1
|
Pernthaler J, Krempaska N, le Moigne A. Small-scale spatial beta diversity of bacteria in the mixed upper layer of a lake. Environ Microbiol 2023; 25:1847-1859. [PMID: 37173811 DOI: 10.1111/1462-2920.16399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Bacterial community composition among individual, experimentally generated 'lake snow' particles may be highly variable. Since such aggregates are seasonally abundant in the mixed upper layer of lakes, we hypothesized that particle-attached (PA) bacteria disproportionally contribute to the small-scale spatial beta diversity of pelagic communities. Community composition was analysed in sets of small (10 mL) samples collected from a pre-alpine lake in May, July and October 2018. Bacteria were classified as free-living (FL) or PA depending on their presence in large, 5-μm pre-filtered reference samples. FL exhibited clear seasonal differences in community composition and assembly. They were spatially uniform in May and July, and only a few FL taxa exhibited significant spatial variability. Spatial heterogeneity of FL in October was caused by high alpha and beta diversity of rare taxa, many with a presumably 'tychoplanktic' (alternating attached and free-living) lifestyle. The spatial beta diversity of PA was always high, and only about 10% of their seasonal richness was present in any single sample. Thus, most compositional variability of pelagic bacteria at spatial scales of cm to m either directly or indirectly originated from PA. On a functional level, this genotypic heterogeneity might affect the spatial distribution of rare metabolic traits.
Collapse
Affiliation(s)
- Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Natalia Krempaska
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alizée le Moigne
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Dexter J, McCormick AJ, Fu P, Dziga D. Microcystinase - a review of the natural occurrence, heterologous expression, and biotechnological application of MlrA. WATER RESEARCH 2021; 189:116646. [PMID: 33246218 DOI: 10.1016/j.watres.2020.116646] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/01/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
Microcystinase (MlrA) was first described in 1996. Since then MlrA peptidase activity has proven to be both the most efficient enzymatic process and the most specific catalyst of all known microcystins detoxification pathways. Furthermore, MlrA and the MlrABC degradation pathway are presently the only enzymatic processes with clear genetic and biochemical descriptions available for microcystins degradation, greatly facilitating modern applied genetics for any relevant technological development. Recently, there has been increasing interest in the potential of sustainable, biologically inspired alternatives to current industrial practice, with note that biological microcystins degradation is the primary detoxification process found in nature. While previous reviews have broadly discussed microbial biodegradation processes, here we present a review focused specifically on MlrA. Following a general overview, we briefly highlight the initial discovery and present understanding of the MlrABC degradation pathway, before discussing the genetic and biochemical aspects of MlrA. We then review the potential biotechnology applications of MlrA in the context of available literature with emphasis on the optimization of MlrA for in situ applications including (i) direct modulation of Mlr activity within naturally existing populations, (ii) bioaugmentation of systems with introduced biodegradative capacity via whole cell biocatalysts, and (iii) bioremediation via direct MlrA application.
Collapse
Affiliation(s)
- Jason Dexter
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 31-007 Kraków, Poland; Cyanoworks, LLC, 1771 Haskell Rd., Olean, NY 14760, USA.
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, EH9 3BF, UK.
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228 China.
| | - Dariusz Dziga
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 31-007 Kraków, Poland.
| |
Collapse
|
3
|
Ren L, Hu Z, Wang Q, Du Y, Zong W. Regulation Efficacy and Mechanism of the Toxicity of Microcystin-LR Targeting Protein Phosphatase 1 via the Biodegradation Pathway. Toxins (Basel) 2020; 12:toxins12120790. [PMID: 33322407 PMCID: PMC7764552 DOI: 10.3390/toxins12120790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Biodegradation is important to regulate the toxicity and environmental risk of microcystins (MCs). To explore their regulation effectiveness and mechanism, typical biodegradation products originating from microcystin-LR (MCLR) were prepared and purified. The protein phosphatase 1 (PP1) inhibition experiment showed the biodegradation pathway was effective in regulating the toxicity of the biodegradation products by extending the biodegradation. With the assistance of molecular docking, the specific interaction between the toxins and PP1 was explored. The MCLR/MCLR biodegradation products combined with PP1 mainly by the aid of interactions related to the active sites Adda5, Glu6, Mdha7, and the ionic bonds/hydrogen bonds between the integral toxin and PP1. As a consequence, the interactions between Mn22+ and Asp64/Asp92 in the catalytic center were inhibited to varying degrees, resulting in the reduced toxicity of the biodegradation products. During the biodegradation process, the relevant key interactions might be weakened or even disappear, and thus the toxicity was regulated. It is worth noting that the secondary pollution of the partial products (especially for Adda5-Glu6-Mdha7-Ala1 and the linearized MCLR), which still possessed the major active sites, is of deep concern.
Collapse
|
4
|
Silva MOD, Pernthaler J. Biomass addition alters community assembly in ultrafiltration membrane biofilms. Sci Rep 2020; 10:11552. [PMID: 32665605 PMCID: PMC7360762 DOI: 10.1038/s41598-020-68460-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
Abstract
Freshwater biofilms assemble from a pool of rare water column genotypes. Random density fluctuations and temporal species turnover of functionally equivalent potential colonizers result in compositional variability of newly formed biofilm communities. We hypothesized that stronger environmental filtering as induced by enhanced substrate levels might reduce the impact of a locally variable pool of colonizers and instead select for more universal habitat specialists. Our model were heterotrophic biofilms that form on membranes during gravity-driven ultrafiltration of lake water. In four separate experiments, biomass of the cyanobacterium Microcystis was added to the feed water of one set of treatments (BM) and the resulting biofilm communities were compared to unamended controls (CTRL). Biomass addition led to a significant shift of community assembly processes: Replicate BM biofilms were more similar to each other than by chance in 3 of 4 experiments, whereas the opposite was the case for CTRL communities. Moreover, BM communities were more stochastically assembled across experiments from a common 'regional' pool of biofilm colonizers, whereas the composition of CTRL communities was mainly determined by experiment-specific 'local' genotypes. Interestingly, community assembly processes were also related to both, physiology (aerobic vs. anaerobic lifestyle) and the phylogenetic affiliation of biofilm bacteria.
Collapse
Affiliation(s)
- Marisa O D Silva
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland.
| |
Collapse
|
5
|
The Effect of a Combined Hydrogen Peroxide-MlrA Treatment on the Phytoplankton Community and Microcystin Concentrations in a Mesocosm Experiment in Lake Ludoš. Toxins (Basel) 2019; 11:toxins11120725. [PMID: 31835838 PMCID: PMC6950535 DOI: 10.3390/toxins11120725] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/04/2023] Open
Abstract
Harmful cyanobacteria and their toxic metabolites constitute a big challenge for the production of safe drinking water. Microcystins (MC), chemically stable hepatotoxic heptapeptides, have often been involved in cyanobacterial poisoning incidents. A desirable solution for cyanobacterial management in lakes and ponds would eliminate both excess cyanobacteria and the MC that they potentially produce and release upon lysis. Hydrogen peroxide (H2O2) has recently been advocated as an efficient means of lysing cyanobacteria in lakes and ponds, however H2O2 (at least when used at typical concentrations) cannot degrade MC in environmental waters. Therefore, mesocosm experiments combining the cyanobacteria-lysing effect of H2O2 and the MC-degrading capacity of the enzyme MlrA were set up in the highly eutrophic Lake Ludoš (Serbia). The H2O2 treatment decreased the abundance of the dominant cyanobacterial taxa Limnothrix sp., Aphanizomenon flos-aquae, and Planktothrix agardhii. The intracellular concentration of MC was reduced/eliminated by H2O2, yet the reduction of the extracellular MC could only be accomplished by supplementation with MlrA. However, as H2O2 was found to induce the expression of mcyB and mcyE genes, which are involved in MC biosynthesis, the use of H2O2 as a safe cyanobacteriocide still requires further investigation. In conclusion, the experiments showed that the combined use of H2O2 and MlrA is promising in the elimination of both excess cyanobacteria and their MC in environmental waters.
Collapse
|
6
|
Silva MOD, Pernthaler J. Priming of microcystin degradation in carbon-amended membrane biofilm communities is promoted by oxygen-limited conditions. FEMS Microbiol Ecol 2019; 95:5582606. [PMID: 31589311 PMCID: PMC6804753 DOI: 10.1093/femsec/fiz157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/04/2019] [Indexed: 01/09/2023] Open
Abstract
Microbial biofilms are an important element of gravity-driven membrane (GDM) filtration systems for decentralized drinking water production. Mature biofilms fed with biomass from the toxic cyanobacterium Microcystis aeruginosa efficiently remove the cyanotoxin microcystin (MC). MC degradation can be ‘primed’ by prior addition of biomass from a non-toxic M. aeruginosa strain. Increased proportions of bacteria with an anaerobic metabolism in M. aeruginosa-fed biofilms suggest that this ‘priming’ could be due to higher productivity and the resulting changes in habitat conditions. We, therefore, investigated GDM systems amended with the biomass of toxic (WT) or non-toxic (MUT) M. aeruginosa strains, of diatoms (DT), or with starch solution (ST). After 25 days, these treatments were changed to receiving toxic cyanobacterial biomass. MC degradation established significantly more rapidly in MUT and ST than in DT. Oxygen measurements suggested that this was due to oxygen-limited conditions in MUT and ST already prevailing before addition of MC-containing biomass. Moreover, the microbial communities in the initial ST biofilms featured high proportions of facultative anaerobic taxa, whereas aerobes dominated in DT biofilms. Thus, the ‘priming’ of MC degradation in mature GDM biofilms seems to be related to the prior establishment of oxygen-limited conditions mediated by higher productivity.
Collapse
Affiliation(s)
- Marisa O D Silva
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Seestrasse 187, CH-8802 Kilchberg, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Seestrasse 187, CH-8802 Kilchberg, Switzerland
| |
Collapse
|
7
|
Silva MOD, Desmond P, Derlon N, Morgenroth E, Pernthaler J. Source Community and Assembly Processes Affect the Efficiency of Microbial Microcystin Degradation on Drinking Water Filtration Membranes. Front Microbiol 2019; 10:843. [PMID: 31057530 PMCID: PMC6482319 DOI: 10.3389/fmicb.2019.00843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/02/2019] [Indexed: 01/14/2023] Open
Abstract
Microbial biofilms in gravity-driven membrane (GDM) filtration systems can efficiently degrade the cyanotoxin microcystin (MC), but it is unclear if this function depends on the presence of MC-producing cyanobacteria in the source water habitat. We assessed the removal of MC from added Microcystis aeruginosa biomass in GDMs fed with water from a lake with regular blooms of toxic cyanobacteria (ExpL) or from a stream without such background (ExpS). While initial MC removal was exclusively due to abiotic processes, significantly higher biological MC removal was observed in ExpL. By contrast, there was no difference in MC degradation capacity between lake and stream bacteria in separately conducted liquid enrichments on pure MC. Co-occurrence network analysis revealed a pronounced modularity of the biofilm communities, with a clear hierarchic distinction according to feed water origin and treatment type. Genotypes in the network modules associated with ExpS had significantly more links to each other, indicating that these biofilms had assembled from a more coherent source community. In turn, signals for stochastic community assembly were stronger in ExpL biofilms. We propose that the less "tightly knit" ExpL biofilm assemblages allowed for the better establishment of facultatively MC degrading bacteria, and thus for higher overall functional efficiency.
Collapse
Affiliation(s)
- Marisa O. D. Silva
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Peter Desmond
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Environmental Engineering, ETH Zurich, Institute of Environmental Engineering, Zurich, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Environmental Engineering, ETH Zurich, Institute of Environmental Engineering, Zurich, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Terin UC, Sabogal-Paz LP. Microcystis aeruginosa and microcystin-LR removal by household slow sand filters operating in continuous and intermittent flows. WATER RESEARCH 2019; 150:29-39. [PMID: 30503872 DOI: 10.1016/j.watres.2018.11.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 05/26/2023]
Abstract
A household slow sand filter (HSSF) is a widely used water treatment technology recognized as one of the most effective and sustainable in reducing waterborne diseases. However, there is a lack of knowledge concerning its behaviour in the presence of cyanobacteria and cyanotoxins. In this context, the study aimed to evaluate HSSF ability to remove Microcystis aeruginosa cells (stain BB005) and microcystin-LR from water, among other parameters, when operated under continuous (C-HSSF) and intermittent (I-HSSF) flows. CHSSF was operated at a constant filtration rate (1.22 m3 m-2 day-1), while I-HSSF was operated at a variable filtration rate (starting at 2.95 m3 m-2 day-1 and finishing at zero). Each filter produced 60 L day-1. The influence of the pause period was also tested in the I-HSSF. The water from the study was prepared by inoculating M. aeruginosa culture in water from a well to a final cell density of ± 1 × 105 cells mL-1. M. aeruginosa removal rates were 2.39 ± 0.34 log and 2.01 ± 0.43 log by CHSSF and I-HSSF, respectively. Microcystin-LR concentration in studied water was 5.55 μg L-1, and both filters produced filtered water with microcystin concentrations below 1.0 μg L-1, the maximum value recommended by the World Health Organization (WHO), for most of the samples. Turbidity and apparent colour were also within WHO guidelines. Filters operating with different flow regimes and distinct residence times did not statistically influence treatment efficiencies. Both filters showed promising results in the M. aeruginosa and microcystin-LR removals from water; nevertheless, more research is needed to understand the mechanisms involved in the reduction of both cyanobacteria and cyanotoxin through household slow sand filtration.
Collapse
Affiliation(s)
- U C Terin
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Trabalhador São-Carlense Avenue, 400, São Paulo, 13566-590, Brazil
| | - L P Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Trabalhador São-Carlense Avenue, 400, São Paulo, 13566-590, Brazil.
| |
Collapse
|