1
|
Cai Y, Xiang Y, Dong H, Huang W, Liu Y, Zhao C, Yuan D, Li Y, Shi J. Injectable self-assembling peptide hydrogel as a promising vitreous substitute. J Control Release 2024; 376:402-412. [PMID: 39401678 DOI: 10.1016/j.jconrel.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Vitreoretinal diseases pose significant threats to vision, often requiring vitrectomy and substitution of vitreous humor to restore ocular structure and visual function. However, existing substitutes have limitations that compromise patient outcomes. Supramolecular hydrogels, particularly peptide-based formulations, have emerged as promising alternatives due to their superior optical clarity, biocompatibility, and viscoelasticity. In this study, we designed and evaluated two peptide hydrogels, 3K-OX and 3E-OX, bearing positive and negative charges, respectively, as potential vitreous substitutes. Our in vitro findings revealed that the physicochemical properties of the negatively charged peptide hydrogel, 3E-OX, closely resembled those of the native vitreous body, exhibiting optimal light transmittance, refractive index, molecular permeability, and biocompatibility. Animal studies further confirmed the safety and biocompatibility of 3E-OX as a promising vitreous substitute. Notably, we introduced optical coherence tomography for retinal microvascular detection in non-pigmented rabbits, presenting a novel approach to evaluate the performance of intraocular tamponade materials. This work not only expands the utility of peptide hydrogels but also provides valuable insights into the design of vitreous substitutes.
Collapse
Affiliation(s)
- Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Yatong Xiang
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan, PR China
| | - Huilei Dong
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan, PR China.
| | - Wenjing Huang
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan, PR China
| | - Yan Liu
- Affiliated Hospital of Hunan University/Ophthalmology Department of Xiangtan Central Hospital, Hunan province, China
| | - Chenguang Zhao
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan, PR China
| | - Dan Yuan
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan, PR China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.
| | - Junfeng Shi
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China.
| |
Collapse
|
2
|
Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik DD, Pramanik A. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharm 2024; 21:4827-4848. [PMID: 39290162 PMCID: PMC11462506 DOI: 10.1021/acs.molpharmaceut.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Hydrogels, composed of hydrophilic polymer networks, have emerged as versatile materials in biomedical applications due to their high water content, biocompatibility, and tunable properties. They mimic natural tissue environments, enhancing cell viability and function. Hydrogels' tunable physical properties allow for tailored antibacterial biomaterial, wound dressings, cancer treatment, and tissue engineering scaffolds. Their ability to respond to physiological stimuli enables the controlled release of therapeutics, while their porous structure supports nutrient diffusion and waste removal, fostering tissue regeneration and repair. In wound healing, hydrogels provide a moist environment, promote cell migration, and deliver bioactive agents and antibiotics, enhancing the healing process. For cancer therapy, they offer localized drug delivery systems that target tumors, minimizing systemic toxicity and improving therapeutic efficacy. Ocular therapy benefits from hydrogels' capacity to form contact lenses and drug delivery systems that maintain prolonged contact with the eye surface, improving treatment outcomes for various eye diseases. In mucosal delivery, hydrogels facilitate the administration of therapeutics across mucosal barriers, ensuring sustained release and the improved bioavailability of drugs. Tissue regeneration sees hydrogels as scaffolds that mimic the extracellular matrix, supporting cell growth and differentiation for repairing damaged tissues. Similarly, in bone regeneration, hydrogels loaded with growth factors and stem cells promote osteogenesis and accelerate bone healing. This article highlights some of the recent advances in the use of hydrogels for various biomedical applications, driven by their ability to be engineered for specific therapeutic needs and their interactive properties with biological tissues.
Collapse
Affiliation(s)
- Harpreet Kaur
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Bishmita Gogoi
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ira Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281 406, India
| | - Mohd Ashif Azad
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | | | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
3
|
Naik K, du Toit LC, Ally N, Choonara YE. In vivo evaluation of a Nano-enabled therapeutic vitreous substitute for the precise delivery of triamcinolone to the posterior segment of the eye. Drug Deliv Transl Res 2024; 14:2668-2694. [PMID: 38519828 PMCID: PMC11384602 DOI: 10.1007/s13346-024-01566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
This study focused on the design of a thermoresponsive, nano-enabled vitreous substitute for the treatment of retinal diseases. Synthesis of a hydrogel composed of hyaluronic acid and a poloxamer blend was undertaken. Poly(D,L-lactide-co-glycolide) acid nanoparticles encapsulating triamcinolone acetonide (TA) were synthesised with a spherical morphology and mean diameter of ~ 153 nm. Hydrogel fabrication and nanoparticle loading within the hydrogel was confirmed via physicochemical analysis. Gelation studies indicated that hydrogels formed in nine minutes and 10 min for the unloaded and nanoparticle-loaded hydrogels, respectively. The hydrogels displayed in situ gel formation properties, and rheometric viscoelastic studies indicated the unloaded and loaded hydrogels to have modulus values similar to those of the natural vitreous at 37 °C. Administration of the hydrogels was possible via 26G needles allowing for clinical application and drug release of triamcinolone acetonide from the nanoparticle-loaded hydrogel, which provided sustained in vitro drug release over nine weeks. The hydrogels displayed minimal swelling, reaching equilibrium swelling within 12 h for the unloaded hydrogel, and eight hours for the nanoparticle-loaded hydrogel. Biodegradation in simulated vitreous humour with lysozyme showed < 20% degradation within nine weeks. Biocompatibility of both unloaded and loaded hydrogels was shown with mouse fibroblast and human retinal pigment epithelium cell lines. Lastly, a pilot in vivo study in a New Zealand White rabbit model displayed minimal toxicity with precise, localised drug release behaviour, and ocular TA levels maintained within the therapeutic window for the 28-day investigation period, which supports the potential applicability of the unloaded and nanoparticle-loaded hydrogels as vitreous substitutes that function as drug delivery systems following vitrectomy surgery.
Collapse
Affiliation(s)
- Kruti Naik
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, Parktown, 2193, South Africa
| | - Lisa Claire du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, Parktown, 2193, South Africa
| | - Naseer Ally
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, Parktown, 2193, South Africa
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, Parktown, 2193, South Africa.
| |
Collapse
|
4
|
Ferro Desideri L, Sim PY, Bernardi E, Paschon K, Roth J, Fung AT, Wu XN, Chou HD, Henderson R, Tsui E, Berrocal M, Chhablani J, Wykoff CC, Cheung CMG, Querques G, Melo GB, Subhi Y, Loewenstein A, Kiilgaard JF, Zinkernagel M, Anguita R. Evidence-based guidelines for drug dosing in intravitreal injections in silicone oil-filled eyes: Pharmacokinetics, safety, and optimal dosage. Surv Ophthalmol 2024:S0039-6257(24)00119-X. [PMID: 39343316 DOI: 10.1016/j.survophthal.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
We evaluate the pharmacokinetics, safety, and optimal dosages of intravitreal agents in silicone oil (SO)-filled eyes, addressing challenges in administering such therapies. We assessed the pharmacological properties and safety profiles of intravitreal drugs in SO-filled eyes, deriving conclusions and guidance from available literature and expert consensus. Preclinical data suggest comparable half-lives of anti-vascular endothelial growth factoragents in SO-filled eyes, but clinical evidence is mainly from case reports and small series. Available research prioritizes standard dosages, particularly for bevacizumab (1.25 mg), supported by stronger evidence than aflibercept (2 mg) or ranibizumab (0.5 mg). Intravitreal steroids, especially dexamethasone at 0.7 mg, show efficacy and safety, while evidence for fluocinolone acetonide at 0.19 mg is limited. Intravitreal methotrexate has been reported at the dosage of 250-400 μg, with keratitis as the primary expected side effect. Case reports indicate tolerability of standard dosages of antivirals (foscarnet 1.2-2.4 mg/0.1 mL, ganciclovir 4 mg/0.1 mL) and the antibiotic combination piperacillin/tazobactam (250 μg/0.1 mL). We offer guidance based on current, but limited, literature. Standard dosage of intravitreal agents should be carefully considered, along with close monitoring for potential side effects, which should be discussed with patients.
Collapse
Affiliation(s)
- Lorenzo Ferro Desideri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, Switzerland; Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, Bern CH-3008, Switzerland
| | - Peng Yong Sim
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Enrico Bernardi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, Bern CH-3008, Switzerland
| | - Karin Paschon
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, Bern CH-3008, Switzerland
| | - Janice Roth
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, Bern CH-3008, Switzerland
| | - Adrian T Fung
- Westmead and Central (Save Sight Institute) Clinical Schools, Specialty of Clinical Ophthalmology and Eye Health, University of Sydney, Sydney, Australia; Department of Ophthalmology, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Xia Ni Wu
- Department of Ophthalmology, Fremantle Hospital, Perth, Australia
| | - Hung-Da Chou
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taiwan and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | - Edmund Tsui
- UCLA Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Maria Berrocal
- Berrocal & Associates, Department of Ophthalmology, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Jay Chhablani
- Medical Retina and Vitreoretinal Surgery, University of Pittsburgh School of Medicine, Pittsburg, PA, USA
| | - Charles C Wykoff
- Retina Consultants of Texas; Blanton Eye Institute Houston Methodist Hospital, Houston, TX, USA
| | - Chui Ming Gemmy Cheung
- Singapore National Eye Centre, Singapore; Singapore Eye Research Institute, Singapore; Eye-ACP, Duke-NUS Medical School, Singapore
| | - Giuseppe Querques
- Department of Ophthalmology, University Vita-Salute IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Yousif Subhi
- Department of Ophthalmology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anat Loewenstein
- Department of Ophthalmology, Tel Aviv Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jens Folke Kiilgaard
- Department of Ophthalmology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, Switzerland; Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Murtenstrasse 24, Bern CH-3008, Switzerland
| | - Rodrigo Anguita
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, Switzerland; Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
5
|
Chen HA, Tai YN, Hsieh EH, Thacker M, Lin IC, Tseng CL, Lin FH. Injectable cross-linked hyaluronic acid hydrogels with epigallocatechin gallate loading as vitreous substitutes. Int J Biol Macromol 2024; 275:133467. [PMID: 38945319 DOI: 10.1016/j.ijbiomac.2024.133467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Hyaluronic acid (HA) serves as a vitreous substitute owing to its ability to mimic the physical functions of native vitreous humor. However, pure HA hydrogels alone do not provide sufficient protection against potential inflammatory risks following vitrectomy. In this study, HA was crosslinked with 1,4-butanediol diglycidyl ether (BDDE) to form HA hydrogels (HB). Subsequently, the anti-inflammatory agent epigallocatechin gallate (EGCG) was added to the hydrogel (HBE) for ophthalmic applications as a vitreous substitute. The characterization results indicated the successful preparation of HB with transparency, refractive index, and osmolality similar to those of native vitreous humor, and with good injectability. The anti-inflammatory ability of HBE was also confirmed by the reduced expression of inflammatory genes in retinal pigment epithelial cells treated with HBE compared with those treated with HB. In a New Zealand white rabbit model undergoing vitreous substitution treatment, HBE 50 (EGCG 50 μM addition) exhibited positive results at 28 days post-surgery. These outcomes included restored intraocular pressure, improved electroretinogram responses, minimal increase in corneal thickness, and no inflammation during histological examination. This study demonstrated the potential of an injectable HA-BDDE cross-linked hydrogel containing EGCG as a vitreous substitute for vitrectomy applications, offering prolonged degradation time and anti-inflammatory effects postoperatively.
Collapse
Affiliation(s)
- Huai-An Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Yi-Ning Tai
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei City, Taiwan
| | - Erh-Hsuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Minal Thacker
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei City, Taiwan; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan; International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan..
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei City, Taiwan; Institute of Biomedical Engineering & Nanomedicine (IBEN), National Health Research Institutes, Miaoli County, Taiwan.
| |
Collapse
|
6
|
Shettigar MP, Dave VP, Chou HD, Fung A, Iguban E, March de Ribot F, Zabala C, Hsieh YT, Lalwani G. Vitreous substitutes and tamponades - A review of types, applications, and future directions. Indian J Ophthalmol 2024; 72:1102-1111. [PMID: 39078953 PMCID: PMC11451774 DOI: 10.4103/ijo.ijo_2417_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/13/2024] [Accepted: 03/27/2024] [Indexed: 10/06/2024] Open
Abstract
Vitreous substitutes and tamponades occupy the vitreous cavity following vitrectomy in the management of various conditions such as retinal detachment, macular hole, and diabetic retinopathy. Such replacements can be for the short term (gases such as sulfur hexafluoride (SF6) and perfluoropropane (C3F8) or long term (such as silicone oils). Certain substitutes such as perfluorocarbon liquids are used only transiently during surgery as "a third hand" or rarely till a few days post surgery. Hydrogels and hyaluronan derivatives are among the newer vitreous substitutes that are showing promise for the future, albeit still under investigation. still being investigated for use as vitreous substitutes. These materials have properties similar to the natural vitreous and may offer advantages such as improved biocompatibility and biodegradability. Although vitreous substitutes are valuable tools in treating vitreoretinal conditions, they carry risks and potential complications such as cataract formation, glaucoma, and inflammation. The current communication extensively reviews the available literature on vitreous tamponades. It details the composition and properties of various vitreous substitutes and tamponades available for the clinician, highlighting the techniques of usage, indications, and limitations.
Collapse
Affiliation(s)
- Manoj P Shettigar
- Smt. Kanuri Santhamma Center for Vitreoretinal Diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Standard Chartered-LVPEI Academy for Eye Care Education, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Vivek Pravin Dave
- Smt. Kanuri Santhamma Center for Vitreoretinal Diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Hung-Da Chou
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Adrian Fung
- Westmead Hospital, Sydney, Australia
- Westmead and Central Clinical Schools, University of Sydney, Sydney, Australia
- Macquarie University Hospital, Macquarie University, NSW, Australia
| | - Eleonore Iguban
- Department of Ophthalmology, Rizal Medical Center, Pasig Boulevard, Pasig City, Philippines
| | | | - Camille Zabala
- Department of Health Eye Center, East Avenue Medical Center, Quezon City, Philippines
| | - Yi-Ting Hsieh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Geeta Lalwani
- Rocky Mountain Retina Assoc, 4430 Arapahoe Ave, 1330 Vivian St, Boulder, CO 80305, USA
| |
Collapse
|
7
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
8
|
Choi G, An SH, Choi JW, Rho MS, Park WC, Jeong WJ, Cha HJ. Injectable alginate-based in situ self-healable transparent hydrogel as a vitreous substitute with a tamponading function. Biomaterials 2024; 305:122459. [PMID: 38199216 DOI: 10.1016/j.biomaterials.2023.122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Retinal detachment and other vision-threatening disorders often necessitate vitreous body removal and tamponade injection for retina stabilization. Current clinical tamponades such as silicone oil and expansile gases have drawbacks, including patient discomfort and the need for secondary surgery. We introduce a transparent alginate-phenylboronic acid/polyvinyl alcohol composite hydrogel (TALPPH) as a novel vitreous substitute with tamponading capabilities. In vitro physicochemical, rheological, and optical characterization of in situ self-healable TALPPH was performed, and long-term biocompatibility was assessed in a rabbit model of vitrectomy retinal detachment. In vivo evaluations confirmed TALPPH's ability to inhibit retinal detachment recurrence and preserve rabbit vision without adverse effects. TALPPH's close resemblance to the natural vitreous body suggests potential as a vitreous tamponade substitute for future ophthalmological applications.
Collapse
Affiliation(s)
- Geunho Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seoung Hyun An
- Department of Ophthalmology, Dong-A University Hospital, Busan 49315, Republic of Korea
| | - Jae-Won Choi
- Department of Ophthalmology, Sungmo Eye Hospital, Busan 48064, Republic of Korea
| | - Mee Sook Rho
- Department of Pathology, Dong-A University Hospital, Busan 49315, Republic of Korea
| | - Woo Chan Park
- Department of Ophthalmology, Dong-A University Hospital, Busan 49315, Republic of Korea
| | - Woo Jin Jeong
- Department of Ophthalmology, Dong-A University Hospital, Busan 49315, Republic of Korea.
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
9
|
Zengin S, Mercan S, Tarhan D, Gök A, Ercan AM. Age-related changes on physicochemical properties of the artificial vitreous humor: A practical tool for enhancing ex vivo studies. Exp Eye Res 2024; 239:109762. [PMID: 38147936 DOI: 10.1016/j.exer.2023.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The vitreous humor (VH) is a hydrophilic, jelly-like ocular fluid, which is located in the posterior chamber of the eye. The rheological, structural, and chemical properties of VH change significantly during aging, which further causes eye-associated diseases and could be a potential indicator for various diseases. In this study, artificial VH (A-VH) samples were created by taking into account different age groups to observe age-related changes in the physicochemical properties of these samples. This study aimed to measure the physicochemical properties of age-dependently prepared A-VH samples to determine the changes with aging in the physicochemical properties of A-VH samples. Phosphate-buffered saline (PBS)-based A-VH samples were prepared in three types representing adult, middle-aged, and elder individuals. Age-related changes in physicochemical properties (surface tension, osmolality, pH, relative viscosity, density, and refractive index) were analyzed by related equipment. The A-VH samples, prepared using PBS, showed strong similarity to authentic VH in terms of physicochemical properties. While the age-related changes studies have revealed some discrepancies between age-dependently prepared A-VH samples in terms of surface tension, osmolality, relative viscosity, and pH with high correlation coefficients (r2 > 0,94), density and refractive index values did not show any significant differences and correlation between types of A-VH representing 3 age groups. In conclusion, age-dependent A-VH samples were created successfully to use ex vivo method development studies, and the influence of aging on the physicochemical properties of VH was demonstrated as well.
Collapse
Affiliation(s)
- Simge Zengin
- Istanbul University-Cerrahpaşa, Institute of Forensic Sciences and Legal Medicine, Department of Science, Buyukcekmece, Istanbul, Turkey
| | - Selda Mercan
- Istanbul University-Cerrahpaşa, Institute of Forensic Sciences and Legal Medicine, Department of Science, Buyukcekmece, Istanbul, Turkey.
| | - Duygu Tarhan
- Bahcesehir University, School of Medicine, Department of Biophysics, Goztepe, Istanbul, Turkey
| | - Aslı Gök
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, Avcılar, Istanbul, Turkey
| | - Alev Meltem Ercan
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Biophysics, Fatih, Istanbul, Turkey
| |
Collapse
|
10
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
11
|
Ledda PG, Rossi T, Badas MG, Querzoli G. Can wall shear-stress topology predict proliferative vitreoretinopathy localization following pars plana vitrectomy? J Biomech 2024; 162:111914. [PMID: 38157782 DOI: 10.1016/j.jbiomech.2023.111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
We numerically study the fluid dynamics of oil tamponade in models of vitrectomized eyes prompted by a subset of daily activities corresponding to movements on the horizontal plane with the patient in a standing position. Bulk flow features are related to near-wall flow topology and transport at the retinal surface through a wall shear-stress-based analysis. Proliferative VitreoRetinopathy (PVR) is the leading cause of retinal re-detachment occurring in about 20% of all cases due to the accumulation of inflammatory cells in discrete retinal regions. Signalling soluble mediators stimulate inflammatory cells' chemotaxis and studying their distribution across the retinal surface may acquire clinical relevance. In all the investigated cases, persistent and elongated regions along the retina, potentially prone to accumulate chemo-attractants and cells are observed. Gradients of soluble inflammation mediators present in the aqueous are known responsible for the so-called epithelial-mesenchymal transition that initiates PVR and favours recurrent retinal detachment prompting the proliferation of inflammatory cells with collagen matrix deposition and its contraction. The surgical apposition of encircling scleral buckling elements, known for over a century to influence PVR formation and localization, modifies the attracting regions, possibly causing an accumulation of molecules and cells along approximately vertical lines that follow the rising menisci due to the cerclage indentation. The resulting spatial pattern is compatible with clinical observations. This study may open toward rational analyses of near-wall transport to predict PVR pathogenesis by relating biochemical accumulation in certain areas of the retina to clinical conditions.
Collapse
Affiliation(s)
- P G Ledda
- DICAAR, Università degli Studi di Cagliari, Cagliari, Italy
| | - T Rossi
- IRCCS Fondazione G.B. Bietti ONLUS, Rome, Italy
| | - M G Badas
- DICAAR, Università degli Studi di Cagliari, Cagliari, Italy
| | - G Querzoli
- DICAAR, Università degli Studi di Cagliari, Cagliari, Italy.
| |
Collapse
|
12
|
Mimura M, Akagi T, Kohmoto R, Fujita Y, Sato Y, Ikeda T. Measurement of vitreous humor pressure in vivo using an optic fiber pressure sensor. Sci Rep 2023; 13:18233. [PMID: 37880357 PMCID: PMC10600124 DOI: 10.1038/s41598-023-45616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023] Open
Abstract
We conducted a study to assess the pressure difference between the aqueous and vitreous humors in rabbit eyes using a direct intraocular pressure (IOP) measurement method. A micro-optic-fiber pressure sensor was utilized for this purpose. Preliminary experiments with enucleated porcine eyes confirmed the sensor's accuracy in measuring both aqueous and vitreous humor pressure. The main study involved six healthy albino rabbits, where the sensor measured the pressure in the anterior chamber (aIOP) and posterior vitreous-cavity (pIOP). These measurements were compared to aIOP values obtained through rebound tonometry. Additionally, pre- and postoperative pressure comparisons were made after performing a vitrectomy. Results revealed a significant disparity between aqueous and vitreous humor pressures. Prior to vitrectomy, pIOP was 22.8 mmHg, over twice as high as aIOP (11.0 mmHg), but decreased to a similar level following the procedure. Comparison between the sensor measurements and rebound tonometry showed agreement in aIOP values. In conclusion, our study demonstrates that vitreous humor pressure is consistently higher than aqueous humor pressure, reaching the upper limit of normal IOP. Furthermore, vitrectomy effectively reduces pIOP, aligning it with aIOP. These findings contribute valuable insights into intraocular pressure dynamics and have implications for clinical interventions targeting ocular pressure regulation.
Collapse
Affiliation(s)
- Masashi Mimura
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan.
- Department of Ophthalmology, Hyogo Medical University, 1-1, Mukogawa-Cho, Nishinomiya-Shi, Hyogo , 663-8501, Japan.
- Department of Ophthalmology, Toho University Sakura Medical Center, Sakura-City, Chiba, Japan.
| | - Tadamichi Akagi
- Division of Ophthalmology and Visual Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryosuke Kohmoto
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Yasushi Fujita
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Yohei Sato
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka, Japan
| |
Collapse
|
13
|
Wakabayashi T, Tsuboi K, Oshima Y, Ishida Y, Baba K, Shiraki N, Yamamoto Y, Fukuyama H, Abe K, Otsuka Y, Hashimoto R, Shiraki A, Hara C, Venkatesh R, Chhablani J, Gomi F, Kamei M, Maeno T, Yonekawa Y, Ikuno Y. Efficacy of Vitrectomy With Tamponade Versus No Tamponade for Myopic Traction Maculopathy: A Multicenter Study (SCHISIS Report No.1). Am J Ophthalmol 2023; 254:182-192. [PMID: 37343740 DOI: 10.1016/j.ajo.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE To evaluate the influence of tamponade on the visual and anatomic outcomes of pars plana vitrectomy for myopic traction maculopathy (MTM). DESIGN Multicenter, retrospective clinical cohort study. METHODS Consecutive eyes that underwent vitrectomy for advanced MTM with tamponade of air, sulfur hexafluoride (SF6), or perfluoropropane (C3F8) or without tamponade with a minimum follow-up of 12 months were included. Main outcome measures included postoperative visual acuity (VA) at 12 months in eyes with vs without tamponade. RESULTS We included a total of 193 eyes (193 patients) in this study; 136 eyes (70%) treated with tamponade were compared with 57 eyes (30%) treated without tamponade. Baseline characteristics did not differ significantly between the groups. Both groups showed significant visual improvement at 12 months (both P < .001). However, postoperative visual acuity and visual improvement at 12 months were significantly better (P = .003 and P = .028, respectively) in eyes without tamponade, although the MTM in these eyes without tamponade took longer to resolve (P = .039). Retinal thickness and the ellipsoid zone were more preserved in eyes without tamponade (P < .001 and P = .001, respectively). Complications such as macular holes did not differ between the groups. A novel imaging finding of "schisis bending (accordioning)" was identified during MTM resolution. CONCLUSIONS Vitrectomy either with or without tamponade for MTM was effective in improving vision in this study. However, eyes without tamponade experienced even better visual improvement and preserved retinal anatomy, despite a longer schisis resolution time. Surgery without tamponade may achieve better visual outcomes.
Collapse
Affiliation(s)
- Taku Wakabayashi
- From the Wills Eye Hospital (T.W., Y.Y.), Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Ophthalmology (T.W., N.S., AS., C.H.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Kotaro Tsuboi
- Department of Ophthalmology (K.T., Y.I., K.B., M.K.), Aichi Medical University, Nagakute, Aichi, Japan; Casey Eye Institute (K.T.), Oregon Health & Science University, Portland, Oregon, USA
| | - Yusuke Oshima
- Oshima Eye Clinic (Y.O.), Seiyukai Medical Corporation, Takatsuki, Osaka, Japan
| | - Yuichiro Ishida
- Department of Ophthalmology (K.T., Y.I., K.B., M.K.), Aichi Medical University, Nagakute, Aichi, Japan
| | - Keita Baba
- Department of Ophthalmology (K.T., Y.I., K.B., M.K.), Aichi Medical University, Nagakute, Aichi, Japan
| | - Nobuhiko Shiraki
- Department of Ophthalmology (T.W., N.S., AS., C.H.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Yamamoto
- Department of Ophthalmology (Y.Y., H.F. F.G.), Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hisashi Fukuyama
- Department of Ophthalmology (Y.Y., H.F. F.G.), Hyogo College of Medicine, Nishinomiya, Hyogo, Japan; Department of Ophthalmology (H.F.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kentaro Abe
- Department of Ophthalmology (K.A., Y.O., R.H., T.M.), Toho University Sakura Medical Center, Sakura, Japan
| | - Yuki Otsuka
- Department of Ophthalmology (K.A., Y.O., R.H., T.M.), Toho University Sakura Medical Center, Sakura, Japan
| | - Ryuya Hashimoto
- Department of Ophthalmology (K.A., Y.O., R.H., T.M.), Toho University Sakura Medical Center, Sakura, Japan
| | - Akihiko Shiraki
- Department of Ophthalmology (T.W., N.S., AS., C.H.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chikako Hara
- Department of Ophthalmology (T.W., N.S., AS., C.H.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ramesh Venkatesh
- Department of Retina and Vitreous (R.V.), Narayana Nethralaya, Rajaji Nagar, Bengaluru, Karnataka, India
| | - Jay Chhablani
- Department of Ophthalmology (J.C.), University of Pittsburgh Eye Center, Pittsburg, Pennsylvania, USA
| | - Fumi Gomi
- Department of Ophthalmology (Y.Y., H.F. F.G.), Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Motohiro Kamei
- Department of Ophthalmology (K.T., Y.I., K.B., M.K.), Aichi Medical University, Nagakute, Aichi, Japan
| | - Takatoshi Maeno
- Department of Ophthalmology (K.A., Y.O., R.H., T.M.), Toho University Sakura Medical Center, Sakura, Japan
| | - Yoshihiro Yonekawa
- From the Wills Eye Hospital (T.W., Y.Y.), Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
14
|
Zhu Q, Zhang Q, Fu DY, Su G. Polysaccharides in contact lenses: From additives to bulk materials. Carbohydr Polym 2023; 316:121003. [PMID: 37321708 DOI: 10.1016/j.carbpol.2023.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 06/17/2023]
Abstract
As the number of applications has increased, so has the demand for contact lenses comfort. Adding polysaccharides to lenses is a popular way to enhance comfort for wearers. However, this may also compromise some lens properties. It is still unclear how to balance the variation of individual lens parameters in the design of contact lenses containing polysaccharides. This review provides a comprehensive overview of how polysaccharide addition impacts lens wear parameters, such as water content, oxygen permeability, surface wettability, protein deposition, and light transmittance. It also examines how various factors, such as polysaccharide type, molecular weight, amount, and mode of incorporation into lenses modulate these effects. Polysaccharide addition can improve some wear parameters while reducing others depending on the specific conditions. The optimal method, type, and amount of added polysaccharides depend on the trade-off between various lens parameters and wear requirements. Simultaneously, polysaccharide-based contact lenses may be a promising option for biodegradable contact lenses as concerns regarding environmental risks associated with contact lens degradation continue to increase. It is hoped that this review will shed light on the rational use of polysaccharides in contact lenses to make personalized lenses more accessible.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Qiao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ding-Yi Fu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
15
|
Gao AY, Haak AJ, Bakri SJ. In vitro laboratory models of proliferative vitreoretinopathy. Surv Ophthalmol 2023; 68:861-874. [PMID: 37209723 DOI: 10.1016/j.survophthal.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Proliferative vitreoretinopathy (PVR), the most common cause of recurrent retinal detachment, is characterized by the formation and contraction of fibrotic membranes on the surface of the retina. There are no Food and Drug Administration (FDA)-approved drugs to prevent or treat PVR. Therefore, it is necessary to develop accurate in vitro models of the disease that will enable researchers to screen drug candidates and prioritize the most promising candidates for clinical studies. We provide a summary of recent in vitro PVR models, as well as avenues for model improvement. Several in vitro PVR models were identified, including various types of cell cultures. Additionally, novel techniques that have not been used to model PVR were identified, including organoids, hydrogels, and organ-on-a-chip models. Novel ideas for improving in vitro PVR models are highlighted. Researchers may consult this review to help design in vitro models of PVR, which will aid in the development of therapies to treat the disease.
Collapse
Affiliation(s)
- Ashley Y Gao
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA
| | - Andrew J Haak
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Sophie J Bakri
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA.
| |
Collapse
|
16
|
Yadav I, Purohit SD, Singh H, Das NS, Ghosh C, Roy P, Mishra NC. Meropenem loaded 4-arm-polyethylene-succinimidyl-carboxymethyl ester and hyaluronic acid based bacterial resistant hydrogel. Int J Biol Macromol 2023; 235:123842. [PMID: 36854369 DOI: 10.1016/j.ijbiomac.2023.123842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
Developing an ideal vitreous substitute/implant is a current challenge. Moreover, implants (e.g., heart valves and vitreous substitutes), are associated with a high risk of bacterial infection when it comes in contact with cells at implant site. Due to infection, many implants fail, and the patient requires immediate surgery and suffers from post-operative problems. To overcome these problems in vitreous implants, we developed a bacterial resistant vitreous implant, where meropenem (Mer), an antibiotic, has been incorporated in a hydrogel prepared by crosslinking HA (deacetylated sodium hyaluronate) with 4-arm-polyethylene-succinimidyl-carboxymethyl-ester (PESCE). The HA-PESCE hydrogel may serve as a suitable artificial vitreous substitute (AVS). The pre-gel solutions of HA-PESCE without drug and with the drug are injectable through a 22 G needle, and the gel formation occurred in approx. 3 min: it indicates its suitability for in-situ gelation through vitrectomy surgery. The HA-PESCE hydrogel depicted desired biocompatibility, transparency (>90 %), water content (96 %) and sufficient viscoelasticity (G' >100 Pa) calculated after 1 month in-vitro, which are suitable for vitreous substitute. The HA-Mer-PESCE hydrogel showed improved biocompatibility, suitable transparency (>90 %), high water content (96 %), and suitable viscoelasticity (G' >100 Pa) calculated after 1 month in-vitro, which are suitable for vitreous substitute. Further, hydrogel strongly inhibits the growth of bacteria E.coli and S.aureus. The drug loaded hydrogel showed sustained in-vitro drug release by the Fickian diffusion-mediated process (by Korsmeyer-Peppas and Peppas Sahlin model). Thus, the developed hydrogel may be used as a potential bacterial resistant AVS.
Collapse
Affiliation(s)
- Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeladri Singha Das
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Chandrachur Ghosh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
17
|
Naik K, Du Toit LC, Ally N, Choonara YE. Advances in Polysaccharide- and Synthetic Polymer-Based Vitreous Substitutes. Pharmaceutics 2023; 15:566. [PMID: 36839888 PMCID: PMC9961338 DOI: 10.3390/pharmaceutics15020566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The vitreous humour is a gel-like structure that composes the majority of each eye. It functions to provide passage of light, be a viscoelastic dampener, and hold the retina in place. Vitreous liquefaction causes retinal detachment and retinal tears requiring pars plana vitrectomy for vitreous substitution. An ideal vitreous substitute should display similar mechanical, chemical, and rheological properties to the natural vitreous. Currently used vitreous substitutes such as silicone oil, perfluorocarbon liquids, and gases cannot be used long-term due to adverse effects such as poor retention time, cytotoxicity, and cataract formation. Long-term, experimental vitreous substitutes composed of natural, modified and synthetic polymers are currently being studied. This review discusses current long- and short-term vitreous substitutes and the disadvantages of these that have highlighted the need for an ideal vitreous substitute. The review subsequently focuses specifically on currently used polysaccharide- and synthetic polymer-based vitreous substitutes, which may be modified or functionalised, or employed as the derivative, and discusses experimental vitreous substitutes in these classes. The advantages and challenges associated with the use of polymeric substitutes are discussed. Innovative approaches to vitreous substitution, namely a novel foldable capsular vitreous body, are presented, as well as future perspectives related to the advancement of this field.
Collapse
Affiliation(s)
- Kruti Naik
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C. Du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Naseer Ally
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
18
|
Confalonieri F, Josifovska N, Boix-Lemonche G, Stene-Johansen I, Bragadottir R, Lumi X, Petrovski G. Vitreous Substitutes from Bench to the Operating Room in a Translational Approach: Review and Future Endeavors in Vitreoretinal Surgery. Int J Mol Sci 2023; 24:3342. [PMID: 36834754 PMCID: PMC9961686 DOI: 10.3390/ijms24043342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Vitreous substitutes are indispensable tools in vitreoretinal surgery. The two crucial functions of these substitutes are their ability to displace intravitreal fluid from the retinal surface and to allow the retina to adhere to the retinal pigment epithelium. Today, vitreoretinal surgeons can choose among a plethora of vitreous tamponades, and the tamponade of choice might be difficult to determine in the ever-expanding range of possibilities for a favorable outcome. The currently available vitreous substitutes have disadvantages that need to be addressed to improve the surgical outcome achievable today. Herein, the fundamental physical and chemical proprieties of all vitreous substitutes are reported, and their use and clinical applications are described alongside some surgical techniques of intra-operative manipulation. The major upcoming developments in vitreous substitutes are extensively discussed, keeping a translational perspective throughout. Conclusions on future perspectives are derived through an in-depth analysis of what is lacking today in terms of desired outcomes and biomaterials technology.
Collapse
Affiliation(s)
- Filippo Confalonieri
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Natasha Josifovska
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Gerard Boix-Lemonche
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Ingar Stene-Johansen
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
| | - Ragnheidur Bragadottir
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Xhevat Lumi
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
- Eye Hospital, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Goran Petrovski
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| |
Collapse
|
19
|
Lazzara F, Conti F, Ferrara M, Lippera M, Coppola M, Rossi S, Drago F, Bucolo C, Romano MR. Safety Profile of Lutein- Versus Triamcinolone Acetonide-Based Vitreous Staining. Transl Vis Sci Technol 2023; 12:5. [PMID: 36598459 PMCID: PMC9832719 DOI: 10.1167/tvst.12.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose To assess the safety profile of a new lutein-based vitreous dye (LB-VD) formulation compared with various triamcinolone acetonide (TA) formulations with and without subsequent exposure to perfluorodecalin (PFD) in vitro. Methods Human adult retinal pigment epithelial cells (ARPE-19) were treated with the following formulations: undiluted preserved TA (TA-BA), diluted preserved TA (D-TA-BA), preservative-free TA (TA-PF), and LB-VD. First, cell tolerability was evaluated with MTT, LDH, and ATPlite assays after 1, 5, and 30 minutes of exposure to each tested formulation. Then, cells were sequentially exposed to formulations and PFD. After 24 hours of exposure to PFD, cell tolerability was evaluated through MTT and ATPlite assays. Results Among the formulations tested, LB-VD showed the highest levels of cell viability, cell metabolism, and cell proliferation and induced the lowest release of LDH, whereas the TA-based formulations demonstrated a cytotoxic effect on ARPE-19 cells in vitro. After subsequent 24-hour exposure to PFD, a greater reduction of cell viability was noted for all the formulations; however, this reduction was not significant only for the combination LB-VD-PFD, which was the best tolerated condition. Conclusions LB-VD showed a better safety profile compared with all TA-based formulations, even when used in combination with PFD. Translational Relevance In surgical practice, LB-VD may be preferred to TA-based formulations for vitreous staining in the light of its more favorable safety profile.
Collapse
Affiliation(s)
- Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Mariantonia Ferrara
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Myrta Lippera
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Michele Coppola
- Department of Ophthalmology, San Gerardo Hospital, Monza, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy,Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy,Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Mario R. Romano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy,Eye Center, Humanitas Gavazzeni-Castelli, Bergamo, Italy
| |
Collapse
|
20
|
Ma S, Zhao S, Zhang C, Tang X, Zhou W. Study on the efficacy and safety of foldable capsular vitreous body in the severe retinal detachment eyes. BMC Ophthalmol 2022; 22:491. [PMID: 36522622 PMCID: PMC9756693 DOI: 10.1186/s12886-022-02729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study was to evaluate the efficacy and safety of the implantation of foldable capsular vitreous body (FCVB) in severe retinal detachment eyes. METHODS A retrospective study in retinal detachment eyes was performed at Shandong Provincial Hospital Affiliated to Shandong First Medical University. A standard three-port pars plana vitrectomy was performed, and the FCVB was triple folded and implanted into the vitreous cavity. The silicone oil (SO) was then injected into the capsule of the FCVB to support the retina and eye. During the follow-up period, The treated eyes were examined by ophthalmoscopy, fundus photography, and tonometry. B-scan ultrasonography, optical coherence tomography (OCT), and computed tomography (CT), were also performed. RESULTS From May 2020 to November 2021, 31 cases with severe retinal detachment were enrolled in the study. The postoperative follow-up time gradient ranged from 1 to 72 weeks, At various observation time points during the 72 weeks after surgery, The postoperative IOP was maintained at around 10 mmhg at various time points, with a slight decrease compared to the preoperative IOP (14.2 ± 4.6 mmHg n = 18), and was statistically significant. 9 of 31 patients had clear refractive media, both fundus and OCT showed retinal reattachment, OCT showed the 200 μm thick FCVB capsule support retina. The remaining 22 patients with unclear refractive media, B-scan showed arcuate hyperechoes in front of the retina. There was also no significant difference in visual acuity compared to preoperative. The FCVB was well positioned in the vitreous cavity, and no serious complications such as endophthalmitis, glaucoma, silicone oil emulsification, product exposure, or sympathetic uveitis were found. CONCLUSIONS FCVB has retinal support with certain ability to maintain IOP and eye morphology and avoid eye removal in patients with severe retinal detachment during the 72-week observation period.
Collapse
Affiliation(s)
- Shengnan Ma
- grid.460018.b0000 0004 1769 9639Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000 Shandong Province China
| | - Suzhen Zhao
- grid.460018.b0000 0004 1769 9639Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000 Shandong Province China
| | - Chunxiao Zhang
- grid.460018.b0000 0004 1769 9639Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000 Shandong Province China
| | - Xia Tang
- grid.460018.b0000 0004 1769 9639Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000 Shandong Province China
| | - Weiyan Zhou
- grid.460018.b0000 0004 1769 9639Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000 Shandong Province China
| |
Collapse
|
21
|
Schulz A, Germann A, Heinz WR, Engelhard M, Menz H, Rickmann A, Meiser I, Wien S, Wagner S, Januschowski K, Szurman P. Translation of hyaluronic acid–based vitreous substitutes towards current regulations for medical devices. Acta Ophthalmol 2022; 101:422-432. [PMID: 36457299 DOI: 10.1111/aos.15301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE Hydrogel-based vitreous substitutes have the potential to overcome the limitations of current clinically used endotamponades. With the goal of entering clinical trials, the present study aimed to (I) transfer the material synthesis of hyaluronic acid-based hydrogels into a routine, pharmaceutical-appropriate production and (II) evaluate the properties of the vitreous substitutes in terms of the current regulations for medical devices (MDR/ISO standards). METHODS The multistep manufacturing process of the vitreous substitutes, including the modification of hyaluronic acid with glycidyl methacrylate, photocopolymerization with N-vinylpyrrolidone, and successive hydrogel purification, was developed under laboratory conditions, characterized using 1 H-NMR, FT-IR and UV/Vis spectroscopies and HPLC, and transferred towards a pharmaceutical production environment considering GMP standards. The optical and viscoelastic characteristics of the hyaluronic acid-based hydrogels were compared with those of extracted human vitreous and silicone oil. The effect of the hydrogels on the metabolic activity, proliferation and apoptosis of fibroblast (MRC-5, BJ, L929), retinal pigment epithelial (ARPE-19, hiPSC-derived RPE) and photoreceptor cells (661W) was studied as well as their mucosal tolerance via a HET-CAM assay. RESULTS Hyaluronic acid-based hydrogels having a suitable purity, sterility, high transparency (>90%), appropriate refractive index (1.3365) and viscoelasticity (G' > G″) were prepared in a standardized manner under controlled process conditions. The metabolic activity, proliferation and apoptosis of various cell types as well as egg choroid were unaffected by the hyaluronic acid-based vitreous substitutes, demonstrating their biocompatibility. CONCLUSIONS The present study demonstrates the successful transferability of the crucial synthesis steps of hyaluronic acid-based hydrogels into a routine, GMP-compliant production process while achieving the optical and viscoelastic properties, biocompatibility and purity required for their clinical use as vitreous substitutes.
Collapse
Affiliation(s)
- André Schulz
- Eye Clinic Sulzbach, Knappschaft Hospital Saar Sulzbach Germany
- Klaus Heimann Eye Research Institute Sulzbach Germany
| | - Anja Germann
- Fraunhofer Institute for Biomedical Engineering Sulzbach Germany
| | | | | | | | - Annekatrin Rickmann
- Eye Clinic Sulzbach, Knappschaft Hospital Saar Sulzbach Germany
- Klaus Heimann Eye Research Institute Sulzbach Germany
| | - Ina Meiser
- Fraunhofer Institute for Biomedical Engineering Sulzbach Germany
| | - Sascha Wien
- Fraunhofer Institute for Biomedical Engineering Sulzbach Germany
| | - Sylvia Wagner
- Fraunhofer Institute for Biomedical Engineering Sulzbach Germany
| | - Kai Januschowski
- Eye Clinic Sulzbach, Knappschaft Hospital Saar Sulzbach Germany
- Klaus Heimann Eye Research Institute Sulzbach Germany
| | - Peter Szurman
- Eye Clinic Sulzbach, Knappschaft Hospital Saar Sulzbach Germany
- Klaus Heimann Eye Research Institute Sulzbach Germany
| |
Collapse
|
22
|
Ribeiro L, Oliveira J, Kuroiwa D, Kolko M, Fernandes R, Junior O, Moraes N, Vasconcelos H, Oliveira T, Maia M. Advances in Vitreoretinal Surgery. J Clin Med 2022; 11:6428. [PMID: 36362657 PMCID: PMC9658321 DOI: 10.3390/jcm11216428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 09/05/2023] Open
Abstract
Advances in vitreoretinal surgery provide greater safety, efficacy, and reliability in the management of the several vitreoretinal diseases that benefit from surgical treatment. The advances are divided into the following topics: scleral buckling using chandelier illumination guided by non-contact visualization systems; sclerotomy/valved trocar diameters; posterior vitrectomy systems and ergonomic vitrectomy probes; chromovitrectomy; vitreous substitutes; intraoperative visualization systems including three-dimensional technology, systems for intraoperative optical coherence tomography, new instrumentation in vitreoretinal surgery, anti-VEGF injection before vitrectomy and in eyes with proliferative diabetic retinopathy, and new surgical techniques; endoscopic surgery; the management of subretinal hemorrhages; gene therapy; alternative techniques for refractory macular hole; perspectives for stem cell therapy and the prevention of proliferative vitreoretinopathy; and, finally, the Port Delivery System. The main objective of this review is to update the reader on the latest changes in vitreoretinal surgery and to provide an understanding of how each has impacted the improvement of surgical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mauricio Maia
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04021-001, Brazil
| |
Collapse
|
23
|
Clinical Application of Foldable Capsular Vitreous Bodies in the Treatment of Severe Ocular Trauma and Silicone Oil Dependent Eyes. J Ophthalmol 2022; 2022:3608162. [PMID: 36339727 PMCID: PMC9635962 DOI: 10.1155/2022/3608162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose This study aimed to assess the application of a foldable capsular vitreous body (FCVB) in the treatment of severe ocular trauma and silicone oil (SO) dependent eyes. Methods A retrospective analysis was performed on the clinical application of FCVB in the treatment of severe ocular trauma and SO dependent eyes. The results of best-corrected visual acuity and intraocular pressure (IOP) evaluation, B-scan ultrasonography or color Doppler ultrasonography, ultrasound biomicroscopy, and anterior segment photography were recorded during follow-up. A paired t-test was used to compare the difference in IOP before and after FCVB implantation. Results Seven eyes of seven patients were included in the 6-month follow-up. In all cases, B-scan ultrasonography and ultrasound biomicroscopy showed that FCVB adapted closely to the globe wall and ciliary body, thus supporting the retina. Visual acuity did not improve, except in one case from LP to HM. The mean ± SD IOP was 8.5 ± 1.90 mm·Hg prior to FCVB implantation and 10.43 ± 0.98 mm·Hg after implantation, with no significant difference between these measurements (P=0.095). Five of the seven patients developed differing degrees of corneal opacity and keratopathy. Conclusions FCVB implantation may be a safe and effective method for the treatment of severe ocular trauma and SO dependent eyes. However, FCVB cannot prevent the phthisis of the traumatic eyes. In addition, corneal opacity and keratopathy are potentially serious complications after surgery. Appropriate case selection and proper surgical timing are required for further investigation.
Collapse
|
24
|
Retinal and Corneal Changes Associated with Intraocular Silicone Oil Tamponade. J Clin Med 2022; 11:jcm11175234. [PMID: 36079165 PMCID: PMC9457190 DOI: 10.3390/jcm11175234] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 12/22/2022] Open
Abstract
Silicone oils (SO) are used as long-term intraocular tamponades and have an irreplaceable role in vitreoretinal surgery. They can, however, be associated with multiple and potentially severe complications, involving different ocular tissues, in particular retina and cornea. Recent advances in ophthalmic imaging have allowed the precise characterization of retinal and corneal microstructural changes, at a subclinical level. This detailed analysis of SO-related retinal and corneal changes has improved our understanding of their pathogenesis and offer the potential for optimized monitoring and management of patients with SO-filled eyes. This review aims to provide clinicians and ophthalmic scientists with an updated and comprehensive overview of the corneal and retinal changes associated with SO tamponade.
Collapse
|
25
|
Schulz A, Szurman P. Vitreous Substitutes as Drug Release Systems. Transl Vis Sci Technol 2022; 11:14. [PMID: 36125790 PMCID: PMC9508686 DOI: 10.1167/tvst.11.9.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Vitreous substitutes are traditionally used to stabilize the retina after vitrectomy. In recent years, various approaches have been developed for using the vitreous substitute not only as a tamponade but also as a drug release system to tackle ocular diseases. This review provides an overview of the requirements for vitreous substitutes and discusses the current clinically applied as well as novel polymer-based vitreous substitutes as drug delivery systems, including their release mechanisms, efficiencies, challenges, and future perspectives.
Collapse
Affiliation(s)
- André Schulz
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach/Saar, Germany
- Klaus Heimann Eye Research Institute (KHERI), Sulzbach/Saar, Germany
| | - Peter Szurman
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach/Saar, Germany
- Klaus Heimann Eye Research Institute (KHERI), Sulzbach/Saar, Germany
| |
Collapse
|
26
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 208] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
27
|
|
28
|
Ilochonwu BC, Mihajlovic M, Maas-Bakker RF, Rousou C, Tang M, Chen M, Hennink WE, Vermonden T. Hyaluronic Acid-PEG-Based Diels-Alder In Situ Forming Hydrogels for Sustained Intraocular Delivery of Bevacizumab. Biomacromolecules 2022; 23:2914-2929. [PMID: 35735135 PMCID: PMC9277588 DOI: 10.1021/acs.biomac.2c00383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinal diseases are the leading cause of visual impairment worldwide. The effectiveness of antibodies for the treatment of retinal diseases has been demonstrated. Despite the clinical success, achieving sufficiently high concentrations of these protein therapeutics at the target tissue for an extended period is challenging. Patients suffering from macular degeneration often receive injections once per month. Therefore, there is a growing need for suitable systems that can help reduce the number of injections and adverse effects while improving patient complacency. This study systematically characterized degradable "in situ" forming hydrogels that can be easily injected into the vitreous cavity using a small needle (29G). After intravitreal injection, the formulation is designed to undergo a sol-gel phase transition at the administration site to obtain an intraocular depot system for long-term sustained release of bioactives. A Diels-Alder reaction was exploited to crosslink hyaluronic acid-bearing furan groups (HAFU) with 4 arm-PEG10K-maleimide (4APM), yielding stable hydrogels. Here, a systematic investigation of the effects of polymer composition and the ratio between functional groups on the physicochemical properties of hydrogels was performed to select the most suitable formulation for protein delivery. Rheological analysis showed rapid hydrogel formation, with the fastest gel formation within 5 min after mixing the hydrogel precursors. In this study, the mechanical properties of an ex vivo intravitreally formed hydrogel were investigated and compared to the in vitro fabricated samples. Swelling and degradation studies showed that the hydrogels are biodegradable by the retro-Diels-Alder reaction under physiological conditions. The 4APM-HAFU (ratio 1:5) hydrogel formulation showed sustained release of bevacizumab > 400 days by a combination of diffusion, swelling, and degradation. A bioassay showed that the released bevacizumab remained bioactive. The hydrogel platform described in this study offers high potential for the sustained release of therapeutic antibodies to treat ocular diseases.
Collapse
Affiliation(s)
- Blessing C Ilochonwu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands
| | - Marko Mihajlovic
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands
| | - Roel F Maas-Bakker
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands
| | - Charis Rousou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands
| | - Miao Tang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University, Belfast BT9 7BL, U.K
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University, Belfast BT9 7BL, U.K
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
29
|
Abstract
Ophthalmology is the branch of medicine that deals with diseases of the eye, the organ responsible for vision, and its attachments. Biomaterials can be made with different types of materials and can replace or improve a function or an organ, specifically the eye in the case of ophthalmic biomaterials. Biomaterials are substances that interact with biological systems for a medical purpose, either as a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic agent, and have continued to improve over the years, leading to the creation of new biomaterials. With the arrival of new generations, biomaterials have succeeded in reducing complications and toxicity and improving biocompatibilities associated with older generations. With the aging population, eye problems are becoming more prevalent, and biomaterials have helped in recent years to improve or restore vision, improving the quality of life of many patients. This review focuses on the most clinically used ophthalmic biomaterials, including contact lenses, intraocular lenses, artificial tears, inlays and vitreous replacements. Tissue engineering is presented as a new tool that is able to be treat several ophthalmologic disorders.
Collapse
|
30
|
Valentín‐Bravo FJ, García‐Onrubia L, Andrés‐Iglesias C, Valentín‐Bravo E, Martín‐Vallejo J, Pastor JC, Usategui‐Martín R, Pastor‐Idoate S. Complications associated with the use of silicone oil in vitreoretinal surgery: A systemic review and meta-analysis. Acta Ophthalmol 2022; 100:e864-e880. [PMID: 34846097 DOI: 10.1111/aos.15055] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/24/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
Abstract
Silicone oil (SO) still represents the main choice for long-term intraocular tamponade in complicated vitreoretinal surgery. This review compared the complications associated with the use of SO and other vitreous substitutes after pars plana vitrectomy in patients with different underlying diseases. Meta-analysis was conducted in accordance with PRISMA guidelines. We retrieved randomized clinical trials (RCTs), retrospective case-control and cohort studies evaluating the risk of using SO, published between 1994 and 2020, conducting a computer-based search of the following databases: PubMed, Web of Science, Scopus and Embase. Primary outcome was the rate of complications such as intraocular hypertension, retinal re-detachment, unexpected vision loss or hypotony. Secondary outcome was to compare the rate of adverse events of different SO viscosities, especially emulsification. Forty-three articles were included. There were significant differences in intraocular hypertension (p = 0.0002, OR = 1.66; 95% CI = 1.27-2.18) and the rate of retinal re-detachment (p < 0.0009, OR = 0.65; 95% CI = 0.50-0.64) between SO and other agents, including placebo. However, there were no differences in other complication rates. Silicone oil (SO)-emulsification rate was non-significantly higher in low than high SO viscosity, and results from other complications were comparable in both groups. The high quality of most of the studies included in this study is noteworthy, which provides some certainty to the conclusions. Among them is the high variability of the SO residence time. The fact that ocular hypertension and not hypotension is related to SO use. A clear relationship is not found for the so-called unexplained vision loss, which affects a significant percentage of eyes. Re-detachment cases are less if SO is used and that surprisingly there does not seem to be a relationship in the percentage of emulsification between the low- and high-viscosity silicones. All these data warrant more standardized prospective studies.
Collapse
Affiliation(s)
- Fco. Javier Valentín‐Bravo
- Department of Ophthalmology University Clinical Hospital of Valladolid Valladolid Spain
- Institute of Applied Ophthalmobiology (IOBA) University of Valladolid Valladolid Spain
| | - Luis García‐Onrubia
- Department of Ophthalmology University Clinical Hospital of Valladolid Valladolid Spain
| | | | | | - Javier Martín‐Vallejo
- Department of Statistics. Medical School University of Salamanca. Salamanca Biomedical Research Institute (IBSAL) Salamanca Spain
| | - José Carlos Pastor
- Department of Ophthalmology University Clinical Hospital of Valladolid Valladolid Spain
- Institute of Applied Ophthalmobiology (IOBA) University of Valladolid Valladolid Spain
- Medical School University of Valladolid Valladolid Spain
- Cooperative Network for Research in Ophthalmology (Oftared) Carlos III National Institute of Health, ISCIII Madrid Spain
| | - Ricardo Usategui‐Martín
- Institute of Applied Ophthalmobiology (IOBA) University of Valladolid Valladolid Spain
- Medical School University of Valladolid Valladolid Spain
- Cooperative Network for Research in Ophthalmology (Oftared) Carlos III National Institute of Health, ISCIII Madrid Spain
| | - Salvador Pastor‐Idoate
- Department of Ophthalmology University Clinical Hospital of Valladolid Valladolid Spain
- Institute of Applied Ophthalmobiology (IOBA) University of Valladolid Valladolid Spain
- Medical School University of Valladolid Valladolid Spain
- Cooperative Network for Research in Ophthalmology (Oftared) Carlos III National Institute of Health, ISCIII Madrid Spain
| |
Collapse
|
31
|
Injectable self-crosslinking hydrogels based on hyaluronic acid as vitreous substitutes. Int J Biol Macromol 2022; 208:159-171. [PMID: 35301003 DOI: 10.1016/j.ijbiomac.2022.03.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
After vitrectomy, the ideal vitreous substitute should be implanted to maintain the normal function of the eye. However, the existing materials (such as silicone oil, air, perfluorocarbons, etc.) still have some shortcomings and cannot fully meet the clinical needs. In this study, thiolated hyaluronic acid (SH-HA) was prepared based on hyaluronic acid. The SH-HA hydrogel was formed by a simple transformation of the sulfhydryl group to the disulfide bond, which had high transparency, controllable swelling property, suitable mechanical strength, excellent biocompatibility and similar physical and chemical properties to natural vitreous. SH-HA hydrogel was filled into the eyes of experimental rabbits to replace their own vitreous after vitrectomy. During the 90 days follow-up period, SH-HA hydrogel showed excellent intraocular compatibility, maintained normal intraocular pressure (IOP), and no cataract, endophthalmitis, retinal detachment and other complications were observed. In general, SH-HA hydrogel has great potential as a vitreous substitute.
Collapse
|
32
|
Srikantha N, Teijeiro-Gonzalez Y, Simpson A, Elsaid N, Somavarapu S, Suhling K, Jackson TL. Determining vitreous viscosity using fluorescence recovery after photobleaching. PLoS One 2022; 17:e0261925. [PMID: 35143514 PMCID: PMC8830689 DOI: 10.1371/journal.pone.0261925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 12/14/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Vitreous humor is a complex biofluid whose composition determines its structure and function. Vitreous viscosity will affect the delivery, distribution, and half-life of intraocular drugs, and key physiological molecules. The central pig vitreous is thought to closely match human vitreous viscosity. Diffusion is inversely related to viscosity, and diffusion is of fundamental importance for all biochemical reactions. Fluorescence Recovery After Photobleaching (FRAP) may provide a novel means of measuring intravitreal diffusion that could be applied to drugs and physiological macromolecules. It would also provide information about vitreous viscosity, which is relevant to drug elimination, and delivery. METHODS Vitreous viscosity and intravitreal macromolecular diffusion of fluorescently labelled macromolecules were investigated in porcine eyes using fluorescence recovery after photobleaching (FRAP). Fluorescein isothiocyanate conjugated (FITC) dextrans and ficolls of varying molecular weights (MWs), and FITC-bovine serum albumin (BSA) were employed using FRAP bleach areas of different diameters. RESULTS The mean (±standard deviation) viscosity of porcine vitreous using dextran, ficoll and BSA were 3.54 ± 1.40, 2.86 ± 1.13 and 4.54 ± 0.13 cP respectively, with an average of 3.65 ± 0.60 cP. CONCLUSIONS FRAP is a feasible and practical optical method to quantify the diffusion of macromolecules through vitreous.
Collapse
Affiliation(s)
- Nishanthan Srikantha
- School of Medicine, King’s College London, London, United Kingdom
- Department of Ophthalmology, King’s College Hospital, London, United Kingdom
- * E-mail:
| | | | - Andrew Simpson
- School of Medicine, King’s College London, London, United Kingdom
- Department of Ophthalmology, King’s College Hospital, London, United Kingdom
| | - Naba Elsaid
- Anglia Ruskin University, Bishop Hall Lane, Chelmsford, United Kingdom
| | - Satyanarayana Somavarapu
- Department of Pharmaceutics, University College London School of Pharmacy, London, United Kingdom
| | - Klaus Suhling
- Department of Physics, King’s College London, Strand, London, United Kingdom
| | - Timothy L. Jackson
- School of Medicine, King’s College London, London, United Kingdom
- Department of Ophthalmology, King’s College Hospital, London, United Kingdom
| |
Collapse
|
33
|
Trubelja A, Kasper FK, Farach-Carson MC, Harrington DA. Bringing hydrogel-based craniofacial therapies to the clinic. Acta Biomater 2022; 138:1-20. [PMID: 34743044 PMCID: PMC9234983 DOI: 10.1016/j.actbio.2021.10.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 01/17/2023]
Abstract
This review explores the evolution of the use of hydrogels for craniofacial soft tissue engineering, ranging in complexity from acellular injectable fillers to fabricated, cell-laden constructs with complex compositions and architectures. Addressing both in situ and ex vivo approaches, tissue restoration secondary to trauma or tumor resection is discussed. Beginning with relatively simple epithelia of oral mucosa and gingiva, then moving to more functional units like vocal cords or soft tissues with multilayer branched structures, such as salivary glands, various approaches are presented toward the design of function-driven architectures, inspired by native tissue organization. Multiple tissue replacement paradigms are presented here, including the application of hydrogels as structural materials and as delivery platforms for cells and/or therapeutics. A practical hierarchy is proposed for hydrogel systems in craniofacial applications, based on their material and cellular complexity, spatial order, and biological cargo(s). This hierarchy reflects the regulatory complexity dictated by the Food and Drug Administration (FDA) in the United States prior to commercialization of these systems for use in humans. The wide array of available biofabrication methods, ranging from simple syringe extrusion of a biomaterial to light-based spatial patterning for complex architectures, is considered within the history of FDA-approved commercial therapies. Lastly, the review assesses the impact of these regulatory pathways on the translational potential of promising pre-clinical technologies for craniofacial applications. STATEMENT OF SIGNIFICANCE: While many commercially available hydrogel-based products are in use for the craniofacial region, most are simple formulations that either are applied topically or injected into tissue for aesthetic purposes. The academic literature previews many exciting applications that harness the versatility of hydrogels for craniofacial soft tissue engineering. One of the most exciting developments in the field is the emergence of advanced biofabrication methods to design complex hydrogel systems that can promote the functional or structural repair of tissues. To date, no clinically available hydrogel-based therapy takes full advantage of current pre-clinical advances. This review surveys the increasing complexity of the current landscape of available clinical therapies and presents a framework for future expanded use of hydrogels with an eye toward translatability and U.S. regulatory approval for craniofacial applications.
Collapse
Affiliation(s)
- Alen Trubelja
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, UTHealth Science Center at Houston, Houston, TX 77054, United States; Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - F Kurtis Kasper
- Department of Orthodontics, School of Dentistry, UTHealth Science Center at Houston, Houston, TX 77054, United States
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, UTHealth Science Center at Houston, Houston, TX 77054, United States; Department of Bioengineering, Rice University, Houston, TX 77005, United States; Department of BioSciences, Rice University, Houston, TX 77005, United States
| | - Daniel A Harrington
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, UTHealth Science Center at Houston, Houston, TX 77054, United States; Department of Bioengineering, Rice University, Houston, TX 77005, United States; Department of BioSciences, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
34
|
Gatto C, Romano MR, Giurgola L, Ferrara M, Ragazzi E, D'Amato Tothova J. Ex vivo evaluation of retinal cytotoxicity after the use of multiple medical devices in pars plana vitrectomy in porcine eyes. Exp Eye Res 2021; 213:108837. [PMID: 34774490 DOI: 10.1016/j.exer.2021.108837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022]
Abstract
This study aimed to evaluate viability of retinal cells after the use of multiple intraoperative devices, namely a vitreal dye (triamcinolone acetonide,TA), a ERM/ILM dye (solution of trypan blue 0.15% and brilliant blue 0.025%), and two intraocular tamponades, namely perfluoro-n-octane, (PFO) and silicone oil (SO 1000 cSt), with minimal and maximal removal of their residues, during a simulated pars plana vitrectomy (PPV) in porcine eyes ex-vivo. The in vitro cytotoxicity of each of these compounds was verified on ARPE-19 cells by direct tests according to the ISO 10993-5 (2009). Pars plana vitrectomy was performed on 25 enucleated porcine eyes divided in five groups according to the following conditions: Group A) No surgery control: eye bulbs were kept at room temperature for 40 min; Group B) Sham surgery: PPV with the sole use of BSS for 40 min; Group C) Cytotoxic control: PPV with BSS infusion (20 min) followed by intravitreal injection of 1H-PFO (contact time: 20 min); Group D) Surgery with residues: PPV with BSS infusion and sequential intravitreal injection of TA, ERM/ILM dye, PFO and SO, with minimal removal of each compound after a specified contact-time (overall duration: 40 min); Group E) Surgery with minimal residues: PPV performed as in group D, but with maximal removal of each compound (overall duration: 40 min). All the experimental procedures were performed at room temperature. Immediately after surgery, the retina was extracted from each eye bulb and samples of 3-mm diameter were prepared. Retinal viability was determined for each sample by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay. A cell viability <70% was considered the cytotoxicity threshold. Kruskal-Wallis test was used to evaluate the differences in retinal viability between groups. No cytotoxicity was detected in retinal samples in groups A, B and E. Samples from eye bulbs that had undergone surgery with minimal removal of residues (group D) and cytotoxic controls (group C) showed high retinal cytotoxicity. The tested conditions indicated that the combined use of TA, ERM/ILM dye, PFO and SO during PPV does not affect retinal cells viability if all the devices are properly removed, whereas the cytotoxicity detected in group D may suggest that the presence and accumulation of the residues of the compounds used intraoperatively could negatively impact retinal viability due to a cumulative and/or synergistic cytotoxic effect between them, supporting the crucial role of an optimal removal of the intraoperative medical devices to ensure a safe vitrectomy to the patient.
Collapse
Affiliation(s)
- Claudio Gatto
- Research and Development AL.CHI.MI.A. S.r.l, Viale Austria 14, 35020, Ponte San Nicolò, PD, Italy.
| | - Mario R Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milano, Italy; Eye Center, Humanitas Gavazzeni-Castelli, Via Gavazzeni 21, 24125, Bergamo, Italy.
| | - Laura Giurgola
- Research and Development AL.CHI.MI.A. S.r.l, Viale Austria 14, 35020, Ponte San Nicolò, PD, Italy.
| | - Mariantonia Ferrara
- Newcastle Eye Centre, Royal Victoria Infirmary, Queen Victoria Rd, Newcastle upon Tyne, NE1 4LP, United Kingdom.
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131, Padova, Italy.
| | - Jana D'Amato Tothova
- Research and Development AL.CHI.MI.A. S.r.l, Viale Austria 14, 35020, Ponte San Nicolò, PD, Italy.
| |
Collapse
|
35
|
Radiobiological evaluation of organs at risk for electronic high-dose-rate brachytherapy in uveal melanoma: a radiobiological modeling study. J Contemp Brachytherapy 2021; 13:563-574. [PMID: 34759981 PMCID: PMC8565628 DOI: 10.5114/jcb.2021.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose The objective of this study was to examine feasibility of single- or hypo-fraction of high-dose-rate (HDR) electronic brachytherapy (eBT) in uveal melanoma treatment. Material and methods Biologically effective doses (BED) of organs at risk (OARs) were compared to those of iodine-125-based eye plaque low-dose-rate brachytherapy (125I LDR-BT) with vitreous replacement (VR). Single- or hypo-fractionated equivalent physical doses (SFEDs or HFEDs) for tumor were calculated from tumor BED of 125I LDR-BT using linear-quadratic (LQ) and universal survival curve (USC) models. BED OARs doses to retina opposite the implant, macula, optic disc, and lens were calculated and compared among SFED, HFED, and 125I LDR-BT. Electronic BT of 50 kVp was considered assuming dose fall-off as clinically equivalent to 125I LDR-BT. All OARs BEDs were analyzed with and without silicone oil VR. Results For a single-fraction incorporating VR, the median/interquartile range of LQ (USC)-based BED doses of the retina opposite the implant, macula, optic disc, and lens were 16%/1.2% (33%/4%), 35%/19.5% (64%/17.7%), 37%/19% (75%/17.8%), and 27%/7.9% (68%/23.2%) of those for 125I LDR-BT, respectively. SFED tumor values were 29.8/0.2 Gy and 51.7/0.5 Gy when using LQ and USC models, respectively, which could be delivered within 1 hour. SFED can be delivered within 1 hour using a high-dose-rate eBT. Even four-fraction delivery of HFED without VR resulted in higher OARs doses in the macula, optic disc, and lens (135 ~ 159%) than when using 125I LDR-BT technique. A maximum p-value of 0.005 was observed for these distributions. Conclusions The simulation of single-fraction eBT, including vitreous replacement, resulted in significantly reduced OARs doses (16 ~ 75%) of that achieved with 125I LDR-BT.
Collapse
|
36
|
Yadav I, Purohit SD, Singh H, Das N, Roy P, Mishra NC. A highly transparent tri-polymer complex in situhydrogel of HA, collagen and four-arm-PEG as potential vitreous substitute. Biomed Mater 2021; 16. [PMID: 34525462 DOI: 10.1088/1748-605x/ac2714] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022]
Abstract
There is a requirement of removal and replacement of vitreous for various ophthalmic diseases, e.g. retinopathy and retinal detachment. Clinical tamponades, e.g. silicone oil and fluorinated gases are used but limited due to their toxicity and some complications. A lot of polymer-based materials have been tested and proposed as vitreous substitute, but till date, there is no ideal vitreous substitute available. Thus, it requires to develop an improved vitreous substitute which will be highly suitable for vitreous replacement. We have developed tri-polymer complexin situhydrogels by crosslinking among hyaluronic acid (HA), collagen (Coll) and four-arm-polyethylene glycol (PEG). All the developed hydrogels are biocompatible with NIH 3T3 mouse fibroblast cells, having pH in the range 7-7.44 and refractive index in the range 1.333-1.345. The developed hydrogels are highly transparent, showing transmittance >97%. FTIR study shows that the hydrogel was crosslinked by amide bond formation between HA and PEG, and between Coll and PEG. The rheological study shows that all the developed hydrogels exhibit viscoelastic behavior and all the hydrogels have storage modulus values (>100 pa) which is greater than loss modulus values-indicating sufficient elasticity for vitreous application. The elastic nature of the hydrogel increases with the increase in PEG concentration. The gel is formed in between 2 and 3 min-indicating its applicationin situ. The viscosity of the developed hydrogels shows shear thinning behavior. The pre-gel solution of the hydrogel is injectable through a 22 G needle-indicating its applicationin situthrough vitrectomy surgery. All the hydrogels are hydrophilic and have water content of 96% approximately. Thus, the results show the positive properties for its application as a potential vitreous substitute.
Collapse
Affiliation(s)
- Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeladrisingha Das
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
37
|
He B, Yang J, Liu Y, Xie X, Hao H, Xing X, Liu W. An in situ-forming polyzwitterion hydrogel: Towards vitreous substitute application. Bioact Mater 2021; 6:3085-3096. [PMID: 33778190 PMCID: PMC7960944 DOI: 10.1016/j.bioactmat.2021.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
Development of a biostable and biosafe vitreous substitute is highly desirable, but remains a grand challenge. Herein, we propose a novel strategy for constructing a readily administered vitreous substitute based on a thiol-acrylate clickable polyzwitterion macromonomer. A biocompatible multivinyl polycarboxybetaine (PCB-OAA) macromonomer is designed and synthesized, and mixed with dithiothreitol (DTT) via a Michael addition reaction to form a hydrogel in vitreous cavity. This resultant PCB-OAA hydrogel exhibits controllable gelation time, super anti-fouling ability against proteins and cells, excellent biocompatibility, and approximate key parameters to human vitreous body including equilibrium water content, density, optical properties, modulus. Remarkably, outperforming clinically used silicone oil in biocompatibility, this rapidly formed hydrogel in the vitreous cavity of rabbit eyes remains stable in vitreous cavity, showing an appealing ability to prevent significantly inflammatory response, fibrosis and complications such as raised intraocular pressure (IOP), and cataract formation. This zwitterionic polymer hydrogel holds great potential as a vitreous substitute.
Collapse
Affiliation(s)
- Binbin He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xianhua Xie
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Huijie Hao
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaoli Xing
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
38
|
Biocompatibility of intraocular liquid tamponade agents: an update. Eye (Lond) 2021; 35:2699-2713. [PMID: 34035489 PMCID: PMC8452761 DOI: 10.1038/s41433-021-01596-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Intraocular liquids tamponade agents, such as perfluorocarbon liquids (PFCLs), semifluorinated alkanes (SFAs), silicone oils (SOs) and heavy silicone oils (HSOs), are a crucial intraoperative and/or postoperative tool in vitreoretinal surgery, in particular for the management of complex vitreoretinal diseases. However, their use is not without complications, which are potentially severe. Consequently, a growing interest has been devoted to the biocompatibility of these compounds and the adequacy of current regulations that should guarantee their safety. Obviously, an updated knowledge on research findings and potential risks associated to the use of intraocular liquid compounds is essential, not only for vitreoretinal surgeons, but also for any ophthalmologist involved in the management of patients receiving intraocular liquid tamponades. In light of this, the review provides a comprehensive characterisation of intraocular liquid tamponades, in terms of physical and chemical properties, current clinical use and possible complications. Moreover, this review focuses on the safety profile of these compounds, summarising the existing regulation and the available evidence on their biocompatibility.
Collapse
|
39
|
Corneal endothelial changes induced by pars plana vitrectomy with silicone oil tamponade for retinal detachment. Exp Ther Med 2021; 22:961. [PMID: 34335903 PMCID: PMC8290465 DOI: 10.3892/etm.2021.10393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/09/2021] [Indexed: 01/07/2023] Open
Abstract
Silicone oils are effective intraocular tamponade agents in the treatment of severe retinal detachments, because they maintain the adhesion between neurosensory retina and retinal pigment epithelium, thanks to their ability to remove aqueous humor from the surface of the retina. To understand their effectiveness, it is important to know the characteristics of silicone oils. Patients should be closely monitored due to many complications associated with intraocular silicon oil, such as inflammatory reaction, raised intraocular pressure, refraction disorders, cataract, and emulsification. This study presents corneal endothelial changes and some intraocular complications caused by silicone oil used as an intraocular tamponade agent in the case of vitrectomy for complex retinal detachments. The aim of the study was to demonstrate the damage of corneal endothelial cells after the use of silicone oil in patients with retinal detachment surgery. Endothelial specular microscopy measurements were performed and the changes of the following parameters demonstrated the corneal damage: Mean cell density, coefficient of variation, average cell area, percentage of hexagonal cells, and corneal thickness. Three months postoperatively, a statistically significant decrease was observed in the following analyzed parameters: Mean cell density (P=0.04), and percentage of hexagonal cells (P=0.002); the remaining parameters also had a linear decrease (coefficient of variation, average cell area), but were statistically insignificant. Three months postoperatively, the corneal thickness presented a slight increase. Silicone oils are powerful tools when used wisely and within the limits of their use. These are often recommended in cases of severe detachment of the retina in patients at high risk of experiencing intraoperative complications.
Collapse
|
40
|
Kim JH, Yoon YS, Woo JM, Min JK. Analysis of the Changes in Retinal Thickness in Eyes Undergoing Vitrectomy with Silicone Oil Tamponade. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2021. [DOI: 10.3341/jkos.2021.62.7.969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose: To investigate changes in the retinal layer thickness in rhegmatogenous retinal detachment (RRD) and intraocular foreign body (IOFB) patients undergoing successful pars plana vitrectomy (PPV) with silicone oil tamponade. Methods: This retrospective study included 28 eyes of 28 patients (RRD: 24 patients; IOFB: 4 patients) that were successfully repaired with PPV with silicone oil tamponade. The thickness measurements of the total retina, retinal nerve fiber layer (RNFL), and ganglion cell-inner plexiform layer (GC-IPL) were performed with swept-source optical coherence tomography in nine Early Treatment Diabetic Retinopathy Study subfields, using the wide three-dimensional mode before and after silicone oil tamponade removal. The measurements were compared and differences were analyzed with respect to normal fellow eyes. Results: The RNFL and GC-IPL thickness measurements decreased remarkably as the silicone oil tamponade period progressed, compared with the thickness of the total retinal layer. The average thicknesses of the total retina, RNFL, and GC-IPL were significantly greater in eyes in which the silicone oil had been removed than in those in which the silicone oil remained. Conclusions: Silicone oil tamponade can change the thickness of the retina layer. The longer the silicone oil is tamponaded, the more significant the reduction in thickness of the inner retinal layer.
Collapse
|
41
|
Coman Cernat CC, Patoni Popescu SI, Malița D, Stanca S, Mușat O, Negru Ș, Feier H, Karancsi OL, Roșca C. Endothelial corneal cell damage after pars plana vitrectomy: analogy of different intraocular tamponade agents. Rom J Ophthalmol 2021; 65:141-149. [PMID: 34179579 PMCID: PMC8207861 DOI: 10.22336/rjo.2021.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A reduction in the corneal endothelial cells multitude after anterior pole intervention is well established in numerous researches, but there are few articles that follow the impact of vitreoretinal interventions on the cornea, especially when endotamponade agents are used. The assessment of the endothelial corneal cells is needed since it facilitates the personal evaluation of the functional endothelial stock. Specular microscopy investigation offers a scale of the functional strength of the endothelium of cornea, which is vital before all intraocular interventions. Endotamponade agents are very suitable and important tools in the surgical treatment of retinal detachment, but their use must be differentiated depending on the uniqueness of each patient. This research shows corneal endothelial damages caused by intraocular tamponade agents of different types in the case of pars plana vitrectomy for cases of multitude retinal detachments. The purpose of the research was to determine the changes that appear in the endothelium of the cornea and to deal with the results when different tamponade agents are used in the surgical cure for retinal detachment. Specular endothelial corneal microscopy records were achieved and the modifications of the following parameters revealed corneal implication: mean endothelial cell densities, average cell area, coefficient of variation, hexagonality and corneal center thickness. On the first day and at three months postoperatively, a statistically significant reduction was observed for the CV, MCD, and HEX parameters (p 0.001), but no statistically significant difference of the two endotamponade agents (for MCD, p=0.15; for CV, p=0.63; for HEX, p=0.93) was noticed. AVG parameter had a statistically significant decrease (p 0.001) and there was also a statistically significant difference of the two endotamponade agents (p=0.03), patients with gas tamponade presenting a superior result. On the first day and at three months postoperatively, the corneal center thickness presented a statistically significant increase (p 0.001) and there was a statistically significant difference between the two endotamponade agents (p=0.03), patients with gas endotamponade presenting a superior result. In conclusion, using the intraocular tamponade agents helps reestablish the functional-anatomical recovery of the retina after surgery, but their special indication must be well-established for each case of retinal detachment.
Collapse
Affiliation(s)
| | | | - Daniel Malița
- Department of Radiology and Medical Imaging, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Simona Stanca
- Department of Pediatrics, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ovidiu Mușat
- Department of Ophthalmology, "Dr. Carol Davila" Central Military University Emergency Hospital, Bucharest, Romania
| | - Șerban Negru
- Department of Oncology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania
| | - Horea Feier
- Department of Cardiovascular Surgery, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Olimpiu Ladislau Karancsi
- Department of Oral Implantology and Prosthetic Restorations on Implants, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Cosmin Roșca
- Department of Ophthalmology, Oculens Clinic, Cluj-Napoca, Romania
| |
Collapse
|
42
|
Mondelo-García C, Bandín-Vilar E, García-Quintanilla L, Castro-Balado A, Del Amo EM, Gil-Martínez M, Blanco-Teijeiro MJ, González-Barcia M, Zarra-Ferro I, Fernández-Ferreiro A, Otero-Espinar FJ. Current Situation and Challenges in Vitreous Substitutes. Macromol Biosci 2021; 21:e2100066. [PMID: 33987966 DOI: 10.1002/mabi.202100066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Indexed: 12/11/2022]
Abstract
Vitreo-retinal disorders constitute a significant portion of treatable ocular diseases. These pathologies often require vitreo-retinal surgery and, as a consequence, the use of vitreous substitutes. Nowadays, the vitreous substitutes that are used in clinical practice are mainly divided into gases (air, SF6 , C2 F6 , C3 F8 ) and liquids (perfluorocarbon liquids, silicone oils, and heavy silicone oils). There are specific advantages and drawbacks to each of these, which determine their clinical indications. However, developing the ideal biomaterial for vitreous substitution continues to be one of the most important challenges in ophthalmology, and a multidisciplinary approach is required. In this sense, recent research has focused on the development of biocompatible, biodegradable, and injectable hydrogels (natural, synthetic, and smart), which also act as medium and long-term internal tamponade agents. This comprehensive review aims to cover the main characteristics and indications for use of the extensive range of vitreous substitutes that are currently used in clinical practice, before going on to describe the hydrogels that have been developed recently and which have emerged as promising biomaterials for vitreous substitution.
Collapse
Affiliation(s)
- Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Enrique Bandín-Vilar
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Laura García-Quintanilla
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Ana Castro-Balado
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Eva M Del Amo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - María Gil-Martínez
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain
| | - María José Blanco-Teijeiro
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Irene Zarra-Ferro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, 15706, Spain.,Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, 15706, Spain
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain
| |
Collapse
|
43
|
Chen Y, Kearns VR, Zhou L, Sandinha T, Lam WC, Steel DH, Chan YK. Silicone oil in vitreoretinal surgery: indications, complications, new developments and alternative long-term tamponade agents. Acta Ophthalmol 2021; 99:240-250. [PMID: 32930501 DOI: 10.1111/aos.14604] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 01/01/2023]
Abstract
Silicone oil (SO) has been used as a long-term tamponade agent in the treatment of complicated vitreoretinal diseases for about half a century, during which time many advances in surgical techniques and technologies have been made. This review summarizes the chemical and physical properties of SO, its indications and complications, including particularly emulsification. The mechanisms and risk factors for emulsification are discussed, as well as novel strategies for its effective removal. Finally, the review focuses on new improved formulations of SO, including research into slow-release pharmacological agents within SO and provides an overview of alternatives to SO for the purpose of long-term tamponade that are being developed.
Collapse
Affiliation(s)
- Ying Chen
- Ruian Traditional Chinese Medicine Hospital Ruian China
- Department of Ophthalmology University of Hong Kong Hong Kong Hong Kong SAR China
| | - Victoria R Kearns
- Department of Eye and Vision Science University of Liverpool Liverpool UK
| | - Liangyu Zhou
- Department of Ophthalmology University of Hong Kong Hong Kong Hong Kong SAR China
| | - Teresa Sandinha
- Department of Eye and Vision Science University of Liverpool Liverpool UK
- St. Paul's Eye Unit The Royal Liverpool University Hospital Liverpool UK
| | - Wai Ching Lam
- Department of Ophthalmology University of Hong Kong Hong Kong Hong Kong SAR China
| | - David H Steel
- Department of Eye and Vision Science University of Liverpool Liverpool UK
- Newcastle University Newcastle Upon Tyne UK
- Sunderland Eye Infirmary Sunderland UK
| | - Yau Kei Chan
- Department of Ophthalmology University of Hong Kong Hong Kong Hong Kong SAR China
| |
Collapse
|
44
|
Canioni R, Reynaud F, Leite-Nascimento T, Gueutin C, Guiblin N, Ghermani NE, Jayat C, Daull P, Garrigue JS, Fattal E, Tsapis N. Tiny dexamethasone palmitate nanoparticles for intravitreal injection: Optimization and in vivo evaluation. Int J Pharm 2021; 600:120509. [PMID: 33766637 DOI: 10.1016/j.ijpharm.2021.120509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Tiny nanoparticles of dexamethasone palmitate (DXP) were designed as transparent suspensions for intravitreal administration to treat age-related macular degeneration (AMD). The influence of three surfactants (PEG-40-stearate and Pluronic block copolymers F68 and F127) on nanoparticles size and stability was investigated and led to an optimal formulation based on Pluronic F127 stabilizing DXP nanoparticles. Size measurements and TEM revealed tiny nanoparticles (around 35 nm) with a low opacity, compatible with further intravitreal injection. X-Ray powder diffraction (XRPD) and transmission electronic microscopy (TEM) performed on freeze-dried samples showed that DXP nanoparticles were rather monodisperse and amorphous. The efficacy of DXP nanoparticles was assessed in vivo on pigmented rabbits with unilateral intravitreal injections. After breakdown of the blood-retinal barrier (BRB) induced by injection of rhVEGF165 with carrier protein, DXP nanoparticles induced a restoration of the BRB 1 month after their intravitreal injection. However, their efficacy was limited in time most probably by clearance of DXP nanoparticles after 2 months due to their small size.
Collapse
Affiliation(s)
- Romain Canioni
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Franceline Reynaud
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France; School of Pharmacy, Federal University of Rio de Janeiro, 21944-59 Rio de Janeiro, Brazil
| | - Thais Leite-Nascimento
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France; Laboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems, School of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Claire Gueutin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Nicolas Guiblin
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Nour-Eddine Ghermani
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France; Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | | | | | | | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
45
|
Tavakoli S, Kari OK, Turunen T, Lajunen T, Schmitt M, Lehtinen J, Tasaka F, Parkkila P, Ndika J, Viitala T, Alenius H, Urtti A, Subrizi A. Diffusion and Protein Corona Formation of Lipid-Based Nanoparticles in the Vitreous Humor: Profiling and Pharmacokinetic Considerations. Mol Pharm 2021; 18:699-713. [PMID: 32584047 PMCID: PMC7856631 DOI: 10.1021/acs.molpharmaceut.0c00411] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022]
Abstract
The vitreous humor is the first barrier encountered by intravitreally injected nanoparticles. Lipid-based nanoparticles in the vitreous are studied by evaluating their diffusion with single-particle tracking technology and by characterizing their protein coronae with surface plasmon resonance and high-resolution proteomics. Single-particle tracking results indicate that the vitreal mobility of the formulations is dependent on their charge. Anionic and neutral formulations are mobile, whereas larger (>200 nm) neutral particles have restricted diffusion, and cationic particles are immobilized in the vitreous. PEGylation increases the mobility of cationic and larger neutral formulations but does not affect anionic and smaller neutral particles. Convection has a significant role in the pharmacokinetics of nanoparticles, whereas diffusion drives the transport of antibodies. Surface plasmon resonance studies determine that the vitreal corona of anionic formulations is sparse. Proteomics data reveals 76 differentially abundant proteins, whose enrichment is specific to either the hard or the soft corona. PEGylation does not affect protein enrichment. This suggests that protein-specific rather than formulation-specific factors are drivers of protein adsorption on nanoparticles in the vitreous. In summary, our findings contribute to understanding the pharmacokinetics of nanoparticles in the vitreous and help advance the development of nanoparticle-based treatments for eye diseases.
Collapse
Affiliation(s)
- Shirin Tavakoli
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Otto Kalevi Kari
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Tiina Turunen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Tatu Lajunen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Mechthild Schmitt
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Julia Lehtinen
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Fumitaka Tasaka
- Pharmaceutics
& Pharmacology Department, Global R&D, Santen Pharmaceutical
Co., Ltd., 8916-16 Takayama-cho, Ikoma, Nara 630-0101, Japan
| | - Petteri Parkkila
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Joseph Ndika
- Human
Microbiome Research, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00290 Helsinki, Finland
| | - Tapani Viitala
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
| | - Harri Alenius
- Human
Microbiome Research, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00290 Helsinki, Finland
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Arto Urtti
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014, Helsinki, Finland
- Institute
of Chemistry, St. Petersburg State University, Petergof, Universitetskii pr. 26, 198504 St. Petersburg, Russia
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Astrid Subrizi
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| |
Collapse
|
46
|
Karayilan M, Clamen L, Becker ML. Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules 2021; 22:223-261. [PMID: 33405900 DOI: 10.1021/acs.biomac.0c01525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ocular applications of polymeric materials have been widely investigated for medical diagnostics, treatment, and vision improvement. The human eye is a vital organ that connects us to the outside world so when the eye is injured, infected, or impaired, it needs immediate medical treatment to maintain clear vision and quality of life. Moreover, several essential parts of the eye lose their functions upon aging, causing diminished vision. Modern polymer science and polymeric materials offer various alternatives, such as corneal and scleral implants, artificial ocular lenses, and vitreous substitutes, to replace the damaged parts of the eye. In addition to the use of polymers for medical treatment, polymeric contact lenses can provide not only vision correction, but they can also be used as wearable electronics. In this Review, we highlight the evolution of polymeric materials for specific ocular applications such as intraocular lenses and current state-of-the-art polymeric systems with unique properties for contact lens, corneal, scleral, and vitreous body applications. We organize this Review paper by following the path of light as it travels through the eye. Starting from the outside of the eye (contact lenses), we move onto the eye's surface (cornea and sclera) and conclude with intraocular applications (intraocular lens and vitreous body) of mostly synthetic polymers and several biopolymers. Initially, we briefly describe the anatomy and physiology of the eye as a reminder of the eye parts and their functions. The rest of the Review provides an overview of recent advancements in next-generation contact lenses and contact lens sensors, corneal and scleral implants, solid and injectable intraocular lenses, and artificial vitreous body. Current limitations for future improvements are also briefly discussed.
Collapse
Affiliation(s)
- Metin Karayilan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Liane Clamen
- Adaptilens, LLC, Boston, Massachusetts 02467, United States
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Mechanical Engineering and Materials Science, Orthopaedic Surgery, and Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
47
|
Thacker M, Tseng CL, Lin FH. Substitutes and Colloidal System for Vitreous Replacement and Drug Delivery: Recent Progress and Future Prospective. Polymers (Basel) 2020; 13:E121. [PMID: 33396863 PMCID: PMC7796247 DOI: 10.3390/polym13010121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/10/2023] Open
Abstract
Vitreoretinal surgeries for ocular diseases such as complicated retinal detachment, diabetic retinopathy, macular holes and ocular trauma has led to the development of various tamponades over the years in search for an ideal vitreous substitute. Current clinically used tamponade agents such as air, perfluorocarbons, silicone oil and expansile gases serve only as a short-term solution and harbors various disadvantages. However, an ideal long-term substitute is yet to be discovered and recent research emphasizes on the potential of polymeric hydrogels as an ideal vitreous substitute. This review highlights the recent progress in the field of vitreous substitution. Suitability and adverse effects of various tamponade agents in present day clinical use and biomaterials in the experimental phase have been outlined and discussed. In addition, we introduced the anatomy and functions of the native vitreous body and the pathological conditions which require vitreous replacement.
Collapse
Affiliation(s)
- Minal Thacker
- Graduate Institute of Biomedical Engineering, National Taiwan University, Daan District, Taipei 10051, Taiwan;
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Feng-Huei Lin
- Graduate Institute of Biomedical Engineering, National Taiwan University, Daan District, Taipei 10051, Taiwan;
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| |
Collapse
|
48
|
Schulz A, Rickmann A, Wahl S, Germann A, Stanzel BV, Januschowski K, Szurman P. Alginate- and Hyaluronic Acid-Based Hydrogels as Vitreous Substitutes: An In Vitro Evaluation. Transl Vis Sci Technol 2020; 9:34. [PMID: 33384888 PMCID: PMC7757634 DOI: 10.1167/tvst.9.13.34] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/15/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose To study alginate- and hyaluronic acid–based hydrogels in vitro as vitreous substitutes. Methods Biopolymeric hydrogels based on high-molecular alginate (0.5% and 1.0%) and hyaluronic acid (1.0% and Healaflow) were compared with extracted human vitreous bodies and silicone oil (SIL-5000) regarding their optical properties (refractive index, transmission) and viscoelastic characteristics (storage modulus G′, loss modulus G″). The cytotoxic (metabolic activity, apoptosis) and antiproliferative profiles were determined using cultured human fibroblasts, ARPE-19, and photoreceptor cells. The hydrogel systems were applied to human fetal retinal pigment epithelial cells cultured for two months until maximum transepithelial electrical resistance (TEER) to investigate the effect of the gel matrices on tight junctions using TEER measurements and immunostainings against the tight junction protein ZO-1. Results Tested alginate- and hyaluronic acid–based hydrogels resembled the natural refractive index of human vitreous bodies (1.3356–1.3360) in contrast to SIL-5000 (1.4034) and showed high optical transparency (>90%) within the visible light region. The biopolymeric hydrogels exhibited viscoelastic properties similar to juvenile vitreous bodies with G′>G″ adjustable via different gelation times, contrary to SIL-5000 (G′<G″). The metabolic activity, apoptosis and tight junctions of all tested ocular cells were unaffected by the alginate- and hyaluronic acid–based vitreous substitutes. Conclusions The present in vitro study demonstrates good optical, viscoelastic, and biocompatible properties of alginate- and hyaluronic acid–based hydrogels required for their use as vitreous substitutes. Translational Relevance Biopolymer-based hydrogels represent a promising vitreous replacement strategy to treat vitreoretinal diseases.
Collapse
Affiliation(s)
- André Schulz
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany.,Klaus Heimann Eye Research Institute, Sulzbach, Germany
| | - Annekatrin Rickmann
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany.,Klaus Heimann Eye Research Institute, Sulzbach, Germany
| | - Silke Wahl
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany.,Klaus Heimann Eye Research Institute, Sulzbach, Germany
| | - Anja Germann
- Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - Boris Viktor Stanzel
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany.,Klaus Heimann Eye Research Institute, Sulzbach, Germany.,Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - Kai Januschowski
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany.,Klaus Heimann Eye Research Institute, Sulzbach, Germany.,Centre for Ophthalmology, University Eye Hospital Tuebingen, Tuebingen, Germany
| | - Peter Szurman
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany.,Klaus Heimann Eye Research Institute, Sulzbach, Germany.,Centre for Ophthalmology, University Eye Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
49
|
Wang S, Chi J, Jiang Z, Hu H, Yang C, Liu W, Han B. A self-healing and injectable hydrogel based on water-soluble chitosan and hyaluronic acid for vitreous substitute. Carbohydr Polym 2020; 256:117519. [PMID: 33483040 DOI: 10.1016/j.carbpol.2020.117519] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Vitreous, an essential dioptric medium for the human eyes, must be filled with artificial materials once damaged. Carboxymethyl chitosan (CMCTS) is one of the most important water-soluble chitosan derivatives with improved biocompatibility and biodegradability. In this study, oxidized hyaluronic acid (OHA) was prepared as crosslinking reagent. CMCTS and OHA were used to develop a biocompatible, self-repairing and in-situ injectable hydrogel for vitreous substitutes. Results showed the hydrogel with controllable swelling properties, high transparency, acceptable cytocompatibility on mouse fibroblast L929 and histocompatibility in vivo. Furthermore, hydrogel was injected in-situ into the vitreous cavity after vitrectomy on New Zealand Rabbits, no significant and persistent adverse effects were observed during the 90-day follow-up period. In addition, the hydrogel maintained intraocular pressure of the operated eyes and the inherent position of the retina. Collectively, this injectable, biodegradable, nontoxic hydrogel possessed enormous potential to become a vitreous substitute material.
Collapse
Affiliation(s)
- Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China
| | - Huiwen Hu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Chaozhong Yang
- School of Medicine, Heze Medical College, Heze, 274046, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China.
| |
Collapse
|
50
|
Yadav I, Purohit SD, Singh H, Bhushan S, Yadav MK, Velpandian T, Chawla R, Hazra S, Mishra NC. Vitreous substitutes: An overview of the properties, importance, and development. J Biomed Mater Res B Appl Biomater 2020; 109:1156-1176. [PMID: 33319466 DOI: 10.1002/jbm.b.34778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/27/2020] [Accepted: 11/28/2020] [Indexed: 11/12/2022]
Abstract
Vitreous or vitreous humor is a complex transparent gel that fills the space between the lens and retina of an eye and acts as a transparent medium that allows light to pass through it to reach the photoreceptor layer (retina) of the eye. The vitreous humor is removed in ocular surgery (vitrectomy) for pathologies like retinal detachment, macular hole, diabetes-related vitreous hemorrhage detachment, and ocular trauma. Since the vitreous is not actively regenerated or replenished, there is a need for a vitreous substitute to fill the vitreous cavity to provide a temporary or permanent tamponade to the retina following some vitreoretinal surgeries. An ideal vitreous substitute could probably be left inside the eye forever. The vitreous humor is transparent, biocompatible, viscoelastic and highly hydrophilic; polymeric hydrogels with these properties can be a potential candidate to be used as vitreous substitutes. To meet the tremendous demand for the vitreous substitute, many scientists all over the world have developed various kinds of vitreous substitutes or tamponade agent. Vitreous substitutes, whatsoever developed till date, are associated with several advantages and disadvantages, and there is no ideal vitreous substitute available till date. This review highlights the polymer-based vitreous substitutes developed so far, along with their advantages and limitations. The gas-based and oil-based substitutes have also been discussed but very briefly.
Collapse
Affiliation(s)
- Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sakchi Bhushan
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Manoj Kumar Yadav
- School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Mandi, India
| | - Thirumurthy Velpandian
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rohan Chawla
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|