1
|
Machado ND, Mosquera JE, Cejudo-Bastante C, Goñi ML, Martini RE, Gañán NA, Mantell-Serrano C, Casas-Cardoso L. Supercritical Impregnation of PETG with Olea europaea Leaf Extract: Influence of Operational Parameters on Expansion Degree, Antioxidant and Mechanical Properties. Polymers (Basel) 2024; 16:1567. [PMID: 38891513 PMCID: PMC11174583 DOI: 10.3390/polym16111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
PETG (poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate)) is an amorphous copolymer, biocompatible, recyclable, and versatile. Nowadays, it is being actively researched for biomedical applications. However, proposals of PETG as a platform for the loading of bioactive compounds from natural extract are scarce, as well as the effect of the supercritical impregnation on this polymer. In this work, the supercritical impregnation of PETG filaments with Olea europaea leaf extract was investigated, evaluating the effect of pressure (100-400 bar), temperature (35-55 °C), and depressurization rate (5-50 bar min-1) on the expansion degree, antioxidant activity, and mechanical properties of the resulting filaments. PETG expansion degree ranged from ~3 to 120%, with antioxidant loading ranging from 2.28 to 17.96 g per 100 g of polymer, corresponding to oxidation inhibition values of 7.65 and 66.55%, respectively. The temperature and the binary interaction between pressure and depressurization rate most affected these properties. The mechanical properties of PETG filaments depended greatly on process variables. Tensile strength values were similar or lower than the untreated filaments. Young's modulus and elongation at break values decreased below ~1000 MPa and ~10%, respectively, after the scCO2 treatment and impregnation. The extent of this decrease depended on the supercritical operational parameters. Therefore, filaments with higher antioxidant activity and different expansion degrees and mechanical properties were obtained by adjusting the supercritical processing conditions.
Collapse
Affiliation(s)
- Noelia D. Machado
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Puerto Real, Spain; (C.C.-B.); (C.M.-S.); (L.C.-C.)
| | - José E. Mosquera
- Centre de Recherche de Royallieu, Laboratoire Transformations Intégrées de la Matière Renouvelable (TIMR), Ecole Supérieure de Chimie Organique et Minérale (ESCOM), Université de Technologie de Compiègne, Rue du Docteur Schweitzer CS 60319, 60203 Compiègne, France;
| | - Cristina Cejudo-Bastante
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Puerto Real, Spain; (C.C.-B.); (C.M.-S.); (L.C.-C.)
| | - María L. Goñi
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA–UNC–CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina; (M.L.G.); (R.E.M.); (N.A.G.)
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (ICTA–FCEFyN–UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Raquel E. Martini
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA–UNC–CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina; (M.L.G.); (R.E.M.); (N.A.G.)
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (ICTA–FCEFyN–UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Nicolás A. Gañán
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA–UNC–CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina; (M.L.G.); (R.E.M.); (N.A.G.)
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (ICTA–FCEFyN–UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Casimiro Mantell-Serrano
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Puerto Real, Spain; (C.C.-B.); (C.M.-S.); (L.C.-C.)
| | - Lourdes Casas-Cardoso
- Chemical Engineering and Food Technology Department, Faculty of Science, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Avda. República Saharaui, s/n, 11510 Puerto Real, Spain; (C.C.-B.); (C.M.-S.); (L.C.-C.)
| |
Collapse
|
2
|
García-Casas I, Valor D, Elayoubi H, Montes A, Pereyra C. Morphological 3D Analysis of PLGA/Chitosan Blend Polymer Scaffolds and Their Impregnation with Olive Pruning Residues via Supercritical CO 2. Polymers (Basel) 2024; 16:1451. [PMID: 38891395 PMCID: PMC11174888 DOI: 10.3390/polym16111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Natural extracts, such as those from the residues of the Olea europaea industry, offer an opportunity for use due to their richness in antioxidant compounds. These compounds can be incorporated into porous polymeric devices with huge potential for tissue engineering such as bone, cardiovascular, osteogenesis, or neural applications using supercritical CO2. For this purpose, polymeric scaffolds of biodegradable poly(lactic-co-glycolic acid) (PLGA) and chitosan, generated in situ by foaming, were employed for the supercritical impregnation of ethanolic olive leaf extract (OLE). The influence of the presence of chitosan on porosity and interconnectivity in the scaffolds, both with and without impregnated extract, was studied. The scaffolds have been characterized by X-ray computed microtomography, scanning electron microscope, measurements of impregnated load, and antioxidant capacity. The expansion factor decreased as the chitosan content rose, which also occurred when OLE was used. Pore diameters varied, reducing from 0.19 mm in pure PLGA to 0.11 mm in the two experiments with the highest chitosan levels. The connectivity was analyzed, showing that in most instances, adding chitosan doubled the average number of connections, increasing it by a factor of 2.5. An experiment was also conducted to investigate the influence of key factors in the impregnation of the extract, such as pressure (10-30 MPa), temperature (308-328 K), and polymer ratio (1:1-9:1 PLGA/chitosan). Increased pressure facilitated increased OLE loading. The scaffolds were evaluated for antioxidant activity and demonstrated substantial oxidation inhibition (up to 82.5% under optimal conditions) and remarkable potential to combat oxidative stress-induced pathologies.
Collapse
Affiliation(s)
| | - Diego Valor
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Excellence, Agrifood Campus (CeiA3), University of Cádiz, 11510 Puerto Real, Spain; (I.G.-C.); (H.E.); (C.P.)
| | | | - Antonio Montes
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Excellence, Agrifood Campus (CeiA3), University of Cádiz, 11510 Puerto Real, Spain; (I.G.-C.); (H.E.); (C.P.)
| | | |
Collapse
|
3
|
Fiorentini C, Leni G, de Apodaca ED, Fernández-de-Castro L, Rocchetti G, Cortimiglia C, Spigno G, Bassani A. Development of Coated PLA Films Containing a Commercial Olive Leaf Extract for the Food Packaging Sector. Antioxidants (Basel) 2024; 13:519. [PMID: 38790624 PMCID: PMC11117849 DOI: 10.3390/antiox13050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
A commercial olive leaf extract (OL), effective against Salmonella enterica, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, was added to three different coating formulations (methylcellulose, MC; chitosan, CT; and alginate, ALG) to produce active polylactic acid (PLA) coated films. Evaluation of these coated PLA films revealed significant inhibition of S. aureus growth, particularly with the MC and CT formulations exhibiting the highest inhibition rates (99.7%). The coated films were then tested for food contact compatibility with three food simulants (A: 10% ethanol; B: 3% acetic acid; D2: olive oil), selected to assess their suitability for pre-cut hams and ready-to-eat vegetables in relation to overall migration. However, coated films with active functions exhibited migration values in simulants A and B above legal limits, while promising results were obtained for simulant D2, highlighting the need to deeply investigate these coatings' impact on a real food system. Untargeted metabolomics revealed that the type of coating influenced the selective release of certain phenolic classes based on the food simulant tested. The Oxitest analysis of simulant D2 demonstrated that the MC and ALG-coated PLA films slightly slowed down the oxidation of this food simulant, which is an edible vegetable oil.
Collapse
Affiliation(s)
- Cecilia Fiorentini
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy (G.L.); (C.C.); (A.B.)
| | - Giulia Leni
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy (G.L.); (C.C.); (A.B.)
| | - Elena Díaz de Apodaca
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, C/Leonardo Da Vinci 11, 01510 Miñano, Álava, Spain; (E.D.d.A.); (L.F.-d.-C.)
| | - Laura Fernández-de-Castro
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, C/Leonardo Da Vinci 11, 01510 Miñano, Álava, Spain; (E.D.d.A.); (L.F.-d.-C.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy;
| | - Claudia Cortimiglia
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy (G.L.); (C.C.); (A.B.)
| | - Giorgia Spigno
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy (G.L.); (C.C.); (A.B.)
| | - Andrea Bassani
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy (G.L.); (C.C.); (A.B.)
| |
Collapse
|
4
|
Tapia-Quirós P, Granados M, Sentellas S, Saurina J. Microwave-assisted extraction with natural deep eutectic solvents for polyphenol recovery from agrifood waste: Mature for scaling-up? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168716. [PMID: 38036116 DOI: 10.1016/j.scitotenv.2023.168716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
Agrifood industries generate large amounts of waste that may result in remarkable environmental problems, such as soil and water contamination. Therefore, proper waste management and treatment have become an environmental, economic, and social challenge. Most of these wastes are exceptionally rich in bioactive compounds (e.g., polyphenols) with potential applications in the food, cosmetic, and pharmaceutical industries. Indeed, the recovery of polyphenols from agrifood waste is an example of circular bioeconomy, which contributes to the valorization of waste while providing solutions to environmental problems. In this context, unconventional extraction techniques at the industrial scale, such as microwave-assisted extraction (MAE), which has demonstrated its efficacy at the laboratory level for analytical purposes, have been suggested to search for more efficient recovery procedures. On the other hand, natural deep eutectic solvents (NADES) have been proposed as an efficient and green alternative to typical extraction solvents. This review aims to provide comprehensive insights regarding the extraction of phenolic compounds from agrifood waste. Specifically, it focuses on the utilization of MAE in conjunction with NADES. Moreover, this review delves into the possibilities of recycling and reusing NADES for a more sustainable and cost-efficient industrial application. The results obtained with the MAE-NADES approach show its high extraction efficiency while contributing to green practices in the field of natural product extraction. However, further research is necessary to improve our understanding of these extraction strategies, optimize product yields, and reduce overall costs, to facilitate the scaling-up.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, Eduard Maristany 10-14, Campus Diagonal-Besòs, E08930 Barcelona, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain; Serra Húnter Fellow Programme, Generalitat de Catalunya, Via Laietana 2, E-08003 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
5
|
Pusty K, Kumar Dash K, Giri S, Raj GVSB, Tiwari A, Shaikh AM, Béla K. Ultrasound assisted phytochemical extraction of red cabbage by using deep eutectic solvent: Modelling using ANFIS and optimization by genetic algorithms. ULTRASONICS SONOCHEMISTRY 2024; 102:106762. [PMID: 38211496 PMCID: PMC10825368 DOI: 10.1016/j.ultsonch.2024.106762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
The present investigation studied the effect of process parameters on the extraction of phytochemicals from red cabbage by the application of ultrasonication and temperature. The solvent selected for the study was deep eutectic solvent (DES) prepared by choline chloride and citric acid. The ultrasound assisted extraction process was modeled using adaptive neuro-fuzzy inference system (ANFIS) algorithm and integrated with the genetic algorithm for optimization purposes. The independent variables that influenced the responses (total phenolic content, antioxidant activity, total anthocyanin activity, and total flavonoid content) were ultrasonication power, temperature, molar ratio of DES, and water content of DES. Each ANFIS model was formed by the training of three Gaussian-type membership functions (MF) for each input, trained by a hybrid algorithm with 500 epochs and linear type MF for output MF. The ANFIS model predicted each response close to the experimental data which is evident by the statistical parameters (R2>0.953 and RMSE <1.165). The integrated hybrid ANFIS-GA algorithm predicted the optimized condition for the process parameters of ultrasound assisted extraction of phytochemicals from red cabbage was found to be 252.114 W for ultrasonication power, 52.715 °C of temperature, 2.0677:1 of molar ratio of DES and 25.947 % of water content in DES solvent with maximum extraction content of responses, with fitness value 3.352. The relative deviation between the experimental and ANFIS predicted values for total phenolic content, antioxidant activity, total anthocyanin activity, and total flavonoid content was found to be 1.849 %, 3.495 %, 2.801 %, and 4.661 % respectively.
Collapse
Affiliation(s)
- Kasturi Pusty
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India; Department of Agricultural Engineering, Assam University, Silchar, Assam, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Souvik Giri
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - G V S Bhagya Raj
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Ajita Tiwari
- Department of Agricultural Engineering, Assam University, Silchar, Assam, India
| | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary
| | - Kovács Béla
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary.
| |
Collapse
|
6
|
Khalil AA, Rahman MM, Rauf A, Islam MR, Manna SJ, Khan AA, Ullah S, Akhtar MN, Aljohani ASM, Abdulmonem WA, Simal-Gandara J. Oleuropein: Chemistry, extraction techniques and nutraceutical perspectives-An update. Crit Rev Food Sci Nutr 2023; 64:9933-9954. [PMID: 37272499 DOI: 10.1080/10408398.2023.2218495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Olive family (Oleaceae) contains several species among which Olea europaea L. is mostly used for production of olive oils. Various parts of olive tree are rich source of diverse bioactive compounds such as Apigenin, elenolic acid, Hydroxytyrosol, Ligstroside, Oleoside, Oleuropein, Oleuropein aglycone, Tyrosol, etc. Among these, oleuropein, a secoiridoid is predominantly found in olive leaves and young olive fruits of different species of Oleaceae family. Scientists have adopted numerous extraction methods (conventional & latest) to increase the yield of oleuropein. Among these techniques, maceration, soxhlet, microwave-assisted, ultrasonication, and supercritical fluid methods are most commonly employed for extraction of oleuropein. Evidently, this review emphasizes on various in-vitro and in-vivo studies focusing on nutraceutical properties of oleuropein. Available literature highlights the pharmaceutical potential of oleuropein against various diseases such as obesity, diabetes, cardiovascular complications, neurodegenerative diseases, cancer, inflammation, microbial infections, and oxidation. This review will benefit the scientific community as it narrates comprehensive literature regarding absorption, metabolism, bioavailability, extraction techniques, and nutraceutical perspectives associated with oleuropein.
Collapse
Affiliation(s)
- Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sultana Juhara Manna
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Ammar Ahmed Khan
- University Institute of Food Science and Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Samee Ullah
- University Institute of Food Science and Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Nadeem Akhtar
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
7
|
Functional Bimetal/Carbon Composites Co/Zr@AC for Pesticide Atrazine Removal from Water. Molecules 2023; 28:molecules28052071. [PMID: 36903313 PMCID: PMC10004218 DOI: 10.3390/molecules28052071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Atrazine is a toxic and refractory herbicide that poses threats to human health and the ecological environment. In order to efficiently remove atrazine from water, a novel material, Co/Zr@AC, was developed. This novel material is prepared by loading two metal elements, cobalt and zirconium, onto activated carbon (AC) through solution impregnation and high-temperature calcination. The morphology and structure of the modified material were characterized, and its ability to remove atrazine was evaluated. The results showed that Co/Zr@AC had a large specific surface area and formed new adsorption functional groups when the mass fraction ratio of Co2+:Zr4+ in the impregnating solution was 1:2, the immersion time was 5.0 h, the calcination temperature was 500 °C, and the calcination time was 4.0 h. During the adsorption experiment on 10 mg/L atrazine, the maximum adsorption capacity of Co/Zr@AC was shown to be 112.75 mg/g and the maximum removal rate was shown to be 97.5% after 90 min of the reaction at a solution pH of 4.0, temperature of 25 °C, and Co/Zr@AC concentration of 60.0 mg/L. In the kinetic study, the adsorption followed the pseudo-second-order kinetic model (R2 = 0.999). The fitting effects of Langmuir and Freundlich isotherms were excellent, indicating that the process of Co/Zr@AC adsorbing atrazine also conformed to two isotherm models, so the adsorption of atrazine by Co/Zr@AC had multiple effects including chemical adsorption, mono-molecular layer adsorption, and multi-molecular layer adsorption. After five experimental cycles, the atrazine removal rate was 93.9%, indicating that Co/Zr@AC is stable in water and is an excellent novel material that can be used repeatedly.
Collapse
|
8
|
Effect of the Processing Conditions on the Supercritical Extraction and Impregnation of Rosemary Essential Oil in Linear Low-Density Polyethylene Films. Processes (Basel) 2022. [DOI: 10.3390/pr11010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The supercritical fluid extraction of essential oil from rosemary leaves and its subsequent impregnation in linear low-density polyethylene (LLDPE) films were studied. The effects of temperature (318 and 338 K), pressure (15 and 25 MPa) and rosemary particle size (0.9 and 0.15 mm) on the extraction yield were investigated. Impregnation assays were developed at two different values of pressure (12 and 20 MPa), temperature (308 and 328 K), and impregnation time (1 and 5 h). The extraction yield of rosemary essential oil was increased by increasing pressure and decreasing particle size and temperature. ANOVA results showed that temperature, pressure, and time significantly impacted the essential oil impregnation yield in LLDPE films. The maximum impregnation yield (1.87 wt. %) was obtained at 12 MPa, 328 K, and 5 h. The antioxidant activity and the physical-mechanical properties of impregnated films were analyzed. The IC50 values for all the impregnated LLDPE samples were close to the IC50 value of the extract showing that the impregnated films have a significant antioxidant activity.
Collapse
|
9
|
Supercritical CO2 Impregnation of Clove Extract in Polycarbonate: Effects of Operational Conditions on the Loading and Composition. Processes (Basel) 2022. [DOI: 10.3390/pr10122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The development of active packaging for food storage containers is possible through impregnation of natural extracts by supercritical CO2-assisted impregnation processes. The challenge of scCO2-impregnation of natural extracts is to control the total loading and to ensure that the composition of the loaded extract may preserve the properties of the crude extract. This study aimed at investigating the scCO2-impregnation of clove extract (CE) in polycarbonate (PC) to develop antibacterial packaging. A design of experiments was applied to evaluate the influences of temperature (35–60 °C) and pressure (10–30 MPa) on the clove loading (CL%) and on the composition of the loaded extract. The CL% ranged from 6.8 to 18.5%, and the highest CL% was reached at 60 °C and 10 MPa. The composition of the impregnated extract was dependent on the impregnation conditions, and it differed from the crude extract, being richer in eugenol (81.31–86.28% compared to 70.06 in the crude extract). Differential scanning calorimetry showed a high plasticizing effect of CE on PC, and high CL% led to the cracking of the PC surface. Due to the high loading of eugenol, which is responsible for the antibacterial properties of the CE, the impregnated PC is promising for producing antibacterial food containers.
Collapse
|
10
|
Montes A, Merino E, Valor D, Guamán-Balcázar MC, Pereyra C, Martínez de la Ossa EJ. From olive leaves to spherical nanoparticles by one-step RESS process precipitation. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Screening of the Supercritical Impregnation of Olea europaea Leaves Extract into Filaments of Thermoplastic Polyurethane (TPU) and Polylactic Acid (PLA) Intended for Biomedical Applications. Antioxidants (Basel) 2022; 11:antiox11061170. [PMID: 35740066 PMCID: PMC9219857 DOI: 10.3390/antiox11061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The leaves of Olea europaea as agricultural waste represent a convenient source of antioxidants. In combination with supercritical CO2 (scCO2), assisted impregnation is an interesting strategy for the preparation of biomedical devices with specific bioactivity. For this purpose, 3D-printable filaments of thermoplastic polyurethane (TPU) and polylactic acid (PLA) were employed for the supercritical impregnation of ethanolic olive leaves extract (OLE) for biomedical application. The extraction of OLE was performed using pressurized liquids. The effect of pressure (100-400 bar), temperature (35-55 °C), and the polymer type on the OLE impregnation and the swelling degree were studied including a morphological analysis and the measurement of the final antioxidant activity. All the studied variables as well as their interactions showed significant effects on the OLE loading. Higher temperatures favored the OLE loading while the pressure presented opposite effects at values higher than 250 bar. Thus, the highest OLE loadings were achieved at 250 bar and 55 °C for both polymers. However, TPU showed c.a. 4 times higher OLE loading and antioxidant activity in comparison with PLA at the optimal conditions. To the best of our knowledge, this is the first report using TPU for the supercritical impregnation of a natural extract with bioactivity.
Collapse
|
12
|
Romo-Rico J, Krishna SM, Bazaka K, Golledge J, Jacob MV. Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomater 2022; 147:34-49. [PMID: 35649506 DOI: 10.1016/j.actbio.2022.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022]
Abstract
There is a global epidemic of non-healing wounds. Chronic inflammation, overexpression of pro-inflammatory cytokines, oxidative stress and bacterial infection are implicated in delayed wound healing. Natural extracts are a rich source of bioactive molecules called plant secondary metabolites (PSMs) that include terpenes and phenols. These molecules may facilitate wound healing through their antioxidant, anti-inflammatory, and antibacterial activity. After briefly outlining the process of wound healing and how it is compromised in chronic wounds, this review focuses on investigating how PSMs-based polymers may improve wound healing. Best methods for incorporating PSMs into wound dressings are reviewed and critically compared. The exiting body of literature strongly suggests that PSMs-based polymers incorporated into wound dressings could have clinical value in aiding wound healing. STATEMENT OF SIGNIFICANCE: Chronic wounds develop by the persistence of inflammation, oxidative stress and infection. Chronic wounds affect the worldwide population, by reducing quality of life of patients with significant cost to healthcare systems. To help chronic wounds to heal and overcome this burden, materials with anti-inflammatory, antioxidant and antibacterial properties are required. Plant secondary metabolites (PSMs) are volatile materials that have all these properties. PSMs-based polymers can be fabricated by polymerization techniques. The present review provides an overview of the state-of-the-art of the wound healing mechanisms of PSMs. Current developments in the field of PSMs-based polymers are reviewed and their potential use as wound dressings is also covered.
Collapse
|
13
|
Sánchez-Gomar I, Benítez-Camacho J, Cejudo-Bastante C, Casas L, Moreno-Luna R, Mantell C, Durán-Ruiz MC. Pro-Angiogenic Effects of Natural Antioxidants Extracted from Mango Leaf, Olive Leaf and Red Grape Pomace over Endothelial Colony-Forming Cells. Antioxidants (Basel) 2022; 11:antiox11050851. [PMID: 35624715 PMCID: PMC9137485 DOI: 10.3390/antiox11050851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, mainly triggered by the formation of atherosclerotic plaques that reduce blood flow. Angiogenic cell therapy based on endothelial colony forming cells (ECFCs) constitutes a promising alternative to promote vascular revascularization; however, under the oxidative environment that prevails in ischemic areas, these cells become impaired. Thus, it is necessary to investigate strategies to enhance their regenerative properties. Antioxidant substances, such as polyphenols, have been shown to be useful for this purpose. In the current study we evaluated the potential of mango leaves, olive leaves and red grape pomace extracts, rich in polyphenols, to promote ECFC reparative effects. For this, aqueous and ethanolic extracts of the aforementioned raw materials were obtained by pressurized liquid extraction (PLE). After evaluating the polyphenol content and the antioxidant activity, in vitro assays were carried out, and we found that ethanolic extracts at low concentrations improved angiogenic capacities of ECFCs and reduced proliferation, apoptosis, and the inflammatory response of these cells. Overall, mango leaves ethanolic extract provided the most promising results, but all three extracts ameliorated the functionality of ECFCs.
Collapse
Affiliation(s)
- Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11002 Cadiz, Spain; (I.S.-G.); (J.B.-C.)
- Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), 11009 Cadiz, Spain
| | - Josefa Benítez-Camacho
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11002 Cadiz, Spain; (I.S.-G.); (J.B.-C.)
- Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), 11009 Cadiz, Spain
| | - Cristina Cejudo-Bastante
- Chemical Engineering and Food Technology Department, Science Faculty, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11519 Cadiz, Spain; (C.C.-B.); (C.M.)
- Laboratory of Neuroinflammation, National Paraplegics Hospital, SESCAM, 45071 Toledo, Spain;
| | - Lourdes Casas
- Chemical Engineering and Food Technology Department, Science Faculty, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11519 Cadiz, Spain; (C.C.-B.); (C.M.)
- Correspondence: (L.C.); (M.C.D.-R.); Tel.: +34-956-012-727 (M.C.D.-R.)
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, National Paraplegics Hospital, SESCAM, 45071 Toledo, Spain;
| | - Casimiro Mantell
- Chemical Engineering and Food Technology Department, Science Faculty, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11519 Cadiz, Spain; (C.C.-B.); (C.M.)
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11002 Cadiz, Spain; (I.S.-G.); (J.B.-C.)
- Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), 11009 Cadiz, Spain
- Correspondence: (L.C.); (M.C.D.-R.); Tel.: +34-956-012-727 (M.C.D.-R.)
| |
Collapse
|
14
|
Carvalho VS, Dias ALB, Rodrigues KP, Hatami T, Mei LHI, Martínez J, Viganó J. Supercritical fluid adsorption of natural extracts: Technical, practical, and theoretical aspects. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Cortina JL, Saurina J, Granados M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022; 11:362. [PMID: 35159513 PMCID: PMC8834469 DOI: 10.3390/foods11030362] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The production of olive oil and wine are two of the main agri-food economic activities in Southern Europe. They generate large amounts of solid and liquid wastes (e.g., olive pomace, olive mill wastewater, grape pomace, grape stems, wine lees, and wine processing wastewater) that represent a major environmental problem. Consequently, the management of these residues has become a big challenge for these industries, since they are harmful to the environment but rich in bioactive compounds, such as polyphenols. In recent years, the recovery of phenolic compounds has been proposed as a smart strategy for the valorization of these by-products, from a circular economy perspective. This review aims to provide a comprehensive description of the state of the art of techniques available for the analysis, extraction, and purification of polyphenols from the olive mill and winery residues. Thus, the integration and implementation of these techniques could provide a sustainable solution to the olive oil and winery sectors.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - María Fernanda Montenegro-Landívar
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Chemical Engineering Department, Research Center in Technologies, Energy and Industrial Processes—CINTECX, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (M.R.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Water Technology Center—CETAQUA, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (J.S.)
| |
Collapse
|
16
|
Khwaldia K, Attour N, Matthes J, Beck L, Schmid M. Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:1218-1253. [DOI: 10.1111/1541-4337.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Nouha Attour
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Julia Matthes
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Luisa Beck
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Markus Schmid
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| |
Collapse
|
17
|
Mass Transfer and Optical Properties of Active PET/PP Food-Grade Films Impregnated with Olive Leaf Extract. Polymers (Basel) 2021; 14:polym14010084. [PMID: 35012107 PMCID: PMC8747531 DOI: 10.3390/polym14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/19/2022] Open
Abstract
A supercritical solvent impregnation (SSI) technique was employed to incorporate, by batch- and semicontinuous-modes, bioactive olive leaf extract (OLE) into a food-grade multilayer polyethylene terephthalate/polypropylene (PET/PP) film for active food packaging applications. The inclusion of OLE in the polymer surfaces significantly modified the colour properties of the film. A correlation of 87.06% between the CIELAB colour parameters and the amount of the OLE impregnated in the film was obtained which suggests that colour determination can be used as a rapid, non-destructive technique to estimate the OLE loading in the impregnated matrices. The UV barrier and water permeability properties of the films were not significantly modified by the incorporation of OLE. The migration of OLE into a 50% (v/v) ethanol food simulant demonstrated faster release of OLE from the PP surface than from the PET surface which may be due to the different interactions between OLE and each polymer.
Collapse
|
18
|
Grabska-Zielińska S, Gierszewska M, Olewnik-Kruszkowska E, Bouaziz M. Polylactide Films with the Addition of Olive Leaf Extract-Physico-Chemical Characterization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7623. [PMID: 34947221 PMCID: PMC8706180 DOI: 10.3390/ma14247623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
The aim of this work was to obtain and characterize polylactide films (PLA) with the addition of poly(ethylene glycol) (PEG) as a plasticizer and chloroformic olive leaf extract (OLE). The composition of OLE was characterized by LC-MS/MS techniques. The films with the potential for using in the food packaging industry were prepared using a solvent evaporation method. The total content of the phenolic compounds and DPPH radical scavenging assay of all the obtained materials have been tested. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (FTIR-ATR) allows for determining the molecular structure, while Scanning Electron Microscopy (SEM) indicated differences in the films' surface morphology. Among other crucial properties, mechanical properties, thickness, degree of crystallinity, water vapor permeation rate (WVPR), and color change have also been evaluated. The results showed that OLE contains numerous active substances, including phenolic compounds, and PLA/PEG/OLE films are characterized by improved antioxidant properties. The OLE addition into PLA/PEG increases the material crystallinity, while the WVPR values remain almost unaffected. From these studies, significant insight was gained into the possibility of the application of chloroform as a solvent for both olive leaf extraction and for the preparation of OLE, PLA, and PEG-containing film-forming solutions. Finally, evaporation of the solvent from OLE can be omitted.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland;
| | - Mohamed Bouaziz
- Electrochemistry and Environmental Laboratory, National Engineering School of Sfax, University of Sfax, BP1173, Sfax 3038, Tunisia;
| |
Collapse
|
19
|
Munekata PES, Pateiro M, Bellucci ERB, Domínguez R, da Silva Barretto AC, Lorenzo JM. Strategies to increase the shelf life of meat and meat products with phenolic compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:171-205. [PMID: 34507642 DOI: 10.1016/bs.afnr.2021.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Oxidative reactions and microbial growth are the main processes involved in the loss of quality in meat products. Although the use of additives to improve the shelf life is a common practice in the meat industry, the current trends among consumers are pushing the researchers and professionals of the meat industry to reformulate meat products. Polyphenols are compounds with antioxidant and antimicrobial activity naturally found in several plants, fruits, and vegetables that can be used in the production of extracts and components in active packaging to improve the shelf life of meat products. This chapter aims to discuss the advances in terms of (1) encapsulation techniques to protect phenolic compounds; (2) production of active and edible packages rich on phenolic compounds; (3) use of phenolic-rich additives (free or encapsulated form) with non-thermal technologies to improve the shelf life of meat products; and (4) use of active packaging rich on phenolic compounds on meat products. Innovative strategies to encapsulated polyphenols and produce films are mainly centered in the use of innovative and emerging technologies (such as ultrasound and supercritical fluids). Moreover, the combined use of polyphenols and non-thermal technologies is a relevant approach to improve the shelf life of meat products, especially using high pressure processing. In terms of application of innovative films, nanomaterials have been largely explored and indicated as relevant strategy to preserve meat and meat products.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain
| | | | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain; Facultad de Ciencias de Ourense, Área de Tecnología de los Alimentos, Universidad de Vigo, Ourense, Spain.
| |
Collapse
|
20
|
Biobased films of nanocellulose and mango leaf extract for active food packaging: Supercritical impregnation versus solvent casting. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106709] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Fernández Ponce MT, Cejudo Bastante C, Casas Cardoso L, Mantell C, Martínez de la Ossa EJ, Pereyra C. Potential Use of Annona Genus Plants Leaf Extracts to Produce Bioactive Transdermal Patches by Supercritical Solvent Impregnation. Antioxidants (Basel) 2021; 10:antiox10081196. [PMID: 34439444 PMCID: PMC8388995 DOI: 10.3390/antiox10081196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023] Open
Abstract
The objective of the present work was to develop a bioactive transdermal patch functionalized with Annona leaf extracts (ALE) by means of supercritical impregnation technique. The potential of six different Annona leaf extracts (ALE) obtained with the enhanced solvent system formed by carbon dioxide + ethanol/acetone was evaluated taking into account the antioxidant activity, total phenol composition and global extraction yields. For the impregnation of ALE, two drug supporting systems were tested: hydrocolloid sodium carboxymethyl cellulose (NaCMC) and polyester dressings (PD). The effect of the impregnation conditions, including pressure (P), temperature (T), percent of co-solvent (ethanol) and ALE/polymer mass ratio, was determined with regard to the loading and the functional activity of the impregnated samples. The optimal impregnation conditions of ALE were established at 55 °C and 300 bar which led to obtained transdermal patches with antioxidant and antimicrobial capacity. In order to understand the behavior of the process, the homogeneity of the samples in the vessels was also evaluated. The best results were obtained at higher proportions of co-solvent in the system.
Collapse
|
22
|
Supercritical Impregnation of PLA Filaments with Mango Leaf Extract to Manufacture Functionalized Biomedical Devices by 3D Printing. Polymers (Basel) 2021; 13:polym13132125. [PMID: 34203556 PMCID: PMC8271598 DOI: 10.3390/polym13132125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Polylactic Acid (PLA) filaments impregnated with ethanolic mango leaves extract (MLE) with pharmacological properties were obtained by supercritical impregnation. The effects of pressure, temperature and amount of extract on the response variables, i.e., swelling, extract loading and bioactivity of the PLA filaments, were determined. The analysis of the filaments biocapacities revealed that impregnated PLA filaments showed 11.07% antidenaturant capacity and 88.13% antioxidant activity, which after a 9-day incubation shifted to 30.10% and 9.90%, respectively. Subsequently, the same tests were conducted on printed samples. Before their incubation, the printed samples showed 79.09% antioxidant activity and no antidenaturant capacity was detected. However, after their incubation, the antioxidant activity went down to only 2.50%, while the antidenaturant capacity raised up to 23.50%. The persistence of the bioactive properties after printing opens the possibility of using the functionalized PLA filaments as the feed for a three-dimensional (3D) printer.
Collapse
|
23
|
Verano Naranjo L, Cejudo Bastante C, Casas Cardoso L, Mantell Serrano C, Martínez de la Ossa Fernández EJ. Supercritical Impregnation of Ketoprofen into Polylactic Acid for Biomedical Application: Analysis and Modeling of the Release Kinetic. Polymers (Basel) 2021; 13:polym13121982. [PMID: 34204192 PMCID: PMC8235655 DOI: 10.3390/polym13121982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Ketoprofen (KET) is an anti-inflammatory drug often used in medicine due to its analgesic and antipyretic effects. If it is administered in a controlled form by means of different dosing devices, it acts throughout the patient’s recovery period improving its efficacy. This study intends to support the use of supercritical solvent impregnation (SSI) as an efficient technique to develop polylactic acid (PLA) functionalized with ketoprofen, for use as controlled drug release devices. For this purpose, firstly, the influence of different SSI variables on the desirable swelling of the polymer structure, while avoiding their foaming, were evaluated. Then, the resulting ketoprofen loading was evaluated under different pressure/temperature conditions. It was generally found that as pressure and temperature are higher, the drug impregnation loads also increase. The maximum impregnation loads (at about 9% KET/PLA) were obtained at 200 bar and 75 °C. In vitro drug release tests of the impregnated compound were also carried out, and it was found that drug release profiles were also dependent on the specific pressure and temperature conditions used for the impregnation of each polymer filament.
Collapse
|
24
|
Wu Q, Zhou J. The application of polyphenols in food preservation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:35-99. [PMID: 34507646 DOI: 10.1016/bs.afnr.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyphenols are a kind of complex secondary metabolites in nature, widely exist in the flowers, bark, roots, stems, leaves, and fruits of plants. Numerous studies have shown that plant-derived polyphenols have a variety of bioactivities due to their unique chemical structure, such as antioxidant, antimicrobial, and prevention of chronic diseases, cardiovascular disease, cancer, osteoporosis, and neurodegeneration. With the gradual rise of natural product development, plant polyphenols have gradually become one of the research hotspots in the field of food science due to their wide distribution in the plants, and the diversity of physiological functions. Owing to the extraordinary antioxidant and antibacterial activity of polyphenols, plant-derived polyphenols offer an alternative to chemical additives used in the food industry, such as oil, seafood, meat, beverages, and food package materials. Based on this, this chapter provides an overview of the potential antioxidant and antibacterial mechanisms of plant polyphenols and their application in food preservation, it would be providing a reference for the future development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Qian Wu
- Hubei University of Technology, Wuhan, China.
| | - Jie Zhou
- Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
25
|
Application of a Natural Antioxidant from Grape Pomace Extract in the Development of Bioactive Jute Fibers for Food Packaging. Antioxidants (Basel) 2021; 10:antiox10020216. [PMID: 33540565 PMCID: PMC7912872 DOI: 10.3390/antiox10020216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
There is an increasing demand for the use of new food packaging materials. In this study, natural jute fibers impregnated with a Petit Verdot Red Grape Pomace Extract (RGPE) was proposed as a new active food packaging material. Pressurized Liquid Extraction (PLE) and Enhanced Solvent Extraction (ESE) techniques were employed to obtain the bioactive RGPE. Afterward the supercritical solvent impregnation conditions to obtain RGPE-natural jute fibers were studied, by varying pressure, modifier percentage and dried RGPE mass. PLE technique offered the highest bioactive extract at 20 MPa, 55 °C, 1 h residence time using C2H5OH:H2O (1:1 v/v), providing an EC50 of 3.35 ± 0.25 and antibacterial capacity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa (MIC of 12.0, 1.5 and 4.0 mg/mL RGPE respectively). The natural jute fibers impregnated with 3 mL of that RGPE (90 mg/mL) at 50 MPa and 55 °C generated the most efficient packing material with regards to its food preservation potential.
Collapse
|
26
|
Preparation, Performances and Mechanisms of Co@AC Composite for Herbicide Atrazine Removal in Water. WATER 2021. [DOI: 10.3390/w13020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, a high-performance adsorbent Co@AC was prepared by loading cobalt ions (Co2+) on activated carbon (AC) via solution impregnation and high-temperature calcination technology, and was used to remove atrazine in water. The preparation factors on the adsorbent properties were studied, and the characteristics were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectrometer (FTIR). The results showed that Co@AC possessed the best performance when the factors were 7.0% of Co2+ (w/v), 7.0 h of immersing time, 500 °C of calcination temperature and 4.0 h of calcination time. The adsorption conditions and mechanisms for atrazine removal by Co@AC were also studied scientifically. As the conditions were pH 4.0, reaction time 90 min and temperature 25 °C, Co@AC had the largest adsorption capacity, which was 92.95 mg/g, and the maximum removal rate reached 94.79%. The correlation coefficient of the Freundlich isotherm was better than that of the Langmuir isotherm, and the adsorption process followed the pseudo-second-order kinetic model. Cycle experiments showed that the removal efficiency of atrazine by Co@AC remained above 85% after five repeated experiments, indicating that Co@AC showed a strong stable performance and is a promising material for pesticides removal.
Collapse
|
27
|
Trindade Coutinho I, Champeau M. Synergistic effects in the simultaneous supercritical CO2 impregnation of two compounds into poly(L- lactic acid) and polyethylene. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.105019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Drago E, Campardelli R, Pettinato M, Perego P. Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods 2020; 9:E1628. [PMID: 33171881 PMCID: PMC7695158 DOI: 10.3390/foods9111628] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/21/2023] Open
Abstract
Innovation in food packaging is mainly represented by the development of active and intelligent packing technologies, which offer to deliver safer and high-quality food products. Active packaging refers to the incorporation of active component into the package with the aim of maintaining or extending the product quality and shelf-life. The intelligent systems are able to monitor the condition of packaged food in order to provide information about the quality of the product during transportation and storage. These packaging technologies can also work synergistically to yield a multipurpose food packaging system. This review is a critical and up-dated analysis of the results reported in the literature about this fascinating and growing field of research. Several aspects are considered and organized going from the definitions and the regulations, to the specific functions and the technological aspects regarding the manufacturing technologies, in order to have a complete overlook on the overall topic.
Collapse
Affiliation(s)
| | | | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering (DICCA), Polytechnique School, University of Genoa, Via Opera Pia 15, 16145 Genova, Italy; (E.D.); (R.C.); (P.P.)
| | | |
Collapse
|
29
|
Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, Andronescu E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020; 9:E1438. [PMID: 33050581 PMCID: PMC7601795 DOI: 10.3390/foods9101438] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
This review presents a perspective on the research trends and solutions from recent years in the domain of antimicrobial packaging materials. The antibacterial, antifungal, and antioxidant activities can be induced by the main polymer used for packaging or by addition of various components from natural agents (bacteriocins, essential oils, natural extracts, etc.) to synthetic agents, both organic and inorganic (Ag, ZnO, TiO2 nanoparticles, synthetic antibiotics etc.). The general trend for the packaging evolution is from the inert and polluting plastic waste to the antimicrobial active, biodegradable or edible, biopolymer film packaging. Like in many domains this transition is an evolution rather than a revolution, and changes are coming in small steps. Changing the public perception and industry focus on the antimicrobial packaging solutions will enhance the shelf life and provide healthier food, thus diminishing the waste of agricultural resources, but will also reduce the plastic pollution generated by humankind as most new polymers used for packaging are from renewable sources and are biodegradable. Polysaccharides (like chitosan, cellulose and derivatives, starch etc.), lipids and proteins (from vegetal or animal origin), and some other specific biopolymers (like polylactic acid or polyvinyl alcohol) have been used as single component or in blends to obtain antimicrobial packaging materials. Where the package's antimicrobial and antioxidant activities need a larger spectrum or a boost, certain active substances are embedded, encapsulated, coated, grafted into or onto the polymeric film. This review tries to cover the latest updates on the antimicrobial packaging, edible or not, using as support traditional and new polymers, with emphasis on natural compounds.
Collapse
Affiliation(s)
- Ludmila Motelica
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Durmuş Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31030 Antakya Hatay, Turkey;
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
30
|
Albuquerque GA, Bezerra FWF, de Oliveira MS, da Costa WA, de Carvalho Junior RN, Joele MRSP. Supercritical CO2 Impregnation of Piper divaricatum Essential Oil in Fish (Cynoscion acoupa) Skin Gelatin Films. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02514-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Valdés García A, Juárez Serrano N, Beltrán Sanahuja A, Garrigós MC. Novel Antioxidant Packaging Films Based on Poly(ε-Caprolactone) and Almond Skin Extract: Development and Effect on the Oxidative Stability of Fried Almonds. Antioxidants (Basel) 2020; 9:E629. [PMID: 32708916 PMCID: PMC7402149 DOI: 10.3390/antiox9070629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Antioxidant films based on poly(ε-caprolactone) (PCL) containing almond skin extract (ASE) were developed for food packaging applications. The effect of ASE incorporation on the morphological, structural, colour, mechanical, thermal, barrier and antioxidant properties of the prepared films were evaluated. The structural, tensile and thermal properties of the films were not altered due to ASE addition. Although no significant differences were observed for the oxygen permeability of samples, some increase in water absorption and water vapour permeability was observed for active films due to the hydrophilic character of ASE phenolic compounds, suggesting the suitability of this novel packaging for fatty foods conservation. ASE conferred antioxidant properties to PCL films as determined by the DPPH radical scavenging activity. The efficiency of the developed films was evaluated by the real packaging application of fried almonds at different ASE contents (0, 3, 6 wt.%) up to 56 days at 40 °C. The evolution of peroxide and p-anisidine values, hexanal content, fatty acid profile and characteristic spectroscopy bands showed that active films improved fried almonds stability. The results suggested the potential of PCL/ASE films as sustainable and antioxidant food packaging systems to offer protection against lipid oxidation in foods.
Collapse
Affiliation(s)
- Arantzazu Valdés García
- Analytical Chemistry, Nutrition and Food Science Department, University of Alicante, PO Box 99, E-03080 Alicante, Spain; (N.J.S.); (A.B.S.); (M.C.G.)
| | | | | | | |
Collapse
|
32
|
Supercritical impregnation of olive leaf extract to obtain bioactive films effective in cherry tomato preservation. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100338] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Lin W, Ni Y, Pang J. Microfluidic spinning of poly (methyl methacrylate)/konjac glucomannan active food packaging films based on hydrophilic/hydrophobic strategy. Carbohydr Polym 2019; 222:114986. [PMID: 31320090 DOI: 10.1016/j.carbpol.2019.114986] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/15/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Here, inspired by the hydrophilic/hydrophobic theory, a novel konjac glucomannan/poly (methyl methacrylate)/chlorogenic acid (KGM/PMMA/CGA) food packaging film was successfully fabricated via microfluidic spinning technology (MST). The results of fourier transform infrared spectroscopy and x-ray diffraction confirmed the formation of hydrogen bonds in the films, which lead to the enhanced mechanical properties. Thermogravimetric analysis and differential scanning calorimetry showed excellent thermal stability of the films. Water vapor permeability (1.47 × 10-5 ± 0.11 g/(m⋅h⋅kPa)) and water contact angle (89.2°) measurement proved that the films were hydrophobic. The good swelling degree (85.18 ± 15.65%) indicated film's potentials in releasing CGA. More importantly, KGM played a key role in the antibacterial activities against Staphylococcus aureus (8.5 ± 3.5 mm) and Escherichia coli (6.5 ± 2.1 mm) by utilizing its hydrophilicity. Thus, our present work may provide a new idea for constructing active food packaging films with significant performances based on hydrophilic/hydrophobic strategy.
Collapse
Affiliation(s)
- Wanmei Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongsheng Ni
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
34
|
Cejudo Bastante C, Cran M, Casas Cardoso L, Mantell Serrano C, Martínez de la Ossa E, Bigger S. Effect of supercritical CO2 and olive leaf extract on the structural, thermal and mechanical properties of an impregnated food packaging film. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|