1
|
Aracava Y, Albuquerque EX, Pereira EFR. (R,S)-trihexyphenidyl, acting via a muscarinic receptor-independent mechanism, inhibits hippocampal glutamatergic and GABAergic synaptic transmissions: Potential relevance for treatment of organophosphorus intoxication. Neuropharmacology 2023; 239:109684. [PMID: 37549771 PMCID: PMC10590273 DOI: 10.1016/j.neuropharm.2023.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Preclinical studies have reported that, compared to the muscarinic receptor (mAChR) antagonist atropine, (R,S)-trihexyphenidyl (THP) more effectively counters the cholinergic crisis, seizures, and neuropathology triggered by organophosphorus (OP)-induced acetylcholinesterase (AChE) inhibition. The greater effectiveness of THP was attributed to its ability to block mAChRs and N-methyl-d-aspartate-type glutamatergic receptors (NMDARs) in the brain. However, THP also inhibits α7 nicotinic receptors (nAChRs). The present study examined whether THP-induced inhibition of mAChRs, α7 nAChRs, and NMDARs is required to suppress glutamatergic synaptic transmission, whose overstimulation sustains OP-induced seizures. In primary hippocampal cultures, THP (1-30 μM) suppressed the frequency of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs, respectively) recorded from neurons in nominally Mg2+-free solution. A single sigmoidal function adequately fit the overlapping concentration-response relationships for THP-induced suppression of IPSC and EPSC frequencies yielding an IC50 of 6.3 ± 1.3 μM. Atropine (1 μM), the NMDAR antagonist d,l-2-amino-5-phosphonopentanoic acid (D,L-AP5, 50 μM), and the α7 nAChR antagonist methyllycaconitine (MLA, 10 nM) did not prevent THP-induced inhibition of synaptic transmission. THP (10 μM) did not affect the probability of transmitter release because it had no effect on the frequency of miniature IPSCs and EPSCs recorded in the presence of tetrodotoxin. Additionally, THP had no effect on the amplitudes and decay-time constants of miniature IPSCs and EPSCs; therefore, it did not affect the activity of postsynaptic GABAA and glutamate receptors. This study provides the first demonstration that THP can suppress action potential-dependent synaptic transmission via a mechanism independent of NMDAR, mAChR, and α7 nAChR inhibition.
Collapse
Affiliation(s)
- Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Shih TM. A novel genetically modified mouse seizure model for evaluating anticonvulsive and neuroprotective efficacy of an A 1 adenosine receptor agonist following soman intoxication. Toxicol Appl Pharmacol 2023; 464:116437. [PMID: 36849019 PMCID: PMC10228141 DOI: 10.1016/j.taap.2023.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/27/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
Recently a novel humanized mouse strain has been successfully generated, in which serum carboxylesterase (CES) knock out (KO) mice (Es1-/-) were further genetically modified by knocking in (KI), or adding, the gene that encodes the human form of acetylcholinesterase (AChE). The resulting human AChE KI and serum CES KO (or KIKO) mouse strain should not only exhibit organophosphorus nerve agent (NA) intoxication in a manner more similar to humans, but also display AChE-specific treatment responses more closely mimicking those of humans to facilitate data translation to pre-clinic trials. In this study, we utilized the KIKO mouse to develop a seizure model for NA medical countermeasure investigation, and then applied it to evaluate the anticonvulsant and neuroprotectant (A/N) efficacy of a specific A1 adenosine receptor (A1AR) agonist, N-bicyclo-(2.2.1)hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), which has been shown in a rat seizure model to be a potent A/N compound. Male mice surgically implanted with cortical electroencephalographic (EEG) electrodes a week earlier were pretreated with HI-6 and challenged with various doses (26 to 47 μg/kg, SC) of soman (GD) to determine a minimum effective dose (MED) that induced sustained status epilepticus (SSE) activity in 100% of animals while causing minimum lethality at 24 h. The GD dose selected was then used to investigate the MED doses of ENBA when given either immediately following SSE initiation (similar to wartime military first aid application) or at 15 min after ongoing SSE seizure activity (applicable to civilian chemical attack emergency triage). The selected GD dose of 33 μg/kg (1.4 x LD50) generated SSE in 100% of KIKO mice and produced only 30% mortality. ENBA at a dose as little as 10 mg/kg, IP, caused isoelectric EEG activity within minutes after administration in naïve un-exposed KIKO mice. The MED doses of ENBA to terminate GD-induced SSE activity were determined to be 10 and 15 mg/kg when treatment was given at the time of SSE onset and when seizure activity was ongoing for 15 min, respectively. These doses were much lower than in the non-genetically modified rat model, which required an ENBA dose of 60 mg/kg to terminate SSE in 100% GD-exposed rats. At MED doses, all mice survived for 24 h, and no neuropathology was observed when the SSE was stopped. The findings confirmed that ENBA is a potent A/N for both immediate and delayed (i.e., dual purposed) therapy to victims of NA exposure and serves as a promising neuroprotective antidotal and adjunctive medical countermeasure candidate for pre-clinical research and development for human application.
Collapse
Affiliation(s)
- Tsung-Ming Shih
- Neuroscience Department, Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen, Proving Ground, MD 21010-5400, USA..
| |
Collapse
|
3
|
Aldana-Mejía JA, de Miranda AM, Ccana-Ccapatinta GV, de Araújo LS, Ribeiro VP, Arruda C, Nascimento S, Squarisi I, Esperandim T, de Freitas KS, Ozelin SD, Tavares DC, Ramalho FS, Bastos JK. Genotoxicity and toxicological evaluations of Brazilian red propolis oral ingestion in a preclinical rodent model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115920. [PMID: 36372194 DOI: 10.1016/j.jep.2022.115920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brazilian red propolis is a natural product known due to its medicinal properties. The efficacy of this natural resin has been proved; however, few studies report the safety of its oral use. Some toxic effects of natural products may not be expressed in traditional use, and preclinical studies are necessary to guarantee their safety. Health regulatory agency currently requires these non-clinical studies to develop drugs and herbal medicines, including genotoxic and oral toxicity tests. AIM OF THE STUDY Accomplish the preclinical toxicity studies of Brazilian red propolis extract (BRP) in rodents, including genotoxicity, acute and sub-chronic toxicities. MATERIAL AND METHODS Genotoxicity assays followed the erythrocyte micronucleus test protocol in a range of 500-2000 mg/kg BRP oral treatment on male Swiss mice. After an up-and-down procedure, acute oral toxicity (single dose) was performed on female Wistar Hannover rats, reaching a 2000 mg/kg BRP oral gavage concentration. Animals were monitored periodically until 14 days and euthanized for a macroscopic necropsy analysis. The sub-chronic oral toxicity test (90 days) was achieved with 1000 mg/kg of BRP on Wistar Hannover rats (males/females). Animals were monitored to evaluated behavioral and biometrical changes, then were euthanized to perfomed hematological, biochemical, and histopathological analyses. RESULTS No genotoxic effect of the BRP was detected. The acute toxicity indicated no toxicity of a single oral dose of 2000 mg/kg of BRP. The long-term oral toxicity performed with 1000 mg/kg of BRP altered water and food intake and the biometrics, hematological and biochemical parameters. Biochemical alterations in hepatic and renal parameters were detected only in the males. Despite the detection of biochemical alterations, no histopathological changes were detected in the organs of any group. CONCLUSIONS BRP, at a higher dose, showed no signs of immediate toxicity. However, the obtained results suggest that the chemical composition and the intake of higher doses deserve special attention regarding possible toxicity.
Collapse
Affiliation(s)
- Jennyfer Andrea Aldana-Mejía
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| | - Aline Mayrink de Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| | - Gari Vidal Ccana-Ccapatinta
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| | - Luciana Silva de Araújo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| | - Samuel Nascimento
- Nucleus of Research in Sciences and Technology, Laboratory of Mutagenesis, University of Franca, Av. Dr. Armando de Sáles Oliveira, 201 - Parque Universitario, Franca, São Paulo, Brazil.
| | - Iara Squarisi
- Nucleus of Research in Sciences and Technology, Laboratory of Mutagenesis, University of Franca, Av. Dr. Armando de Sáles Oliveira, 201 - Parque Universitario, Franca, São Paulo, Brazil.
| | - Tábata Esperandim
- Nucleus of Research in Sciences and Technology, Laboratory of Mutagenesis, University of Franca, Av. Dr. Armando de Sáles Oliveira, 201 - Parque Universitario, Franca, São Paulo, Brazil.
| | - Karoline S de Freitas
- Nucleus of Research in Sciences and Technology, Laboratory of Mutagenesis, University of Franca, Av. Dr. Armando de Sáles Oliveira, 201 - Parque Universitario, Franca, São Paulo, Brazil.
| | - Saulo D Ozelin
- Nucleus of Research in Sciences and Technology, Laboratory of Mutagenesis, University of Franca, Av. Dr. Armando de Sáles Oliveira, 201 - Parque Universitario, Franca, São Paulo, Brazil.
| | - Denise Crispim Tavares
- Nucleus of Research in Sciences and Technology, Laboratory of Mutagenesis, University of Franca, Av. Dr. Armando de Sáles Oliveira, 201 - Parque Universitario, Franca, São Paulo, Brazil.
| | - Fernando Silva Ramalho
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil.
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Yanai S, Tago T, Toyohara J, Arasaki T, Endo S. Reversal of spatial memory impairment by phosphodiesterase 3 inhibitor cilostazol is associated with reduced neuroinflammation and increased cerebral glucose uptake in aged male mice. Front Pharmacol 2022; 13:1031637. [PMID: 36618932 PMCID: PMC9810637 DOI: 10.3389/fphar.2022.1031637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
The nucleotide second messenger 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP) mediate fundamental functions of the brain, including learning and memory. Phosphodiesterase 3 (PDE3) can hydrolyze both cAMP and cGMP and appears to be involved in the regulation of their contents in cells. We previously demonstrated that long-term administration of cilostazol, a PDE3 inhibitor, maintained good memory performance in aging mice. Here, we report on studies aimed at determining whether cilostazol also reverses already-impaired memory in aged male mice. One month of oral 1.5% cilostazol administration in 22-month-old mice reversed age-related declines in hippocampus-dependent memory tasks, including the object recognition and the Morris water maze. Furthermore, cilostazol reduced neuroinflammation, as evidenced by immunohistochemical staining, and increased glucose uptake in the brain, as evidence by positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). These results suggest that already-expressed memory impairment in aged male mice that depend on cyclic nucleotide signaling can be reversed by inhibition of PDE3. The reversal of age-related memory impairments may occur in the central nervous system, either through cilostazol-enhanced recall or strengthening of weak memories that otherwise may be resistant to recall.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tomoko Arasaki
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan,*Correspondence: Shogo Endo,
| |
Collapse
|
5
|
Rao NS, Meyer C, Vasanthi SS, Massey N, Samidurai M, Gage M, Putra M, Almanza AN, Wachter L, Thippeswamy T. DFP-Induced Status Epilepticus Severity in Mixed-Sex Cohorts of Adult Rats Housed in the Same Room: Behavioral and EEG Comparisons. Front Cell Dev Biol 2022; 10:895092. [PMID: 35620057 PMCID: PMC9127803 DOI: 10.3389/fcell.2022.895092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
Sex is a biological variable in experimental models. In our previous diisopropylfluorophosphate (DFP) studies, female rats required a higher dose of DFP to achieve a somewhat similar severity of status epilepticus (SE) as males. In those studies, male and female rats were bought separately from the same vendor, housed in different rooms, and the DFP used was from different batches. We had also shown that surgery for epidural electrodes implantation reduces the threshold for SE. Our recent study in the soman (GD) model using a mixed-sex cohort of rats housed individually but in the same room showed that females achieved significantly higher SE severity than males for the same dose of GD. In this study, we demonstrate that housing the mixed-sex cohorts in the same room and treating them with DFP (4 mg/kg, s.c.) from the same pool, though from different batches, yielded reproducible SE severity in both sexes and both telemetry (surgery) and non-telemetry (non-surgery) groups. We conducted experiments in four mixed-sex cohorts of adult Sprague-Dawley rats. In females, the surgery for implanting the telemetry devices reduced the latency to convulsive seizure (CS) and increased SE severity compared to non-telemetry females. However, there were no sex differences in latency or SE severity within telemetry or non-telemetry groups. Once animals reached CS stage ≥3, they remained in CS stage in both sexes until midazolam was administered. Midazolam (3 mg/kg, i.m.) treatment 1-one-hour post-DFP significantly reduced epileptiform spikes in both sexes. The mortality was only 2% in 24 h. Irrespective of sex or stage of estrous cycle or surgery, the animals had continuous convulsive SE for ∼40 min. In telemetry rats, electrographic changes correlated with behavioral seizures. However, there was a significant difference in SE severity and the latency between directly-observed behavioral CS and EEG-based CS quantification in both sexes. Overall, these results suggest that housing both sexes in the same room and treating with DFP in a mixed-sex cohort from the same pool of reagents will minimize variability in SE severity. Such rigorous experiments will yield better outcomes while testing disease-modifying agents in epilepsy models.
Collapse
Affiliation(s)
- Nikhil S Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Christina Meyer
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Suraj S Vasanthi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Nyzil Massey
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Manikandan Samidurai
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Aida N Almanza
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Logan Wachter
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
Gage M, Rao NS, Samidurai M, Putra M, Vasanthi SS, Meyer C, Wang C, Thippeswamy T. Soman (GD) Rat Model to Mimic Civilian Exposure to Nerve Agent: Mortality, Video-EEG Based Status Epilepticus Severity, Sex Differences, Spontaneously Recurring Seizures, and Brain Pathology. Front Cell Neurosci 2022; 15:798247. [PMID: 35197823 PMCID: PMC8859837 DOI: 10.3389/fncel.2021.798247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Modeling a real-world scenario of organophosphate nerve agent (OPNA) exposure is challenging. Military personnel are premedicated with pyridostigmine, which led to the development of OPNA models with pyridostigmine/oxime pretreatment to investigate novel therapeutics for acute and chronic effects. However, civilians are not premedicated with pyridostigmine/oxime. Therefore, experimental models without pyridostigmine were developed by other laboratories though often only in males. Following OPNA exposure, prolonged convulsive seizures (CS) or status epilepticus (SE) are concerning. The duration and severity of CS/SE determine the extent of brain injury in survivors even after treating with medical countermeasures (MCM)/antidotes such as atropine, an oxime, and an anticonvulsant such as diazepam/midazolam. In this study, using a large mixed sex cohort of adult male and female rats, without pretreatment, we demonstrate severe SE lasting for >20 min in 82% of the animals in response to soman (GD,132 μg/kg, s.c.). Atropine sulfate (2 mg/kg, i.m.) and HI-6 (125 mg/kg, i.m.) were administered immediately following soman, and midazolam (3 mg/kg, i.m.) 1 h post-exposure. Immediate MCM treatment is impractical in civilian exposure to civilians, but this approach reduces mortality in experimental models. Interestingly, female rats, irrespective of estrous stages, had an average of 44 min CS (stage ≥ 3), while males had an average of 32 min CS during SE, starting from soman exposure to midazolam treatment. However, in telemetry device implanted groups, there were no significant sex differences in SE severity; males had 40 min and females 43 min of continuous CS until midazolam was administered. No animals died prior to midazolam administration and less than 5% died in the first week after soman intoxication. In telemetered animals, there was a direct correlation between EEG changes and behavioral seizures in real-time. In the long-term, convulsive spontaneously recurring seizures (SRS) were observed in 85% of randomly chosen animals. At 4-months post-soman, the brain histology confirmed reactive gliosis and neurodegeneration. The novel findings of this study are that, in non-telemetered animals, the SE severity following soman intoxication was significantly greater in females compared to males and that the estrous cycle did not influence the response.
Collapse
Affiliation(s)
- Meghan Gage
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States.,Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Nikhil S Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Manikandan Samidurai
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Marson Putra
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States.,Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Suraj S Vasanthi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Christina Meyer
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Chong Wang
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Thimmasettappa Thippeswamy
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States.,Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Reddy DS. Brain structural and neuroendocrine basis of sex differences in epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2021; 175:223-233. [PMID: 33008527 DOI: 10.1016/b978-0-444-64123-6.00016-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter reviews the current information about sex differences in epilepsy and potential mechanisms underlying sex differences in seizure susceptibility and epilepsy. The susceptibility to and occurrence of seizures are generally higher in men than women. There is gender-specific epilepsies such as catamenial epilepsy, a neuroendocrine condition in which seizures are most often clustered around the perimenstrual or periovulatory period in adult women. Structural differences in cerebral morphology, the structural and functional circuits may render men and women differentially vulnerable to seizure disorders and epileptogenic processes. Changes in seizure sensitivity are evident at puberty, pregnancy, and menopause, often attributed to circulating steroid hormones and neurosteroids as well as neuroplasticity in receptor systems. An improved understanding of the sexual dimorphism in neural circuits and the neuroendocrine basis of sex differences or resistance to protective drugs is essential to develop sex-specific therapies for seizure conditions.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States.
| |
Collapse
|
8
|
Garcia JM, Meek EC, Chambers JE. Novel pyridinium oximes enhance 24-h survivability against a lethal dose of nerve agent surrogate in adult female rats. Toxicology 2020; 446:152626. [PMID: 33159982 DOI: 10.1016/j.tox.2020.152626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/08/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Our laboratory has developed novel substituted phenoxyalkyl pyridinium oximes (US Patent 9,227,937) designed to more efficiently penetrate the central nervous system to enhance survivability and attenuate seizure-like signs and neuropathology. Previous studies with male Sprague-Dawley rats indicated that survivability was enhanced against the nerve agent (sarin) surrogate, 4-nitrophenyl isopropyl methylphosphonate (NIMP). In this study, female adult Sprague-Dawley rats, tested specifically in diestrus, were challenged subcutaneously with lethal concentrations of NIMP (0.6 mg/kg). After development of seizure-like behavior and other signs of cholinergic toxicity, human equivalent dosages of atropine (0.65 mg/kg) and one of four oximes (2-PAM, or novel oxime 15, 20, or 55; 0.146 mmol/kg) or Multisol vehicle was administered alone or in binary oxime combinations intramuscularly. Animals were closely monitored for signs of cholinergic toxicity and 24 h survivability. Percentages of animals surviving the 24 h NIMP challenge dose were 35 % for 2-PAM and 55 %, 70 %, and 25 % for novel oximes 15, 20, and 55, respectively. Improvements in survival were also observed over 2-PAM alone with binary combinations of 2-PAM and either oxime 15 or oxime 20. Additionally, administration of novel oximes decreased the duration of seizure-like behavior as compared to 2-PAM suggesting that these oximes better penetrate the blood-brain barrier to mitigate central nervous system hypercholinergic activity. Efficacies were similar between females and previously reported males. These data indicate that the novel pyridinium oximes enhance survivability against lethal OP toxicity as compared to 2-PAM in adult female rats.
Collapse
Affiliation(s)
- Jason M Garcia
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS, 39762, USA.
| | - Edward C Meek
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS, 39762, USA.
| | - Janice E Chambers
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS, 39762, USA.
| |
Collapse
|
9
|
Gestational exposures to organophosphorus insecticides: From acute poisoning to developmental neurotoxicity. Neuropharmacology 2020; 180:108271. [PMID: 32814088 DOI: 10.1016/j.neuropharm.2020.108271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
For over three-quarters of a century, organophosphorus (OP) insecticides have been ubiquitously used in agricultural, residential, and commercial settings and in public health programs to mitigate insect-borne diseases. Their broad-spectrum insecticidal effectiveness is accounted for by the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that catalyzes acetylcholine (ACh) hydrolysis, in the nervous system of insects. However, because AChE is evolutionarily conserved, OP insecticides are also toxic to mammals, including humans, and acute OP intoxication remains a major public health concern in countries where OP insecticide usage is poorly regulated. Environmental exposures to OP levels that are generally too low to cause marked inhibition of AChE and to trigger acute signs of intoxication, on the other hand, represent an insidious public health issue worldwide. Gestational exposures to OP insecticides are particularly concerning because of the exquisite sensitivity of the developing brain to these insecticides. The present article overviews and discusses: (i) the health effects and therapeutic management of acute OP poisoning during pregnancy, (ii) epidemiological studies examining associations between environmental OP exposures during gestation and health outcomes of offspring, (iii) preclinical evidence that OP insecticides are developmental neurotoxicants, and (iv) potential mechanisms underlying the developmental neurotoxicity of OP insecticides. Understanding how gestational exposures to different levels of OP insecticides affect pregnancy and childhood development is critical to guiding implementation of preventive measures and direct research aimed at identifying effective therapeutic interventions that can limit the negative impact of these exposures on public health.
Collapse
|
10
|
El Khayat El Sabbouri H, Gay-Quéheillard J, Joumaa WH, Delanaud S, Guibourdenche M, Darwiche W, Djekkoun N, Bach V, Ramadan W. Does the perigestational exposure to chlorpyrifos and/or high-fat diet affect respiratory parameters and diaphragmatic muscle contractility in young rats? Food Chem Toxicol 2020; 140:111322. [PMID: 32289335 DOI: 10.1016/j.fct.2020.111322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
The perinatal period is characterized by developmental stages with high sensitivity to environmental factors. Among the risk factors, maternal High-Fat Diet (HFD) consumption and early-life pesticide exposure can induce metabolic disorders at adulthood. We established the effects of perigestational exposure to Chlorpyrifos (CPF) and/or HFD on respiratory parameters, sleep apnea and diaphragm contractility in adult rats. Four groups of female rats were exposed starting from 4 months before gestation till the end of lactation period to CPF (1 mg/kg/day vs. vehicle) with or without HFD. Sleep apnea and respiratory parameters were measured by whole-body plethysmography in male offspring at postnatal day 60. Then diaphragm strips were dissected for the measurement of contractility, acetylcholinesterase (AChE) activity, and gene expression. The perigestational exposure to CPF and/or HFD increased the sleep apnea index but decreased the respiratory frequency. The twitch tension and the fatigability index were also increased, associated with reduced AChE activity and elevated mRNA expression of AChE, ryanodine receptor, and myosin heavy chain isoforms. Therefore, the perigestational exposure to either CPF and/or HFD could program the risks for altered ventilatory parameters and diaphragm contractility in young adult offspring despite the lack of direct contact to CPF and/or HFD.
Collapse
Affiliation(s)
- Hiba El Khayat El Sabbouri
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France; Laboratoire Rammal Hassan Rammal, équipe de Recherche PhyToxE, Faculté des Sciences (section V), Université Libanaise, Nabatieh, Lebanon
| | | | - Wissam H Joumaa
- Laboratoire Rammal Hassan Rammal, équipe de Recherche PhyToxE, Faculté des Sciences (section V), Université Libanaise, Nabatieh, Lebanon
| | - Stephane Delanaud
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France
| | | | - Walaa Darwiche
- Hematim Laboratory, EA4666, University of Picardie Jules Verne, 80025, Amiens, France
| | - Narimane Djekkoun
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France
| | - Véronique Bach
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France
| | - Wiam Ramadan
- Laboratoire Rammal Hassan Rammal, équipe de Recherche PhyToxE, Faculté des Sciences (section V), Université Libanaise, Nabatieh, Lebanon; Lebanese Institute for Biomedical Research and Application (LIBRA), International University of Beirut (BIU) and Lebanese International University (LIU), Beirut, Lebanon
| |
Collapse
|
11
|
Gage M, Golden M, Putra M, Sharma S, Thippeswamy T. Sex as a biological variable in the rat model of diisopropylfluorophosphate-induced long-term neurotoxicity. Ann N Y Acad Sci 2020; 1479:44-64. [PMID: 32090337 DOI: 10.1111/nyas.14315] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 01/13/2023]
Abstract
Sex differences in response to neurotoxicant exposure that initiates epileptogenesis are understudied. We used telemetry-implanted male and female adult rats exposed to an organophosphate (OP) neurotoxicant, diisopropylflourophosphate (DFP), to test sex differences in the severity of status epilepticus (SE) and the development of spontaneous recurrent seizures (SRS). Females had significantly less severe SE and decreased epileptiform spikes compared with males, although females received a higher dose of DFP than males. The estrous stages had no impact on seizure susceptibility, but rats with severe SE had a significantly prolonged diestrus. A previously demonstrated disease-modifying agent, an inducible nitric oxide synthase inhibitor, 1400W, was tested in both sexes. None of the eight males treated with 1400W developed convulsive SRS during 4 weeks post-DFP exposure, while two of seven females developed convulsive SRS. Concerning gliosis and neurodegeneration, there were region-specific differences in the interaction between sex and SE severity. As SE severity influences epileptogenesis, and as females had significantly less severe SE, sex as a biological variable should be factored into the design of future OP nerve agent experiments while evaluating neurotoxicity and optimizing potential disease-modifying agents.
Collapse
Affiliation(s)
- Meghan Gage
- Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Madison Golden
- Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Marson Putra
- Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Shaunik Sharma
- Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Thimmasettappa Thippeswamy
- Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
12
|
Kundrick E, Marrero-Rosado B, Stone M, Schultz C, Walker K, Lee-Stubbs RB, de Araujo Furtado M, Lumley LA. Delayed midazolam dose effects against soman in male and female plasma carboxylesterase knockout mice. Ann N Y Acad Sci 2020; 1479:94-107. [PMID: 32027397 DOI: 10.1111/nyas.14311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 01/30/2023]
Abstract
Chemical warfare nerve agent exposure leads to status epilepticus that may progress to epileptogenesis and severe brain pathology when benzodiazepine treatment is delayed. We evaluated the dose-response effects of delayed midazolam (MDZ) on toxicity induced by soman (GD) in the plasma carboxylesterase knockout (Es1-/- ) mouse, which, similar to humans, lacks plasma carboxylesterase. Initially, we compared the median lethal dose (LD50 ) of GD exposure in female Es1-/- mice across estrous with male mice and observed a greater LD50 during estrus compared with proestrus or with males. Subsequently, male and female GD-exposed Es1-/- mice treated with a dose range of MDZ 40 min after seizure onset were evaluated for survivability, seizure activity, and epileptogenesis. GD-induced neuronal loss and microglial activation were evaluated 2 weeks after exposure. Similar to our previous observations in rats, delayed treatment with MDZ dose-dependently increased survival and reduced seizure severity in GD-exposed mice, but was unable to prevent epileptogenesis, neuronal loss, or gliosis. These results suggest that MDZ is beneficial against GD exposure, even when treatment is delayed, but that adjunct therapies to enhance protection need to be identified. The Es1-/- mouse GD exposure model may be useful to screen for improved medical countermeasures against nerve agent exposure.
Collapse
Affiliation(s)
- Erica Kundrick
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Brenda Marrero-Rosado
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Michael Stone
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Caroline Schultz
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Katie Walker
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Robyn B Lee-Stubbs
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | | | - Lucille A Lumley
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| |
Collapse
|
13
|
Abstract
Alzheimer disease (AD) is characterized by wide heterogeneity in cognitive and behavioural syndromes, risk factors and pathophysiological mechanisms. Addressing this phenotypic variation will be crucial for the development of precise and effective therapeutics in AD. Sex-related differences in neural anatomy and function are starting to emerge, and sex might constitute an important factor for AD patient stratification and personalized treatment. Although the effects of sex on AD epidemiology are currently the subject of intense investigation, the notion of sex-specific clinicopathological AD phenotypes is largely unexplored. In this Review, we critically discuss the evidence for sex-related differences in AD symptomatology, progression, biomarkers, risk factor profiles and treatment. The cumulative evidence reviewed indicates sex-specific patterns of disease manifestation as well as sex differences in the rates of cognitive decline and brain atrophy, suggesting that sex is a crucial variable in disease heterogeneity. We discuss critical challenges and knowledge gaps in our current understanding. Elucidating sex differences in disease phenotypes will be instrumental in the development of a 'precision medicine' approach in AD, encompassing individual, multimodal, biomarker-driven and sex-sensitive strategies for prevention, detection, drug development and treatment.
Collapse
|
14
|
Neuroprotective effects of a catalytic antioxidant in a rat nerve agent model. Redox Biol 2018; 20:275-284. [PMID: 30384261 PMCID: PMC6215030 DOI: 10.1016/j.redox.2018.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 12/19/2022] Open
Abstract
Persistent inhibition of acetylcholinesterase resulting from exposure to nerve agents such as soman, is associated with prolonged seizure activity known as status epilepticus (SE). Without medical countermeasures, exposure to soman and resultant SE leads to high morbidity and mortality. Currently available therapeutics are effective in limiting mortality, however effects on morbidity are highly time-dependent and rely on the ability to suppress SE. We have previously demonstrated significant protection from secondary neuronal injury in surrogate nerve agent models by targeting oxidative stress. However, whether oxidative stress represents a relevant therapeutic target in genuine nerve agent toxicity is unknown. Here, we demonstrate that soman exposure results in robust region- and time-dependent oxidative stress. Targeting this oxidative stress in a post-exposure paradigm using a small molecular weight, broad spectrum catalytic antioxidant, was sufficient to attenuate brain and plasma oxidative stress, neuroinflammation and neurodegeneration. Thus, targeting of oxidative stress in a post-exposure paradigm can mitigate secondary neuronal injury following soman exposure. Soman exposure results in time- and region- dependent oxidative stress in brain. A catalytic antioxidant inhibited oxidative stress, neuroinflammation and degeneration. Post-exposure treatment with the antioxidant attenuates secondary neuronal injury.
Collapse
|
15
|
Matson LM, Lee-Stubbs RB, Cadieux CL, Koenig JA, Ardinger CE, Chandler J, Johnson EA, Hoard-Fruchey HM, Shih TMA, Cerasoli DM, McDonough JH. Assessment of mouse strain differences in baseline esterase activities and toxic response to sarin. Toxicology 2018; 410:10-15. [PMID: 30172647 DOI: 10.1016/j.tox.2018.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/09/2018] [Accepted: 08/27/2018] [Indexed: 11/24/2022]
Abstract
Genetics likely play a role in various responses to nerve agent (NA) exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses. This study uses different mouse strains to identify if mouse strain differences in sarin exposure exist. In Experiment 1, basal levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CE) were measured in different strains of naïve mice to account for potential pharmacokinetic determinants of individual differences. In Experiment 2, median lethal dose (MLD) levels were estimated in 8 inbred mouse strains following subcutaneous (s.c.) administration of sarin. Few strain or sex differences in esterase activity levels were observed, with the exception of erythrocyte AChE activity in the C57BL/6J strain. Both sex and strain differences in toxicity were observed, with the most resistant strains being the BALB/cByJ and FVB/NJ strains and the most sensitive strain being the DBA/2J strain. These findings can be expanded to explore pathways involved in NA response, which may provide an avenue to develop therapeutics for preventing and treating the damaging effects of NA exposure.
Collapse
Affiliation(s)
- Liana M Matson
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States.
| | - Robyn B Lee-Stubbs
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States.
| | - C Lin Cadieux
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States.
| | - Jeffrey A Koenig
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States.
| | - Cherish E Ardinger
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States.
| | - Jessica Chandler
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States.
| | - Erik A Johnson
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States.
| | - Heidi M Hoard-Fruchey
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States.
| | - Tsung-Ming A Shih
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States.
| | - Doug M Cerasoli
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States
| | - John H McDonough
- U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States.
| |
Collapse
|
16
|
Sex modulated effects of sarin exposure in rats: Toxicity, hypothermia and inflammatory markers. Neurotoxicology 2018; 66:121-127. [DOI: 10.1016/j.neuro.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 12/31/2022]
|
17
|
Early changes in M2 muscarinic acetylcholine receptors (mAChRs) induced by sarin intoxication may be linked to long lasting neurological effects. Neurotoxicology 2017; 65:248-254. [PMID: 29128314 DOI: 10.1016/j.neuro.2017.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/05/2017] [Accepted: 11/05/2017] [Indexed: 01/08/2023]
Abstract
The effect of sarin on the binding parameters (KD & Bmax) of M2 muscarinic acetylcholine receptor (mAChR) was studied 24h and 1 week post exposure. Male & female Sprague-Daweley rats were poisoned with 1XLD50 sarin (80μg/kg, im) followed by treatment of trimedoxime bromide and atropine (7.5:5mg/kg, im) 1min later. Brains were removed and analyzed for M2 mAChR binding, using [3H]AFDX384, an M2 selective antagonist. A significant increase in KD of M2 mAChR was found in the cortex 24h post poisoning, displaying elevation from 4.65±1.16 to 8.45±1.06nM and 5.24±0.93 to 9.29±1.56nM in male and female rats, respectively. A rise in KD was also noted 1 week following exposure from 5.04±1.20 to 11.75±2.78 and from 5.37±1.02 to 11.66±1.73nM, presenting an added increase of 51 and 40% (compared to 24h) in males and females, respectively. Analysis of M2 receptor density (Bmax) revealed a significant reduction of 68% in males and insignificant reduction of 22% in females, 24h after sarin exposure which was followed by 37% recovery in males and 100% recovery in females, 1 week later. These results indicate that sarin induces a long-term decreased affinity in M2 mAChR (elevated KDs) and a transient effect on the number of this receptor subtype (Bmax). We hypothesize that the reduced affinity of the M2 receptors (negative auto-regulatory receptors) may cause long-term brain deficits by impairing the normal regulation release of ACh into the synaptic cleft.
Collapse
|
18
|
Langston JL, Myers TM. VX toxicity in the Göttingen minipig. Toxicol Lett 2016; 264:12-19. [PMID: 27773723 DOI: 10.1016/j.toxlet.2016.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022]
Abstract
The present experiments determined the intramuscular LD50 of VX in male Göttingen minipigs at two stages of development. In pubertal animals (115 days old), the LD50 of VX was indeterminate, but approximated 33.3μg/kg. However, in sexually mature animals (152 days old), the LD50 was estimated to be only 17.4μg/kg. Signs of nerve agent toxicity in the Göttingen minipig were similar to those described for other species, with some notable exceptions (such as urticaria and ejaculation). Latencies to the onset of sustained convulsions were inversely related to the administered dose of VX in both ages of minipigs. Additionally, actigraphy was used to quantify the presence of tremor and convulsions and, in some cases, was useful for precisely estimating time of death. The main finding indicates that in minipigs, as in other species, even relatively small differences in age can substantially alter the toxicity of nerve agents. Additionally, actigraphy can serve as a non-invasive method of characterizing the tremors and convulsions that often accompany nerve agent intoxication.
Collapse
Affiliation(s)
- Jeffrey L Langston
- Analytical Toxicology Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Todd M Myers
- Analytical Toxicology Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA.
| |
Collapse
|
19
|
Reddy DS. The neuroendocrine basis of sex differences in epilepsy. Pharmacol Biochem Behav 2016; 152:97-104. [PMID: 27424276 DOI: 10.1016/j.pbb.2016.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/25/2016] [Accepted: 07/12/2016] [Indexed: 01/22/2023]
Abstract
Epilepsy affects people of all ages and both genders. Sex differences are well known in epilepsy. Seizure susceptibility and the incidence of epilepsy are generally higher in men than women. In addition, there are gender-specific epilepsies such as catamenial epilepsy, a neuroendocrine condition in which seizures are most often clustered around the perimenstrual or periovulatory period in adult women with epilepsy. Changes in seizure sensitivity are also evident at puberty, pregnancy, and menopause. Sex differences in seizure susceptibility and resistance to antiseizure drugs can be studied in experimental models. An improved understanding of the neuroendocrine basis of sex differences or resistance to protective drugs is essential to develop targeted therapies for sex-specific seizure conditions. This article provides a brief overview of the current status of sex differences in seizure susceptibility and the potential mechanisms underlying the gender differences in seizure sensitivity.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
20
|
Larsen KE, Lifschitz AL, Lanusse CE, Virkel GL. The herbicide glyphosate is a weak inhibitor of acetylcholinesterase in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:41-4. [PMID: 27258137 DOI: 10.1016/j.etap.2016.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 05/20/2023]
Abstract
The current work evaluated the inhibitory potency of the herbicide glyphosate (GLP) on acetylcholinesterase (AChE) activity in male and female rat tissues. The AChE activity in brain was higher (p<0.05) than those observed in kidney (females: 2.2-fold; males: 1.9-fold), liver (females: 6-fold; males: 6.9-fold) and plasma (females: 14.7-fold; males: 25.3-fold). Enzyme activities were higher in presence of 10mM GLP compared to those measured at an equimolar concentration of the potent AChE inhibitor dichlorvos (DDVP). Moreover, IC50s for GLP resulted between 6×10(4)- and 6.8×10(5)-fold higher than those observed for DDVP. In conclusion, GLP is a weak inhibitor of AChE in rats.
Collapse
Affiliation(s)
- Karen E Larsen
- Laboratorio de Biología y Ecotoxicología, FCV-UNCPBA, Tandil 7000, Argentina; Laboratorio de Farmacología, CIVETAN-CONICET, FCV-UNCPBA, Tandil 7000, Argentina
| | - Adrián L Lifschitz
- Laboratorio de Farmacología, CIVETAN-CONICET, FCV-UNCPBA, Tandil 7000, Argentina
| | - Carlos E Lanusse
- Laboratorio de Farmacología, CIVETAN-CONICET, FCV-UNCPBA, Tandil 7000, Argentina
| | - Guillermo L Virkel
- Laboratorio de Farmacología, CIVETAN-CONICET, FCV-UNCPBA, Tandil 7000, Argentina.
| |
Collapse
|
21
|
Wright LKM, Lumley LA, Lee RB, Taylor JT, Miller DB, Muse WT, Emm EJ, Whalley CE. Younger rats are more susceptible to the lethal effects of sarin than adult rats: 24 h LC 50 for whole-body (10 and 60 min) exposures. Drug Chem Toxicol 2016; 40:134-139. [PMID: 27320079 DOI: 10.1080/01480545.2016.1188304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chemical warfare nerve agents (CWNA) inhibit acetylcholinesterase and are among the most lethal chemicals known to man. Children are predicted to be vulnerable to CWNA exposure because of their smaller body masses, higher ventilation rates and immature central nervous systems. While a handful of studies on the effects of CWNA in younger animals have been published, exposure routes relevant to battlefield or terrorist situations (i.e. inhalation for sarin) were not used. Thus, we estimated the 24 h LC50 for whole-body (10 and 60 min) exposure to sarin using a stagewise, adaptive dose design. Specifically, male and female Sprague-Dawley rats were exposed to a range of sarin concentrations (6.2-44.0 or 1.6-12.5 mg/m³) for either 10 or 60 min, respectively, at six different times during their development (postnatal day [PND] 7, 14, 21, 28, 42 and 70). For male and female rats, the lowest LC50 values were observed for PND 14 and the highest LC50 values for PND 28. Sex differences were observed only for PND 42 for the 10 min exposures and PND 21 and 70 for the 60 min exposures. Thus, younger rats (PND 14) were more susceptible than older rats (PND 70) to the lethal effects of whole-body exposure to sarin, while adolescent (PND 28) rats were the least susceptible and sex differences were minimal. These results underscore the importance of controlling for the age of the animal in research on the toxic effects associated with CWNA exposure.
Collapse
Affiliation(s)
- Linnzi K M Wright
- a US Army Medical Research Institute of Chemical Defense (USAMRICD) and
| | - Lucille A Lumley
- a US Army Medical Research Institute of Chemical Defense (USAMRICD) and
| | - Robyn B Lee
- a US Army Medical Research Institute of Chemical Defense (USAMRICD) and
| | - James T Taylor
- a US Army Medical Research Institute of Chemical Defense (USAMRICD) and
| | - Dennis B Miller
- b US Army Edgewood Chemical Biological Center (ECBC) , Aberdeen Proving Ground , MD , USA
| | - William T Muse
- b US Army Edgewood Chemical Biological Center (ECBC) , Aberdeen Proving Ground , MD , USA
| | - Edward J Emm
- b US Army Edgewood Chemical Biological Center (ECBC) , Aberdeen Proving Ground , MD , USA
| | - Christopher E Whalley
- b US Army Edgewood Chemical Biological Center (ECBC) , Aberdeen Proving Ground , MD , USA
| |
Collapse
|
22
|
Wright LKM, Lee RB, Clarkson ED, Lumley LA. Female rats are less susceptible during puberty to the lethal effects of percutaneous exposure to VX. Toxicol Rep 2015; 3:895-899. [PMID: 28959617 PMCID: PMC5615417 DOI: 10.1016/j.toxrep.2015.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 01/06/2023] Open
Abstract
Nerve agents with low volatility such as VX are primarily absorbed through the skin when released during combat or a terrorist attack. The barrier function of the stratum corneum may be compromised during certain stages of development, allowing VX to more easily penetrate through the skin. However, age-related differences in the lethal potency of VX have yet to be evaluated using the percutaneous (pc) route of exposure. Thus, we estimated the 24 and 48 h median lethal dose for pc exposure to VX in male and female rats during puberty and early adulthood. Pubescent, female rats were less susceptible than both their male and adult counterparts to the lethal effects associated with pc exposure to VX possibly because of hormonal changes during that stage of development. This study emphasizes the need to control for both age and sex when evaluating the toxicological effects associated with nerve agent exposure in the rat model.
Collapse
Key Words
- (AChE), acetylcholinesterase
- (ANOVA), analysis of variance
- (BARDA), Biomedical Advanced Research and Development Authority
- (CI), confidence interval
- (LD50), median lethal dose
- (PND), postnatal day
- (SC), subcutaneous or subcutaneously
- (TEWL), transepidermal water loss
- (USAMRICD), US Army Medical Research Institute of Chemical Defense
- (pc), percutaneous or percutaneously
- Median lethal dose
- Nerve agent
- Percutaneous
- Puberty
- Rat
- VX
- VX (PubChem CID: 39793)
Collapse
Affiliation(s)
- Linnzi K M Wright
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA.,Edgewood Chemical Biological Center, 5183 Blackhawk Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Robyn B Lee
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Edward D Clarkson
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Lucille A Lumley
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
23
|
Wright LKM, Lee RB, Vincelli NM, Whalley CE, Lumley LA. Comparison of the lethal effects of chemical warfare nerve agents across multiple ages. Toxicol Lett 2015; 241:167-74. [PMID: 26621540 DOI: 10.1016/j.toxlet.2015.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/09/2015] [Accepted: 11/21/2015] [Indexed: 12/17/2022]
Abstract
Children may be inherently more vulnerable than adults to the lethal effects associated with chemical warfare nerve agent (CWNA) exposure because of their closer proximity to the ground, smaller body mass, higher respiratory rate, increased skin permeability and immature metabolic systems. Unfortunately, there have only been a handful of studies on the effects of CWNA in pediatric animal models, and more research is needed to confirm this hypothesis. Using a stagewise, adaptive dose design, we estimated the 24h median lethal dose for subcutaneous exposure to seven CWNA in both male and female Sprague-Dawley rats at six different developmental times. Perinatal (postnatal day [PND] 7, 14 and 21) and adult (PND 70) rats were more susceptible than pubertal (PND 28 and 42) rats to the lethal effects associated with exposure to tabun, sarin, soman and cyclosarin. Age-related differences in susceptibility were not observed in rats exposed to VM, Russian VX or VX.
Collapse
Affiliation(s)
- Linnzi K M Wright
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 2900 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Robyn B Lee
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 2900 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Nicole M Vincelli
- Edgewood Chemical Biological Center (ECBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Christopher E Whalley
- Edgewood Chemical Biological Center (ECBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Lucille A Lumley
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 2900 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA.
| |
Collapse
|