, Zhu C, Zha J, Li Q, Zhao M, Wei J, Li M, Wu C, Wang J, Jiao Y, Ning S, Zhou J, Hong Y, Liu Y, He H, Zhang M, Chen F, Li Y, He X, Wu J, Lu S, Song K, Lu X, Zhang J. ASD2023: towards the integrating landscapes of allosteric knowledgebase. Nucleic Acids Res 2024; 52:D376-D383. [PMID: 37870448 PMCID: PMC10767950 DOI: 10.1093/nar/gkad915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Allosteric regulation, induced by perturbations at an allosteric site topographically distinct from the orthosteric site, is one of the most direct and efficient ways to fine-tune macromolecular function. The Allosteric Database (ASD; accessible online at http://mdl.shsmu.edu.cn/ASD) has been systematically developed since 2009 to provide comprehensive information on allosteric regulation. In recent years, allostery has seen sustained growth and wide-ranging applications in life sciences, from basic research to new therapeutics development, while also elucidating emerging obstacles across allosteric research stages. To overcome these challenges and maintain high-quality data center services, novel features were curated in the ASD2023 update: (i) 66 589 potential allosteric sites, covering > 80% of the human proteome and constituting the human allosteric pocketome; (ii) 748 allosteric protein-protein interaction (PPI) modulators with clear mechanisms, aiding protein machine studies and PPI-targeted drug discovery; (iii) 'Allosteric Hit-to-Lead,' a pioneering dataset providing panoramic views from 87 well-defined allosteric hits to 6565 leads and (iv) 456 dualsteric modulators for exploring the simultaneous regulation of allosteric and orthosteric sites. Meanwhile, ASD2023 maintains a significant growth of foundational allosteric data. Based on these efforts, the allosteric knowledgebase is progressively evolving towards an integrated landscape, facilitating advancements in allosteric target identification, mechanistic exploration and drug discovery.
Collapse
Affiliation(s)
- Jixiao He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyi Liu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunhao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jinyin Zha
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingzhu Zhao
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiacheng Wei
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengwei Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Junyuan Wang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Yonglai Jiao
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaobo Ning
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiamin Zhou
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Yue Hong
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yonghui Liu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongxi He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Mingyang Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feiying Chen
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanxiu Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinheng He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaoyong Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kun Song
- Nutshell Therapeutics, Shanghai 201210, China
| | - Xuefeng Lu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200011, China
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Li T, Yan Z, Zhou W, Liu Q, Liu J, Hua H. Discovery of a Potential Allosteric Site in the SARS-CoV-2 Spike Protein and Targeting Allosteric Inhibitor to Stabilize the RBD Down State using a Computational Approach. Curr Comput Aided Drug Des 2024; 20:784-797. [PMID: 37493168 DOI: 10.2174/1573409919666230726142418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide public health crisis. At present, the development of effective drugs and/or related therapeutics is still the most urgent and important task for combating the virus. The viral entry and associated infectivity mainly rely on its envelope spike protein to recognize and bind to the host cell receptor angiotensin-converting enzyme 2 (ACE2) through a conformational switch of the spike receptor binding domain (RBD) from inactive to active state. Thus, it is of great significance to design an allosteric inhibitor targeting spike to lock it in the inactive and ACE2-inaccessible state. OBJECTIVE This study aims to discover the potential broad-spectrum allosteric inhibitors capable of binding and stabilizing the diverse spike variants, including the wild type, Delta, and Omicron, in the inactive RBD down state. METHODS In this work, we first detected a potential allosteric pocket within the SARS-CoV-2 spike protein. Then, we performed large-scale structure-based virtual screening by targeting the putative allosteric pocket to identify allosteric inhibitors that could stabilize the spike inactive state. Molecular dynamics simulations were further carried out to evaluate the effects of compound binding on the stability of spike RBD. RESULTS Finally, we identified three potential allosteric inhibitors, CPD3, CPD5, and CPD6, against diverse SARS-CoV-2 variants, including Wild-type, Delta, and Omicron variants. Our simulation results showed that the three compounds could stably bind the predicted allosteric site and effectively stabilize the spike in the inactive state. CONCLUSION The three compounds provide novel chemical structures for rational drug design targeting spike protein, which is expected to greatly assist in the development of new drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Tong Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng Yan
- The Affiliated Jiangyin Hospital of Nanjing University of Chinese Medicine, Jiangyin 214400, China
| | - Wei Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qun Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinfeng Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Haibing Hua
- The Affiliated Jiangyin Hospital of Nanjing University of Chinese Medicine, Jiangyin 214400, China
| |
Collapse
|
10
|
Lu X, Lan X, Lu S, Zhang J. Progressive computational approaches to facilitate decryption of allosteric mechanism and drug discovery. Curr Opin Struct Biol 2023; 83:102701. [PMID: 37716092 DOI: 10.1016/j.sbi.2023.102701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Allostery is a ubiquitous biological phenomenon where perturbation at topologically distal areas of a protein serves as a trigger to fine-tune the orthosteric site and thus regulate protein function. The investigation of allosteric regulation greatly enhances our understanding of human diseases and broadens avenue for drug discovery. For decades, owing to the difficulty in allostery characterization through serendipitous experimental screening, researchers have developed several innovative computational approaches, which proves to accelerate the elucidation of allostery. Herein, we review the state-of-the-art advance of computational methodologies for allostery study, with particular emphasis on promising trends emerging over the past two years. We expect this review will outline the latest landscape of allostery study and inspire researchers to further facilitate this field.
Collapse
Affiliation(s)
- Xun Lu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Shaoyong Lu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Aliper ET, Efremov RG. Inconspicuous Yet Indispensable: The Coronavirus Spike Transmembrane Domain. Int J Mol Sci 2023; 24:16421. [PMID: 38003610 PMCID: PMC10671605 DOI: 10.3390/ijms242216421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Membrane-spanning portions of proteins' polypeptide chains are commonly known as their transmembrane domains (TMDs). The structural organisation and dynamic behaviour of TMDs from proteins of various families, be that receptors, ion channels, enzymes etc., have been under scrutiny on the part of the scientific community for the last few decades. The reason for such attention is that, apart from their obvious role as an "anchor" in ensuring the correct orientation of the protein's extra-membrane domains (in most cases functionally important), TMDs often actively and directly contribute to the operation of "the protein machine". They are capable of transmitting signals across the membrane, interacting with adjacent TMDs and membrane-proximal domains, as well as with various ligands, etc. Structural data on TMD arrangement are still fragmentary at best due to their complex molecular organisation as, most commonly, dynamic oligomers, as well as due to the challenges related to experimental studies thereof. Inter alia, this is especially true for viral fusion proteins, which have been the focus of numerous studies for quite some time, but have provoked unprecedented interest in view of the SARS-CoV-2 pandemic. However, despite numerous structure-centred studies of the spike (S) protein effectuating target cell entry in coronaviruses, structural data on the TMD as part of the entire spike protein are still incomplete, whereas this segment is known to be crucial to the spike's fusogenic activity. Therefore, in attempting to bring together currently available data on the structure and dynamics of spike proteins' TMDs, the present review aims to tackle a highly pertinent task and contribute to a better understanding of the molecular mechanisms underlying virus-mediated fusion, also offering a rationale for the design of novel efficacious methods for the treatment of infectious diseases caused by SARS-CoV-2 and related viruses.
Collapse
Affiliation(s)
- Elena T. Aliper
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Applied Mathematics, National Research University Higher School of Economics, Moscow 101000, Russia
- L.D. Landau School of Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny 141701, Russia
| |
Collapse
|
12
|
Rocha Aguiar G, Leda Gomes de Lemos T, Braz-Filho R, Marques da Fonseca A, Silva Marinho E, Vasconcelos Ribeiro PR, Marques Canuto K, Queiroz Monte FJ. Synthesis and in silico study of chenodeoxycholic acid and its analogues as an alternative inhibitor of spike glycoprotein of SARS-CoV-2. J Biomol Struct Dyn 2023; 41:8334-8348. [PMID: 36218138 DOI: 10.1080/07391102.2022.2133010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/30/2022] [Indexed: 10/17/2022]
Abstract
COVID-19, caused by SARS-CoV-2, is a viral infection that has generated one of the most significant health problems in the world. Spike glycoprotein is a crucial enzyme in viral replication and transcription mediation. There are reports in the literature on using bile acid in the fight against this virus through in vitro tests. This work presents the synthesis of nine chenodeoxycholic acid derivatives (1-9), which were prepared by oxidation, acetylation, formylation, and esterification reactions, and the analogs 6-9 have not yet been reported in the literature and the possibility of conducting an in silico study of bile acid derivatives as a therapeutic alternative to combat the virus using glycoprotein as a macromolecular target. As a result, five compounds (1, 6-9) possessed favorable competitive interactions with the lowest energies compared to the native ligand (BLA), and the highlighted compound 9 got the best scores. At the same time, analog 1 presented the best ADME filter result. Molecular dynamics also simulated these compounds to verify their stability within the active protein site to seek new therapeutic propositions to fight against the pandemic. Physical and spectroscopic data have fully characterized all the compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gisele Rocha Aguiar
- Departamento de Química Orgânica, Universidade Federal do Ceará, Fortaleza-CE, Brazil
| | | | - Raimundo Braz-Filho
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro-RJ, Brazil
| | - Aluísio Marques da Fonseca
- Instituto de Ciências Exatas e Naturais, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção-CE, Brazil
| | - Emmanuel Silva Marinho
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual do Ceará, Limoeiro do Norte-CE, Brazil
| | | | - Kirley Marques Canuto
- Laboratório multiusuário de Química de Produtos Naturais, Embrapa Agroindústria Tropical, Fortaleza-CE, Brazil
| | | |
Collapse
|
13
|
Strizzi S, Bernardo L, D'Ursi P, Urbinati C, Bianco A, Limanaqi F, Manconi A, Milanesi M, Macchi A, Di Silvestre D, Cavalleri A, Pareschi G, Rusnati M, Clerici M, Mauri P, Biasin M. An innovative strategy to investigate microbial protein modifications in a reliable fast and sensitive way: A therapy oriented proof of concept based on UV-C irradiation of SARS-CoV-2 spike protein. Pharmacol Res 2023; 194:106862. [PMID: 37479104 DOI: 10.1016/j.phrs.2023.106862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The characterization of modifications of microbial proteins is of primary importance to dissect pathogen lifecycle mechanisms and could be useful in identifying therapeutic targets. Attempts to solve this issue yielded only partial and non-exhaustive results. We developed a multidisciplinary approach by coupling in vitro infection assay, mass spectrometry (MS), protein 3D modelling, and surface plasma resonance (SPR). As a proof of concept, the effect of low UV-C (273 nm) irradiation on SARS-CoV-2 spike (S) protein was investigated. Following UV-C exposure, MS analysis identified, among other modifications, the disruption of a disulphide bond within the conserved S2 subunit of S protein. Computational analyses revealed that this bond breakage associates with an allosteric effect resulting in the generation of a closed conformation with a reduced ability to bind the ACE2 receptor. The UV-C-induced reduced affinity of S protein for ACE2 was further confirmed by SPR analyses and in vitro infection assays. This comprehensive approach pinpoints the S2 domain of S protein as a potential therapeutic target to prevent SARS-CoV-2 infection. Notably, this workflow could be used to screen a wide variety of microbial protein domains, resulting in a precise molecular fingerprint and providing new insights to adequately address future epidemics.
Collapse
Affiliation(s)
- Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Letizia Bernardo
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Pasqualina D'Ursi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Chiara Urbinati
- Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Andrea Bianco
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Via E. Bianchi, 46, Merate, 23807 Lecco, Italy
| | - Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Andrea Manconi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Maria Milanesi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy; Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Macchi
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Via E. Bianchi, 46, Merate, 23807 Lecco, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Adalberto Cavalleri
- Epidemiology and Prevention Unit, IRCCS Foundation, Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milan, Italy
| | - Giovanni Pareschi
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Via E. Bianchi, 46, Merate, 23807 Lecco, Italy
| | - Marco Rusnati
- Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, íItaly
| | - PierLuigi Mauri
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy; Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, 56127 Pisa, Italy.
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| |
Collapse
|
14
|
Cox M, Peacock TP, Harvey WT, Hughes J, Wright DW, Willett BJ, Thomson E, Gupta RK, Peacock SJ, Robertson DL, Carabelli AM. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat Rev Microbiol 2023; 21:112-124. [PMID: 36307535 PMCID: PMC9616429 DOI: 10.1038/s41579-022-00809-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 01/20/2023]
Abstract
Monoclonal antibodies (mAbs) offer a treatment option for individuals with severe COVID-19 and are especially important in high-risk individuals where vaccination is not an option. Given the importance of understanding the evolution of resistance to mAbs by SARS-CoV-2, we reviewed the available in vitro neutralization data for mAbs against live variants and viral constructs containing spike mutations of interest. Unfortunately, evasion of mAb-induced protection is being reported with new SARS-CoV-2 variants. The magnitude of neutralization reduction varied greatly among mAb-variant pairs. For example, sotrovimab retained its neutralization capacity against Omicron BA.1 but showed reduced efficacy against BA.2, BA.4 and BA.5, and BA.2.12.1. At present, only bebtelovimab has been reported to retain its efficacy against all SARS-CoV-2 variants considered here. Resistance to mAb neutralization was dominated by the action of epitope single amino acid substitutions in the spike protein. Although not all observed epitope mutations result in increased mAb evasion, amino acid substitutions at non-epitope positions and combinations of mutations also contribute to evasion of neutralization. This Review highlights the implications for the rational design of viral genomic surveillance and factors to consider for the development of novel mAb therapies.
Collapse
Affiliation(s)
- MacGregor Cox
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Thomas P Peacock
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Derek W Wright
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Emma Thomson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
15
|
Abstract
This Viewpoint argues that the development of a distinctly improved generation of SARS-CoV-2 vaccines is paramount to offering a greater breadth and depth of protection for a longer duration against COVID-19 disease.
Collapse
Affiliation(s)
- Peter W Marks
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Philip A Gruppuso
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Eli Y Adashi
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
16
|
Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3–d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 MPro and PLPro. Bioorg Chem 2023; 135:106390. [PMID: 37037129 PMCID: PMC9883075 DOI: 10.1016/j.bioorg.2023.106390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
In this paper, an environmentally benign, convenient, and efficient one-pot three-component reaction has been developed for the regioselective synthesis of novel 5-aroyl(or heteroaroyl)-6-(alkylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-diones (4a‒n) through the sequential condensation of aryl(or heteroaryl)glyoxal monohydrates (1a‒g), 1,3-dimethylbarbituric acid (2), and alkyl(viz. cyclohexyl or tert-butyl)isocyanides (3a or 3b) catalyzed by ultra-low loading ZrOCl2•8H2O (just 2 mol%) in water at 50 ˚C. After synthesis and characterization of the mentioned furo[2,3-d]pyrimidines (4a‒n), their multi-targeting inhibitory properties were investigated against the active site and putative allosteric hotspots of both SARS-CoV-2 main protease (MPro) and papain-like protease (PLPro) based on molecular docking studies and compare the attained results with various medicinal compounds which approximately in three past years were used, introduced, and or repurposed to fight against COVID-19. Furthermore, drug-likeness properties of the mentioned small heterocyclic frameworks (4a‒n) have been explored using in silico ADMET analyses. Interestingly, the molecular docking studies and ADMET-related data revealed that the novel series of furo[2,3-d]pyrimidines (4a‒n), especially 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-dione (4g) as hit one is potential COVID-19 drug candidate, can subject to further in vitro and in vivo studies. It is worthwhile to note that the protein-ligand-type molecular docking studies on the human body temperature-dependent MPro protein that surprisingly contains zincII (ZnII) ion between His41/Cys145 catalytic dyad in the active site, which undoubtedly can make new plans for designing novel SARS-CoV-2 MPro inhibitors, is performed for the first time in this paper, to the best of our knowledge.
Collapse
|
17
|
Tan ZW, Tee WV, Guarnera E, Berezovsky IN. AlloMAPS 2: allosteric fingerprints of the AlphaFold and Pfam-trRosetta predicted structures for engineering and design. Nucleic Acids Res 2022; 51:D345-D351. [PMID: 36169226 PMCID: PMC9825619 DOI: 10.1093/nar/gkac828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/29/2023] Open
Abstract
AlloMAPS 2 is an update of the Allosteric Mutation Analysis and Polymorphism of Signalling database, which contains data on allosteric communication obtained for predicted structures in the AlphaFold database (AFDB) and trRosetta-predicted Pfam domains. The data update contains Allosteric Signalling Maps (ASMs) and Allosteric Probing Maps (APMs) quantifying allosteric effects of mutations and of small probe binding, respectively. To ensure quality of the ASMs and APMs, we performed careful and accurate selection of protein sets containing high-quality predicted structures in both databases for each organism/structure, and the data is available for browsing and download. The data for remaining structures are available for download and should be used at user's discretion and responsibility. We believe these massive data can facilitate both diagnostics and drug design within the precision medicine paradigm. Specifically, it can be instrumental in the analysis of allosteric effects of pathological and rescue mutations, providing starting points for fragment-based design of allosteric effectors. The exhaustive character of allosteric signalling and probing fingerprints will be also useful in future developments of corresponding machine learning applications. The database is freely available at: http://allomaps.bii.a-star.edu.sg.
Collapse
Affiliation(s)
- Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Igor N Berezovsky
- To whom correspondence should be addressed. Tel: +65 6478 8269; Fax: +65 6478 9047;
| |
Collapse
|
18
|
Strömich L, Wu N, Barahona M, Yaliraki SN. Allosteric Hotspots in the Main Protease of SARS-CoV-2. J Mol Biol 2022; 434:167748. [PMID: 35843284 PMCID: PMC9288249 DOI: 10.1016/j.jmb.2022.167748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Inhibiting the main protease of SARS-CoV-2 is of great interest in tackling the COVID-19 pandemic caused by the virus. Most efforts have been centred on inhibiting the binding site of the enzyme. However, considering allosteric sites, distant from the active or orthosteric site, broadens the search space for drug candidates and confers the advantages of allosteric drug targeting. Here, we report the allosteric communication pathways in the main protease dimer by using two novel fully atomistic graph-theoretical methods: Bond-to-bond propensity, which has been previously successful in identifying allosteric sites in extensive benchmark data sets without a priori knowledge, and Markov transient analysis, which has previously aided in finding novel drug targets in catalytic protein families. Using statistical bootstrapping, we score the highest ranking sites against random sites at similar distances, and we identify four statistically significant putative allosteric sites as good candidates for alternative drug targeting.
Collapse
Affiliation(s)
- Léonie Strömich
- Department of Chemistry Imperial College London, United Kingdom
| | - Nan Wu
- Department of Chemistry Imperial College London, United Kingdom
| | | | | |
Collapse
|
19
|
Aliper ET, Krylov NA, Nolde DE, Polyansky AA, Efremov RG. A Uniquely Stable Trimeric Model of SARS-CoV-2 Spike Transmembrane Domain. Int J Mol Sci 2022; 23:ijms23169221. [PMID: 36012488 PMCID: PMC9409440 DOI: 10.3390/ijms23169221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding fusion mechanisms employed by SARS-CoV-2 spike protein entails realistic transmembrane domain (TMD) models, while no reliable approaches towards predicting the 3D structure of transmembrane (TM) trimers exist. Here, we propose a comprehensive computational framework to model the spike TMD only based on its primary structure. We performed amino acid sequence pattern matching and compared the molecular hydrophobicity potential (MHP) distribution on the helix surface against TM homotrimers with known 3D structures and selected an appropriate template for homology modeling. We then iteratively built a model of spike TMD, adjusting “dynamic MHP portraits” and residue variability motifs. The stability of this model, with and without palmitoyl modifications downstream of the TMD, and several alternative configurations (including a recent NMR structure), was tested in all-atom molecular dynamics simulations in a POPC bilayer mimicking the viral envelope. Our model demonstrated unique stability under the conditions applied and conforms to known basic principles of TM helix packing. The original computational framework looks promising and could potentially be employed in the construction of 3D models of TM trimers for a wide range of membrane proteins.
Collapse
Affiliation(s)
- Elena T. Aliper
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Nikolay A. Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Dmitry E. Nolde
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Anton A. Polyansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna BioCenter 5, A-1030 Vienna, Austria
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- Correspondence:
| |
Collapse
|
20
|
Barozi V, Edkins AL, Tastan Bishop Ö. Evolutionary progression of collective mutations in Omicron sub-lineages towards efficient RBD-hACE2: Allosteric communications between and within viral and human proteins. Comput Struct Biotechnol J 2022; 20:4562-4578. [PMID: 35989699 PMCID: PMC9384468 DOI: 10.1016/j.csbj.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
The interaction between the Spike (S) protein of SARS-CoV-2 and the human angiotensin converting enzyme 2 (hACE2) is essential for infection, and is a target for neutralizing antibodies. Consequently, selection of mutations in the S protein is expected to be driven by the impact on the interaction with hACE2 and antibody escape. Here, for the first time, we systematically characterized the collective effects of mutations in each of the Omicron sub-lineages (BA.1, BA.2, BA.3 and BA.4) on both the viral S protein receptor binding domain (RBD) and the hACE2 protein using post molecular dynamics studies and dynamic residue network (DRN) analysis. Our analysis suggested that Omicron sub-lineage mutations result in altered physicochemical properties that change conformational flexibility compared to the reference structure, and may contribute to antibody escape. We also observed changes in the hACE2 substrate binding groove in some sub-lineages. Notably, we identified unique allosteric communication paths in the reference protein complex formed by the DRN metrics betweenness centrality and eigencentrality hubs, originating from the RBD core traversing the receptor binding motif of the S protein and the N-terminal domain of the hACE2 to the active site. We showed allosteric changes in residue network paths in both the RBD and hACE2 proteins due to Omicron sub-lineage mutations. Taken together, these data suggest progressive evolution of the Omicron S protein RBD in sub-lineages towards a more efficient interaction with the hACE2 receptor which may account for the increased transmissibility of Omicron variants.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6139, South Africa
| | - Adrienne L. Edkins
- The Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6139, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6139, South Africa
| |
Collapse
|
21
|
Zuzic L, Samsudin F, Shivgan AT, Raghuvamsi PV, Marzinek JK, Boags A, Pedebos C, Tulsian NK, Warwicker J, MacAry P, Crispin M, Khalid S, Anand GS, Bond PJ. Uncovering cryptic pockets in the SARS-CoV-2 spike glycoprotein. Structure 2022; 30:1062-1074.e4. [PMID: 35660160 PMCID: PMC9164293 DOI: 10.1016/j.str.2022.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic has prompted a rapid response in vaccine and drug development. Herein, we modeled a complete membrane-embedded SARS-CoV-2 spike glycoprotein and used molecular dynamics simulations with benzene probes designed to enhance discovery of cryptic pockets. This approach recapitulated lipid and host metabolite binding sites previously characterized by cryo-electron microscopy, revealing likely ligand entry routes, and uncovered a novel cryptic pocket with promising druggable properties located underneath the 617-628 loop. A full representation of glycan moieties was essential to accurately describe pocket dynamics. A multi-conformational behavior of the 617-628 loop in simulations was validated using hydrogen-deuterium exchange mass spectrometry experiments, supportive of opening and closing dynamics. The pocket is the site of multiple mutations associated with increased transmissibility found in SARS-CoV-2 variants of concern including Omicron. Collectively, this work highlights the utility of the benzene mapping approach in uncovering potential druggable sites on the surface of SARS-CoV-2 targets.
Collapse
Affiliation(s)
- Lorena Zuzic
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore; Department of Chemistry, Faculty of Science and Engineering, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Firdaus Samsudin
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Aishwary T Shivgan
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Palur V Raghuvamsi
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Alister Boags
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore; School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Conrado Pedebos
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Nikhil K Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Department of Biochemistry, National University of Singapore, Singapore 117546, Singapore
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Paul MacAry
- Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore 117546, Singapore
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
22
|
Dubanevics I, McLeish TCB. Optimising Elastic Network Models for Protein Dynamics and Allostery: Spatial and Modal Cut-offs and Backbone Stiffness. J Mol Biol 2022; 434:167696. [PMID: 35810792 DOI: 10.1016/j.jmb.2022.167696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/15/2023]
Abstract
The family of coarse-grained models for protein dynamics known as Elastic Network Models (ENMs) require careful choice of parameters to represent well experimental measurements or fully-atomistic simulations. The most basic ENM that represents each protein residue by a node at the position of its C-alpha atom, all connected by springs of equal stiffness, up to a cut-off in distance. Even at this level a choice is required of the optimum cut-off distance and the upper limit of elastic normal modes taken in any sum for physical properties, such as dynamic correlation or allosteric effects on binding. Additionally, backbone-enhanced ENM (BENM) may improve the model by allocating a higher stiffness to springs that connect along the protein backbone. This work reports on the effect of varying these three parameters (distance and mode cutoffs, backbone stiffness) on the dynamical structure of three proteins, Catabolite Activator Protein (CAP), Glutathione S-transferase (GST), and the SARS-CoV-2 Main Protease (M pro ). Our main results are: (1) balancing B-factor and dispersion-relation predictions, a near-universal optimal value of 8.5 Å is advisable for ENMs; (2) inhomogeneity in elasticity brings the first mode containing spatial structure not well-resolved by the ENM typically within the first 20; (3) the BENM only affects modes in the upper third of the distribution, and, additionally to the ENM, is only able to model the dispersion curve better in this vicinity; (4) BENM does not typically affect fluctuation-allostery, which also requires careful treatment of the effector binding to the host protein to capture.
Collapse
|
23
|
Tee WV, Wah Tan Z, Guarnera E, Berezovsky IN. Conservation and diversity in allosteric fingerprints of proteins for evolutionary-inspired engineering and design. J Mol Biol 2022; 434:167577. [PMID: 35395233 DOI: 10.1016/j.jmb.2022.167577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Hand-in-hand work of physics and evolution delivered protein universe with diversity of forms, sizes, and functions. Pervasiveness and advantageous traits of allostery made it an important component of the protein function regulation, calling for thorough investigation of its structural determinants and evolution. Learning directly from nature, we explored here allosteric communication in several major folds and repeat proteins, including α/β and β-barrels, β-propellers, Ig-like fold, ankyrin and α/β leucine-rich repeat proteins, which provide structural platforms for many different enzymatic and signalling functions. We obtained a picture of conserved allosteric communication characteristic in different fold types, modifications of the structure-driven signalling patterns via sequence-determined divergence to specific functions, as well as emergence and potential diversification of allosteric regulation in multi-domain proteins and oligomeric assemblies. Our observations will be instrumental in facilitating the engineering and de novo design of proteins with allosterically regulated functions, including development of therapeutic biologics. In particular, results described here may guide the identification of the optimal structural platforms (e.g. fold type, size, and oligomerization states) and the types of diversifications/perturbations, such as mutations, effector binding, and order-disorder transition. The tunable allosteric linkage across distant regions can be used as a pivotal component in the design/engineering of modular biological systems beyond the traditional scaffolding function.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117597.
| |
Collapse
|