1
|
Hefler J, Marfil-Garza BA, Pawlick RL, Freed DH, Karvellas CJ, Bigam DL, Shapiro AMJ. Preclinical models of acute liver failure: a comprehensive review. PeerJ 2021; 9:e12579. [PMID: 34966588 PMCID: PMC8667744 DOI: 10.7717/peerj.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Acute liver failure is marked by the rapid deterioration of liver function in a previously well patient over period of days to weeks. Though relatively rare, it is associated with high morbidity and mortality. This makes it a challenging disease to study clinically, necessitating reliance on preclinical models as means to explore pathophysiology and novel therapies. Preclinical models of acute liver failure are artificial by nature, and generally fall into one of three categories: surgical, pharmacologic or immunogenic. This article reviews preclinical models of acute liver failure and considers their relevance in modeling clinical disease.
Collapse
Affiliation(s)
- Joshua Hefler
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio A Marfil-Garza
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,National Institutes of Medical Sciences & Nutrition Salvador Zubiran, Mexico City, Mexico.,CHRISTUS-LatAm Hub Excellence & Innovation Center, Monterrey, Mexico
| | - Rena L Pawlick
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Constantine J Karvellas
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David L Bigam
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Zhou J, Zhu X, Dong Y, Yang B, Lu R, Xing G, Wang S, Li F. Type 2 diabetes mellitus potentiates acute acrylonitrile toxicity: Potentiation reduction by phenethyl isothiocyanate. Toxicol Ind Health 2021; 37:695-704. [PMID: 34643460 DOI: 10.1177/07482337211048583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acrylonitrile (AN) is a known animal carcinogen and suspected human carcinogen. Recently, occupational exposure to AN has considerably increased. Previously, we demonstrated that streptozotocin-induced diabetes potentiates AN-induced acute toxicity in rats and that the induced cytochrome P450 2E1 (CYP2E1) is responsible for this effect. In the present study, we examined whether induction of CYP2E1 is also the underlying mechanism for the potentiation of AN-induced acute toxicity in type 2 diabetes in db/db mice. The effect of phenethyl isothiocyanate (PEITC) in reducing potentiation was also investigated. The mice were randomly divided into the normal control, diabetic control, AN, diabetes + AN, PEITC + AN, and diabetes + PEITC + AN groups. PEITC (40 mg/kg) was orally administered to rats for 3 days, and 1 h after the last PEITC gavage, 45 mg/kg AN was intraperitoneally injected. Time to death was observed. The CYP2E1 level and enzymatic activity, cytochrome c oxidase (CCO) activity, and reactive oxygen species (ROS) levels were measured. The survival rate was decreased in AN-treated db/db mice compared with that in AN-treated wild-type mice. The hepatic CYP2E1 level and enzymatic activity remained unaltered in db/db mice. Phenethyl isothiocyanate alleviated AN-induced acute toxicity in db/db mice as evident in the increased survival rate, restored CCO activity, and decreased ROS level in both the liver and brain. The study results suggested that CYP2E1 may not be responsible for the sensitivity to AN-induced acute toxicity in db/db mice and that PEITC reduced the potentiation of AN-induced acute toxicity in db/db mice.
Collapse
Affiliation(s)
- Jie Zhou
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xueyu Zhu
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Dong
- Department of Clinical Laboratory, Rugao Municipal People's Hospital, Rugao, Jiangsu, China
| | - Bobo Yang
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rongzhu Lu
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangwei Xing
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Suhua Wang
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fang Li
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Stephens C, Lucena MI, Andrade RJ. Host Risk Modifiers in Idiosyncratic Drug-Induced Liver Injury (DILI) and Its Interplay with Drug Properties. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-1-4939-7677-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Jessica GG, Mario GL, Alejandro Z, Cesar APJ, Ivan JVE, Ruben RR, Javier AAF. CHEMICAL CHARACTERIZATION OF A HYPOGLYCEMIC EXTRACT FROM CUCURBITA FICIFOLIA BOUCHE THAT INDUCES LIVER GLYCOGEN ACCUMULATION IN DIABETIC MICE. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:218-230. [PMID: 28480434 PMCID: PMC5412228 DOI: 10.21010/ajtcam.v14i3.24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: The aqueous extract of Cucurbita ficifolia (C. ficifolia) fruit has demonstrated hypoglycemic effect, which may be attributed to some components in the extract. However, the major secondary metabolites in this fruit have not yet been identified and little is known about its extra-pancreatic action, in particular, on liver carbohydrate metabolism. Therefore, in addition to the isolation and structural elucidation of the principal components in the aqueous extract of C. ficifolia, the aim of this study was to determine whether or not the hypoglycemic effect of the aqueous extract of Cucurbita ficifolia (C. ficifolia) fruit is due to accumulation of liver glycogen in diabetic mice. Materials and Methods: The aqueous extract from fruit of C. ficifolia was fractionated and its main secondary metabolites were purified and chemically characterized (NMR and GC-MS). Alloxan-induced diabetic mice received daily by gavage the aqueous extract (30 days). The liver glycogen content was quantified by spectroscopic method and by PAS stain; ALT and AST by spectrometric method; glycogen synthase, glycogen phosphorylase and GLUT2 by Western blot; the mRNA expression of GLUT2 and glucagon-receptor by RT-PCR; while serum insulin was quantified by ELISA method. A liver histological analysis was also performed by H&E stain. Results: Chemical fingerprint showed five majoritarian compounds in the aqueous extract of C. ficifolia: p-coumaric acid, p-hydroxybenzoic acid, salicin, stigmast-7,2,2-dien-3-ol and stigmast-7-en-3-ol. The histological analysis showed accumulation of liver glycogen. Also, increased glycogen synthase and decreased glycogen phosphorylase were observed. Interestingly, the histological architecture evidenced a liver-protective effect due the extract. Conclusion: Five compounds were identified in C. ficifolia aqueous extract. The hypoglycemic effect of this extract may be partially explained by liver glycogen accumulation. The bioactive compound responsible for the hypoglycemic effect of this extract will be elucidated in subsequent studies.
Collapse
Affiliation(s)
- Garcia Gonzalez Jessica
- Postgrad in Experimental Biology, Division of Health and Biological Sciences (DCBS), Metropolitan Autonomous University Campus Iztapalapa (UAMI), D.F. Mexico 09340, Mexico
| | - Garcia Lorenzana Mario
- Neurobiology Tissue Laboratory, Department of Reproduction Biology, DCBS, UAMI D.F. Mexico 09340, Mexico
| | - Zamilpa Alejandro
- Biomedical Research Center South (CIBIS), Mexican Institute of Social Security (IMSS) Xochitepec, Morelos 62790, Mexico
| | | | - Jasso Villagomez E Ivan
- Pharmacology Laboratory, Department of Health Sciences, DCBS, UAMI, D.F. Mexico 09340, Mexico
| | - Roman Ramos Ruben
- Pharmacology Laboratory, Department of Health Sciences, DCBS, UAMI, D.F. Mexico 09340, Mexico
| | | |
Collapse
|
5
|
Kučera O, Lotková H, Sobotka O, Červinková Z. The effect of D-galactosamine on lean and steatotic rat hepatocytes in primary culture. Physiol Res 2015; 64:S637-46. [PMID: 26674289 DOI: 10.33549/physiolres.933225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The aim of our work was to compare the effect of D-galactosamine (GalN) on primary cultures of lean and steatotic rat hepatocytes isolated from intact and fatty liver, respectively. GalN caused more severe injury to steatotic hepatocytes than to lean cells as documented by lactate dehydrogenase leakage. Necrotic mode of cell death strongly prevails over apoptosis since we did not observe any significant increase in activities of caspase 3, 8 and 9 in any group of hepatocytes treated with GalN. Reactive oxygen species (ROS) formation and lipid peroxidation were elevated in a dose-dependent manner by GalN and were significantly more pronounced in fatty hepatocytes. A decrease in the percentage of hepatocytes with energized mitochondria was observed from 30 mM and 10 mM GalN in lean and steatotic hepatocytes, respectively. Our results undoubtedly indicate that steatotic hepatocytes exert higher sensitivity to the toxic effect of GalN. This sensitivity may be caused by more intensive GalN-induced ROS production and lipid peroxidation and by higher susceptibility of mitochondria to loss of mitochondrial membrane potential in steatotic hepatocytes. In our experimental arrangement, apoptosis does not seem to participate considerably on hepatotoxic action of GalN in either group of hepatocytes.
Collapse
Affiliation(s)
- O Kučera
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic.
| | | | | | | |
Collapse
|
6
|
Sharma P, Bodhankar SL, Thakurdesai PA. Protective effect of aqueous extract of Feronia elephantum correa leaves on thioacetamide induced liver necrosis in diabetic rats. Asian Pac J Trop Biomed 2015; 2:691-5. [PMID: 23569996 DOI: 10.1016/s2221-1691(12)60211-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 12/24/2011] [Accepted: 01/15/2012] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE To evalueate hepatoprotective effects Feronia elephantum (F. elephantum) correa against thioacetamide (TA) induced liver necrosis in diabetic rats. METHODS Male wistar rats were made diabetic with alloxan (160 mg/kg) on day 0 of the study. They were intoxicated with hepatotoxicant (thioacetamide, 300 mg/kg, ip) on day 9 of study to produce liver necrosis. Effects of 7 day daily once administration (day 2 to day 9) of EF (400 and 800 mg/kg, po) were evaluated on necorosis of liver in terms of mortality, liver volume, liver weight, serum aspartate aminotransferase (AST) and serum alanine transaminase (ALT), and histopathology of liver sections (for signs of necorosis and inflammation) on day-9 of the study. Separate groups of rats with treated only with alloxan (DA control), thioacetamide (TA control) and both (TA+DA control) were maintained. RESULTS FE significantly lowered the mortality rate and showed improvement in liver function parameters in TA-induced diabetic rats without change in liver weight, volume and serum glucose levels. CONCLUSIONS FE showed promising activity against TA-induced liver necorsis in diabetic rats and so might be useful for prevention of liver complications in DM.
Collapse
Affiliation(s)
- Prashant Sharma
- Department of Pharmacology, Poona College of Pharmacy, Bharati Deemed Vidyapeeth University, Erandwane, Pune-411038, India
| | | | | |
Collapse
|
7
|
Guo YJ, Wang SH, Yuan Y, Li FF, Ye KP, Huang Y, Xia WQ, Zhou Y. Vulnerability for apoptosis in the hippocampal dentate gyrus of STZ-induced diabetic rats with cognitive impairment. J Endocrinol Invest 2014; 37:87-96. [PMID: 24464455 DOI: 10.1007/s40618-013-0030-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 11/17/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hyperglycemia impaired hippocampal network via triggering suicide program of immanent neurons, this is regarded as an etiological factor for diabetic cognition deficits. AIM To investigate the occurrence of apoptosis in the hippocampal dentate gyrus of streptozotocin (STZ)-induced diabetic rats with cognitive impairment and assess the gene and protein expression of the apoptotic proteins bax, bcl-2, and caspase-3. MATERIALS AND METHODS Four weeks after the verification of STZ-induced diabetes, diabetic rats with and without cognitive decline subgroups were subsequently assigned according to Morris water maze test. The expression levels of apoptotic proteins were measured using real-time RT-PCR and western blotting, respectively. Neuronal apoptosis was detected by TUNEL staining and electron microscopy. RESULTS In the dentate gyrus of the rats with cognitive decline, Bcl-2 exhibited lower gene and protein levels, whereas a higher expression of bax was detected contributing to a significant increase in their mean bax/bcl-2 ratio. However, caspase-3 was not activated. Statistically different numbers of TUNEL-staining cells and features of apoptosis were no found. CONCLUSIONS The higher bax/bcl ratio probably represents neurons of dentate gyrus vulnerable to apoptosis in the diabetes with cognitive decline. However, the normal caspase-3 level suggests that apoptosis is not active in this illness phase.
Collapse
Affiliation(s)
- Yi-jing Guo
- Department of Neurology, The Affiliated ZhongDa Hospital of Southeast University, No.87 DingJiaQiao Road, Nanjing, 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mladenović D, Hrnčić D, Rašić-Marković A, Puškaš N, Petrovich S, Stanojlović O. Spectral analysis of thioacetamide-induced electroencephalographic changes in rats. Hum Exp Toxicol 2012; 32:90-100. [DOI: 10.1177/0960327112456312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thioacetamide (TAA) is widely used as a model of hepatic encephalopathy (HE). The aim of our study was to investigate the effects of TAA on electroencephalographic (EEG) changes in rats and to compare them with human HE. Male Wistar rats were divided into groups: (1) saline-treated group and (2) TAA-treated groups: TAA300 (300 mg/kg), TAA600 (600 mg/kg), and TAA900 (900 mg/kg). Daily dose of TAA (300 mg/kg) was administered intraperitoneally once (TAA300), twice (TAA600), or thrice (TAA900) in subsequent days. EEG changes were recorded about 24 h after the last dose of TAA. Absolute and relative power density in alpha bands were significantly higher in TAA300 versus control group. In TAA300, absolute beta power density was higher and relative beta power density was lower versus control group. Absolute alpha, theta, delta, and relative theta power were significantly lower, while relative power in delta band was significantly higher in TAA900 versus control group ( p < 0.01). In conclusion, decrease in EEG voltage with an increase in delta relative power, which correspond to the EEG manifestations of severe HE in humans, was observed in TAA900 group. Electrical activity in TAA300 group correlates with mild HE in humans.
Collapse
Affiliation(s)
- D Mladenović
- Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9 Belgrade, Serbia
| | - D Hrnčić
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Višegradska 26/II, Belgrade, Serbia
| | - A Rašić-Marković
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Višegradska 26/II, Belgrade, Serbia
| | - N Puškaš
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Višegradska 26, Belgrade, Serbia
| | - S Petrovich
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - O Stanojlović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Višegradska 26/II, Belgrade, Serbia
| |
Collapse
|
9
|
Singh N, Rana SVS. Effect of insulin on arsenic toxicity in diabetic rats—liver function studies. Biol Trace Elem Res 2009; 132:215-26. [PMID: 19452132 DOI: 10.1007/s12011-009-8396-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/23/2009] [Indexed: 12/25/2022]
Abstract
Arsenic (iAs)-induced diabetic mellitus has been debated by several workers. However, role of insulin in iAs-induced diabetes is yet to be investigated. Present report suggests that iAs promotes insulin secretion in diabetic rats and inhibits hyperglycemia. Whereas, reverse effects were recorded after insulin treatment to diabetic and iAs-treated rats. These conditions affect accumulation of iAs in liver. It decreased in diabetic and iAs-treated rats but increased after insulin treatment. Reciprocal effects were observed on serum transaminases and total bilirubin. Nevertheless, activity of glucose-6-phosphatase in the liver was stimulated by insulin treatment to diabetic and arsenic-fed rats. These results suggest that manifestations of arsenic-induced diabetes mellitus are not modulated or reversed by insulin. Observations on liver function further suggest that iAs is less toxic in diabetic rats. This protective effect has been attributed to noninsulin-dependent carbohydrate regulatory mechanisms. Diabetes certainly alters the pharmacodynamics and pharmacokinetics of iAs in rat.
Collapse
Affiliation(s)
- Neetu Singh
- CCS University, Meerut, Uttar Pradesh, India
| | | |
Collapse
|
10
|
Wang T, Shankar K, Ronis MJ, Mehendale HM. Mechanisms and outcomes of drug- and toxicant-induced liver toxicity in diabetes. Crit Rev Toxicol 2007; 37:413-59. [PMID: 17612954 DOI: 10.1080/10408440701215100] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase dincidences of hepatotoxicity have been observed in diabetic patients receiving drug therapies. Neither the mechanisms nor the predisposing factors underlying hepatotoxicity in diabetics are clearly understood. Animal studies designed to examine the mechanisms of diabetes-modulated hepatotoxicity have traditionally focused only on bioactivation/detoxification of drugs and toxicants. It is becoming clear that once injury is initiated, additional events determine the final outcome of liver injury. Foremost among them are two leading mechanisms: first, biochemical mechanisms that lead to progression or regression of injury; and second, whether or not timely and adequate liver tissue repair occurs to mitigate injury and restore liver function. The liver has a remarkable ability to repair and restore its structure and function after physical or chemical-induced damage. The dynamic interaction between biotransformation-based liver injury and compensatory tissue repair plays a pivotal role in determining the ultimate outcome of hepatotoxicity initiated by drugs or toxicants. In this review, mechanisms underlying altered hepatotoxicity in diabetes with emphasis on both altered bioactivation and liver tissue repair are discussed. Animal models of both marked sensitivity (diabetic rats) and equally marked protection (diabetic mice) from drug-induced hepatotoxicity are described. These examples represent a remarkable species difference. Availability of the rodent diabetic models offers a unique opportunity to uncover mechanisms of clinical interest in averting human diabetic sensitivity to drug-induced hepatotoxicities. While the rat diabetic models appear to be suitable, the diabetic mouse models might not be suitable in preclinical testing for potential hepatotoxic effects of drugs or toxicants, because regardless of type 1 or type2 diabetes, mice are resistant to acute drug-or toxicant-induced toxicities.
Collapse
Affiliation(s)
- T Wang
- Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | | | | | | |
Collapse
|
11
|
Sawant SP, Dnyanmote AV, Mehendale HM. Mechanisms of inhibited liver tissue repair in toxicant challenged type 2 diabetic rats. Toxicology 2007; 232:200-15. [PMID: 17298859 DOI: 10.1016/j.tox.2007.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 01/01/2007] [Accepted: 01/05/2007] [Indexed: 01/08/2023]
Abstract
Liver injury initiated by non-lethal doses of CCl(4) and thioacetamide (TA) progresses to hepatic failure and death of type 2 diabetic (DB) rats due to failed advance of liver cells from G(0)/G(1) to S-phase and inhibited tissue repair. Objective of the present study was to investigate cellular signaling mechanisms of failed cell division in DB rats upon hepatotoxicant challenge. In CCl(4)-treated non-diabetic (non-DB) rats, increased IL-6 levels, sustained activation of extracellular regulated kinases 1/2 (ERK1/2) MAPK, and sustained phosphorylation of retinoblastoma protein (p-pRB) via cyclin D1/cyclin-dependent kinase (cdk) 4 and cyclin D1/cdk6 complexes stimulated G(0)/G(1) to S-phase transition of liver cells. In contrast to the non-DB rats, CCl(4) administration led to lower plasma IL-6, decreased ERK1/2 activation, lower cyclin D1, and cdk 4/6 expression resulting in decreased p-pRB and inhibition of liver cell division in the DB rats. Furthermore, higher TGFbeta1 expression and p21 activation may also contribute to decreased p-pRB in DB rats compared to non-DB rats. Similarly, after TA administration to DB rats, down-regulation of cyclin D1 and p-pRB leads to markedly decreased advance of liver cells from G(0)/G(1) to S-phase and tissue repair compared to the non-DB rats. Hepatic ATP levels did not differ between the DB and non-DB rats obviating its role in failed tissue repair in the DB rats. In conclusion, decreased p-pRB may contribute to blocked advance of cells from G(0)/G(1) to S-phase and failed cell division in DB rats exposed to CCl(4) or TA, leading to progression of liver injury and hepatic failure.
Collapse
Affiliation(s)
- Sharmilee P Sawant
- Department of Toxicology, College of Pharmacy, The University of Louisiana at Monroe, 700 University Avenue, Sugar Hall #306, Monroe, LA 71209-0470, USA
| | | | | |
Collapse
|
12
|
Chilakapati J, Korrapati MC, Hill RA, Warbritton A, Latendresse JR, Mehendale HM. Toxicokinetics and toxicity of thioacetamide sulfoxide: a metabolite of thioacetamide. Toxicology 2006; 230:105-16. [PMID: 17187915 DOI: 10.1016/j.tox.2006.11.050] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 10/27/2006] [Accepted: 11/05/2006] [Indexed: 01/09/2023]
Abstract
Thioacetamide (TA) is bioactivated by CYP2E1 to TA sulfoxide (TASO), and to the highly reactive sulfdioxide (TASO(2)), which initiates hepatic necrosis by covalent binding. Previously, we have established that TA exhibits saturation toxicokinetics over a 12-fold dose range, which explains the lack of dose-response for bioactivation-based liver injury. In vivo and in vitro studies indicated that the second step (TASO-->TASO(2)) of TA bioactivation is less efficient than the first one (TA-->TASO). The objective of the present study was to specifically test the saturation of the second step of TA bioactivation by directly administering TASO, which obviates the contribution from first step, i.e. TA-->TASO. Male SD rats were injected with low (50mg/kg, ip), medium (100mg/kg) and high (LD(70), 200mg/kg) doses of TASO. Bioactivation-mediated liver injury that occurs in the initial time points (6 and 12h), estimated by plasma ALT, AST and liver histopathology over a time course, was not dose-proportional. Escalation of liver injury thereafter was dose dependent: low dose injury subsided; medium dose injury escalated upto 36h before declining; high dose injury escalated from 24h leading to 70% mortality. TASO was quantified in plasma by HPLC at various time points after administration of the three doses. With increasing dose (i.e., from 50 to 200mg/kg), area under the curve (AUC) and C(max) increased more than dose proportionately, indicating that TASO bioactivation exhibits saturable kinetics. Toxicokinetics and initiation of liver injury of TASO are similar to that of TA, although TASO-initiated injury occurs at lower doses. These findings indicate that bioactivation of TASO to its reactive metabolite is saturable in the rat as suggested by previous studies with TA.
Collapse
Affiliation(s)
- Jaya Chilakapati
- Department of Toxicology, College of Pharmacy, The University of Louisiana Monroe, 700 University Avenue, Sugar Hall #306, Monroe, LA 71209-0470, USA
| | | | | | | | | | | |
Collapse
|
13
|
Devi SS, Philip BK, Warbritton A, Latendresse JR, Mehendale HM. Prior administration of a low dose of thioacetamide protects type 1 diabetic rats from subsequent administration of lethal dose of thioacetamide. Toxicology 2006; 226:107-17. [PMID: 16901604 DOI: 10.1016/j.tox.2006.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/22/2006] [Accepted: 06/03/2006] [Indexed: 01/22/2023]
Abstract
Previously, we reported that an ordinarily non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic rats due to inhibited liver tissue repair, whereas 30 mg TA/kg allows 100% survival due to stimulated although delayed tissue repair. Objective of this investigation was to test whether prior administration of a low dose of TA (30 mg/kg) would lead to sustainable stimulation of liver tissue repair in type 1 diabetic rats sufficient to protect from a subsequently administered lethal dose of TA. Therefore, in the present study, the hypothesis that preplacement of tissue repair by a low dose of TA (30 mg TA/kg, ip) can reverse the hepatotoxicant sensitivity (autoprotection) in type 1 diabetic rats was tested. Preliminary studies revealed that a single intraperitoneal (ip) administration of TA causes 90% mortality in diabetic rats with as low as 75 mg/kg. To establish an autoprotection model in diabetic condition, diabetic rats were treated with 30 mg TA/kg (priming dose). Administration of priming dose stimulated tissue repair that peaked at 72h, at which time these rats were treated with a single ip dose of 75 mg TA/kg. Our results show that tissue repair stimulated by the priming dose enabled diabetic rats to overexpress, calpastatin, endogenous inhibitor of calpain, to inhibit calpain-mediated progression of liver injury induced by the subsequent administration of lethal dose, resulting in 100% survival. Further investigation revealed that protection observed in these rats is not due to decreased bioactivation. These studies underscore the importance of stimulation of tissue repair in the final outcome of liver injury (survival/death) after hepatotoxicant challenge. Furthermore, these results also suggest that it is possible to stimulate tissue repair in diabetics to overcome the enhanced sensitivity of hepatotoxicants.
Collapse
Affiliation(s)
- Sachin S Devi
- Department of Toxicology, College of Pharmacy, The University of Louisiana at Monroe, 700 University Ave, Monroe, LA 71209, USA
| | | | | | | | | |
Collapse
|
14
|
Devi SS, Mehendale HM. Microarray analysis of thioacetamide-treated type 1 diabetic rats. Toxicol Appl Pharmacol 2006; 212:69-78. [PMID: 16297948 DOI: 10.1016/j.taap.2005.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 09/02/2005] [Accepted: 09/06/2005] [Indexed: 01/01/2023]
Abstract
It is well known that diabetes imparts high sensitivity to numerous hepatotoxicants. Previously, we have shown that a normally non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats due to inhibited tissue repair allowing progression of liver injury. On the other hand, DB rats exposed to 30 mg TA/kg exhibit delayed tissue repair and delayed recovery from injury. The objective of this study was to investigate the mechanism of impaired tissue repair and progression of liver injury in TA-treated DB rats by using cDNA microarray. Gene expression pattern was examined at 0, 6, and 12 h after TA challenge, and selected mechanistic leads from microarray experiments were confirmed by real-time RT-PCR and further investigated at protein level over the time course of 0 to 36 h after TA treatment. Diabetic condition itself increased gene expression of proteases and decreased gene expression of protease inhibitors. Administration of 300 mg TA/kg to DB rats further elevated gene expression of proteases and suppressed gene expression of protease inhibitors, explaining progression of liver injury in DB rats after TA treatment. Inhibited expression of genes involved in cell division cycle (cyclin D1, IGFBP-1, ras, E2F) was observed after exposure of DB rats to 300 mg TA/kg, explaining inhibited tissue repair in these rats. On the other hand, DB rats receiving 30 mg TA/kg exhibit delayed expression of genes involved in cell division cycle, explaining delayed tissue repair in these rats. In conclusion, impaired cyclin D1 signaling along with increased proteases and decreased protease inhibitors may explain impaired tissue repair that leads to progression of liver injury initiated by TA in DB rats.
Collapse
Affiliation(s)
- Sachin S Devi
- Department of Toxicology, College of Pharmacy, The University of Louisiana at Monroe, 700 University Ave, Sugar Hall # 306, Monroe, LA 71209-0470, USA
| | | |
Collapse
|
15
|
Sawant SP, Dnyanmote AV, Mitra MS, Chilakapati J, Warbritton A, Latendresse JR, Mehendale HM. Protective effect of type 2 diabetes on acetaminophen-induced hepatotoxicity in male Swiss-Webster mice. J Pharmacol Exp Ther 2005; 316:507-19. [PMID: 16207833 DOI: 10.1124/jpet.105.094326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Type 2 diabetic (DB) mice exposed to CCl(4) (LD(50) = 1.25 ml/kg), acetaminophen (LD(80) = 600 mg/kg; APAP), and bromobenzene (LD(80) = 0.5 ml/kg) i.p. yielded 30, 20, and 20% mortality, respectively, indicating hepatotoxic resistance. Male Swiss-Webster mice were made diabetic by feeding high fat and administrating streptozotocin (120 mg/kg i.p.) on day 60. On day 71, time-course studies after APAP (600 mg/kg) treatment revealed identical initial liver injury in non-DB and DB mice, which progressed only in non-DB mice, resulting in 80% mortality. The hypothesis that decreased APAP bioactivation, altered toxicokinetics, and/or increased tissue repair are the underlying mechanisms was investigated. High-performance liquid chromatography analysis revealed no difference in plasma and urinary APAP or detoxification of APAP via glucuronidation between DB and non-DB mice. Hepatic CYP2E1 protein and activity, glutathione, and [(14)C]APAP covalent binding did not differ between DB and non-DB mice, suggesting that lower bioactivation-based injury is not the mechanism of decreased hepatotoxicity in DB mice. Diabetes increased cells in S phase by 8-fold in normally quiescent liver of these mice. Immunohistochemistry revealed overexpression of calpastatin in the newly dividing/divided cells, explaining inhibition of hydrolytic enzyme calpain in perinecrotic areas and lower progression of APAP-initiated injury in the DB mice. Antimitotic intervention of diabetes-associated cell division with colchicine before APAP administration resulted in 70% mortality in APAP-treated colchicine-intervened DB mice. These studies suggest that advancement of cells in the cell division cycle and higher tissue repair protect DB mice by preventing progression of APAP-initiated liver injury that normally leads to mortality.
Collapse
Affiliation(s)
- Sharmilee P Sawant
- Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, Monroe, 71209-0470, USA
| | | | | | | | | | | | | |
Collapse
|