1
|
Wang Y, Mao J, Yang K, Deng Q, Gao Y, Yan Y, Yang Z, Cong Y, Wan S, Yang W, Yang Y. A small-molecule enhancer of STAT1 affects herpes simplex keratitis prognosis by mediating plasmacytoid dendritic cells migration through CXCR3/CXCL10. Int Immunopharmacol 2025; 147:113959. [PMID: 39755108 DOI: 10.1016/j.intimp.2024.113959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Herpes simplex keratitis (HSK) is a prevalent infectious corneal disorder. This study aims to explore the role of plasmacytoid dendritic cells (pDCs) in HSK, an area that remains underexplored. The investigation centers on the effects of a STAT1 transcription enhancer, 2-NP, on pDCs and its underlying mechanisms. Our findings revealed that 2-NP treatment significantly reduced corneal opacity and neovascularization in a mouse HSK model. This intervention increased CXCR3 expression on the cell membrane, promoting pDC migration to the cornea via the CXCR3/CXCL10 axis. Additionally, it triggered STAT1 phosphorylation, enhancing IFN-α production, which in turn activated the JAK1/STAT1 signaling pathway. These results uncover a novel molecular mechanism by which the STAT1 transcriptional enhancer drives pDC migration to inflamed corneas, presenting a new therapeutic strategy for HSK.
Collapse
Affiliation(s)
- Yujin Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiewen Mao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kuiliang Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Deng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuelan Gao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yulin Yan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zixian Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuyu Cong
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wanju Yang
- Aier Eye Hospital of Wuhan University, Wuhan, China.
| | - Yanning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Jan RL, Ho CH, Wang JJ, Jan HY, Chen JY, Chang YS. Sociodemographic factors and comorbidities are associated with an elevated risk of herpes simplex keratitis: a population-based study in Taiwan. Front Microbiol 2024; 15:1506659. [PMID: 39741594 PMCID: PMC11687426 DOI: 10.3389/fmicb.2024.1506659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
To investigate the association among comorbidities, sociodemographic factors, and herpes simplex keratitis (HSK). This nationwide, population-based, retrospective, matched case-control study included 27,651 patients with HSK identified from the Taiwan National Health Insurance Research Database based on the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) code 054.42 for dendritic keratitis and 054.43 for herpes simplex disciform keratitis. The age-, sex-, and index date-matched control group included 27,651 non-HSK individuals selected from the Taiwan Longitudinal Health Insurance Database 2000. Associations between HSK, sociodemographic conditions, and comorbidities were examined using univariate logistic regression analyses, and paired t-tests were used for continuous variables. Adjusted logistic regression was used to compare odds ratios (OR) for HSK development. Patients with corneal abrasion were more likely to develop HSK than controls [OR, 402.80; 95% confidence interval (CI), 167.47-968.79; P < 0.0001] even after conditional logistic regression (adjusted OR, 407.36; 95% CI, 169.35-979.89; P < 0.0001). Other conditions that increase the odds of HSK development include systemic diseases such as hyperlipidemia, diabetes mellitus, coronary artery disease, chronic renal disease, and human immunodeficiency virus infection. Regarding sociodemographic factors, >50% of patients with HSK were aged ≥55 years. Moreover, patients living in Northern Taiwan and metropolitan cities had higher odds of developing HSK. HSK is significantly associated with corneal abrasion, hyperlipidemia, diabetes mellitus, coronary artery disease, chronic renal disease, and human immunodeficiency virus infection.
Collapse
Affiliation(s)
- Ren-Long Jan
- Department of Pediatrics, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Chung-Han Ho
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Han-Yi Jan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jiun-Yi Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Shin Chang
- Department of Ophthalmology, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Musa M, Enaholo E, Aluyi-Osa G, Atuanya GN, Spadea L, Salati C, Zeppieri M. Herpes simplex keratitis: A brief clinical overview. World J Virol 2024; 13:89934. [PMID: 38616855 PMCID: PMC11008405 DOI: 10.5501/wjv.v13.i1.89934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 03/11/2024] Open
Abstract
The aim of our minireview is to provide a brief overview of the diagnosis, clinical aspects, treatment options, management, and current literature available regarding herpes simplex keratitis (HSK). This type of corneal viral infection is caused by the herpes simplex virus (HSV), which can affect several tissues, including the cornea. One significant aspect of HSK is its potential to cause recurrent episodes of inflammation and damage to the cornea. After the initial infection, the HSV can establish a latent infection in the trigeminal ganglion, a nerve cluster near the eye. The virus may remain dormant for extended periods. Periodic reactivation of the virus can occur, leading to recurrent episodes of HSK. Factors triggering reactivation include stress, illness, immunosuppression, or trauma. Recurrent episodes can manifest in different clinical patterns, ranging from mild epithelial involvement to more severe stromal or endothelial disease. The severity and frequency of recurrences vary among individuals. Severe cases of HSK, especially those involving the stroma and leading to scarring, can result in vision impairment or even blindness in extreme cases. The cornea's clarity is crucial for good vision, and scarring can compromise this, potentially leading to visual impairment. The management of HSK involves not only treating acute episodes but also implementing long-term strategies to prevent recurrences and attempt repairs of corneal nerve endings via neurotization. Antiviral medications, such as oral Acyclovir or topical Ganciclovir, may be prescribed for prophylaxis. The immune response to the virus can contribute to corneal damage. Inflammation, caused by the body's attempt to control the infection, may inadvertently harm the corneal tissues. Clinicians should be informed about triggers and advised on measures to minimize the risk of reactivation. In summary, the recurrent nature of HSK underscores the importance of both acute and long-term management strategies to preserve corneal health and maintain optimal visual function.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor 434101, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | | | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
5
|
Neuroimmune crosstalk in the cornea: The role of immune cells in corneal nerve maintenance during homeostasis and inflammation. Prog Retin Eye Res 2022; 91:101105. [PMID: 35868985 DOI: 10.1016/j.preteyeres.2022.101105] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
In the cornea, resident immune cells are in close proximity to sensory nerves, consistent with their important roles in the maintenance of nerves in both homeostasis and inflammation. Using in vivo confocal microscopy in humans, and ex vivo immunostaining and fluorescent reporter mice to visualize corneal sensory nerves and immune cells, remarkable progress has been made to advance our understanding of the physical and functional interactions between corneal nerves and immune cells. In this review, we summarize and discuss recent studies relating to corneal immune cells and sensory nerves, and their interactions in health and disease. In particular, we consider how disrupted corneal nerve axons can induce immune cell activity, including in dendritic cells, macrophages and other infiltrating cells, directly and/or indirectly by releasing neuropeptides such as substance P and calcitonin gene-related peptide. We summarize growing evidence that the role of corneal intraepithelial immune cells is likely different in corneal wound healing versus other inflammatory-dominated conditions. The role of different types of macrophages is also discussed, including how stromal macrophages with anti-inflammatory phenotypes communicate with corneal nerves to provide neuroprotection, while macrophages with pro-inflammatory phenotypes, along with other infiltrating cells including neutrophils and CD4+ T cells, can be inhibitory to corneal re-innervation. Finally, this review considers the bidirectional interactions between corneal immune cells and corneal nerves, and how leveraging this interaction could represent a potential therapeutic approach for corneal neuropathy.
Collapse
|
6
|
Shimizu T, Hayashi T, Ishida A, Kobayashi A, Yamaguchi T, Mizuki N, Yuda K, Yamagami S. Evaluation of corneal nerves and dendritic cells by in vivo confocal microscopy after Descemet's membrane keratoplasty for bullous keratopathy. Sci Rep 2022; 12:6936. [PMID: 35484297 PMCID: PMC9050645 DOI: 10.1038/s41598-022-10939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
This study evaluated changes in corneal nerves and the number of dendritic cells (DCs) in corneal basal epithelium following Descemet membrane endothelial keratoplasty (DMEK) surgery for bullous keratopathy (BK). Twenty-three eyes from 16 consecutive patients that underwent DMEK for BK were included. Eyes of age-matched patients that underwent pre-cataract surgery (12 eyes) were used as controls. In vivo confocal microscopy was performed pre- and postoperatively at 6, 12, and 24 months. Corneal nerve length, corneal nerve trunks, number of branches, and the number of DCs were determined. The total corneal nerve length of 1634.7 ± 1389.1 μm/mm2 before surgery was significantly increased in a time-dependent manner to 4485.8 ± 1403.7 μm/mm2, 6949.5 ± 1477.1 μm/mm2, and 9389.2 ± 2302.2 μm/mm2 at 6, 12, and 24 months after DMEK surgery, respectively. The DC density in BK cornea pre- and postoperatively at 6 months was significantly higher than in the controls, and decreased postoperatively at 12 and 24 months and was significantly lower than that at 6 months postoperatively. Thus, our results suggest that DMEK can repair and normalize the corneal environment.
Collapse
Affiliation(s)
- Toshiki Shimizu
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Ohyaguchikami-machi 30-1, Itabashi-ku, Tokyo, 173-8610, Japan.,Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan.,Kikuna Yuda Eye Clinic, Yokohama, Kanagawa, Japan
| | - Takahiko Hayashi
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Ohyaguchikami-machi 30-1, Itabashi-ku, Tokyo, 173-8610, Japan. .,Kikuna Yuda Eye Clinic, Yokohama, Kanagawa, Japan.
| | | | - Akira Kobayashi
- Department of Ophthalmology, Graduate School of Medical Science, Kanazawa University, Ichikawa, Japan
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa-shi, Chiba, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Kenji Yuda
- Kikuna Yuda Eye Clinic, Yokohama, Kanagawa, Japan
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Ohyaguchikami-machi 30-1, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
7
|
Das S, D’Souza S, Gorimanipalli B, Shetty R, Ghosh A, Deshpande V. Ocular Surface Infection Mediated Molecular Stress Responses: A Review. Int J Mol Sci 2022; 23:ijms23063111. [PMID: 35328532 PMCID: PMC8952005 DOI: 10.3390/ijms23063111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/16/2022] Open
Abstract
Infection mediated ocular surface stress responses are activated as early defense mechanisms in response to host cell damage. Integrated stress responses initiate the host response to different types of infections and modulate the transcription of key genes and translation of proteins. The crosstalk between host and pathogen results in profound alterations in cellular and molecular homeostasis triggering specific stress responses in the infected tissues. The amplitude and variations of such responses are partly responsible for the disease severity and clinical sequelae. Understanding the etiology and pathogenesis of ocular infections is important for early diagnosis and effective treatment. This review considers the molecular status of infection mediated ocular surface stress responses which may shed light on the importance of the host stress-signaling pathways. In this review, we collated literature on the molecular studies of all ocular surface infections and summarize the results from such studies systematically. Identification of important mediators involved in the crosstalk between the stress response and activation of diverse signaling molecules in host ocular surface infection may provide novel molecular targets for maintaining the cellular homeostasis during infection. These targets can be then explored and validated for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Samayitree Das
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560 099, India;
| | - Sharon D’Souza
- Cornea and Refractive Services, Narayana Nethralaya, Bangalore 560 010, India; (S.D.); (B.G.); (R.S.)
| | - Bhavya Gorimanipalli
- Cornea and Refractive Services, Narayana Nethralaya, Bangalore 560 010, India; (S.D.); (B.G.); (R.S.)
| | - Rohit Shetty
- Cornea and Refractive Services, Narayana Nethralaya, Bangalore 560 010, India; (S.D.); (B.G.); (R.S.)
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560 099, India;
- Correspondence: (A.G.); (V.D.)
| | - Vrushali Deshpande
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560 099, India;
- Correspondence: (A.G.); (V.D.)
| |
Collapse
|
8
|
Rahman L, Hafejee A, Anantharanjit R, Wei W, Cordeiro MF. Accelerating precision ophthalmology: recent advances. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2022.2154146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Loay Rahman
- Imperial College Ophthalmology Research Group (ICORG), Imperial College Healthcare NHS Trust, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, UK
| | - Ammaarah Hafejee
- Imperial College Ophthalmology Research Group (ICORG), Imperial College Healthcare NHS Trust, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, UK
| | - Rajeevan Anantharanjit
- Imperial College Ophthalmology Research Group (ICORG), Imperial College Healthcare NHS Trust, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, UK
| | - Wei Wei
- Imperial College Ophthalmology Research Group (ICORG), Imperial College Healthcare NHS Trust, London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, UK
| | | |
Collapse
|
9
|
Gao Y, Li C, Li X, Zhang M. Establishment of the New Zealand white rabbit animal model of fatty keratopathy associated with corneal neovascularization. Open Life Sci 2021; 16:1261-1267. [PMID: 34909477 PMCID: PMC8642820 DOI: 10.1515/biol-2021-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/15/2022] Open
Abstract
The term fatty keratopathy is used to describe the phenomenon of fat deposition caused by corneal neovascularization, which will severely affect the eye's beauty and vision. The purpose of this study was to establish a New Zealand white rabbit animal model of fatty keratopathy, that is, the establishment of an animal model of fatty keratopathy. The goal was achieved by the combination of a corneal neovascularization animal model and a hyperlipidemia animal model. Two groups were created according to the experimental sequence. The first group initially induced a corneal neovascularization pattern and later induced a hyperlipidemia pattern, and the second group followed the opposite sequence. The results of the two groups showed that all the significant crystalline deposits of the cornea were visible. So the animal models of fatty keratopathy were successfully established in both groups.
Collapse
Affiliation(s)
- Yikui Gao
- Ophthalmology Department, The Eighth People’s Hospital of Qingdao, Qingdao 266000, China
| | - Cong Li
- Ophthalmology Department, The Eighth People’s Hospital of Qingdao, Qingdao 266000, China
| | - Xiaoyun Li
- Ophthalmology Department, The Eighth People’s Hospital of Qingdao, Qingdao 266000, China
| | - Minghong Zhang
- Refraction Department, Qingdao Aier Eye Hospital, Qingdao 266400, China
| |
Collapse
|
10
|
Antony F, Pundkar C, Sandey M, Jaiswal AK, Mishra A, Kumar A, Channappanavar R, Suryawanshi A. IFN-λ Regulates Neutrophil Biology to Suppress Inflammation in Herpes Simplex Virus-1-Induced Corneal Immunopathology. THE JOURNAL OF IMMUNOLOGY 2021; 206:1866-1877. [PMID: 33811102 DOI: 10.4049/jimmunol.2000979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
HSV-1 infection of the cornea causes a severe immunoinflammatory and vision-impairing condition called herpetic stromal keratitis (SK). The virus replication in corneal epithelium followed by neutrophil- and CD4+ T cell-mediated inflammation plays a dominant role in SK. Although previous studies demonstrate critical functions of type I IFNs (IFN-α/β) in HSV-1 infection, the role of recently discovered IFN-λ (type III IFN), specifically at the corneal mucosa, is poorly defined. Our study using a mouse model of SK pathogenesis shows that HSV-1 infection induces a robust IFN-λ response compared with type I IFN production at the corneal mucosal surface. However, the normal progression of SK indicates that the endogenous IFN responses are insufficient to suppress HSV-1-induced corneal pathology. Therefore, we examined the therapeutic efficacy of exogenous rIFN-λ during SK progression. Our results show that rIFN-λ therapy suppressed inflammatory cell infiltration in the cornea and significantly reduced the SK pathologic condition. Early rIFN-λ treatment significantly reduced neutrophil and macrophage infiltration, and IL-6, IL-1β, and CXCL-1 production in the cornea. Notably, the virucidal capacity of neutrophils and macrophages measured by reactive oxygen species generation was not affected. Similarly, ex vivo rIFN-λ treatment of HSV-1-stimulated bone marrow-derived neutrophils significantly promoted IFN-stimulated genes without affecting reactive oxygen species production. Collectively, our data demonstrate that exogenous topical rIFN-λ treatment during the development and progression of SK could represent a novel therapeutic approach to control HSV-1-induced inflammation and associated vision impairment.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Anil K Jaiswal
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| | | | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849;
| |
Collapse
|
11
|
Xu F, Qin Y, He W, Huang G, Lv J, Xie X, Diao C, Tang F, Jiang L, Lan R, Cheng X, Xiao X, Zeng S, Chen Q, Cui L, Li M, Tang N. A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images. PLoS One 2021; 16:e0252653. [PMID: 34081736 PMCID: PMC8174724 DOI: 10.1371/journal.pone.0252653] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Infiltration of activated dendritic cells and inflammatory cells in cornea represents an important marker for defining corneal inflammation. Deep transfer learning has presented a promising potential and is gaining more importance in computer assisted diagnosis. This study aimed to develop deep transfer learning models for automatic detection of activated dendritic cells and inflammatory cells using in vivo confocal microscopy images. Methods A total of 3453 images was used to train the models. External validation was performed on an independent test set of 558 images. A ground-truth label was assigned to each image by a panel of cornea specialists. We constructed a deep transfer learning network that consisted of a pre-trained network and an adaptation layer. In this work, five pre-trained networks were considered, namely VGG-16, ResNet-101, Inception V3, Xception, and Inception-ResNet V2. The performance of each transfer network was evaluated by calculating the area under the curve (AUC) of receiver operating characteristic, accuracy, sensitivity, specificity, and G mean. Results The best performance was achieved by Inception-ResNet V2 transfer model. In the validation set, the best transfer system achieved an AUC of 0.9646 (P<0.001) in identifying activated dendritic cells (accuracy, 0.9319; sensitivity, 0.8171; specificity, 0.9517; and G mean, 0.8872), and 0.9901 (P<0.001) in identifying inflammatory cells (accuracy, 0.9767; sensitivity, 0.9174; specificity, 0.9931; and G mean, 0.9545). Conclusions The deep transfer learning models provide a completely automated analysis of corneal inflammatory cellular components with high accuracy. The implementation of such models would greatly benefit the management of corneal diseases and reduce workloads for ophthalmologists.
Collapse
Affiliation(s)
- Fan Xu
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yikun Qin
- China-ASEAN Information Harbor, Nanning, Guangxi, China
| | - Wenjing He
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Guangyi Huang
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jian Lv
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Xinxin Xie
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Chunli Diao
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Fen Tang
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Li Jiang
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Rushi Lan
- Guangxi Colleges and Universities Key Laboratory of Intelligent Processing of Computer Image and Graphics, Guilin University of Electronic Technology, Guilin, Guangxi, China
| | - Xiaohui Cheng
- Guangxi Key Laboratory of Embedded Technology and Intelligent Systems, Guilin University of Technology, Guilin, Guangxi, China
| | - Xiaolin Xiao
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Siming Zeng
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qi Chen
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Ling Cui
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Min Li
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- * E-mail: (ML); (NT)
| | - Ningning Tang
- Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- * E-mail: (ML); (NT)
| |
Collapse
|
12
|
Downie LE, Bandlitz S, Bergmanson JPG, Craig JP, Dutta D, Maldonado-Codina C, Ngo W, Siddireddy JS, Wolffsohn JS. CLEAR - Anatomy and physiology of the anterior eye. Cont Lens Anterior Eye 2021; 44:132-156. [PMID: 33775375 DOI: 10.1016/j.clae.2021.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
A key element of contact lens practice involves clinical evaluation of anterior eye health, including the cornea and limbus, conjunctiva and sclera, eyelids and eyelashes, lacrimal system and tear film. This report reviews the fundamental anatomy and physiology of these structures, including the vascular supply, venous drainage, lymphatic drainage, sensory innervation, physiology and function. This is the foundation for considering the potential interactions with, and effects of, contact lens wear on the anterior eye. This information is not consistently published as academic research and this report provides a synthesis from all available sources. With respect to terminology, the report aims to promote the consistent use of nomenclature in the field, and generally adopts anatomical terms recommended by the Federative Committee for Anatomical Terminology. Techniques for the examination of the ocular surface are also discussed.
Collapse
Affiliation(s)
- Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Australia.
| | - Stefan Bandlitz
- Höhere Fachschule für Augenoptik Köln, Cologne School of Optometry, Germany; School of Optometry, Aston University, Birmingham, UK
| | - Jan P G Bergmanson
- Texas Eye Research and Technology Center, University of Houston College of Optometry, United States
| | - Jennifer P Craig
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, New Zealand
| | - Debarun Dutta
- School of Optometry, Aston University, Birmingham, UK
| | - Carole Maldonado-Codina
- Eurolens Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - William Ngo
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 14W Hong Kong Science Park, Hong Kong
| | | | - James S Wolffsohn
- School of Optometry, Aston University, Birmingham, UK; Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, New Zealand
| |
Collapse
|
13
|
Sendra VG, Tau J, Zapata G, Lasagni Vitar RM, Illian E, Chiaradía P, Berra A. Polluted Air Exposure Compromises Corneal Immunity and Exacerbates Inflammation in Acute Herpes Simplex Keratitis. Front Immunol 2021; 12:618597. [PMID: 33841400 PMCID: PMC8025944 DOI: 10.3389/fimmu.2021.618597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Air pollution is a serious environmental issue worldwide in developing countries’ megacities, affecting the population’s health, including the ocular surface, by predisposing or exacerbating other ocular diseases. Herpes simplex keratitis (HSK) is caused by the herpes simplex virus type 1 (HSV-1). The primary or recurring infection in the ocular site causes progressive corneal scarring that may result in visual impairment. The present study was designed to study the immunopathological changes of acute HSK under urban polluted air, using the acute HSK model combined with an experimental urban polluted air exposure from Buenos Aires City. We evaluated the corneal clinical outcomes, viral DNA and pro-inflammatory cytokines by RT-PCR and ELISA assays, respectively. Then, we determined the innate and adaptive immune responses in both cornea and local lymph nodes after HSV-1 corneal by immunofluorescence staining and flow cytometry. Our results showed that mice exposed to polluted air develop a severe form of HSK with increased corneal opacity, neovascularization, HSV-1 DNA and production of TNF-α, IL-1β, IFN-γ, and CCL2. A high number of corneal resident immune cells, including activated dendritic cells, was observed in mice exposed to polluted air; with a further significant influx of bone marrow-derived cells including GR1+ cells (neutrophils and inflammatory monocytes), CD11c+ cells (dendritic cells), and CD3+ (T cells) during acute corneal HSK. Moreover, mice exposed to polluted air showed a predominant Th1 type T cell response over Tregs in local lymph nodes during acute HSK with decreased corneal Tregs. These findings provide strong evidence that urban polluted air might trigger a local imbalance of innate and adaptive immune responses that exacerbate HSK severity. Taking this study into account, urban air pollution should be considered a key factor in developing ocular inflammatory diseases.
Collapse
Affiliation(s)
- Victor G Sendra
- Laboratorio Traslacional de Inmunopatología y Oftalmología, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Cuidad Autónoma de Buenos Aires, Argentina
| | - Julia Tau
- Laboratorio Traslacional de Inmunopatología y Oftalmología, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Cuidad Autónoma de Buenos Aires, Argentina
| | - Gustavo Zapata
- Laboratorio Traslacional de Inmunopatología y Oftalmología, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Cuidad Autónoma de Buenos Aires, Argentina
| | - Romina M Lasagni Vitar
- Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, CONICET-Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Cuidad Autónoma de Buenos Aires, Argentina
| | - Eduardo Illian
- Neurovirosis, Departamento de Virología, Instituto Nacional de Enfermedades Infecciosas (INEI), Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Malbrán, Cuidad Autónoma de Buenos Aires, Argentina
| | - Pablo Chiaradía
- Departamento de Oftalmología, Hospital de Clínicas, Universidad de Buenos Aires, Cuidad Autónoma de Buenos Aires, Argentina
| | - Alejandro Berra
- Laboratorio Traslacional de Inmunopatología y Oftalmología, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Cuidad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
14
|
Abstract
A biomarker is a "characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions." Recently, calls for biomarkers for ocular surface diseases have increased, and advancements in imaging technologies have aided in allowing imaging biomarkers to serve as a potential solution for this need. This review focuses on the state of imaging biomarkers for ocular surface diseases, specifically non-invasive tear break-up time (NIBUT), tear meniscus measurement and corneal epithelial thickness with anterior segment optical coherence tomography (OCT), meibomian gland morphology with infrared meibography and in vivo confocal microscopy (IVCM), ocular redness with grading scales, and cellular corneal immune cells and nerve assessment by IVCM. Extensive literature review was performed for analytical and clinical validation that currently exists for potential imaging biomarkers. Our summary suggests that the reported analytical and clinical validation state for potential imaging biomarkers is broad, with some having good to excellent intra- and intergrader agreement to date. Examples of these include NIBUT for dry eye disease, ocular redness grading scales, and detection of corneal immune cells by IVCM for grading and monitoring inflammation. Further examples are nerve assessment by IVCM for monitoring severity of diabetes mellitus and neurotrophic keratitis, and corneal epithelial thickness assessment with anterior segment OCT for the diagnosis of early keratoconus. However, additional analytical validation for these biomarkers is required before clinical application as a biomarker.
Collapse
|
15
|
Testa V, De Santis N, Scotto R, Della Giustina P, Ferro Desideri L, Cellerino M, Cordano C, Inglese M, Uccelli A, Vagge A, Traverso CE, Iester M. Corneal epithelial dendritic cells in patients with multiple sclerosis: An in vivo confocal microscopy study. J Clin Neurosci 2020; 81:139-143. [PMID: 33222903 DOI: 10.1016/j.jocn.2020.09.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/22/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate density and morphology of corneal epithelial dendritic cells (DCs) in patients with multiple sclerosis (MS) using in vivo confocal microscopy (IVCM). METHODS This was a single-center cross-sectional comparative study. All MS patients were clinically scored using the Expanded Disability Status Scale (EDSS) score. Patients underwent ophthalmological examination and then cornea was analyzed by IVCM Heidelberg Retina Tomograph (HRT 3) in combination with Rostock Cornea Module and CCD camera. Five sectors (central, nasal, temporal, inferior, superior and central area) were analyzed in both patient eyes, then for each sector one image was selected and analyzed by using the manual cell counting system offered with the software and ImageJ program. DCs density (cell/mm2) and DCs size (µm2) were considered for the analyses. Difference between the two groups and correlation between DCs, MS type, EDSS score, optic neuritis and ongoing therapy were analyzed. RESULTS We enrolled 46 consecutive patients: 23 with MS (age 47.87 ± 7.22 years (mean ± standard deviation) and 21 healthy subjects (age 46.0 ± 12.6 years) from July 2017 to July 2018. MS patients showed a lower DCs density when compared with healthy subjects (p < 0.05). Moreover, we found a direct correlation (r:0.48, p < 0.05) between DCs density and ongoing disease-modifying therapy. CONCLUSION IVCM was able to show a difference in corneal DCs density between MS patients and healthy subjects, providing an insight to the underlying changes of the clinical manifestations of MS. Further studies are needed to provide evidence of possible clinical implications.
Collapse
Affiliation(s)
- Valeria Testa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Nicole De Santis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| | - Riccardo Scotto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| | - Piero Della Giustina
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Lorenzo Ferro Desideri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Maria Cellerino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | - Christian Cordano
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Inglese
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | - Antonio Uccelli
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | - Aldo Vagge
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Carlo Enrico Traverso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Michele Iester
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy.
| |
Collapse
|
16
|
Cai M, Liao Z, Zou X, Xu Z, Wang Y, Li T, Li Y, Ou X, Deng Y, Guo Y, Peng T, Li M. Herpes Simplex Virus 1 UL2 Inhibits the TNF-α-Mediated NF-κB Activity by Interacting With p65/p50. Front Immunol 2020; 11:549. [PMID: 32477319 PMCID: PMC7237644 DOI: 10.3389/fimmu.2020.00549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a large double-stranded DNA virus that encodes at least 80 viral proteins, many of which are involved in the virus-host interaction and are beneficial to the viral survival and reproduction. However, the biological functions of some HSV-1-encoded proteins are not fully understood. Nuclear factor κB (NF-κB) activation is the major antiviral innate response, which can be triggered by various signals induced by cellular receptors from different pathways. Here, we demonstrated that HSV-1 UL2 protein could antagonize the tumor necrosis factor α (TNF-α)-mediated NF-κB activation. Co-immunoprecipitation assays showed that UL2 could interact with the NF-κB subunits p65 and p50, which also revealed the region of amino acids 9 to 17 of UL2 could suppress the NF-κB activation and interact with p65 and p50, and UL2 bound to the immunoglobulin-like plexin transcription factor functional domain of p65. However, UL2 did not affect the formation of p65/p50 dimerization and their nuclear localizations. Yet, UL2 was demonstrated to inhibit the NF-κB activity by attenuating TNF-α-induced p65 phosphorylation at Ser536 and therefore decreasing the expression of downstream inflammatory chemokine interleukin 8. Taken together, the attenuation of NF-κB activation by UL2 may contribute to the escape of host's antiviral innate immunity for HSV-1 during its infection.
Collapse
Affiliation(s)
- Mingsheng Cai
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zongmin Liao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Department of Scientific Research and Education, Yuebei People's Hospital, Shaoguan, China
| | - Xingmei Zou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zuo Xu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yuanfang Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tong Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Ou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yangxi Deng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yingjie Guo
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.,South China Vaccine Corporation Limited, Guangzhou Science Park, Guangzhou, China
| | - Meili Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Kalogeropoulos D, Papoudou-Bai A, Lane M, Goussia A, Charchanti A, Moschos MM, Kanavaros P, Kalogeropoulos C. Antigen-presenting cells in ocular surface diseases. Int Ophthalmol 2020; 40:1603-1618. [PMID: 32107692 DOI: 10.1007/s10792-020-01329-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To review the role of antigen-presenting cells (APC) in the pathogenesis of ocular surface diseases (OSD). METHODS A thorough literature search was performed in PubMed database. An additional search was made in Google Scholar to complete the collected items. RESULTS APCs have the ability to initiate and direct immune responses and are found in most lymphoid and non-lymphoid tissues. APCs continuously sample their environment, present antigens to T cells and co-ordinate immune tolerance and responses. Many different types of APCs have been described and there is growing evidence that these cells are involved in the pathogenesis of OSD. OSD is a complex term for a myriad of disorders that are often characterized by ocular surface inflammation, tear film instability and impairment of vision. CONCLUSIONS This review summarizes the current knowledge concerning the immunotopographical distribution of APCs in the normal ocular surface. APCs appear to play a critical role in the pathology of a number of conditions associated with OSD including infectious keratitis, ocular allergy, dry eye disease and pterygium.
Collapse
Affiliation(s)
- Dimitrios Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Mark Lane
- Birmingham and Midland Eye Centre, Birmingham, UK
| | - Anna Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Antonia Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Marilita M Moschos
- First Department of Ophthalmology, General Hospital of Athens G. Gennimatas, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Chris Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
18
|
Li M, Zou X, Wang Y, Xu Z, Ou X, Li Y, Liu D, Guo Y, Deng Y, Jiang S, Li T, Shi S, Bao Y, Peng T, Cai M. The nuclear localization signal-mediated nuclear targeting of herpes simplex virus 1 early protein UL2 is important for efficient viral production. Aging (Albany NY) 2020; 12:2921-2938. [PMID: 32035424 PMCID: PMC7041738 DOI: 10.18632/aging.102786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/19/2020] [Indexed: 12/18/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is a representative alphaherpesvirus that can provoke a series of severe diseases to human being, but its exact pathogenesis is not perfectly understood. UL2, a uracil-DNA glycosylase involved in the process of HSV-1 DNA replication, has been shown to be predominantly targeted to the nuclei in our previous study, yet little is established regarding the subcellular localization signal or its related function of UL2 during HSV-1 propagation. Here, by creating a number of UL2 variants merged with enhanced yellow fluorescent protein, an authentic nuclear localization signal (NLS) of UL2 was, for the first time, identified and profiled to amino acids (aa) 1 to 17 (MKRACSRSPSPRRRPSS), and 12RRR14 was indispensable for its nuclear accumulation. Besides, the predicted nuclear export signal (aa 225 to 240) of UL2 was determined to be nonfunctional. Based on the HSV-1 bacterial artificial chromosome and homologous recombination technique, three recombinant viruses with mutations of the identified NLS, deletion and revertant of UL2 were constructed to assess the effect of UL2 nuclear targeting on HSV-1 replication. Compared to the wild type HSV-1, UL2 deletion remarkably restrained viral production, and mutation of NLS targeting UL2 to cytoplasm (pan-cellular distribution) in recombinant virus-infected cells showed a certain degree of deficiency in HSV-1 proliferation. Moreover, recombinant virus with UL2 deletion exhibited serious damages of viral DNA synthesis and mRNA expression, and these processes were partially disrupted in the recombinant virus with UL2 NLS mutation. Collectively, we had established a functional NLS in UL2 and showed that the NLS-mediated nuclear translocation of UL2 was important for efficient production of HSV-1. These data were of significance for further clarifying the biological function of UL2 during HSV-1 infection.
Collapse
Affiliation(s)
- Meili Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xingmei Zou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yuanfang Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Zuo Xu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiaowen Ou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Delong Liu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yingjie Guo
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yangxi Deng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Si Jiang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Tong Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Shaoxuan Shi
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yilong Bao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Panyu, Guangzhou 511436, Guangdong, China.,South China Vaccine Corporation Limited, Guangzhou Science Park, Guangzhou 510663, Guangdong, China
| | - Mingsheng Cai
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW To review ocular manifestations and complications of herpes simplex virus (HSV) and discuss recent advancements in diagnostic and treatment strategy. RECENT FINDINGS In-vivo confocal microscopy has expanded our understanding of corneal nerve degeneration, corneal dendritic cell activity, and changes in biomechanical properties in HSV keratitis. Although currently available only as a research tool, metagenomic deep sequencing has the potential to improve diagnostic accuracy beyond the well established PCR technology, especially in atypical cases. Development of an HSV vaccine has shown some encouraging results in a murine model. New treatment options for neurotrophic cornea offer promise, specifically cenegermin nerve growth factor. SUMMARY Ocular herpes simplex infection and its complications continue to cause significant visual burden and decreased quality of life. Familiarity with its clinical features, wider adoption of viral PCR diagnostic technology, and recognition of the need for long-term maintenance medications for recurrent or chronic cases form the basis for effective management. Metagenomic deep sequencing, the development of a herpes vaccine, and cenegermin nerve growth factor offer promise as diagnostic, preventive, and therapeutic options, respectively.
Collapse
|
20
|
Wang S, Li X, Wang W, Zhang H, Xu S. Application of transcriptome analysis: Oxidative stress, inflammation and microtubule activity disorder caused by ammonia exposure may be the primary factors of intestinal microvilli deficiency in chicken. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:134035. [PMID: 31470328 DOI: 10.1016/j.scitotenv.2019.134035] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Ammonia (NH3), an inhaled harmful gas, is not only an important volatile in fertilizer production and ranching, but also the main basic component of haze. However, the effect and mechanism of NH3 on the intestines are still unclear. To investigate the intestinal toxicity of NH3 inhalation, morphological changes, transcriptome profiles and oxidative stress indicators of jejunum in broiler chicken exposed to NH3 for 42 days were examined. Results of morphological observation showed that NH3 exposure caused deficiency of jejunal microvilli and neutrophil infiltration. Transcriptomics sequencing identified 677 differential expressed genes (DEGs) including 358 up-regulated genes and 319 down-regulated genes. Enrichment analysis of obtained DEGs by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) found that biological functions and pathways affected by NH3 included antioxidant function, inflammation, microtubule and nutrition transport. Relative genes validation and chemical detection confirmed that NH3-induced oxidative stress by activating CYPs and inhibiting antioxidant enzymes promoted inflammatory response and decreased microtubule activity, thus destroying the balance of nutritional transporters. Our study perfects the injurious mechanism of NH3 exposure and provides a new insight and method for environmental risk assessment.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
21
|
Pennington MR, Saha A, Painter DF, Gavazzi C, Ismail AM, Zhou X, Chodosh J, Rajaiya J. Disparate Entry of Adenoviruses Dictates Differential Innate Immune Responses on the Ocular Surface. Microorganisms 2019; 7:E351. [PMID: 31540200 PMCID: PMC6780103 DOI: 10.3390/microorganisms7090351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Human adenovirus infection of the ocular surface is associated with severe keratoconjunctivitis and the formation of subepithelial corneal infiltrates, which may persist and impair vision for months to years following infection. Long term pathology persists well beyond the resolution of viral replication, indicating that the prolonged immune response is not virus-mediated. However, it is not clear how these responses are sustained or even initiated following infection. This review discusses recent work from our laboratory and others which demonstrates different entry pathways specific to both adenovirus and cell type. These findings suggest that adenoviruses may stimulate specific pattern recognition receptors in an entry/trafficking-dependent manner, leading to distinct immune responses dependent on the virus/cell type combination. Additional work is needed to understand the specific connections between adenoviral entry and the stimulation of innate immune responses by the various cell types present on the ocular surface.
Collapse
Affiliation(s)
- Matthew R Pennington
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Amrita Saha
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - David F Painter
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Christina Gavazzi
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Ashrafali M Ismail
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Xiaohong Zhou
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Jaya Rajaiya
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Torrecilla J, Gómez-Aguado I, Vicente-Pascual M, Del Pozo-Rodríguez A, Solinís MÁ, Rodríguez-Gascón A. MMP-9 Downregulation with Lipid Nanoparticles for Inhibiting Corneal Neovascularization by Gene Silencing. NANOMATERIALS 2019; 9:nano9040631. [PMID: 31003493 PMCID: PMC6523231 DOI: 10.3390/nano9040631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Gene silencing targeting proangiogenic factors have been shown to be a useful strategy in the treatment of corneal neovascularization (CNV). Among interference RNA (RNAi) molecules, short-hairpin RNA (shRNA) is a plasmid-coded RNA able to down-regulate the expression of the desired gene. It is continuously produced in the host cell, inducing a durable gene silencing effect. The aim of this work was to develop a solid lipid nanoparticle (SLN)-based shRNA delivery system to downregulate metalloproteinase 9 (MMP-9), a proangiogenic factor, in corneal cells for the treatment of CNV associated with inflammation. The nanovectors were prepared using a solvent emulsification-evaporation technique, and after physicochemical evaluation, they were evaluated in different culture cell models. Transfection efficacy, cell internalization, cell viability, the effect on MMP-9 expression, and cell migration were evaluated in human corneal epithelial cells (HCE-2). The inhibition of tube formation using human umbilical vein endothelial cells (HUVEC) was also assayed. The non-viral vectors based on SLN were able to downregulate the MMP-9 expression in HCE-2 cells via gene silencing, and, consequently, to inhibit cell migration and tube formation. These results demonstrate the potential of lipid nanoparticles as gene delivery systems for the treatment of CNV-associated inflammation by RNAi technology.
Collapse
Affiliation(s)
- Josune Torrecilla
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01015 Vitoria-Gasteiz, Spain.
| | - Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01015 Vitoria-Gasteiz, Spain.
| | - Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01015 Vitoria-Gasteiz, Spain.
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01015 Vitoria-Gasteiz, Spain.
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01015 Vitoria-Gasteiz, Spain.
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01015 Vitoria-Gasteiz, Spain.
| |
Collapse
|
23
|
The Role of Connexin-43 in the Inflammatory Process: A New Potential Therapy to Influence Keratitis. J Ophthalmol 2019; 2019:9312827. [PMID: 30805212 PMCID: PMC6360563 DOI: 10.1155/2019/9312827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
The studies outlined in this review highlight the relationship between inflammatory signaling molecules and connexin-43 (Cx43). Gap junction (GJ) channels and hemichannels (HCs) participate in the metabolic activity between intra- and extracellular space. Some ions and small molecules are exchanged from cell to cell or cell to extracellular space to affect the process of inflammation via GJ. We analyzed the effects of signaling molecules, such as innate immunity messengers, transcription factors, LPS, cytokine, inflammatory chemokines, and MMPs, on Cx43 expression during the inflammatory process. At the same time, we found that these signaling molecules play a critical role in the pathogenesis of keratitis. Thus, we assessed the function of Cx43 during inflammatory corneal disease. Corneal healing plays an essential role in the late stage of keratitis. We found that Cx43 is involved in wound healing. Studies have shown that the decrease of Cx43 can decrease the time of healing. We also report several Cx43 mimic peptides which can inhibit the activity of Cx43 Hc to mediate the releasing of adenosine triphosphate (ATP), which may in turn influence the inflammatory process.
Collapse
|
24
|
Torrecilla J, Del Pozo-Rodríguez A, Vicente-Pascual M, Solinís MÁ, Rodríguez-Gascón A. Targeting corneal inflammation by gene therapy: Emerging strategies for keratitis. Exp Eye Res 2018; 176:130-140. [PMID: 29981344 DOI: 10.1016/j.exer.2018.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/14/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Inflammation is the underlying process of several diseases within the eye, specifically in the cornea. Current treatment options for corneal inflammation or keratitis, and related neovascularization, are restricted by limited efficacy, adverse effects, and short duration of action. Gene therapy has shown great potential for the treatment of diseases affecting the ocular surface, and major efforts are being targeted to inflammatory mediators and neovascularization, in order to develop potential treatments for corneal inflammation. Gene therapy to treat ocular disorders is still starting, and current therapies are primarily experimental, with most human clinical trials still in research state, although some of them have already shown encouraging results. In this review, we focus on the progress and challenges of gene therapy to treat corneal inflammation. After introducing the inflammation process, we present the main nucleic acid delivery systems, including viral and non-viral vectors, and the most studied strategies to address the therapy: control of neovascularization and regulation of pro- and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Josune Torrecilla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain.
| |
Collapse
|