1
|
Demyashkin G, Parshenkov M, Koryakin S, Skovorodko P, Shchekin V, Yakimenko V, Uruskhanova Z, Ugurchieva D, Pugacheva E, Ivanov S, Shegay P, Kaprin A. Targeting Oxidative Stress: The Potential of Vitamin C in Protecting against Liver Damage after Electron Beam Therapy. Biomedicines 2024; 12:2195. [PMID: 39457507 PMCID: PMC11504655 DOI: 10.3390/biomedicines12102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Radiation-induced liver disease (RILD) is a severe complication arising from radiotherapy, particularly when treating abdominal malignancies such as hepatocellular carcinoma. The liver's critical role in systemic metabolism and its proximity to other abdominal organs make it highly susceptible to radiation-induced damage. This vulnerability significantly limits the maximum safe therapeutic dose of radiation, thereby constraining the overall efficacy of radiotherapy. Among the various modalities, electron beam therapy has gained attention due to its ability to precisely target tumors while minimizing exposure to surrounding healthy tissues. However, despite its advantages, the long-term impacts of electron beam exposure on liver tissue remain inadequately understood, particularly concerning chronic injury and fibrosis driven by sustained oxidative stress. Objectives: to investigate the molecular and cellular mechanisms underlying the radioprotective effects of vitamin C in a model of radiation-induced liver disease. Methods: Male Wistar rats (n = 120) were randomly assigned to four groups: control, fractionated local electron irradiation (30 Gy), pre-treatment with vitamin C before irradiation, and vitamin C alone. The study evaluated the effects of electron beam radiation and vitamin C on liver tissue through a comprehensive approach, including biochemical analysis of serum enzymes (ALT, AST, ALP, and bilirubin), cytokine levels (IL-1β, IL-6, IL-10, and TNF-α), and oxidative stress markers (MDA and SOD). Histological and morphometric analyses were conducted on liver tissue samples collected at 7, 30, 60, and 90 days, which involved standard staining techniques and advanced imaging, including light and electron microscopy. Gene expression of Bax, Bcl-2, and caspase-3 was analyzed using real-time PCR. Results: The present study demonstrated that fractional local electron irradiation led to significant reductions in body weight and liver mass, as well as marked increases in biochemical markers of liver damage (ALT, AST, ALP, and bilirubin), inflammatory cytokines (IL-1β, IL-6, and TNF-α), and oxidative stress markers (MDA) in the irradiated group. These changes were accompanied by substantial histopathological alterations, including hepatocyte degeneration, fibrosis, and disrupted microvascular circulation. Pre-treatment with vitamin C partially mitigated these effects, reducing the severity of the liver damage, oxidative stress, and inflammation, and preserving a more favorable balance between hepatocyte proliferation and apoptosis. Overall, the results highlight the potential protective role of vitamin C in reducing radiation-induced liver injury, although the long-term benefits require further investigation. Conclusions: The present study highlights vitamin C's potential as a radioprotective agent against electron beam-induced liver damage. It effectively reduced oxidative stress, apoptosis, and inflammation, particularly in preventing the progression of radiation-induced liver fibrosis. These findings suggest that vitamin C could enhance radiotherapy outcomes by minimizing liver damage, warranting further exploration into its broader clinical applications.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Sergey Koryakin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Polina Skovorodko
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Vladimir Shchekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Vladislav Yakimenko
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Zhanna Uruskhanova
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Dali Ugurchieva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Ekaterina Pugacheva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Sergey Ivanov
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Andrey Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, 117198 Moscow, Russia
| |
Collapse
|
2
|
Aydemir D, Karabulut G, Şimşek G, Gok M, Barlas N, Ulusu NN. Impact of the Di(2-Ethylhexyl) Phthalate Administration on Trace Element and Mineral Levels in Relation of Kidney and Liver Damage in Rats. Biol Trace Elem Res 2018; 186:474-488. [PMID: 29654488 DOI: 10.1007/s12011-018-1331-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/27/2018] [Indexed: 12/18/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely used synthetic polymer in the industry. DEHP may induce reproductive and developmental toxicity, obesity, carcinogenesis and cause abnormal endocrine function in both human and wildlife. The aim of this study was to investigate trace element and mineral levels in relation of kidney and liver damage in DEHP-administered rats. Therefore, prepubertal male rats were dosed with 0, 100, 200, and 400 mg/kg/day of DEHP. At the end of the experiment, trace element and mineral levels, glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR) and glutathione S-transferase (GST) enzyme activities were evaluated in the serum, liver, and kidney samples of rats. Furthermore, serum clinical biochemistry parameters, organ/body weight ratios and histological changes were investigated to evaluate impact of DEHP more detailed. Our data indicated that sodium (Na), calcium (Ca), potassium (K), lithium (Li), rubidium (Rb) and cesium (Cs) levels significantly decreased, however iron (Fe) and selenium (Se) concentrations significantly increased in DEHP-administered groups compared to the control in the serum samples. On the other hand, upon DEHP administration, selenium concentration, G6PD and GR activities were significantly elevated, however 6-PGD activity significantly decreased compared to the control group in the kidney samples. Decreased G6PD activity was the only significant change between anti-oxidant enzyme activities in the liver samples. Upon DEHP administration, aberrant serum biochemical parameters have arisen and abnormal histological changes were observed in the kidney and liver tissue. In conclusion, DEHP may induce liver and kidney damage, also result abnormalities in the trace element and mineral levels.
Collapse
Affiliation(s)
- Duygu Aydemir
- School of Medicine, Department of Medical Biochemistry, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Gözde Karabulut
- Faculty of Science, Department of Biology, Dumlupınar University, Kütahya, Turkey
| | - Gülsu Şimşek
- Koç University Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Muslum Gok
- Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, Ankara, Turkey
| | - Nurhayat Barlas
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, Turkey
| | - Nuriye Nuray Ulusu
- School of Medicine, Department of Medical Biochemistry, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
3
|
Ahmad MI, Zafeer MF, Javed M, Ahmad M. Pendimethalin-induced oxidative stress, DNA damage and activation of anti-inflammatory and apoptotic markers in male rats. Sci Rep 2018; 8:17139. [PMID: 30459330 PMCID: PMC6244357 DOI: 10.1038/s41598-018-35484-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/06/2018] [Indexed: 01/24/2023] Open
Abstract
Male Wistar rats were exposed to herbicide, pendimethalin (PND) at varying oral doses of 62.5, 125 and 250 mg/kg b.w. for 14 days. Toxiological effects were assessed in terms of oxidative stress, DNA damage, histopathological alterations and induction of anti-inflammatory and apoptotic responses linked Bax, Bcl-2, IFN-γ, TNF-α and caspase-3 gene expression. In comparison with respective untreated controls, all exposure groups of PND exhibited significant changes in the oxidative stress markers (protein carbonylation and lipid peroxidation) and antioxidant defenses (GSH, SOD, CAT and GST) in liver and kidney tissues. The histopathological changes including leucocyte infiltration, pyknotic nuclei, necrosis, large bowman’s space, shrinked renal cortex, were observed in the liver and kidney tissues of PND exposed rats. Significant DNA damage was recorded through comet assay in liver and kidney cells of treated animals as compared to control. Alteration in anti-inflammatory and apoptotic genes expression determined by RT-PCR, revealed the activation of intrinsic apoptotic pathway(s) under the PND induced cellular stress. A pronounced increase in Bax expression, caspase-3 activities and decreased Bcl-2 expressions were also associated with PND-induced apoptosis. Data from this study suggests that PND induces cellular toxicity and genetic perturbations which can alter the normal cellular and physiological functioning in rats.
Collapse
Affiliation(s)
- Md Irshad Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Mohd Faraz Zafeer
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Mehjbeen Javed
- Aquatic Toxicology Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India.
| |
Collapse
|
4
|
Almabhouh FA, Osman K, Ibrahim SF, Gupalo S, Gnanou J, Ibrahim E, Singh HJ. Melatonin ameliorates the adverse effects of leptin on sperm. Asian J Androl 2018; 19:647-654. [PMID: 27748315 PMCID: PMC5676423 DOI: 10.4103/1008-682x.183379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study examined the effects of melatonin on leptin-induced changes in sperm parameters in adult rats. Five groups of Sprague-Dawley rats were treated with either leptin or leptin and melatonin or melatonin for 6 weeks. Leptin was given daily via the intraperitoneal route (60 μg kg−1 body weight) and melatonin was given in drinking water (10 mg kg−1 or 20 mg kg−1 body weight per day). Upon completion, sperm count, sperm morphology, 8-hydroxy-2-deoxyguanosine, Comet assay, TUNEL assay, gene expression profiles of antioxidant enzymes, respiratory chain reaction enzymes, DNA damage, and apoptosis genes were estimated. Data were analyzed using ANOVA. Sperm count was significantly lower whereas the fraction of sperm with abnormal morphology, the level of 8-hydroxy-2-deoxyguanosine, and sperm DNA fragmentation were significantly higher in rats treated with leptin only. Microarray analysis revealed significant upregulation of apoptosis-inducing factor, histone acetyl transferase, respiratory chain reaction enzyme, cell necrosis and DNA repair genes, and downregulation of antioxidant enzyme genes in leptin-treated rats. Real-time polymerase chain reaction showed significant decreases in glutathione peroxidase 1 expression with increases in the expression of apoptosis-inducing factor and histone acetyl transferase in leptin-treated rats. There was no change in the gene expression of caspase-3 (CASP-3). In conclusion, the adverse effects of leptin on sperm can be prevented by concurrent melatonin administration.
Collapse
Affiliation(s)
- Fayez A Almabhouh
- Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, 47000 Sg Buloh, Selangor, Malaysia
| | - Khairul Osman
- Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda, Kuala Lumpur, Malaysia
| | - Siti Fatimah Ibrahim
- Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda, Kuala Lumpur, Malaysia
| | - Sergey Gupalo
- Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, 47000 Sg Buloh, Selangor, Malaysia
| | - Justin Gnanou
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kem Sungai Besi, 57000, Selangor, Malaysia
| | - Effendi Ibrahim
- Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, 47000 Sg Buloh, Selangor, Malaysia
| | - Harbindar Jeet Singh
- Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, 47000 Sg Buloh, Selangor, Malaysia.,IMMB, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, 47000 Sg Buloh, Selangor, Malaysia.,I-PPerForM, Universiti Teknologi MARA, Sg Buloh Campus, Selangor, Malaysia
| |
Collapse
|
5
|
Wang M, Su P. The role of the Fas/FasL signaling pathway in environmental toxicant-induced testicular cell apoptosis: An update. Syst Biol Reprod Med 2018; 64:93-102. [DOI: 10.1080/19396368.2017.1422046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mei Wang
- Family Planning Research Institute of Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Ping Su
- Family Planning Research Institute of Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China
| |
Collapse
|
6
|
Fu G, Dai J, Zhang D, Zhu L, Tang X, Zhang L, Zhou T, Duan P, Quan C, Zhang Z, Song S, Shi Y. Di(2-ethylhexyl) phthalate induces apoptosis through mitochondrial pathway in GC-2spd cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:1055-1064. [PMID: 27416487 PMCID: PMC5673478 DOI: 10.1002/tox.22304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 05/12/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a plasticizer of synthetic polymers, is a well-known endocrine disrupting chemical (EDC) and reproductive toxicant. Addressing the unclear mechanism of DEHP-induced reproductive dysfunction, this study used GC-2spd cells to investigate the molecular mechanism involved in the DEHP-induced toxicity in the male reproductive system. The results indicated that the apoptotic cell death was significantly induced by DEHP exposure over 100 μM. Furthermore, DEHP treatment could induce oxidative stress in GC-2spd cells involving in the decrease of superoxide dismutase (SOD) activity (200 μM) and glutathione peroxidase (GSH-Px) activity (50 and 100 μM). In addition, DEHP induction also caused the elevated ratios of Bax/Bcl-2, release of cytochrome c and decomposition of procaspase-3 and procaspase-9 in GC-2spd cells. Taken together, our work provided the evidence that DEHP exposure might induce apoptosis of GC-2spd cells via mitochondria pathway mediated by oxidative stress. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1055-1064, 2017.
Collapse
Affiliation(s)
- Guoqing Fu
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| | - Juan Dai
- Department of Non-communicable chronic disease prevention and control, Wuhan Centers for Disease Prevention and Control, 24 Jianghan N.Road, Wuhan, 430015, People’s Republic of China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Lishan Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| | - Xiao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| | - Ting Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| | - Peng Duan
- Department of Occupational and Environmental Health, School of Public Health, Huazhong University of Science and Technology, Tongji Medical College, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Chao Quan
- Department of Occupational and Environmental Health, School of Public Health, Huazhong University of Science and Technology, Tongji Medical College, 13 Hangkong Road, Wuhan, Hubei 430030, People’s Republic of China
| | - Zhibing Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Shizhen Song
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| | - Yuqin Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan, 430081, People’s Republic of China
| |
Collapse
|
7
|
Tang X, Tong K, Zhu L, Fu G, Chang W, Zhou T, Zhang Z, Tong L, Zhang L, Shi Y. Di-2-ethylhexyl phthalate induced oxidative damage involving FasL-associated apoptotic pathway in mouse spermatogenic GC-2spd cells. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-016-0042-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Zhu L, Lu J, Tang X, Fu G, Duan P, Quan C, Zhang L, Zhang Z, Chang W, Shi Y. Di-(2-ethylhexyl) phthalate induces apoptosis of GC-2spd cells via TR4/Bcl-2 pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 44:18-24. [PMID: 27084994 PMCID: PMC5491968 DOI: 10.1016/j.etap.2016.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used environmental endocrine disruptor. Many studies have reported that DEHP exposure causes reproductive toxicity and cells apoptosis. However, the mechanism by which DEHP exposure causes male reproductive toxicity remains unknown. This study investigated the role of the testicular orphan nuclear receptor4 (TR4)/Bcl-2 pathway in apoptosis induced by DEHP, which resulted in reproductive damage. To elucidate the mechanism underpinning the male reproductive toxicity of DEHP, we sought to investigate apoptotic effects, expression levels of TR4/Bcl-2 pathway in GC-2spd cells, including TR4, Bcl-2 and caspase-3. GC-2spd cells were exposed to various concentrations of DEHP (0, 50, 100, or 200μM). The results indicated that, with the increase of the concentrations of DEHP, the survival rate of cell decreased gradually. DEHP exposure at over 100μM significantly induced apoptotic cell death. DEHP decreased SOD and GSH-Px activity in 200μM group. Compared to the control group, the mRNA levels of caspase-3 increased significantly, however, Bcl-2 mRNA decreased (P<0.05). In addition, there was a significant reduction in TR4, Bcl-2 and procaspase-3 protein levels. Taken together, these results lead us to speculate that in vitro exposure to DEHP might induce apoptosis in GC-2spd cells through the TR4/Bcl-2 pathway.
Collapse
Affiliation(s)
- Lishan Zhu
- School of Public Health, Medical College, Wuhan University of Science and Technology, 947Heping Avenue, Wuhan 430081, PR China
| | - Jinchang Lu
- Department of Pulmonary Medicine, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Xiao Tang
- School of Public Health, Medical College, Wuhan University of Science and Technology, 947Heping Avenue, Wuhan 430081, PR China
| | - Guoqing Fu
- School of Public Health, Medical College, Wuhan University of Science and Technology, 947Heping Avenue, Wuhan 430081, PR China
| | - Peng Duan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Chao Quan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Ling Zhang
- School of Public Health, Medical College, Wuhan University of Science and Technology, 947Heping Avenue, Wuhan 430081, PR China
| | - Zhibing Zhang
- School of Public Health, Medical College, Wuhan University of Science and Technology, 947Heping Avenue, Wuhan 430081, PR China; Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Wei Chang
- School of Public Health, Medical College, Wuhan University of Science and Technology, 947Heping Avenue, Wuhan 430081, PR China.
| | - Yuqin Shi
- School of Public Health, Medical College, Wuhan University of Science and Technology, 947Heping Avenue, Wuhan 430081, PR China.
| |
Collapse
|
9
|
Soomro MH, Shi R, She R, Yang Y, Hu F, Li H. Antigen detection and apoptosis in Mongolian gerbil's kidney experimentally intraperitoneally infected by swine hepatitis E virus. Virus Res 2015; 213:343-352. [PMID: 26724751 DOI: 10.1016/j.virusres.2015.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/29/2023]
Abstract
We examined the effect of hepatitis E virus (HEV) on the renal tissue pathogenesis, morphological damages and related molecular mechanisms following swine HEV suspension intraperitoneally inoculation in Mongolian gerbils. The microscopic and ultramicroscopic analyses of kidney tissue structure were carried out at different points after inoculation of HEV. The immunohistochemistry, real-time PCR and Western blot were performed to explore the molecular mechanisms associated with HEV presence in the renal tissues. Real-time PCR revealed that the copies of HEV RNA in the kidney were detected at 7 dpi, and peaked at 14 dpi at a concentration was 7.18 logs g(-1), with detection of HEV ORF2 antigen by immunohistochemistry. Hematoxylin and eosin (HE) staining showed pathological lesions including glomerular atrophy, degeneration, edema and necrosis of renal tubular epithelial cells and Mallory and Sirius red staining indicated the presence of collagen fibers and fibrosis in kidney tissues of inoculated gerbils. Ultrastructural studies of basal membrane of renal tubules demonstrated the rough and uneven with mitochondria swelling and vacuolation in the tissues of HEV inoculated animals. Similarly, significantly higher number of (TUNEL)-positive cells were seen in renal tubule tissues compared to control group. Moreover, immuno histochemical results indicated that significant increase expression of the B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax), FAS and Caspase-3 in HEV inoculated Mongolian gerbils at each time points. Relative mRNA expression by real-time PCR revealed a significantly higher (P<0.05) mRNA level of BAX, Bcl-2 and caspase-3 transcription in HEV inoculated Mongolian gerbils. Our results demonstrates that activation of mitochondria and Caspase-3 protease might be induced the apoptosis which subsequently cause the necrosis and cell death of renal epithelial cells during acute phase of HEV infection in HEV inoculated Mongolian gerbils.
Collapse
Affiliation(s)
- Majid Hussain Soomro
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, China; Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Ruihan Shi
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Ruiping She
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, China.
| | - Yifei Yang
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Fengjiao Hu
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Heng Li
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agriculture University, Beijing, China
| |
Collapse
|
10
|
Du F, Ding Y, Zou J, Li Z, Tian J, She R, Wang D, Wang H, Lv D, Chang L. Morphology and Molecular Mechanisms of Hepatic Injury in Rats under Simulated Weightlessness and the Protective Effects of Resistance Training. PLoS One 2015; 10:e0127047. [PMID: 26000905 PMCID: PMC4441474 DOI: 10.1371/journal.pone.0127047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 04/11/2015] [Indexed: 11/18/2022] Open
Abstract
This study investigated the effects of long-term simulated weightlessness on liver morphology, enzymes, glycogen, and apoptosis related proteins by using two-month rat-tail suspension model (TS), and liver injury improvement by rat-tail suspension with resistance training model (TS&RT). Microscopically the livers of TS rats showed massive granular degeneration, chronic inflammation, and portal fibrosis. Mitochondrial and endoplasmic reticulum swelling and loss of membrane integrity were observed by transmission electron microscopy (TEM). The similar, but milder, morphological changes were observed in the livers of TS&RT rats. Serum biochemistry analysis revealed that the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly higher (p<0.05) in TS rats than in controls. The levels of ALT and AST in TS&RT rats were slightly lower than in RT rats, but they were insignificantly higher than in controls. However, both TS and TS&RT rats had significantly lower levels (p<0.05) of serum glucose and hepatic glycogen than in controls. Immunohistochemistry demonstrated that the expressions of Bax, Bcl-2, and active caspase-3 were higher in TS rats than in TS&RT and control rats. Real-time polymerase chain reaction (real-time PCR) showed that TS rats had higher mRNA levels (P < 0.05) of glucose-regulated protein 78 (GRP78) and caspase-12 transcription than in control rats; whereas mRNA expressions of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) were slightly higher in TS rats. TS&RT rats showed no significant differences of above 4 mRNAs compared with the control group. Our results demonstrated that long-term weightlessness caused hepatic injury, and may trigger hepatic apoptosis. Resistance training slightly improved hepatic damage.
Collapse
Affiliation(s)
- Fang Du
- Department of Veterinary Pathology, Laboratory of Veterinary Pathology and Public Health,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Ding
- Department of Veterinary Pathology, Laboratory of Veterinary Pathology and Public Health,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Zou
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhili Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Centre, Beijing, China
| | - Jijing Tian
- Department of Veterinary Pathology, Laboratory of Veterinary Pathology and Public Health,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiping She
- Department of Veterinary Pathology, Laboratory of Veterinary Pathology and Public Health,College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail: (RS); (DW)
| | - Desheng Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Centre, Beijing, China
- * E-mail: (RS); (DW)
| | - Huijuan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Centre, Beijing, China
| | - Dongqiang Lv
- Department of Veterinary Pathology, Laboratory of Veterinary Pathology and Public Health,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lingling Chang
- Department of Veterinary Pathology, Laboratory of Veterinary Pathology and Public Health,College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Guibert E, Prieur B, Cariou R, Courant F, Antignac JP, Pain B, Brillard JP, Froment P. Effects of mono-(2-ethylhexyl) phthalate (MEHP) on chicken germ cells cultured in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2771-83. [PMID: 23354615 DOI: 10.1007/s11356-013-1487-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/09/2013] [Indexed: 05/23/2023]
Abstract
In recent decades, many toxicological tests based on in vivo or in vitro models, mainly from mammalian (rat-mouse) and fish species, were used to assess the risks raised by contact or ingestion of molecules of pharmaceutical, agricultural, or natural origin. But no, or few, in vitro tests using other non-mammalian models such as bird have been explored despite their advantages: the embryonic gonads of birds have a high plasticity of development sensitive to estrogen, and sperm production is nearly two times faster than in rodents. Hence, we have established an in vitro culture of germ cells and somatic cells from chicken post-natal testis, and we have evaluated the sensitivity against the endocrine disruptor compound mono-(2-ethylhexyl) phthalate (MEHP) in comparison to previous studies using rodent and human models. After 96 h of exposure in presence of 10 μM MEHP, chicken seminiferous tubules cultures present a structural alteration, a reduction in cell proliferation and in germ cells population. Apoptosis of germ and somatic cells increases in presence of 1 μM MEHP. Furthermore, MEHP does not affect inhibin B and lactate production by Sertoli cells. These results are in accordance with previous studies using rat, mice, or human culture of testicular cells and in similar range of exposures or even better sensitivity for some "end-points" (biological parameters). In conclusion, the establishment of this postnatal testicular cells culture could be considered as an alternative method to in vivo experiments frequently used for evaluating the impact on the terrestrial wildlife species. This method could be also complementary to mammal model due to the limiting number of animals used and its elevated sensitivity.
Collapse
Affiliation(s)
- Edith Guibert
- UMR 6175 INRA CNRS Université de Tours Haras Nationaux Physiologie de Reproduction et des Comportements, 37380 Nouzilly, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Li N, Liu T, Zhou L, He J, Ye L. Di-(2-ethylhcxyl) phthalate reduces progesterone levels and induces apoptosis of ovarian granulosa cell in adult female ICR mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:869-75. [PMID: 22986106 DOI: 10.1016/j.etap.2012.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 08/24/2012] [Indexed: 05/05/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) as an environmental endocrine disruptor is a known reproductive toxicant and carcinogen. The purpose of this study was to evaluate the female reproductive toxicity of DEHP. Sixty ICR female mice were randomized into four groups dosed with 0, 125, 500, or 2 000 mg/kg DEHP by gavage for 16 weeks, 6 days/week. DEHP treatment prolonged duration of the estrous cycle in mice at 500 and 2000 mg/kg DEHP, but no significant effects on estrus phase of the cycle in each group were detected. Exposure to DEHP inhibited secretion of serum progesterone. DEHP arrested granulosa cells at G(0)/G(1) phases and increased proportion of apoptosis cells at 500 and 2000 mg/kg DEHP. There was no significant difference in P450arom mRNA expression among groups. Results demonstrate that DEHP can produce toxicity in female reproductive system.
Collapse
Affiliation(s)
- Na Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | | | | | | | | |
Collapse
|
13
|
Caldwell JC. DEHP: Genotoxicity and potential carcinogenic mechanisms—A review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:82-157. [DOI: 10.1016/j.mrrev.2012.03.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/22/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
|
14
|
Progression of cartilage degradation, bone resorption and pain in rat temporomandibular joint osteoarthritis induced by injection of iodoacetate. PLoS One 2012; 7:e45036. [PMID: 22984604 PMCID: PMC3439407 DOI: 10.1371/journal.pone.0045036] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/11/2012] [Indexed: 12/18/2022] Open
Abstract
Background Osteoarthritis (OA) is an important subtype of temporomandibular disorders. A simple and reproducible animal model that mimics the histopathologic changes, both in the cartilage and subchondral bone, and clinical symptoms of temporomandibular joint osteoarthritis (TMJOA) would help in our understanding of its process and underlying mechanism. Objective To explore whether injection of monosodium iodoacetate (MIA) into the upper compartment of rat TMJ could induce OA-like lesions. Methods Female rats were injected with varied doses of MIA into the upper compartment and observed for up to 12 weeks. Histologic, radiographic, behavioral, and molecular changes in the TMJ were evaluated by light and electron microscopy, MicroCT scanning, head withdrawal threshold test, real-time PCR, immunohistochemistry, and TUNEL assay. Results The intermediate zone of the disc loosened by 1 day post-MIA injection and thinned thereafter. Injection of an MIA dose of 0.5 mg or higher induced typical OA-like lesions in the TMJ within 4 weeks. Condylar destruction presented in a time-dependent manner, including chondrocyte apoptosis in the early stages, subsequent cartilage matrix disorganization and subchondral bone erosion, fibrosis, subchondral bone sclerosis, and osteophyte formation in the late stages. Nociceptive responses increased in the early stages, corresponding to severe synovitis. Furthermore, chondrocyte apoptosis and an imbalance between anabolism and catabolism of cartilage and subchondral bone might account for the condylar destruction. Conclusions Multi-level data demonstrated a reliable and convenient rat model of TMJOA could be induced by MIA injection into the upper compartment. The model might facilitate TMJOA related researches.
Collapse
|
15
|
Abstract
Vaccines can have adverse side-effects, and these are predominantly associated with the inclusion of chemical additives such as aluminum hydroxide adjuvant. The objective of this study was to establish an in vitro model system amenable to mechanistic investigations of cytotoxicity induced by hepatitis B vaccine, and to investigate the mechanisms of vaccine-induced cell death. The mouse liver hepatoma cell line Hepa1-6 was treated with two doses of adjuvanted (aluminium hydroxide) hepatitis B vaccine (0.5 and 1 μg protein per ml) and cell integrity was measured after 24, 48 and 72 h. Hepatitis B vaccine exposure increased cell apoptosis as detected by flow cytometry and TUNEL assay. Vaccine exposure was accompanied by significant increases in the levels of activated caspase 3, a key effector caspase in the apoptosis cascade. Early transcriptional events were detected by qRT-PCR. We report that hepatitis B vaccine exposure resulted in significant upregulation of the key genes encoding caspase 7, caspase 9, Inhibitor caspase-activated DNase (ICAD), Rho-associated coiled-coil containing protein kinase 1 (ROCK-1), and Apoptotic protease activating factor 1 (Apaf-1). Upregulation of cleaved caspase 3,7 were detected by western blot in addition to Apaf-1 and caspase 9 expressions argues that cell death takes place via the intrinsic apoptotic pathway in which release of cytochrome c from the mitochondria triggers the assembly of a caspase activation complex. We conclude that exposure of Hepa1-6 cells to a low dose of adjuvanted hepatitis B vaccine leads to loss of mitochondrial integrity, apoptosis induction, and cell death, apoptosis effect was observed also in C2C12 mouse myoblast cell line after treated with low dose of vaccine (0.3, 0.1, 0.05 μg/ml). In addition In vivo apoptotic effect of hepatitis B vaccine was observed in mouse liver.
Collapse
|
16
|
Saquib Q, Attia SM, Siddiqui MA, Aboul-Soud MA, Al-Khedhairy AA, Giesy JP, Musarrat J. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats. Toxicol Appl Pharmacol 2012; 259:54-65. [DOI: 10.1016/j.taap.2011.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/04/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
|
17
|
Study of histopathological and molecular changes of rat kidney under simulated weightlessness and resistance training protective effect. PLoS One 2011; 6:e20008. [PMID: 21625440 PMCID: PMC3100312 DOI: 10.1371/journal.pone.0020008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/22/2011] [Indexed: 11/19/2022] Open
Abstract
To explore the effects of long-term weightlessness on the renal tissue, we used the two months tail suspension model to simulate microgravity and investigated the simulated microgravity on the renal morphological damages and related molecular mechanisms. The microscopic examination of tissue structure and ultrastructure was carried out for histopathological changes of renal tissue morphology. The immunohistochemistry, real-time PCR and Western blot were performed to explore the molecular mechanisms associated the observations. Hematoxylin and eosin (HE) staining showed severe pathological kidney lesions including glomerular atrophy, degeneration and necrosis of renal tubular epithelial cells in two months tail-suspended rats. Ultrastructural studies of the renal tubular epithelial cells demonstrated that basal laminas of renal tubules were rough and incrassate with mitochondria swelling and vacuolation. Cell apoptosis in kidney monitored by the expression of Bax/Bcl-2 and caspase-3 accompanied these pathological damages caused by long-term microgravity. Analysis of the HSP70 protein expression illustrated that overexpression of HSP70 might play a crucial role in inducing those pathological damages. Glucose regulated protein 78 (GRP78), one of the endoplasmic reticulum (ER) chaperones, was up-regulated significantly in the kidney of tail suspension rat, which implied that ER-stress was associated with apoptosis. Furthermore, CHOP and caspase-12 pathways were activated in ER-stress induced apoptosis. Resistance training not only reduced kidney cell apoptosis and expression of HSP70 protein, it also can attenuate the kidney impairment imposed by weightlessness. The appropriate optimization might be needed for the long term application for space exploration.
Collapse
|
18
|
Hosseinzadeh L, Behravan J, Mosaffa F, Bahrami G, Bahrami A, Karimi G. Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food Chem Toxicol 2011; 49:1102-9. [PMID: 21295102 DOI: 10.1016/j.fct.2011.01.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/09/2011] [Accepted: 01/27/2011] [Indexed: 02/08/2023]
Abstract
Doxorubicin (DOX) is a widely used chemotherapy agent. The major adverse effect of DOX treatment in cancer patients is the onset of cardiomyopathy and heart failure. Reactive oxygen species (ROS) are proposed to be responsible for DOX cardiotoxicity. Curcumin, a natural compound extracted from Curcuma Longa L., is known for its anti-oxidant properties. It has been identified as increased apoptosis in several cancer cell lines in combination with doxorubicin, but there are few studies about the effect of curcumin and doxorubicin on normal cardiac cells. Therefore, we evaluated the effects of curcumin on apoptosis induced by DOX in cardiac muscle cells. Pretreatment with curcumin significantly increased DOX-induced apoptosis of cardiac muscle cells through down regulation of Bcl-2, up-regulation of caspase-8 and caspase-9. The Bax/Bcl-2 ratio increased significantly after 1h pretreatment with curcumin. As well, curcumin increases ROS generation by DOX. In response to DOX, NF-κB was activated. However, curcumin was able to inhibit NF-κB activation. In conclusion, our results indicated that pretreatment with nontoxic concentrations of curcumin sensitized H9c2 cells to DOX-mediated apoptosis by generation of ROS.
Collapse
Affiliation(s)
- Leila Hosseinzadeh
- Toxicology and Pharmacology Department, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | | | | | | |
Collapse
|
19
|
Yuan X, Jonker MJ, de Wilde J, Verhoef A, Wittink FR, van Benthem J, Bessems JG, Hakkert BC, Kuiper RV, van Steeg H, Breit TM, Luijten M. Finding maximal transcriptome differences between reprotoxic and non-reprotoxic phthalate responses in rat testis. J Appl Toxicol 2010; 31:421-30. [DOI: 10.1002/jat.1601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 11/07/2022]
|
20
|
Shaha C, Tripathi R, Mishra DP. Male germ cell apoptosis: regulation and biology. Philos Trans R Soc Lond B Biol Sci 2010; 365:1501-15. [PMID: 20403866 DOI: 10.1098/rstb.2009.0124] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular apoptosis appears to be a constant feature in the adult testis and during early development. This is essential because mammalian spermatogenesis is a complex process that requires precise homeostasis of different cell types. This review discusses the latest information available on male germ cell apoptosis induced by hormones, toxins and temperature in the context of the type of apoptotic pathway either the intrinsic or the extrinsic that may be used under a variety of stimuli. The review also discusses the importance of mechanisms pertaining to cellular apoptosis during testicular development, which is independent of exogenous stimuli. Since instances of germ cell carcinoma have increased over the past few decades, the current status of research on apoptotic pathways in teratocarcinoma cells is included. One other important aspect that is covered in this review is microRNA-mediated control of germ cell apoptosis, a field of research that is going to see intense activity in near future. Since knockout models of various kinds have been used to study many aspects of germ cell development, a comprehensive summary of literature on knockout mice used in reproduction studies is also provided.
Collapse
Affiliation(s)
- Chandrima Shaha
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology, New Delhi 110067, India.
| | | | | |
Collapse
|
21
|
Vo TTB, Jung EM, Dang VH, Yoo YM, Choi KC, Yu FH, Jeung EB. Di-(2 ethylhexyl) phthalate and flutamide alter gene expression in the testis of immature male rats. Reprod Biol Endocrinol 2009; 7:104. [PMID: 19781091 PMCID: PMC2760555 DOI: 10.1186/1477-7827-7-104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 09/26/2009] [Indexed: 11/10/2022] Open
Abstract
We previously demonstrated that the androgenic and anti-androgenic effects of endocrine disruptors (EDs) alter reproductive function and exert distinct effects on developing male reproductive organs. To further investigate these effects, we used an immature rat model to examine the effects of di-(2 ethylhexyl) phthalate (DEHP) and flutamide (Flu) on the male reproductive system. Immature male SD rats were treated daily with DEHP and Flu on postnatal days (PNDs) 21 to 35, in a dose-dependent manner. As results, the weights of the testes, prostate, and seminal vesicle and anogenital distances (AGD) decreased significantly in response to high doses of DEHP or Flu. Testosterone (T) levels significantly decreased in all DEHP- treated groups, whereas luteinizing hormone (LH) plasma levels were not altered by any of the two treatments at PND 36. However, treatment with DEHP or Flu induced histopathological changes in the testes, wherein degeneration and disorders of Leydig cells, germ cells and dilatation of tubular lumen were observed in a dose-dependent manner. Conversely, hyperplasia and denseness of Leydig, Sertoli and germ cells were observed in rats given with high doses of Flu. The results by cDNA microarray analysis indicated that 1,272 genes were up-regulated by more than two-fold, and 1,969 genes were down-regulated in response to DEHP, Flu or both EDs. These genes were selected based on their markedly increased or decreased expression levels. These genes have been also classified on the basis of gene ontology (e.g., steroid hormone biosynthetic process, regulation of transcription, signal transduction, metabolic process, biosynthetic process...). Significant decreases in gene expression were observed in steroidogenic genes (i.e., Star, Cyp11a1 and Hsd3b). In addition, the expression of a common set of target genes, including CaBP1, Vav2, Plcd1, Lhx1 and Isoc1, was altered following exposure to EDs, suggesting that they may be marker genes to screen for the anti-androgenic or androgenic effects of EDs. Overall, our results demonstrated that exposure to DEHP, Flu or both EDs resulted in a alteration of gene expression in the testes of immature male rats. Furthermore, the toxicological effects of these EDs on the male reproductive system resulted from their anti-androgenic effects. Taken together, these results provide a new insight into the molecular mechanisms underlying the detrimental impacts of EDs, in regards to anti-androgenic effects in humans and wildlife.
Collapse
Affiliation(s)
- Thuy TB Vo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Vu Hoang Dang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Frank H Yu
- School of Dentistry, Seoul National University, Seoul, 110-768, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| |
Collapse
|
22
|
Xiong Q, Xie P, Li H, Hao L, Li G, Qiu T, Liu Y. Involvement of Fas/FasL system in apoptotic signaling in testicular germ cells of male Wistar rats injected i.v. with microcystins. Toxicon 2009; 54:1-7. [DOI: 10.1016/j.toxicon.2009.01.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Lee YJ, Lee E, Kim TH, Choi JS, Lee J, Jung KK, Kwack SJ, Kim KB, Kang TS, Han SY, Lee BM, Kim HS. Effects of Di(2-ethylhexyl) Phthalate on Regulation of Steroidogenesis or Spermatogenesis in Testes of Sprague-Dawley Rats. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.380] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Ena Lee
- College of Pharmacy, Pusan National University
| | | | | | - Jaewon Lee
- College of Pharmacy, Pusan National University
| | - Ki Kyung Jung
- National Institute of Toxicological Research, Korea Food and Drug Administration
| | - Seung Jun Kwack
- National Institute of Toxicological Research, Korea Food and Drug Administration
| | - Kyu Bong Kim
- National Institute of Toxicological Research, Korea Food and Drug Administration
| | - Tae Seok Kang
- National Institute of Toxicological Research, Korea Food and Drug Administration
| | - Soon Young Han
- National Institute of Toxicological Research, Korea Food and Drug Administration
| | - Byung Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University
| | | |
Collapse
|
24
|
Gregory M, Lacroix A, Haddad S, Devine P, Charbonneau M, Tardif R, Krishnan K, Cooke GM, Schrader T, Cyr DG. Effects of chronic exposure to octylphenol on the male rat reproductive system. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1553-1560. [PMID: 20077229 DOI: 10.1080/15287390903232434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
p-tert-Octylphenol (OP) is a degradation product of alkylphenol ethoxylates. OP is an endocrine disruptor known to bind to the estrogen receptor; however, effects on males are controversial. The objective of this study was to evaluate the effects of chronic exposure to OP on male reproduction. Adult Sprague-Dawley rats were administered OP for 60 d, representing 1.5 cycles of spermatogenesis. Experimental groups included a vehicle control, and three doses of OP (25, 50, or 125 mg/kg body weight [bw]) administered daily by gavage. There was a significant decrease in body weight in the 125-mg/kg group after 60 d of treatment. Both testicular and epididymal weights and histology were not altered by treatment with OP at any of the doses administered. There were no marked differences in cauda epididymal sperm counts at any doses; however, total percent sperm motility was significantly lower in rats exposed to the intermediate dose (50 mg/kg bw). There was an increase in percent static sperm cells in all OP-treated groups, with the intermediate dose (50 mg/kg) displaying a significantly higher proportion of static cells relative to untreated controls. Caput epididymal sperm motility was unaltered by OP treatment. Gene expression profiles of testes from control and high-dose-exposed rats indicate that 14 genes were modulated by at least twofold, although these changes were not statistically significant. Taken together, results from this study indicate that OP treatment of adult rats does not appear to exert major effects on male reproductive endpoints at relevant environmental exposure doses.
Collapse
Affiliation(s)
- Mary Gregory
- INRS-Institut Armand-Frappier, Université du Québec, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ryu JY, Whang J, Park H, Im JY, Kim J, Ahn MY, Lee J, Kim HS, Lee BM, Yoo SD, Kwack SJ, Oh JH, Park KL, Han SY, Kim SH. Di(2-ethylhexyl) phthalate induces apoptosis through peroxisome proliferators-activated receptor-gamma and ERK 1/2 activation in testis of Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1296-303. [PMID: 17654247 DOI: 10.1080/15287390701432160] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a well-known hepatic and reproductive toxicant whose toxicity may be mediated by peroxisome proliferators-activated receptor (PPAR). This study examined the effects of DEHP on the expression of PPAR-regulated genes involved in testicular cells apoptosis. Sprague-Dawley male rats were treated orally with 250, 500, or 750 mg/kg/d DEHP for 28 d, while control rats were given corn oil. The levels of cell cycle regulators (pRb, cyclins, CDKs, and p21) and apoptosis-related proteins were analyzed by Western blot analysis. The role of PPAR-gamma (PPAR-gamma), class B scavenger receptor type 1 (SR-B1), and ERK1/2 was further studied to examine the signaling pathway for DEHP-induced apoptosis. Results showed that the levels of pRB, cyclin D, CDK2, cyclin E, and CDK4 were significantly lower in rats given 500 and 750 mg/kg/d DEHP, while levels of p21 were significantly higher in rat testes. Dose-dependent increases in PPAR-gamma and RXRalpha proteins were observed in testes after DEHP exposure, while there was a significant decrease in RXRgamma protein levels. In addition to PPAR-gamma, DEHP also significantly increased SR-B1 mRNA and phosphorylated ERK1/2 protein levels. Furthermore, DEHP treatment induced pro-caspase-3 and cleavage of its substrate protein, poly(ADP-ribose) polymerase (PARP), in a dose-dependent manner. Data suggest that DEHP exposure may induce the expression of apoptosis-related genes in testes through induction of PPAR-gamma and activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Ju Young Ryu
- College of Pharmacy, Pusan National University, Pusan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Grande SW, Andrade AJM, Talsness CE, Grote K, Golombiewski A, Sterner-Kock A, Chahoud I. A dose–response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): Reproductive effects on adult female offspring rats. Toxicology 2007; 229:114-22. [PMID: 17098345 DOI: 10.1016/j.tox.2006.10.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/10/2006] [Accepted: 10/10/2006] [Indexed: 11/18/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is used in numerous consumer products, mainly imparting flexibility and durability to polyvinyl chloride (PVC) based plastics. It is a known reproductive and developmental toxicant in male rodents. However, data regarding effects of DEHP on female reproductive health are particularly sparse. We performed an extensive dose-response study following developmental exposure to DEHP and evaluated the effects on adult female reproductive function. Two wide ranges of doses, low and high, were tested. Female Wistar rats were treated daily with DEHP and peanut oil (vehicle control) by gavage from gestation day 6 to lactation day 21. The low doses were: 0.015, 0.045, 0.135, 0.405 and 1.215mgDEHP/kg/bw/day and the high doses were: 5, 15, 45, 135 and 405mg DEHP/kg/bw/day. At the doses tested, no effects on organ (liver, kidney, spleen, thymus, thyroid, ovary and uterus) or body weights were detected. Female offspring presented a normal pattern of estrous cyclicity with no hormonal alterations (serum estradiol and progesterone). A statistically significant increase in tertiary atretic follicles was observed at the highest dose (405mgDEHP/kg/day). Morphometric analysis indicated that uterus and vagina luminal epithelial cell height were unaffected by treatment. An increase in the number of ovarian atretic tertiary follicles was the only effect observed in adult female offspring exposed in utero and during lactation to DEHP.
Collapse
Affiliation(s)
- Simone W Grande
- Charité University Medical School Berlin, Campus Benjamin Franklin, Institute of Clinical Pharmacology and Toxicology, Department of Toxicology, Garystrasse 5, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Kim HS, Ishizaka M, Kazusaka A, Fujita S. Di-(2-ethylhexyl) phthalate suppresses tamoxifen-induced apoptosis in GH3 pituitary cells. Arch Toxicol 2006; 81:27-33. [PMID: 16874505 DOI: 10.1007/s00204-006-0132-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
Tamoxifen, an estrogen receptor antagonist, has been clinically used as an antitumor drug and induces apoptosis in GH3 pituitary cells. Although di-(2-ethylhexyl) phthalate (DEHP) is a well-known environmental estrogen and the exposure to this chemical is well expected, reports are limited regarding effects of DEHP on tamoxifen-induced apoptosis in pituitary cells. In the cytotoxicity assay, the reduced cell viability in tamoxifen-treated GH3 cells was reversed by DEHP (250 microM) treatment for 4 days. To characterize cell death, cells were stained using Hoechst 33258. Apoptotic morphological change such as chromatin condensation induced by tamoxifen was suppressed by treatment with DEHP. Flow cytometric analysis revealed that the number of apoptotic cells induced by tamoxifen was significantly decreased by DEHP treatment. Enhanced poly (ADP-ribose) polymerase (PARP) cleavage by tamoxifen treatment was also inhibited by DEHP. These results suggest that DEHP suppresses tamoxifen-induced apoptosis in association with its estrogenic effect in GH3 cells and might counteract the therapeutic effect of tamoxifen.
Collapse
Affiliation(s)
- H-S Kim
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Sapporo 060-0818, Japan
| | | | | | | |
Collapse
|
28
|
Lahousse SA, Wallace DG, Liu D, Gaido KW, Johnson KJ. Testicular Gene Expression Profiling following Prepubertal Rat Mono-(2-ethylhexyl) Phthalate Exposure Suggests a Common Initial Genetic Response at Fetal and Prepubertal Ages. Toxicol Sci 2006; 93:369-81. [PMID: 16809437 DOI: 10.1093/toxsci/kfl049] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phthalate chemical plasticizers can damage the fetal and postnatal mammalian testis, but several aspects of the injury mechanism remain unknown. Using a genome-wide microarray, the profile of testicular gene expression changes was examined following exposure of postnatal day 28 rats to a single, high dose (1000 mg/kg) of mono-(2-ethylhexyl) phthalate (MEHP). By microarray analysis, approximately 1675 nonredundant genes exhibited significant expression changes; the vast majority were observed at 12 h. Among the 36 genes significantly altered up to the 3-h time point, prominent functional categories were secreted, transcription, and signaling factors. Using quantitative PCR (qPCR), the dose-response of 24 genes was determined after a single MEHP exposure of 10, 100, or 1000 mg/kg. Increasing 114-fold by 12 h at 1000 mg/kg, Thbs1 (thrombospondin 1) showed the highest level of gene induction. The vast majority of genes analyzed by qPCR exhibited significant expression alterations at the lowest dose level. Interestingly, a unique, dose-dependent expression pattern was observed for the transcription factor Nr0b1, steroidogenic genes (Cyp17a1 and StAR), and a cholesterol metabolism gene (Dhcr7). For these genes, the direction of expression change at 10 or 100 mg/kg was opposite that observed at 1000 mg/kg. Gene profiling data at 1000 mg/kg MEHP were phenotypically anchored to increased germ cell apoptosis (6 and 12 h) and an interstitial neutrophil infiltrate (12 h). At 10 or 100 mg/kg MEHP, no testicular morphological changes were detected, but a significant increase in germ cell apoptosis was seen at 6 h. Finally, comparison of the prepubertal MEHP microarray data to similar data from fetal dibutyl phthalate (DBP) exposure showed conservation in both the identities of testicular genes altered and the direction of expression changes. For example, 60% of the genes altered within 3 h of prepubertal MEHP exposure also were changed following acute fetal DBP exposure, and the direction of expression change was highly preserved. These data demonstrate that similar genetic targets are altered following fetal and prepubertal phthalate exposure, suggesting that the initial mechanism of fetal and prepubertal phthalate-induced testicular injury is shared.
Collapse
Affiliation(s)
- Stephanie A Lahousse
- Division of Biological Sciences, CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
29
|
Ekins S. Systems-ADME/Tox: resources and network approaches. J Pharmacol Toxicol Methods 2005; 53:38-66. [PMID: 16054403 DOI: 10.1016/j.vascn.2005.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 05/23/2005] [Indexed: 01/11/2023]
Abstract
The increasing cost of drug development is partially due to our failure to identify undesirable compounds at an early enough stage of development. The application of higher throughput screening methods have resulted in the generation of very large datasets from cells in vitro or from in vivo experiments following the treatment with drugs or known toxins. In recent years the development of systems biology, databases and pathway software has enabled the analysis of the high-throughput data in the context of the whole cell. One of the latest technology paradigms to be applied alongside the existing in vitro and computational models for absorption, distribution, metabolism, excretion and toxicology (ADME/Tox) involves the integration of complex multidimensional datasets, termed toxicogenomics. The goal is to provide a more complete understanding of the effects a molecule might have on the entire biological system. However, due to the sheer complexity of this data it may be necessary to apply one or more different types of computational approaches that have as yet not been fully utilized in this field. The present review describes the data generated currently and introduces computational approaches as a component of ADME/Tox. These methods include network algorithms and manually curated databases of interactions that have been separately classified under systems biology methods. The integration of these disparate tools will result in systems-ADME/Tox and it is important to understand exactly what data resources and technologies are available and applicable. Examples of networks derived with important drug transporters and drug metabolizing enzymes are provided to demonstrate the network technologies.
Collapse
Affiliation(s)
- Sean Ekins
- GeneGo, 500 Renaissance Drive, Suite 106, St. Joseph, MI 49085, USA.
| |
Collapse
|