1
|
Yu B, Ma T, Nawaz M, Chen H, Zheng H. Advances in Metabolic Engineering for the Accumulation of Astaxanthin Biosynthesis. Mol Biotechnol 2024:10.1007/s12033-024-01289-1. [PMID: 39373956 DOI: 10.1007/s12033-024-01289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Astaxanthin, a lipophilic carotenoid renowned for its strong antioxidant activity, holds significant commercial value across industries such as feed, food, and cosmetics. Although astaxanthin can be synthesized through chemical methods, it may contain toxic by-products in the synthesized astaxanthin, limiting its application in medicine or functional food. Natural astaxanthin can be extracted from algae, however, the cultivation cycle of algae is relatively longer compared to microorganisms. With the advancement of synthetic biology and metabolic engineering, the method of microbial fermentation has emerged as a promising strategy for the large-scale production of astaxanthin. This article provides a comprehensive overview of the research progress in astaxanthin biosynthesis, highlighting the use of the natural host Xanthophyllomyces dendrorhous, and the heterologous hosts Yarrowia lipolytica and Saccharomyces cerevisiae. Additionally, future research prospects are also discussed.
Collapse
Affiliation(s)
- Bingxin Yu
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Tianyue Ma
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Maryam Nawaz
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Hailong Chen
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
2
|
Zhang J, Liu M, Han T, Luo L, Zhang Y, Yuan G, Fang X, Han F, Chen X, Wang Y. Advance toward function, production, and delivery of natural astaxanthin: A promising candidate for food ingredients with future perspectives. Food Chem 2024; 463:141428. [PMID: 39353306 DOI: 10.1016/j.foodchem.2024.141428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Astaxanthin (AST) exhibits potent antioxidant activity, effectively preventing neurological diseases and cancer. Presently, producing AST from microorganisms like Haematococcus pluvialis and Phaffia rhodozyma is a growing trend. This review summarizes the main research topics on AST in the past five years. AST plays a crucial role in cancer and diabetes prevention, as well as neuroprotection, however, the presence of both free and esterified forms of AST results in differences in their functionality and applications. The primary challenges in industrial production of natural AST lie in breeding high-yield natural producers and developing methods to enhance yield. The use of high-quality food matrix materials and preparation methods is crucial for the delivery system of loaded AST. This study elucidates the bottlenecks and future development directions encountered by natural AST during industrialization, aiming to promote the healthy and rapid growth of the food industry.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Meizhen Liu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Tiantian Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Lu Luo
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, China
| | - Ying Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gaofeng Yuan
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xubo Fang
- Zhejiang International Maritime College, Zhoushan, China
| | - Fangrui Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoe Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China.
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
3
|
Rodrigues VD, Boaro BL, Laurindo LF, Chagas EFB, de Lima EP, Laurindo LF, Barbalho SM. Exploring the benefits of astaxanthin as a functional food ingredient: Its effects on oxidative stress and reproductive outcomes in women with PCOS - A systematic review and single-arm meta-analysis of randomized clinical trials. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03432-w. [PMID: 39269488 DOI: 10.1007/s00210-024-03432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological-endocrinological disorder characterized by hyperandrogenism, menstrual irregularities, and metabolic disturbances. Recent research has highlighted the role of oxidative stress and chronic inflammation in exacerbating PCOS symptoms and impeding reproductive outcomes. Astaxanthin, a potent antioxidant found in marine organisms, has been suggested as a potential therapeutic intervention due to its ability to reduce oxidative stress and inflammation. This meta-analysis systematically reviews randomized controlled trials assessing the impact of astaxanthin supplementation on oxidative stress and reproductive outcomes in women with PCOS. Data from four trials were analyzed, focusing on markers of oxidative stress and reproductive health metrics. The meta-analysis utilized fixed and random-effects models to synthesize results, with heterogeneity assessed using Chi-square and I2 statistics. The findings indicate that while astaxanthin significantly improves markers of total antioxidant capacity (TAC) in follicular fluid, it does not show a consistent effect on other oxidative stress biomarkers such as malondialdehyde (MDA), catalase (CAT), or superoxide dismutase (SOD). Reproductive outcomes, including oocyte quality and the number of high-quality embryos, showed moderate improvements, although effects on fertilization rates and pregnancy outcomes were insignificant. The analysis highlights variability in study designs and dosing, suggesting a need for further research with standardized protocols and larger sample sizes. Future studies should focus on determining optimal dosing, exploring mechanistic pathways, and investigating the combined effects of astaxanthin with other interventions. Longitudinal studies are needed to assess long-term benefits and safety, and personalized approaches could enhance treatment efficacy for individuals with PCOS.
Collapse
Affiliation(s)
- Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José Do Rio Preto (FAMERP), São José Do Rio Preto, São Paulo, 15090-000, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
- UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| |
Collapse
|
4
|
Zhou D, Fei Z, Liu G, Jiang Y, Jiang W, Lin CSK, Zhang W, Xin F, Jiang M. The bioproduction of astaxanthin: A comprehensive review on the microbial synthesis and downstream extraction. Biotechnol Adv 2024; 74:108392. [PMID: 38825214 DOI: 10.1016/j.biotechadv.2024.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Astaxanthin is a valuable orange-red carotenoid with wide applications in agriculture, food, cosmetics, pharmaceuticals and nutraceuticals areas. At present, the biological synthesis of astaxanthin mainly relies on Haematococcus pluvialis and Xanthophyllomyces dendrorhous. With the rapid development of synthetic biology, more recombinant microbial hosts have been genetically constructed for astaxanthin production including Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica. As multiple genes (15) were involved in the astaxanthin synthesis, it is particularly important to adopt different strategies to balance the metabolic flow towards the astaxanthin synthesis. Furthermore, astaxanthin is a fat-soluble compound stored intracellularly, hence efficient extraction methods are also essential for the economical production of astaxanthin. Several efficient and green extraction methods of astaxanthin have been reported in recent years, including the superfluid extraction, ionic liquid extraction and microwave-assisted extraction. Accordingly, this review will comprehensively introduce the advances on the astaxanthin production and extraction by using different microbial hosts and strategies to improve the astaxanthin synthesis and extraction efficiency.
Collapse
Affiliation(s)
- Dawei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengyue Fei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Guannan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, 999077, Hong Kong
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
5
|
Chen Q, Lyu L, Xue H, Shah AM, Zhao ZK. Engineering a non-model yeast Rhodotorula mucilaginosa for terpenoids synthesis. Synth Syst Biotechnol 2024; 9:569-576. [PMID: 38690180 PMCID: PMC11058065 DOI: 10.1016/j.synbio.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Terpenoids have tremendous biological activities and are widely employed in food, healthcare and pharmaceutical industries. Using synthetic biology to product terpenoids from microbial cell factories presents a promising alternative route compared to conventional methods such as chemical synthesis or phytoextraction. The red yeast Rhodotorula mucilaginosa has been widely studied due to its natural production capacity of carotenoid and lipids, indicating a strong endogenous isoprene pathway with readily available metabolic intermediates. This study constructed several engineered strains of R. mucilaginosa with the aim of producing different terpenoids. Monoterpene α-terpineol was produced by expressing the α-terpineol synthase from Vitis vinifera. The titer of α-terpineol was further enhanced to 0.39 mg/L by overexpressing the endogenous rate-limiting gene of the MVA pathway. Overexpression of α-farnesene synthase from Malus domestica, in combination with MVA pathway rate-limiting gene resulted in significant increase in α-farnesene production, reaching a titer of 822 mg/L. The carotenoid degradation product β-ionone was produced at a titer of 0.87 mg/L by expressing the β-ionone synthase from Petunia hybrida. This study demonstrates the potential of R. mucilaginosa as a platform host for the direct biosynthesis of various terpenoids and provides insights for further development of such platforms.
Collapse
Affiliation(s)
- Qiongqiong Chen
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Liting Lyu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Haizhao Xue
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Aabid Manzoor Shah
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Chen N, Cao W, Yuan Y, Wang Y, Zhang X, Chen Y, Yiasmin MN, Tristanto NA, Hua X. Recent advancements in mogrosides: A review on biological activities, synthetic biology, and applications in the food industry. Food Chem 2024; 449:139277. [PMID: 38608607 DOI: 10.1016/j.foodchem.2024.139277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Mogrosides are low-calorie, biologically active sweeteners that face high production costs due to strict cultivation requirements and the low yield of monk fruit. The rapid advancement in synthetic biology holds the potential to overcome this challenge. This review presents mogrosides exhibiting antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, and liver protective activities, with their efficacy in diabetes treatment surpassing that of Xiaoke pills (a Chinese diabetes medication). It also discusses the latest elucidated biosynthesis pathways of mogrosides, highlighting the challenges and research gaps in this field. The critical and most challenging step in this pathway is the transformation of mogrol into a variety of mogrosides by different UDP-glucosyltransferases (UGTs), primarily hindered by the poor substrate selectivity, product specificity, and low catalytic efficiency of current UGTs. Finally, the applications of mogrosides in the current food industry and the challenges they face are discussed.
Collapse
Affiliation(s)
- Nuo Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weichao Cao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuying Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuhang Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xijia Zhang
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yujie Chen
- Jiangsu Stevia Biotechnology Co., Ltd, Wuxi 214122, China
| | - Mst Nushrat Yiasmin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Hoondee P, Phuengjayaem S, Kingkaew E, Rojsitthisak P, Sritularak B, Thompho S, Pornputtapong N, Thitikornpong W, Tanasupawat S. Comparative genomic analysis and optimization of astaxanthin production of Rhodotorula paludigena TL35-5 and Rhodotorula sampaioana PL61-2. PLoS One 2024; 19:e0304699. [PMID: 38995888 PMCID: PMC11244826 DOI: 10.1371/journal.pone.0304699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/17/2024] [Indexed: 07/14/2024] Open
Abstract
Astaxanthin is a powerful antioxidant known to enhance skin, cardiovascular, eye, and brain health. In this study, the genome insights and astaxanthin production of two newly isolated astaxanthin-producing yeasts (TL35-5 and PL61-2) were evaluated and compared. Based on their phenotypic and genotypic characteristics, TL35-5 and PL61-2 were identified as basidiomycetous yeasts belonging to Rhodotorula paludigena and Rhodotorula sampaioana, respectively. To optimize astaxanthin production, the effects of cultural medium composition and cultivation conditions were examined. The optimal conditions for astaxanthin production in R. paludigena TL35-5 involved cultivation in AP medium containing 10 g/L glucose as the sole carbon source, supplemented with 1.92 g/L potassium nitrate, pH 6.5, and incubation at 20°C for 3 days with shaking at 200 rpm. For R. sampaioana PL61-2, the optimal medium composition for astaxanthin production consisted of AP medium with 40 g/L glucose, supplemented with 0.67 g/L urea, pH 7.5, and the fermentation was carried out at 20°C for 3 days with agitating at 200 rpm. Under their optimal conditions, R. paludigena TL35-5 and R. sampaioana PL61-2 gave the highest astaxanthin yields of 3.689 ± 0.031 and 4.680 ± 0.019 mg/L, respectively. The genome of TL35-5 was 20,982,417 bp in length, with a GC content of 64.20%. A total of 6,789 protein-encoding genes were predicted. Similarly, the genome of PL61-2 was 21,374,169 bp long, with a GC content of 64.88%. It contained 6,802 predicted protein-encoding genes. Furthermore, all essential genes involved in astaxanthin biosynthesis, including CrtE, CrtYB, CrtI, CrtS, and CrtR, were identified in both R. paludigena TL35-5 and R. sampaioana PL61-2, providing evidence for their ability to produce astaxanthin.
Collapse
Affiliation(s)
- Patcharaporn Hoondee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, Thailand
| | - Sukanya Phuengjayaem
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Engkarat Kingkaew
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Somphob Thompho
- Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Worathat Thitikornpong
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Einhaus A, Baier T, Kruse O. Molecular design of microalgae as sustainable cell factories. Trends Biotechnol 2024; 42:728-738. [PMID: 38092627 DOI: 10.1016/j.tibtech.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 06/09/2024]
Abstract
Microalgae are regarded as sustainable and potent chassis for biotechnology. Their capacity for efficient photosynthesis fuels dynamic growth independent from organic carbon sources and converts atmospheric CO2 directly into various valuable hydrocarbon-based metabolites. However, approaches to gene expression and metabolic regulation have been inferior to those in more established heterotrophs (e.g., prokaryotes or yeast) since the genetic tools and insights in expression regulation have been distinctly less advanced. In recent years, however, these tools and their efficiency have dramatically improved. Various examples have demonstrated new trends in microalgal biotechnology and the potential of microalgae for the transition towards a sustainable bioeconomy.
Collapse
Affiliation(s)
- Alexander Einhaus
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
9
|
Wang DN, Yu CX, Feng J, Wei LJ, Chen J, Liu Z, Ouyang L, Zhang L, Liu F, Hua Q. Comparative transcriptome analysis reveals the redirection of metabolic flux from cell growth to astaxanthin biosynthesis in Yarrowia lipolytica. Yeast 2024; 41:369-378. [PMID: 38613186 DOI: 10.1002/yea.3938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Engineering Yarrowia lipolytica to produce astaxanthin provides a promising route. Here, Y. lipolytica M2 producing a titer of 181 mg/L astaxanthin was isolated by iterative atmospheric and room-temperature plasma mutagenesis and diphenylamine-mediated screening. Interestingly, a negative correlation was observed between cell biomass and astaxanthin production. To reveal the underlying mechanism, RNA-seq analysis of transcriptional changes was performed in high producer M2 and reference strain M1, and a total of 1379 differentially expressed genes were obtained. Data analysis revealed that carbon flux was elevated through lipid metabolism, acetyl-CoA and mevalonate supply, but restrained through central carbon metabolism in strain M2. Moreover, upregulation of other pathways such as ATP-binding cassette transporter and thiamine pyrophosphate possibly provided more cofactors for carotenoid hydroxylase and relieved cell membrane stress caused by astaxanthin insertion. These results suggest that balancing cell growth and astaxanthin production may be important to promote efficient biosynthesis of astaxanthin in Y. lipolytica.
Collapse
Affiliation(s)
- Dan-Ni Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chen-Xi Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jie Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| |
Collapse
|
10
|
Cai C, Xu N, Feng J, Zhang J, Zhao Q, Liu H, Nan B, Li X, Wang Y. Energy metabolism analysis of exogenous glutamate on promoting co-accumulation of astaxanthin yield and biomass in Phaffia rhodozyma D3. BIORESOURCE TECHNOLOGY 2024; 402:130834. [PMID: 38740311 DOI: 10.1016/j.biortech.2024.130834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Effective metabolic regulators play an essential role in regulating astaxanthin biosynthesis in Phaffia rhodozyma. In this study, it was found that 5 mM glutamate increased the astaxanthin yield and biomass of P. rhodozyma D3 to 22.34 mg/L and 6.12 g/L, which were 1.22 and 1.33 times higher than the control group, respectively. Meanwhile, glucose uptake was increased and the level of reactive oxygen species (ROS) was reduced with 5 mM glutamate. To further explore the interrelationship between glutamate and astaxanthin synthesis, the energy metabolism of P. rhodozyma D3 with and without glutamate was analysed. Glutamate promoted the Embden-Meyerhof-Parnas pathway (EMP) metabolic flux, modulated the tricarboxylic acid (TCA) cycle and the pentose phosphate pathway (PPP), activated the ornithine cycle and purine metabolism, and provided more ATP and NADPH for astaxanthin accumulation. This study clarified the possible mechanism by which glutamate promoted astaxanthin accumulation in P. rhodozyma.
Collapse
Affiliation(s)
- Chunyu Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Na Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Jiale Feng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Jiahua Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Qianxi Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.
| |
Collapse
|
11
|
Besharat M, Islami HR, Soltani M, Mousavi SA. Effects of dietary nanoliposome-coated astaxanthin on haematological parameters, immune responses and the antioxidant status of rainbow trout (Oncorhynchus mykiss). Vet Med Sci 2024; 10:e1461. [PMID: 38648257 PMCID: PMC11034635 DOI: 10.1002/vms3.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/03/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Astaxanthin is the most prevalent carotenoid in the marine environment and is widely used as an additive in formulated aquafeeds. OBJECTIVES A 60-day feeding trial was conducted to consider the effect of dietary nanoliposome-coated astaxanthin (NA) on haematological parameters, serum antioxidant activities and immune responses of rainbow trout, Oncorhynchus mykiss. METHODS A total of 450 healthy fish weighing 31.00 ± 2.09 g were randomly assigned in triplicate (30 fish per replicate) to 5 dietary treatments: 0 (control), 25.00, 50.00, 75.00, and 100.00 mg kg-1 NA. RESULTS Fish fed the diet supplemented with 50.00 mg kg-1 NA exhibited the highest values of red blood cells, white blood cells, haemoglobin and haematocrit of 1.64 ± 0.01 × 106 mm-3, 5.54 ± 0.21 × 103 mm-3, 8.73 ± 0.24 g dL-1 and 46.67% ± 0.88%, respectively, which were significantly higher than those fed the basal diet (p < 0.05). The lowest and highest percentages of lymphocytes (67.67% ± 0.33%) and neutrophils (27.33% ± 1.20%) were also obtained in fish fed 50.00 mg kg-1 NA compared to those fed the basal diet (p < 0.05). Fish receiving diet supplemented with 50.00 mg kg-1 NA revealed the highest serum activity in superoxide dismutase, catalase, glutathione peroxidase, lysozyme and alternative complement and the lowest level of total cholesterol, cortisol, aspartate aminotransferase and alanine aminotransferase than fish receiving the basal diet (p < 0.05). Serum immunoglobulin (Ig) and ACH50 contents significantly increased with increasing dietary NA supplementation to the highest values of 43.17 ± 1.46 and 293.33 ± 2.03 U mL-1, respectively, in fish fed diet supplemented with 50 mg kg-1 NA (p < 0.05). CONCLUSIONS Supplementation of NA in rainbow trout diet at 50 mg kg-1 exhibited a positive effect on haematological parameters, antioxidant capacity and immune responses. Administration of such dosage can enhance rainbow trout immune responses against unfavourable or stressful conditions, for example disease outbreaks, hypoxic condition, thermal stress and sudden osmotic fluctuations, which usually happen in an intensive culture system.
Collapse
Affiliation(s)
- Mojdeh Besharat
- Department of Fisheries, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Houman Rajabi Islami
- Department of Fisheries, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary MedicineUniversity of TehranTehranIran
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, School of Veterinary and Life ScienceMurdoch UniversityMurdochAustralia
| | | |
Collapse
|
12
|
Vergine M, Vita F, Casati P, Passera A, Ricciardi L, Pavan S, Aprile A, Sabella E, De Bellis L, Luvisi A. Characterization of the olive endophytic community in genotypes displaying a contrasting response to Xylella fastidiosa. BMC PLANT BIOLOGY 2024; 24:337. [PMID: 38664617 PMCID: PMC11044560 DOI: 10.1186/s12870-024-04980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.
Collapse
Affiliation(s)
- Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Federico Vita
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.
| | - Paola Casati
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milano, Italy
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milano, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
13
|
Jia J, Chen Z, Li Q, Li F, Liu S, Bao G. The enhancement of astaxanthin production in Phaffia rhodozyma through a synergistic melatonin treatment and zinc finger transcription factor gene overexpression. Front Microbiol 2024; 15:1367084. [PMID: 38666259 PMCID: PMC11043562 DOI: 10.3389/fmicb.2024.1367084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Astaxanthin has multiple physiological functions and is applied widely. The yeast Phaffia rhodozyma is an ideal source of microbial astaxanthin. However, the stress conditions beneficial for astaxanthin synthesis often inhibit cell growth, leading to low productivity of astaxanthin in this yeast. In this study, 1 mg/L melatonin (MT) could increase the biomass, astaxanthin content, and yield in P. rhodozyma by 21.9, 93.9, and 139.1%, reaching 6.9 g/L, 0.3 mg/g DCW, and 2.2 mg/L, respectively. An RNA-seq-based transcriptomic analysis showed that MT could disturb the transcriptomic profile of P. rhodozyma cell. Furthermore, differentially expressed gene (DEG) analysis show that the genes induced or inhibited significantly by MT were mainly involved in astaxanthin synthesis, metabolite metabolism, substrate transportation, anti-stress, signal transduction, and transcription factor. A mechanism of MT regulating astaxanthin synthesis was proposed in this study. The mechanism is that MT entering the cell interacts with components of various signaling pathways or directly regulates their transcription levels. The altered signals are then transmitted to the transcription factors, which can regulate the expressions of a series of downstream genes as the DEGs. A zinc finger transcription factor gene (ZFTF), one of the most upregulated DEGs, induced by MT was selected to be overexpressed in P. rhodozyma. It was found that the biomass and astaxanthin synthesis of the transformant were further increased compared with those in MT-treatment condition. Combining MT-treatment and ZFTF overexpression in P. rhodozyma, the biomass, astaxanthin content, and yield were 8.6 g/L, 0.6 mg/g DCW, and 4.8 mg/L and increased by 52.1, 233.3, and 399.7% than those in the WT strain under MT-free condition. In this study, the synthesis and regulation theory of astaxanthin is deepened, and an efficient dual strategy for industrial production of microbial astaxanthin is proposed.
Collapse
Affiliation(s)
- Jianping Jia
- School of Phamacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Zhitao Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Qingqing Li
- School of Phamacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
| | - Feifei Li
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Siru Liu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Guoliang Bao
- School of Phamacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
14
|
Göttl VL, Meyer F, Schmitt I, Persicke M, Peters-Wendisch P, Wendisch VF, Henke NA. Enhancing astaxanthin biosynthesis and pathway expansion towards glycosylated C40 carotenoids by Corynebacterium glutamicum. Sci Rep 2024; 14:8081. [PMID: 38582923 PMCID: PMC10998873 DOI: 10.1038/s41598-024-58700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/31/2024] [Indexed: 04/08/2024] Open
Abstract
Astaxanthin, a versatile C40 carotenoid prized for its applications in food, cosmetics, and health, is a bright red pigment with powerful antioxidant properties. To enhance astaxanthin production in Corynebacterium glutamicum, we employed rational pathway engineering strategies, focused on improving precursor availability and optimizing terminal oxy-functionalized C40 carotenoid biosynthesis. Our efforts resulted in an increased astaxanthin precursor supply with 1.5-fold higher β-carotene production with strain BETA6 (18 mg g-1 CDW). Further advancements in astaxanthin production were made by fine-tuning the expression of the β-carotene hydroxylase gene crtZ and β-carotene ketolase gene crtW, yielding a nearly fivefold increase in astaxanthin (strain ASTA**), with astaxanthin constituting 72% of total carotenoids. ASTA** was successfully transferred to a 2 L fed-batch fermentation with an enhanced titer of 103 mg L-1 astaxanthin with a volumetric productivity of 1.5 mg L-1 h-1. Based on this strain a pathway expansion was achieved towards glycosylated C40 carotenoids under heterologous expression of the glycosyltransferase gene crtX. To the best of our knowledge, this is the first time astaxanthin-β-D-diglucoside was produced with C. glutamicum achieving high titers of microbial C40 glucosides of 39 mg L-1. This study showcases the potential of pathway engineering to unlock novel C40 carotenoid variants for diverse industrial applications.
Collapse
Affiliation(s)
- Vanessa L Göttl
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Ina Schmitt
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Marcus Persicke
- CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
- Omics Core Facility - Proteom-Metabolom Unit (In Development), Bielefeld University, 33615, Bielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
- CZS Junior Research Group, Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| |
Collapse
|
15
|
Zhang X, Lu Q. Cultivation of microalgae in food processing effluent for pollution attenuation and astaxanthin production: a review of technological innovation and downstream application. Front Bioeng Biotechnol 2024; 12:1365514. [PMID: 38572356 PMCID: PMC10987718 DOI: 10.3389/fbioe.2024.1365514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Valorization of food processing effluent (FPE) by microalgae cultivation for astaxanthin production is regarded as a potential strategy to solve the environmental pollution of food processing industry and promote the development of eco-friendly agriculture. In this review paper, microalgal species which have the potential to be employed for astaxanthin in FPE were identified. Additionally, in terms of CO2 emission, the performances of microalgae cultivation and traditional methods for FPE remediation were compared. Thirdly, an in-depth discussion of some innovative technologies, which may be employed to lower the total cost, improve the nutrient profile of FPE, and enhance the astaxanthin synthesis, was provided. Finally, specific effects of dietary supplementation of algal astaxanthin on the growth rate, immune response, and pigmentation of animals were discussed. Based on the discussion of this work, the cultivation of microalgae in FPE for astaxanthin production is a value-adding process which can bring environmental benefits and ecological benefits to the food processing industry and agriculture. Particularly, technological innovations in recent years are promoting the shift of this new idea from academic research to practical application. In the coming future, with the reduction of the total cost of algal astaxanthin, policy support from the governments, and further improvement of the innovative technologies, the concept of growing microalgae in FPE for astaxanthin will be more applicable in the industry.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
16
|
Debnath T, Bandyopadhyay TK, Vanitha K, Bobby MN, Nath Tiwari O, Bhunia B, Muthuraj M. Astaxanthin from microalgae: A review on structure, biosynthesis, production strategies and application. Food Res Int 2024; 176:113841. [PMID: 38163732 DOI: 10.1016/j.foodres.2023.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Astaxanthin is a red-colored secondary metabolite with excellent antioxidant properties, typically finds application as foods, feed, cosmetics, nutraceuticals, and medications. Astaxanthin is usually produced synthetically using chemicals and costs less as compared to the natural astaxanthin obtained from fish, shrimps, and microorganisms. Over the decades, astaxanthin has been naturally synthesized from Haematococcus pluvialis in commercial scales and remains exceptional, attributed to its higher bioactive properties as compared to synthetic astaxanthin. However, the production cost of algal astaxanthin is still high due to several bottlenecks prevailing in the upstream and downstream processes. To that end, the present study intends to review the recent trends and advancements in astaxanthin production from microalgae. The structure of astaxanthin, sources, production strategies of microalgal astaxanthin, and factors influencing the synthesis of microalgal astaxanthin were discussed while detailing the pathway involved in astaxanthin biosynthesis. The study also discusses the relevant downstream process used in commercial scales and details the applications of astaxanthin in various health related issues.
Collapse
Affiliation(s)
- Taniya Debnath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India
| | | | - Kondi Vanitha
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak, Telangana, India
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Guntur 522213, Andhra Pradesh, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India; Department of Bio Engineering, National Institute of Technology, Agartala-799046, India.
| |
Collapse
|
17
|
Mutale-Joan C, El Arroussi H. Biotechnological strategies overcoming limitations to H. pluvialis-derived astaxanthin production and Morocco's potential. Crit Rev Food Sci Nutr 2023:1-16. [PMID: 38145395 DOI: 10.1080/10408398.2023.2294163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Haematococcus pluvialis is the richest source of natural astaxanthin, but the production of H. pluvialis-derived astaxanthin is usually limited by its slow cell proliferation and astaxanthin accumulation. Efforts to enhance biomass productivity, astaxanthin accumulation, and extraction are ongoing. This review highlights different approaches that have previously been studied in microalgal species for enhanced biomass productivity, as well as optimized methods for astaxanthin accumulation and extraction, and how these methods could be combined to bypass the challenges limiting natural astaxanthin production, particularly in H. pluvialis, at all stages (biomass production, and astaxanthin accumulation and extraction). Biotechnological approaches, such as overexpressing low CO2 inducible genes, utilizing complementary carbon sources, CRISPR-Cas9 bioengineering, and the use of active compounds, for biomass productivity are outlined. Direct astaxanthin extraction from H. pluvialis zoospores and Morocco's potential for microalgal-based astaxanthin production are equally discussed. This review emphasizes the need to engineer an optimized H. pluvialis-derived astaxanthin production system combining two or more of these strategies for increased growth, and astaxanthin productivity, to compete in the larger, lower-priced market in aquaculture and nutraceutical sectors.
Collapse
Affiliation(s)
- Chanda Mutale-Joan
- Algal Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Rabat, Morocco
| | - Hicham El Arroussi
- Algal Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Rabat, Morocco
- AgroBioSciences (AgBS) program, Mohammed VI Polytechnic University, Benguerir, Morocco
| |
Collapse
|
18
|
Liu X, Zhou L, Xie J, Zhang J, Chen Z, Xiao J, Cao Y, Xiao H. Astaxanthin Isomers: A Comprehensive Review of Isomerization Methods and Analytic Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19920-19934. [PMID: 37924299 DOI: 10.1021/acs.jafc.3c06863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
The presence of multiple conjugated double bonds and chiral carbon atoms endows astaxanthin with geometric and optical isomers, and these isomers widely exist in biological sources, food processing, and in vivo absorption. However, there remains no systematic summary of astaxanthin isomers regarding isomerization methods and analytic techniques. To address this need, this Review focuses on a comprehensive analysis of Z-isomerization methods of astaxanthin, including solvent system, catalyst, and heat treatment. Comparatively, high-efficiency and health-friendly methods are more conducive to put into practical use, such as food-grade solvents and food-component catalysts. In addition, we outline the recent advances in analysis techniques of astaxanthin isomers, as well as the structural characteristics reflected by various methods (e.g., HPLC, NMR, FTIR, and RS). Furthermore, we summarized the related research on the safety evaluation of astaxanthin isomers. Finally, future trends and barriers in Z-transformation and analysis of astaxanthin isomers are also discussed.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Lesong Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Junting Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Junlin Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
19
|
Lai JX, Liu WP, Bu J, Chen X, Hu BB, Zhu MJ. Enhancement of astaxanthin production from food waste by Phaffia rhodozyma screened by flow cytometry and feed application potential. Biotechnol Appl Biochem 2023; 70:1817-1829. [PMID: 37278155 DOI: 10.1002/bab.2484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Astaxanthin is widely used in food, aquaculture, cosmetics, and pharmaceuticals due to its strong antioxidant activity and coloring ability, but its production from Phaffia rhodozyma remains the main challenge due to the high fermentation cost and low content of carotenoid. In this study, the production of carotenoids from food waste (FW) by a P. rhodozyma mutant was investigated. P. rhodozyma mutant screened by UV mutagenesis and flow cytometry could stably produce high carotenoids at 25°C, with carotenoid production (32.9 mg/L) and content (6.7 mg/g), respectively, increasing by 31.6% and 32.3% compared with 25 mg/L and 5.1 mg/g of wild strain. Interestingly, the carotenoid production reached 192.6 mg/L by feeding wet FW, which was 21% higher than batch culture. The 373 g vacuum freeze-dried products were obtained from the fermentation of 1 kg FW by P. rhodozyma, which contained 784 mg carotenoids and 111 mg astaxanthin. The protein, total amino acids, and essential amino acids content of the fermentation products were 36.6%, 40.5%, and 18.2% (w/w), respectively, and lysine-added fermentation products had the potential of high-quality protein feed source. This study provides insights for the high-throughput screening of mutants, astaxanthin production, and the development of the feed potential of FW.
Collapse
Affiliation(s)
- Jing-Xian Lai
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, P. R. China
| | - Wan-Ping Liu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, P. R. China
| | - Jie Bu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, P. R. China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, P. R. China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, P. R. China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei, P. R. China
| |
Collapse
|
20
|
Jia J, Li F, Luan Y, Liu S, Chen Z, Bao G. Salicylic acid treatment and overexpression of a novel polyamine transporter gene for astaxanthin production in Phaffia rhodozyma. Front Bioeng Biotechnol 2023; 11:1282315. [PMID: 37929196 PMCID: PMC10621793 DOI: 10.3389/fbioe.2023.1282315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Phaffia rhodozyma represents an excellent microbial resource for astaxanthin production. However, the yeast's low astaxanthin productivity poses challenges in scaling up industrial production. Although P. rhodozyma originates from plant material, and phytohormones have demonstrated their effectiveness in stimulating microbial production, there has been limited research on the effects and mechanisms of phytohormones on astaxanthin biosynthesis in P. rhodozyma. In this study, the addition of exogenous salicylic acid (SA) at a concentration as low as 0.5 mg/L significantly enhanced biomass, astaxanthin content, and yield by 20.8%, 95.8% and 135.3% in P. rhodozyma, respectively. Moreover, transcriptomic analysis showed that SA had discernible impact on the gene expression profile of P. rhodozyma cells. Differentially expressed genes (DEGs) in P. rhodozyma cells between the SA-treated and SA-free groups were identified. These genes played crucial roles in various aspects of astaxanthin and its competitive metabolites synthesis, material supply, biomolecule metabolite and transportation, anti-stress response, and global signal transductions. This study proposes a regulatory mechanism for astaxanthin synthesis induced by SA, encompassing the perception and transduction of SA signal, transcription factor-mediated gene expression regulation, and cellular stress responses to SA. Notably, the polyamine transporter gene (PT), identified as an upregulated DEG, was overexpressed in P. rhodozyma to obtain the transformant Prh-PT-006. The biomass, astaxanthin content and yield in this engineered strain could reach 6.6 g/L, 0.35 mg/g DCW and 2.3 mg/L, 24.5%, 143.1% and 199.0% higher than the wild strain at the SA-free condition, respectively. These findings provide valuable insights into potential targets for genetic engineering aimed at achieving high astaxanthin yields, and such advancements hold promise for expediting the industrialization of microbial astaxanthin production.
Collapse
Affiliation(s)
- Jianping Jia
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Feifei Li
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yifei Luan
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Siru Liu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhitao Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guoliang Bao
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Saini N, Aamir M, Singh VK, Deepak B, Mona S. Unveiling the microbial diversity and functional dynamics of Shiv Kund, Sohna hot spring, India through a shotgun metagenomics approach. Arch Microbiol 2023; 205:323. [PMID: 37651004 DOI: 10.1007/s00203-023-03664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
In this research, we examined the microbial diversity in Sohna hot spring, Haryana, India using shotgun metagenome sequencing based on the Illumina Hiseq 4000 sequencing technology. The raw sequence data from metagenomic paired-end libraries were analysed for taxonomic classification, diversity, and functional annotation using MG-RAST online server. The results showed the presence of total of 57 phyla, 931 genera, and 2068 species, predominantly occupied by Moraxellaceae (Gammaproteobacteria). However, at the species level, we reported the presence of some representative pathogenic taxa, such as Acinetobacter baumannii and Moraxella osloensis. The functional annotation predicted at various levels based on SEED-based subsystem, KEGG ortholog identity (KO), Cluster of Orthologous Groups (COGs) database identified the predominance of genes associated with primary and secondary metabolism along with a crucial role in environmental and genetic signals, cellular communication, and cell signalling. Comparative Genome Analysis (CGA) using The Pathosystem Resource Integration Centre (PATRIC) tool based on genome annotation and assembly of the metagenomic libraries for representative taxon Acinetobacter baumannii (NCBI tax id:470) characterized the reads with a unique genome identifier of 470.20380 (A. baumannii DDLJ4) which is evolutionary closer to A. baumannii ATCC 470.17978 400667.7. In addition, the CARD database results about the presence of potential AMR pathotypes and the prevalence of adeABC, adeIJK, abeM gene-specific clusters that function as multidrug efflux pumps. Overall, the results provided a comprehensive insight into virulence and anti-microbial resistance mechanism and could be useful for developing potential drug targets against the possible AMR pathotypes.
Collapse
Affiliation(s)
- Neha Saini
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Mohd Aamir
- Division of Plant Pathology, ICAR-Indian Council of Agricultural Research, Pusa Campus, New Delhi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Bansal Deepak
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Sharma Mona
- Department of Environmental Studies, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India.
| |
Collapse
|
22
|
Paramakrishnan N, Lim KG, Paramaswaran Y, Ali N, Waseem M, Shazly GA, Bin Jardan YA, Muthuraman A. Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer's Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13. Mar Drugs 2023; 21:433. [PMID: 37623714 PMCID: PMC10455645 DOI: 10.3390/md21080433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is a major type of dementia disorder. Common cognitive changes occur as a result of cerebrovascular damage (CVD) via the disruption of matrix metalloproteinase-13 (MMP-13). In diabetic cases, the progress of vascular dementia is faster and the AD rate is higher. Patients with type 2 diabetes are known to have a higher risk of the factor for AD progression. Hence, this study is designed to investigate the role of astaxanthin (AST) in CVD-associated AD in zebrafish via the inhibition of MMP-13 activity. CVD was developed through the intraperitoneal and intracerebral injection of streptozotocin (STZ). The AST (10 and 20 mg/L), donepezil (1 mg/L), and MMP-13 inhibitor (i.e., CL-82198; 10 μM) were exposed for 21 consecutive days in CVD animals. The cognitive changes in zebrafish were evaluated through light and dark chamber tests, a color recognition test, and a T-maze test. The biomarkers of AD pathology were assessed via the estimation of the cerebral extravasation of Evans blue, tissue nitrite, amyloid beta-peptide aggregation, MMP-13 activity, and acetylcholinesterase activity. The results revealed that exposure to AST leads to ameliorative behavioral and biochemical changes. Hence, AST can be used for the management of AD due to its multi-targeted actions, including MMP-13 inhibition.
Collapse
Affiliation(s)
| | - Khian Giap Lim
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Yamunna Paramaswaran
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Waseem
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
23
|
Cunha SA, Borges S, Baptista-Silva S, Ribeiro T, Oliveira-Silva P, Pintado M, Batista P. Astaxanthin impact on brain: health potential and market perspective. Crit Rev Food Sci Nutr 2023; 64:11067-11090. [PMID: 37417323 DOI: 10.1080/10408398.2023.2232866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Nowadays, there is an emergent interest in new trend-driven biomolecules to improve health and wellbeing, which has become an interesting and promising field, considering their high value and biological potential. Astaxanthin is one of these promising biomolecules, with impressive high market growth, especially in the pharmaceutical and food industries. This biomolecule, obtained from natural sources (i.e., microalgae), has been reported in the literature to have several beneficial health effects due to its biological properties. These benefits seem to be mainly associated with Astaxanthin's high antioxidant and anti-inflammatory properties, which may act on several brain issues, thus attenuating symptoms. In this sense, several studies have demonstrated the impact of astaxanthin on a wide range of diseases, namely on brain disorders (such as Alzheimer's disease, Parkinson, depression, brain stroke and autism). Therefore, this review highlights its application in mental health and illness. Furthermore, a S.W.O.T. analysis was performed to display an approach from the market/commercial perspective. However, to bring the molecule to the market, there is still a need for more studies to increase deep knowledge regarding the real impact and mechanisms in the human brain.HIGHLIGHTSAstaxanthin has been mainly extracted from the algae Haematococcus pluvialisAstaxanthin, bioactive molecule with high antioxidant and anti-inflammatory propertiesAstaxanthin has an important protective effect on brain disordersAstaxanthin is highly marketable, mainly for food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sara A Cunha
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sandra Borges
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sara Baptista-Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Tânia Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Oliveira-Silva
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Batista
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| |
Collapse
|
24
|
Tan H, Wang L, Wang H, Cheng Y, Li X, Wan H, Liu C, Liu T, Li Q. Engineering Komagataella phaffii to biosynthesize cordycepin from methanol which drives global metabolic alterations at the transcription level. Synth Syst Biotechnol 2023; 8:242-252. [PMID: 37007278 PMCID: PMC10060148 DOI: 10.1016/j.synbio.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Cordycepin has the potential to be an alternative to the disputed herbicide glyphosate. However, current laborious and time-consuming production strategies at low yields based on Cordyceps militaris lead to extremely high cost and restrict its application in the field of agriculture. In this study, Komagataella phaffii (syn. Pichia pastoris) was engineered to biosynthesize cordycepin from methanol, which could be converted from CO2. Combined with fermentation optimization, cordycepin content in broth reached as high as 2.68 ± 0.04 g/L within 168 h, around 15.95 mg/(L·h) in productivity. Additionally, a deaminated product of cordycepin was identified at neutral or weakly alkaline starting pH during fermentation. Transcriptome analysis found the yeast producing cordycepin was experiencing severe inhibition in methanol assimilation and peroxisome biogenesis, responsible for delayed growth and decreased carbon flux to pentose phosphate pathway (PPP) which led to lack of precursor supply. Amino acid interconversion and disruption in RNA metabolism were also due to accumulation of cordycepin. The study provided a unique platform for the manufacture of cordycepin based on the emerging non-conventional yeast and gave practical strategies for further optimization of the microbial cell factory.
Collapse
Affiliation(s)
- Huiping Tan
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan Road, Ganjingzi District, Dalian, 116034, China
| | - Huiguo Wang
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Yanghao Cheng
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Xiang Li
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| | - Huihui Wan
- Analytical Instrumentation Centre, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, China
| | - Chenguang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, China
| | - Qian Li
- Department of Life and Health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, China
| |
Collapse
|
25
|
Abdelazim K, Ghit A, Assal D, Dorra N, Noby N, Khattab SN, El Feky SE, Hussein A. Production and therapeutic use of astaxanthin in the nanotechnology era. Pharmacol Rep 2023:10.1007/s43440-023-00488-y. [PMID: 37179259 PMCID: PMC10182848 DOI: 10.1007/s43440-023-00488-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Astaxanthin (AXT) is a red fat-soluble pigment found naturally in aquatic animals, plants, and various microorganisms and can be manufactured artificially using chemical catalysis. AXT is a xanthophyll carotenoid with a high potential for scavenging free radicals. Several studies have investigated AXT efficacy against diseases such as neurodegenerative, ocular, skin, and cardiovascular hypertension, diabetes, gastrointestinal and liver diseases, and immuno-protective functions. However, its poor solubility, low stability to light and oxygen, and limited bioavailability are major obstacles hindering its wide applications as a therapeutic agent or nutritional supplement. Incorporating AXT with nanocarriers holds great promise in enhancing its physiochemical properties. Nanocarriers are delivery systems with several benefits, including surface modification, bioactivity, and targeted medication delivery and release. Many approaches have been applied to enhance AXT's medicinal effect, including solid lipid nanoparticles, nanostructured lipid carriers (NLCs) and polymeric nanospheres. AXT nano-formulations have demonstrated a high antioxidant and anti-inflammatory effect, significantly affecting cancer in different organs. This review summarizes the most recent data on AXT production, characterization, biological activity, and therapeutic usage, focusing on its uses in the nanotechnology era.
Collapse
Affiliation(s)
- Karim Abdelazim
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amr Ghit
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Dina Assal
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Biology, Biotechnology Program, American University in Cairo, Cairo, Egypt
| | - Neamat Dorra
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shaymaa Essam El Feky
- Radiation Sciences Department, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
26
|
Göttl VL, Pucker B, Wendisch VF, Henke NA. Screening of Structurally Distinct Lycopene β-Cyclases for Production of the Cyclic C40 Carotenoids β-Carotene and Astaxanthin by Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7765-7776. [PMID: 37162369 DOI: 10.1021/acs.jafc.3c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lycopene β-cyclase (EC 5.5.1.19) is one of the key enzymes in the biosynthesis of β-carotene and derived carotenoids. It catalyzes isomerase reactions to form β-carotene from lycopene by β-cyclization of both of its ψ-ends. Lycopene β-cyclases are widespread in nature. We systematically analyzed the phylogeny of lycopene β-cyclases from all kingdoms of life and predicted their transmembrane structures. To this end, a collection of previously characterized lycopene β-cyclase polypeptide sequences served as bait sequences to identify their closest homologues in a range of bacteria, archaea, fungi, algae, and plant species. Furthermore, a DeepTMHMM scan was applied to search for the presence of transmembrane domains. A phylogenetic tree suggests at least five distinct clades, and the DeepTMHMM scan revealed that lycopene β-cyclases are a group of structurally different proteins: membrane-bound and cytosolic enzymes. Representative lycopene β-cyclases were screened in the lycopene-overproducing Corynebacterium glutamicum strain for β-carotene and astaxanthin production. This systematic screening facilitates the identification of new enzymes for carotenoid production. Higher astaxanthin production and less reduction of total carotenoids were achieved with the cytosolic lycopene β-cyclase CrtL from Synechococcus elongatus and the membrane-bound heterodimeric lycopene β-cyclase CrtYcd from Brevibacterium linens.
Collapse
Affiliation(s)
- Vanessa L Göttl
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Boas Pucker
- Institute of Plant Biology & BRICS, TU Braunschweig, 38106 Braunschweig, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
27
|
Wang N, Peng H, Yang C, Guo W, Wang M, Li G, Liu D. Metabolic Engineering of Model Microorganisms for the Production of Xanthophyll. Microorganisms 2023; 11:1252. [PMID: 37317226 PMCID: PMC10223009 DOI: 10.3390/microorganisms11051252] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Xanthophyll is an oxidated version of carotenoid. It presents significant value to the pharmaceutical, food, and cosmetic industries due to its specific antioxidant activity and variety of colors. Chemical processing and conventional extraction from natural organisms are still the main sources of xanthophyll. However, the current industrial production model can no longer meet the demand for human health care, reducing petrochemical energy consumption and green sustainable development. With the swift development of genetic metabolic engineering, xanthophyll synthesis by the metabolic engineering of model microorganisms shows great application potential. At present, compared to carotenes such as lycopene and β-carotene, xanthophyll has a relatively low production in engineering microorganisms due to its stronger inherent antioxidation, relatively high polarity, and longer metabolic pathway. This review comprehensively summarized the progress in xanthophyll synthesis by the metabolic engineering of model microorganisms, described strategies to improve xanthophyll production in detail, and proposed the current challenges and future efforts needed to build commercialized xanthophyll-producing microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
28
|
Xu S, Gao S, An Y. Research progress of engineering microbial cell factories for pigment production. Biotechnol Adv 2023; 65:108150. [PMID: 37044266 DOI: 10.1016/j.biotechadv.2023.108150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Pigments are widely used in people's daily life, such as food additives, cosmetics, pharmaceuticals, textiles, etc. In recent years, the natural pigments produced by microorganisms have attracted increased attention because these processes cannot be affected by seasons like the plant extraction methods, and can also avoid the environmental pollution problems caused by chemical synthesis. Synthetic biology and metabolic engineering have been used to construct and optimize metabolic pathways for production of natural pigments in cellular factories. Building microbial cell factories for synthesis of natural pigments has many advantages, including well-defined genetic background of the strains, high-density and rapid culture of cells, etc. Until now, the technical means about engineering microbial cell factories for pigment production and metabolic regulation processes have not been systematically analyzed and summarized. Therefore, the studies about construction, modification and regulation of synthetic pathways for microbial synthesis of pigments in recent years have been reviewed, aiming to provide an up-to-date summary of engineering strategies for microbial synthesis of natural pigments including carotenoids, melanins, riboflavins, azomycetes and quinones. This review should provide new ideas for further improving microbial production of natural pigments in the future.
Collapse
Affiliation(s)
- Shumin Xu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China; Shenyang Key Laboratory of Microbial Resources Mining and Molecular Breeding, Shenyang, China; Liaoning Provincial Key Laboratory of Agricultural Biotechnology, Shenyang, China.
| |
Collapse
|
29
|
Genetic Improvement to Obtain Specialized Haematococcus pluvialis Genotypes for the Production of Carotenoids, with Particular Reference to Astaxanthin. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Nowadays, the search for natural substances with a high nutraceutical effect positively impact the world market. Among the most attractive macromolecules are antioxidants, capable of preventing the development of various pathologies. Astaxanthin (ASX) is antioxidant molecule produced by the microalga H. pluvialis as a response to different types of stress. Usually, astaxanthin production involves the first phase of accumulation of the biomass of H. pluvialis (green phase), which is then stressed to stimulate the biosynthesis and accumulation of ASX (red phase). In this study, the H. pluvialis wild-type strain was subjected to random mutagenesis by UV. Among the different mutant strains obtained, only two showed interesting bio-functional characteristics, such as a good growth rate. The results demonstrated that the HM1010 mutant not only has a higher growth trend than the WT mutant but accumulates and produces ASX even in the green phase. This innovative genotype would guarantee the continuous production of ASX, not linked to the two-step process and the uniqueness of the product obtained.
Collapse
|
30
|
Yang H, Zhang K, Shen W, Chen L, Xia Y, Zou W, Cao Y, Chen X. Efficient production of cembratriene-ol in Escherichia coli via systematic optimization. Microb Cell Fact 2023; 22:17. [PMID: 36694175 PMCID: PMC9872381 DOI: 10.1186/s12934-023-02022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The tobacco leaf-derived cembratriene-ol exhibits anti-insect effects, but its content in plants is scarce. Cembratriene-ol is difficult and inefficiently chemically synthesised due to its complex structure. Moreover, the titer of reported recombinant hosts producing cembratriene-ol was low and cannot be applied to industrial production. RESULTS In this study, Pantoea ananatis geranylgeranyl diphosphate synthase (CrtE) and Nicotiana tabacum cembratriene-ol synthase (CBTS) were heterologously expressed to synthsize the cembratriene-ol in Escherichia coli. Overexpression of cbts*, the 1-deoxy-D-xylulose 5-phosphate synthase gene dxs, and isopentenyl diphosphate isomerase gene idi promoted the production of cembratriene-ol. The cembratriene-ol titer was 1.53-folds higher than that of E. coli Z17 due to the systematic regulation of ggpps, cbts*, dxs, and idi expression. The production of cembratriene-ol was boosted via the overexpression of genes ispA, ispD, and ispF. The production level of cembratriene-ol in the optimal medium at 72 h was 8.55-folds higher than that before fermentation optimisation. The cembratriene-ol titer in the 15-L fermenter reached 371.2 mg L- 1, which was the highest titer reported. CONCLUSION In this study, the production of cembratriene-ol in E. coli was significantly enhanced via systematic optimization. It was suggested that the recombinant E. coli producing cembratriene-ol constructed in this study has potential for industrial production and applications.
Collapse
Affiliation(s)
- Haiquan Yang
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Kunjie Zhang
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Wei Shen
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Lei Chen
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Yuanyuan Xia
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Wei Zou
- grid.412605.40000 0004 1798 1351College of Bioengineering, Sichuan University of Science & Engineering, 644000 Yibin, Sichuan China
| | - Yu Cao
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Xianzhong Chen
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
31
|
Watcharawipas A, Runguphan W. Red yeasts and their carotenogenic enzymes for microbial carotenoid production. FEMS Yeast Res 2023; 23:6895548. [PMID: 36513367 DOI: 10.1093/femsyr/foac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Carotenoids are C40 isoprene-based compounds with significant commercial interests that harbor diverse bioactivities. Prominent examples of carotenoids are beta-carotene, a precursor to vitamin A essential for proper eye health, and lycopene and astaxanthin, powerful antioxidants implicated in preventing cancers and atherosclerosis. Due to their benefits to human health, the market value for carotenoids is rapidly increasing and is projected to reach USD 1.7 billion by 2025. However, their production now relies on chemical synthesis and extraction from plants that pose risks to food management and numerous biological safety issues. Thus, carotenoid production from microbes is considered a promising strategy for achieving a healthy society with more sustainability. Red yeast is a heterogeneous group of basidiomycetous fungi capable of producing carotenoids. It is a critical source of microbial carotenoids from low-cost substrates. Carotenogenic enzymes from red yeasts have also been highly efficient, invaluable biological resources for biotechnological applications. In this minireview, we focus on red yeast as a promising source for microbial carotenoids, strain engineering strategies for improving carotenoid production in red yeasts, and potential applications of carotenogenic enzymes from red yeasts in conventional and nonconventional yeasts.
Collapse
Affiliation(s)
- Akaraphol Watcharawipas
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
32
|
Chen L, Xiao W, Yao M, Wang Y, Yuan Y. Compartmentalization engineering of yeasts to overcome precursor limitations and cytotoxicity in terpenoid production. Front Bioeng Biotechnol 2023; 11:1132244. [PMID: 36911190 PMCID: PMC9997727 DOI: 10.3389/fbioe.2023.1132244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Metabolic engineering strategies for terpenoid production have mainly focused on bottlenecks in the supply of precursor molecules and cytotoxicity to terpenoids. In recent years, the strategies involving compartmentalization in eukaryotic cells has rapidly developed and have provided several advantages in the supply of precursors, cofactors and a suitable physiochemical environment for product storage. In this review, we provide a comprehensive analysis of organelle compartmentalization for terpenoid production, which can guide the rewiring of subcellular metabolism to make full use of precursors, reduce metabolite toxicity, as well as provide suitable storage capacity and environment. Additionally, the strategies that can enhance the efficiency of a relocated pathway by increasing the number and size of organelles, expanding the cell membrane and targeting metabolic pathways in several organelles are also discussed. Finally, the challenges and future perspectives of this approach for the terpenoid biosynthesis are also discussed.
Collapse
Affiliation(s)
- Lifei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
33
|
Patel AK, Tambat VS, Chen CW, Chauhan AS, Kumar P, Vadrale AP, Huang CY, Dong CD, Singhania RR. Recent advancements in astaxanthin production from microalgae: A review. BIORESOURCE TECHNOLOGY 2022; 364:128030. [PMID: 36174899 DOI: 10.1016/j.biortech.2022.128030] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Microalgae have emerged as the best source of high-value astaxanthin producers. Algal astaxanthin possesses numerous bioactivities hence the rising demand for several health applications and is broadly used in pharmaceuticals, aquaculture, health foods, cosmetics, etc. Among several low-priced synthetic astaxanthin, natural astaxanthin is still irreplaceable for human consumption and food-additive uses. This review highlights the recent development in production enhancement and cost-effective extraction techniques that may apply to large-scale astaxanthin biorefinery. Primarily, the biosynthetic pathway of astaxanthin is elaborated with the key enzymes involved in the metabolic process. Moreover, discussed the latest astaxanthin enhancement strategies mainly including chemicals as product inducers and byproducts inhibitors. Later, various physical, chemical, and biological cell disruption methods are compared for cell disruption efficiency, and astaxanthin extractability. The aim of this review is to provide a comprehensive review of advancements in astaxanthin research covering scalable upstream and downstream astaxanthin bioproduction aspects.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Prashant Kumar
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Reeta Rani Singhania
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
34
|
Ding YW, Lu CZ, Zheng Y, Ma HZ, Jin J, Jia B, Yuan YJ. Directed evolution of the fusion enzyme for improving astaxanthin biosynthesis in Saccharomyces cerevisiae. Synth Syst Biotechnol 2022; 8:46-53. [DOI: 10.1016/j.synbio.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
|
35
|
High-density cultivation of Phaffia rhodozyma SFAS-TZ08 in sweet potato juice for astaxanthin production. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Huang R, Ding R, Liu Y, Li F, Zhang Z, Wang S. GATA transcription factor WC2 regulates the biosynthesis of astaxanthin in yeast Xanthophyllomyces dendrorhous. Microb Biotechnol 2022; 15:2578-2593. [PMID: 35830570 PMCID: PMC9518987 DOI: 10.1111/1751-7915.14115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
Astaxanthin is a type of carotenoid widely used as powerful antioxidant and colourant in aquaculture and the poultry industry. Production of astaxanthin by yeast Xanthophyllomyces dendrorhous has attracted increasing attention due to high cell density and low requirements of water and land compared to photoautotrophic algae. Currently, the regulatory mechanisms of astaxanthin synthesis in X. dendrorhous remain obscure. In this study, we obtained a yellow X. dendrorhous mutant by Atmospheric and Room Temperature Plasma (ARTP) mutagenesis and sequenced its genome. We then identified a putative GATA transcription factor, white collar 2 (XdWC2), from the comparative genome data and verified that disruption of the XdWC2 gene resulted in a similar carotenoid profile to that of the ARTP mutant. Furthermore, transcriptomic analysis and yeast one-hybrid (Y1H) assay showed that XdWC2 regulated the expression of phytoene desaturase gene CrtI and astaxanthin synthase gene CrtS. The yeast two-hybrid (Y2H) assay demonstrated that XdWC2 interacted with white collar 1 (XdWC1) forming a heterodimer WC complex (WCC) to regulate the expression of CrtI and CrtS. Increase of the transcriptional levels of XdWC2 or CrtS in the wild-type strain did not largely modify the carotenoid profile, indicating translational and/or post-translational regulations involved in the biosynthesis of astaxanthin. Overexpression of CrtI in both the wild-type strain and the XdWC2-disrupted strain apparently improved the production of monocyclic carotenoid 3-hydroxy-3', 4'-didehydro-β, ψ-carotene-4-one (HDCO) rather than β-carotene and astaxanthin. The regulation of carotenoid biosynthesis by XdWC2 presented here provides the foundation for further understanding the global regulation of astaxanthin biosynthesis and guides the construction of astaxanthin over-producing strains.
Collapse
Affiliation(s)
- Ruilin Huang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
- Shandong Provincial Key Laboratory of Synthetic BiologyChinese Academy of SciencesQingdao Institute of Bioenergy and Bioprocess TechnologyQingdaoChina
| | - Ruirui Ding
- Shandong Provincial Key Laboratory of Synthetic BiologyChinese Academy of SciencesQingdao Institute of Bioenergy and Bioprocess TechnologyQingdaoChina
- Shandong Energy InstituteQingdaoChina
| | - Yu Liu
- Shandong Provincial Key Laboratory of Synthetic BiologyChinese Academy of SciencesQingdao Institute of Bioenergy and Bioprocess TechnologyQingdaoChina
- Shandong Energy InstituteQingdaoChina
| | - Fuli Li
- Shandong Provincial Key Laboratory of Synthetic BiologyChinese Academy of SciencesQingdao Institute of Bioenergy and Bioprocess TechnologyQingdaoChina
- Shandong Energy InstituteQingdaoChina
| | - Zhaohui Zhang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Shi’an Wang
- Shandong Provincial Key Laboratory of Synthetic BiologyChinese Academy of SciencesQingdao Institute of Bioenergy and Bioprocess TechnologyQingdaoChina
- Shandong Energy InstituteQingdaoChina
| |
Collapse
|
37
|
Ramírez Rojas AA, Swidah R, Schindler D. Microbes of traditional fermentation processes as synthetic biology chassis to tackle future food challenges. Front Bioeng Biotechnol 2022; 10:982975. [PMID: 36185425 PMCID: PMC9523148 DOI: 10.3389/fbioe.2022.982975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Microbial diversity is magnificent and essential to almost all life on Earth. Microbes are an essential part of every human, allowing us to utilize otherwise inaccessible resources. It is no surprise that humans started, initially unconsciously, domesticating microbes for food production: one may call this microbial domestication 1.0. Sourdough bread is just one of the miracles performed by microbial fermentation, allowing extraction of more nutrients from flour and at the same time creating a fluffy and delicious loaf. There are a broad range of products the production of which requires fermentation such as chocolate, cheese, coffee and vinegar. Eventually, with the rise of microscopy, humans became aware of microbial life. Today our knowledge and technological advances allow us to genetically engineer microbes - one may call this microbial domestication 2.0. Synthetic biology and microbial chassis adaptation allow us to tackle current and future food challenges. One of the most apparent challenges is the limited space on Earth available for agriculture and its major tolls on the environment through use of pesticides and the replacement of ecosystems with monocultures. Further challenges include transport and packaging, exacerbated by the 24/7 on-demand mentality of many customers. Synthetic biology already tackles multiple food challenges and will be able to tackle many future food challenges. In this perspective article, we highlight recent microbial synthetic biology research to address future food challenges. We further give a perspective on how synthetic biology tools may teach old microbes new tricks, and what standardized microbial domestication could look like.
Collapse
|