1
|
Luo Y, Yang Z, Zhang Y, Jiang S, Zhu J, Li X, You Q, Lu M. Patenting perspective on Keap1 inhibitors (2019-2024). Expert Opin Ther Pat 2025:1-32. [PMID: 39909720 DOI: 10.1080/13543776.2025.2462844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Kelch-like ECH-associated protein 1 (Keap1), an E3 ligase negatively regulating the nuclear factor erythroid 2-related factor 2 (Nrf2), has emerged as an auspicious drug target for treating ailments associated with oxidative stress and inflammation. Discovery of Keap1 inhibitors have attracted significant interest. AREAS COVERED This review covers patents on Keap1 inhibitors from 2019 to 2024, providing a comprehensive analysis of their structural characteristics, optimization strategies, pharmacological properties and clinical progress. EXPERT OPINION Extensive efforts have been devoted to enhance potency and drug-like properties of Keap1 inhibitors. Strategies such as ROS-cleavable prodrug design, bivalent inhibition and PROTACs are emerging. As the range of drug types and applications expands, Keap1 inhibitors are becoming a sagacious option for disease treating.
Collapse
Affiliation(s)
- Yongfu Luo
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Ziyu Yang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Yuan Zhang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Shutong Jiang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Jingyu Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Xiangyang Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
- Department of Research and development, Microcell Pharmaceutical (Suzhou) Co., Ltd, Suzhou, China
| | - Qidong You
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengchen Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| |
Collapse
|
2
|
Wang J, Wang L, Liu Y, Hou C, Xie Q, Tang D, Liu F, Lou B, Zhu J. The Keap1-Nrf2/ARE signaling pathway regulates redox balance and apoptosis in the small yellow croaker (Larimichthys polyactis) under hypoxic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177396. [PMID: 39521089 DOI: 10.1016/j.scitotenv.2024.177396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/04/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Hypoxic stress can result in redox imbalance and apoptosis in teleostean fishes; however, the precise molecular mechanisms underlying this process, including its regulation by the key signaling pathway Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2 related factor (Nrf2)/antioxidant response element (ARE), remain elusive. Therefore, in this study, we chose the Keap1-Nrf2/ARE signaling pathway as the entry point and a combination of in vivo (target organ liver) and in vitro (small yellow croaker fry [SYCF] cell line) experiments to investigate the molecular mechanism by which Larimichthys polyactis (L. polyactis) adapts to hypoxic stress by regulating redox balance and apoptosis. As our previous study found that hypoxic stress could lead to redox imbalance and apoptosis in L. polyactis. First, we observed significant alterations in the expression of key genes Lpkeap1, Lpnrf2, Lpho-1, and Lpnqo1 within the Keap1-Nrf2/ARE signaling pathway in both liver tissue and SYCF cells of L. polyactis under hypoxic stress, indicating activation of this pathway in response to hypoxia. Subsequently, we elucidated the mechanism by which hypoxia activates this pathway, that is, hypoxia weakened the interaction between LpNrf2 and LpKeap1, promoting the nuclear translocation of LpNrf2 and enhancing its binding activity to ARE, thereby activating the transcription of target genes. Furthermore, we found that significant changes occurred in the redox balance and apoptosis-related indicators after LpNrf2 knockdown and exposure to hypoxic stress for 24 h in SYCF cells, indicating that this pathway can regulate redox balance and apoptosis regulation under hypoxic stress in L. polyactis. Additionally, we used DNA affinity purification sequencing (DAP-seq) to identify the ARE sequence (ATGATTTAGC) that bound to LpNrf2 and its target genes. Finally, we conducted a combined analysis of DAP-seq and RNA-seq to identify six key target genes involved in the process: haeme oxygenase-1 (Ho-1), B-cell lymphoma-2 (Bcl2), pituitary homeobox 2 isoform X1 (Pitx2), aquaporin-4 isoform X1 (Aqp4), stress-induced phosphoprotein 1-like isoform X1 (Stip1), and guanine nucleotide-binding protein G (i) subunit alpha-2-like (Gnai2). In summary, hypoxic stress induced by weakening LpNrf2 and LpKeap1 interaction promoted LpNrf2 nuclear entry and enhanced its binding activity to ARE, thereby activating the transcription of multiple target genes to regulate redox balance and apoptosis. The research results not only help deepen our understanding of the adaptive mechanisms of L. polyactis and even marine fish to hypoxic stress and its survival strategies but also provide new ideas and potential targets for breeding new hypoxia-tolerant strains.
Collapse
Affiliation(s)
- Jingqian Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Li Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Yang Liu
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Congcong Hou
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Qingping Xie
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, People's Republic of China
| | - Daojun Tang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Feng Liu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, People's Republic of China
| | - Bao Lou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, People's Republic of China.
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang Province 315211, People's Republic of China.
| |
Collapse
|
3
|
Sato A, Watanabe A, Muraki K, Kimoto-Nira H, Kobayashi M. Novel Indirect Antioxidant Activity Independent of Nrf2 Exerted by Lactic Acid Bacteria. Int J Mol Sci 2024; 25:10648. [PMID: 39408975 PMCID: PMC11476518 DOI: 10.3390/ijms251910648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
In recent years, the health benefits of lactic acid bacteria have garnered attention, but their antioxidant activity remains relatively underexplored. We have been analyzing the antioxidant activities of various dietary phytochemicals by assessing their ability to mitigate oxidative stressor-induced toxicity in zebrafish larvae through pretreatment. In this study, the antioxidant activities of 24 strains of heat-killed lactic acid bacteria from various origins were examined using this zebrafish assay system. The results revealed that all 24 strains possessed antioxidant activity that reduces hydrogen peroxide toxicity. Further detailed analysis using the H61 strain, which exhibited the strongest activity, showed that no direct antioxidant activity was observed in the assay system, suggesting that the detected antioxidant activity was entirely indirect. Moreover, it was found that pretreatment of zebrafish larvae with the H61 strain for more than 6 h was required to exert its antioxidant activity. This duration was similar to that required by dietary antioxidants that activate the Keap1-Nrf2 pathway, suggesting potential involvement of this pathway. However, analysis using Nrf2-knockout zebrafish revealed that the antioxidant activity of strain H61 is independent of Nrf2, indicating that it represents a novel indirect antioxidant activity that does not involve the Keap1-Nrf2 pathway. To further characterize this activity, the ability to mitigate the toxicity of oxidative stressors other than hydrogen peroxide was examined. The results indicated that while the toxicity of tert-butyl hydroperoxide was reduced, unlike with the Keap1-Nrf2 pathway, it was not effective in counteracting the toxicity of paraquat or arsenite, which generate superoxide radicals. In conclusion, we have identified a novel indirect antioxidant activity in lactic acid bacteria.
Collapse
Affiliation(s)
- Ayaka Sato
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (A.S.)
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Asami Watanabe
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (A.S.)
| | - Kyoji Muraki
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (A.S.)
| | - Hiromi Kimoto-Nira
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba 305-8642, Japan;
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (A.S.)
| |
Collapse
|
4
|
Nguyen VT, Thao VTM, Hanh LLP, Rol TH, Thao NHP, Nguyen TX, Luu PT, Thuy DT. Exploring the Phytochemical Diversity and Antioxidant Potential of the Vietnamese Smilax glabra Roxb: Insights from UPLC-QTOF-MS/MS and Zebrafish Model Studies. Appl Biochem Biotechnol 2024; 196:7307-7324. [PMID: 38519750 DOI: 10.1007/s12010-024-04930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Research on natural products is growing due to their potential health benefits and medicinal properties. Despite regional variations in phytochemical composition and bioactivity, Smilax glabra Roxb (SGB) has attracted the interest of researchers. Scientists are particularly interested in the Vietnamese SGB variant, which is influenced by biological and environmental factors. Despite geographical differences in phytochemical makeup and bioactivities, SGB remains a fascinating subject in traditional herbal medicine. Using ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), the phytochemicals in Vietnamese SGB extracts were investigated. This study revealed a wide range of phytochemical compounds, including flavonoids, terpenoids, glycosides, alkaloids, organic acids, phenolics, and steroids. Furthermore, utilizing zebrafish as a model organism, we discovered that these extracts have the surprising ability to greatly improve the survival rate of zebrafish larvae exposed to oxidative stress caused by arsenite (NaAsO2) and hydrogen peroxide (H2O2). Notably, our discoveries suggest the occurrence of new antioxidative pathways in addition to the kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, expanding the understanding of the antioxidant properties and potential therapeutic uses of these plants. To summarize, our research findings shed light on the phytochemical composition of Vietnamese SGB, revealing its potential as a natural antioxidant and encouraging further exploration of its underlying mechanisms for future innovative antioxidant therapies.
Collapse
Affiliation(s)
- Vu Thanh Nguyen
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Department of Biotechnology, HUTECH Institute of Applied Sciences, HUTECH University, Ho Chi Minh City, Vietnam.
| | - Vo Thi Minh Thao
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Thi Hoa Rol
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Tong Xuan Nguyen
- Institute of Environmental Science, Industrial University of Ho Chi Minh City, Engineering, and Management, Ho Chi Minh City, Vietnam
| | - Pham Thanh Luu
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Dinh Thi Thuy
- Department of Engineering and Technology, Van Hien University, 665-667-669 Dien Bien Phu Street, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Cascajosa-Lira A, Prieto AI, Pichardo S, Jos A, Cameán AM. Protective effects of sulforaphane against toxic substances and contaminants: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155731. [PMID: 38824824 DOI: 10.1016/j.phymed.2024.155731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Sulforaphane (SFN) is a dietary isothiocyanate, derived from glucoraphanin, present in cruciferous vegetables belonging to the Brassica genus. It is a biologically active phytochemical that acts as a nuclear factor erythroid 2-related factor 2 (Nrf2) inducer. Thus, it has been reported to have multiple protective functions including anticancer responses and protection against a toxic agent's action. PURPOSE The present work systematically reviewed and synthesised the protective properties of sulforaphane against a toxic agent. This review reveals the mechanism of the action of SFN in each organ or system. METHODS The PRISMA guideline was followed in this sequence: researched literature, organised retrieved documents, abstracted relevant information, assessed study quality and bias, synthesised data, and prepared a comprehensive report. Searches were conducted on Science Direct and PubMed using the keywords "Sulforaphane" AND ("protective effects" OR "protection against"). RESULTS Reports showed that liver and the nervous system are the target organs on which attention was focused, and this might be due to the key role of oxidative stress in liver and neurodegenerative diseases. However, protective activities have also been demonstrated in the lungs, heart, immune system, kidneys, and endocrine system. SFN exerts its protective effects by activating the Nrf2 pathway, which enhances antioxidant defenses and reduces oxidative stress. It also suppresses inflammation by decreasing interleukin production. Moreover, SFN inhibits apoptosis by preventing caspase 3 cleavage and increasing Bcl2 levels. Overall, SFN demonstrates multifaceted mechanisms to counteract the adverse effects of toxic agents. CONCLUSION SFN has potential clinical applications as a chemoprotective agent. Nevertheless, more studies are necessary to set the safe doses of SFN in humans.
Collapse
Affiliation(s)
- Antonio Cascajosa-Lira
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| | - Ana I Prieto
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| | - Silvia Pichardo
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| | - Angeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| | - Ana M Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| |
Collapse
|
6
|
Koomson AA, Delaney P, Khan N, Sadler KC. Sustained effects of developmental exposure to inorganic arsenic on hepatic gsto2 expression and mating success in zebrafish. Biol Open 2024; 13:bio060094. [PMID: 38446164 PMCID: PMC10941348 DOI: 10.1242/bio.060094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
The impacts of exposure to the pervasive environmental toxicant, inorganic arsenic (iAs), on human and fish health are well characterized and several lines of evidence suggest that some impacts can manifest years after exposure cessation. Using a developmental exposure protocol whereby zebrafish embryos were exposed to 0.5 and 1.5 mM iAs from 4-120 hours post fertilization (hpf) and then removed, we investigated the sustained effects of iAs on gene expression in the liver, survival, reproductive success, and susceptibility to iAs toxicity in the subsequent generation. Persistent exposure to iAs during development had substantial effects on the hepatic transcriptome, with 23% of all expressed genes significantly changed following developmental exposure. The gsto2 gene is involved in iAs metabolism and this gene was significantly downregulated in female livers 9 months after iAs was removed. Developmental exposure to 1.5 mM iAs, but not 0.5 mM, decreased survival by over 50% at 3 months of age. Adults that were developmentally exposed to 0.5 mM iAs had reduced mating success, but their offspring had no differences in observable aspects of development or their susceptibility to iAs toxicity. This demonstrates that developmental exposure of zebrafish to iAs reduces long-term survival, reproductive success and causes sustained changes to gsto2 expression in the liver.
Collapse
Affiliation(s)
- Abigail Ama Koomson
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Nouf Khan
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Kirsten C. Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| |
Collapse
|
7
|
Silva CS, Kudlyk T, Tryndyak VP, Twaddle NC, Robinson B, Gu Q, Beland FA, Fitzpatrick SC, Kanungo J. Gene expression analyses reveal potential mechanism of inorganic arsenic-induced apoptosis in zebrafish. J Appl Toxicol 2023; 43:1872-1882. [PMID: 37501093 DOI: 10.1002/jat.4520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Our previous study showed that sodium arsenite (200 mg/L) affected the nervous system and induced motor neuron development via the Sonic hedgehog pathway in zebrafish larvae. To gain more insight into the effects of arsenite on other signaling pathways, including apoptosis, we have performed quantitative polymerase chain reaction array-based gene expression analyses. The 96-well array plates contained primers for 84 genes representing 10 signaling pathways that regulate several biological functions, including apoptosis. We exposed eggs at 5 h postfertilization until the 72 h postfertilization larval stage to 200 mg/L sodium arsenite. In the Janus kinase/signal transducers and activators of transcription, nuclear factor κ-light-chain-enhancer of activated B cells, and Wingless/Int-1 signaling pathways, the expression of only one gene in each pathway was significantly altered. The expression of multiple genes was altered in the p53 and oxidative stress pathways. Sodium arsenite induced excessive apoptosis in the larvae. This compelled us to analyze specific genes in the p53 pathway, including cdkn1a, gadd45aa, and gadd45ba. Our data suggest that the p53 pathway is likely responsible for sodium arsenite-induced apoptosis. In addition, sodium arsenite significantly reduced global DNA methylation in the zebrafish larvae, which may indicate that epigenetic factors could be dysregulated after arsenic exposure. Together, these data elucidate potential mechanisms of arsenic toxicity that could improve understanding of arsenic's effects on human health.
Collapse
Affiliation(s)
- Camila S Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Tetyana Kudlyk
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Bonnie Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Suzanne C Fitzpatrick
- Office of the Center Director, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
8
|
Tamaoki J, Maeda H, Kobayashi I, Takeuchi M, Ohashi K, Gore A, Bonkhofer F, Patient R, Weinstein BM, Kobayashi M. LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Dev Biol 2023; 501:92-103. [PMID: 37353106 PMCID: PMC10393020 DOI: 10.1016/j.ydbio.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/27/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
During embryonic development, primitive and definitive waves of hematopoiesis take place to provide proper blood cells for each developmental stage, with the possible involvement of epigenetic factors. We previously found that lysine-specific demethylase 1 (LSD1/KDM1A) promotes primitive hematopoietic differentiation by shutting down the gene expression program of hemangioblasts in an Etv2/Etsrp-dependent manner. In the present study, we demonstrated that zebrafish LSD1 also plays important roles in definitive hematopoiesis in the development of hematopoietic stem and progenitor cells. A combination of genetic approaches and imaging analyses allowed us to show that LSD1 promotes the egress of hematopoietic stem and progenitor cells into the bloodstream during the endothelial-to-hematopoietic transition. Analysis of compound mutant lines with Etv2/Etsrp mutant zebrafish revealed that, unlike in primitive hematopoiesis, this function of LSD1 was independent of Etv2/Etsrp. The phenotype of LSD1 mutant zebrafish during the endothelial-to-hematopoietic transition was similar to that of previously reported compound knockout mice of Gfi1/Gfi1b, which forms a complex with LSD1 and represses endothelial genes. Moreover, co-knockdown of zebrafish Gfi1/Gfi1b genes inhibited the development of hematopoietic stem and progenitor cells. We therefore hypothesize that the shutdown of the Gfi1/Gfi1b-target genes during the endothelial-to-hematopoietic transition is one of the key evolutionarily conserved functions of LSD1 in definitive hematopoiesis.
Collapse
Affiliation(s)
- Junya Tamaoki
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Japan
| | - Hiroki Maeda
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Miki Takeuchi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Ken Ohashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Aniket Gore
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Florian Bonkhofer
- Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Roger Patient
- Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Brant M Weinstein
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| |
Collapse
|
9
|
Shashni B, Tamaoki J, Kobayashi M, Nagasaki Y. Design of a new self-assembling antioxidant nanomedicine to ameliorate oxidative stress in zebrafish embryos. Acta Biomater 2023; 159:367-381. [PMID: 36640953 DOI: 10.1016/j.actbio.2023.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Oxidative stress, which is a persistent state of elevated reactive oxygen species (ROS), is implicated in the pathogeneses of several diseases, making antioxidant-based therapeutics the aptest intervention. Nevertheless, the clinical failure of conventional low-molecular-weight (LMW) antioxidants in oxidative stress-related diseases to yield favorable therapeutic outcomes and an increased mortality rate attributable to their poor pharmacokinetic characteristics, necessitates the development of alternative therapeutics. In light of this, we designed and synthesized a new amphiphilic polymer functionalized with a clinically safe base polymer of poly(styrene-co-maleic anhydride) copolymer conjugated with the LMW pleiotropic antioxidant TEMPO (a potent antioxidant) and biocompatible poly(ethylene glycol) (TEMPO-installed PSMA-g-PEG), which self-assembles into nano-sized micelles (SMAPoTN) under physiological conditions. We investigated its safety and antioxidant ability using zebrafish models. Common LMW antioxidants, such as 4-hydroxy-TEMPO (TEMPOL), vitamin C, N-acetyl-L-cysteine, and edaravone exposure induced phenotypic distortions, a manifestation of developmental toxicity, and resulted in high lethality in zebrafish larvae. LMW TEMPOL also adversely affected embryo hatchability, induced arrhythmia and cardiac edema, and failed to protect against oxidative stress. In contrast, exposure of zebrafish embryos to SMAPoTN increased the hatchability, protected embryos against various inducers of oxidative stress, and did not induce any phenotypic alterations or discernible toxicity. Taken together, we conclude that SMAPoTN surpasses LMW TEMPOL in terms of the ability to protect zebrafish, attributable to efficient ROS scavenging without perturbing normal redox homeostasis. These results imply that SMAPoTN can be used as a therapeutic intervention against various oxidative stress-induced diseases. STATEMENT OF SIGNIFICANCE: Failure of low molecular weight (LMW) antioxidants to improve therapeutic index in various oxidative stress-related pathogenesis, attributable to their poor pharmacokinetic characteristics, greatly limits their clinical translation. To overcome this limitation, we developed a self-assembling antioxidant nanoparticle (SMAPoTN) comprised of amphiphilic polymer; poly(styrene-co-maleic anhydride) conjugated with TEMPO as an antioxidant and biocompatible poly(ethylene glycol). Preliminary studies carried out in the in vivo models of zebrafish embryos confirmed that exposure of LMW antioxidant resulted in acute developmental toxicity, high lethality, and failure to rescue embryos against oxidative stress inducers. In contrast, SMAPoTN did not exert discernible toxicity and significantly improved their survival under oxidative stress. Our finding establishes antioxidant nanoparticles as more suitable therapeutic intervention for oxidative stress-induced diseases than LMW antioxidants.
Collapse
Affiliation(s)
- Babita Shashni
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Junya Tamaoki
- Faculty of Medicine, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Makoto Kobayashi
- Faculty of Medicine, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukio Nagasaki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's Program in Medical Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
10
|
Bian L, Nguyen VT, Tamaoki J, Endo Y, Dong G, Sato A, Kobayashi M. Genetic hyperactivation of Nrf2 causes larval lethality in Keap1a and Keap1b-double-knockout zebrafish. Redox Biol 2023; 62:102673. [PMID: 36934645 PMCID: PMC10031532 DOI: 10.1016/j.redox.2023.102673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
The Keap1-Nrf2 pathway is an evolutionarily conserved mechanism that protects cells from oxidative stress and electrophiles. Keap1 is a repressor of Nrf2 in normal cellular conditions but also a stress sensor for Nrf2 activation. Interestingly, fish and amphibians have two Keap1s (Keap1a and Keap1b), of which Keap1b is the ortholog of mammalian Keap1. Keap1a, on the other hand, is a gene found only in fish and amphibians, having been lost during the evolution to amniotes. We have previously shown that keap1b-knockout zebrafish have increased Nrf2 activity and reduced response to certain Nrf2-activating compounds but that they grow normally to adulthood. This may be because the remaining keap1a suppresses the hyperactivation of Nrf2, which is responsible for the post-natal lethality of Keap1-knockout mice. In this study, we analyzed keap1a;keap1b-double-knockout zebrafish to test this hypothesis. We found that keap1a;keap1b-double-knockout zebrafish, like Keap1-knockout mice, showed eating defects and were lethal within a week of hatching. Genetic introduction of the Nrf2 mutation rescued both the eating defects and the larval lethality, indicating that Nrf2 hyperactivation is the cause. However, unlike Keap1-knockout mice, keap1a;keap1b-double-knockout zebrafish showed no physical blockage of the food pathway; moreover, the cause of death was not directly related to eating defects. RNA-sequencing analysis revealed that keap1a;keap1b-double-knockout larvae showed extraordinarily high expression of known Nrf2-target genes as well as decreased expression of visual cycle genes. Finally, trigonelline or brusatol partially rescued the lethality of keap1a;keap1b-double-knockout larvae, suggesting that they can serve as an in vivo evaluation system for Nrf2-inhibiting compounds.
Collapse
Affiliation(s)
- Lixuan Bian
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Vu Thanh Nguyen
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan; Division of Aquaculture Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Yuka Endo
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Guilin Dong
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Ayaka Sato
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.
| |
Collapse
|
11
|
Sigma-1 receptor agonist PRE-084 confers protection against TAR DNA-binding protein-43 toxicity through NRF2 signalling. Redox Biol 2022; 58:102542. [PMID: 36442393 PMCID: PMC9706169 DOI: 10.1016/j.redox.2022.102542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons. As a consequence, ALS patients display a locomotor disorder related to muscle weakness and progressive paralysis. Pathological mechanisms that participate in ALS involve deficient unfolded protein response, mitochondrial dysfunction and oxidative stress, among others. Finding a therapeutic target to break the vicious circle is particularly challenging. Sigma-1 receptor (S1R) is an endoplasmic reticulum (ER) chaperone that may be one of those targets. We here address and decipher the efficiency of S1R activation on a key ALS gene, TDP43, in zebrafish vertebrate model. While expression of mutant TDP43 (TDP43G348C) led to locomotor defects, treatment with the reference S1R agonist PRE-084 rescued motor performances in a zebrafish model. Treatment with the agonist ameliorated maximal mitochondrial respiration in the TDP43 context. We observed that TDP43G348C exacerbated ER stress induced by tunicamycin, resulting in increased levels of ER stress chaperone BiP and pro-apoptotic factor CHOP. Importantly, PRE-084 treatment in the same condition further heightened BiP levels but also EIF2α/ATF4 and NRF2 signalling cascades, both known to promote antioxidant protection during ER stress. Moreover, we showed that increasing NRF2 levels directly or by sulforaphane treatment rescued locomotor defects of TDP43G348C zebrafish. For the first time, we here provide the proof of concept that PRE-084 prevents mutant TDP43 toxicity by boosting ER stress response and antioxidant cascade through NRF2 signalling.
Collapse
|
12
|
Piyushbhai MK, Binesh A, Shanmugam SA, Venkatachalam K. Exposure to low-dose arsenic caused teratogenicity and upregulation of proinflammatory cytokines in zebrafish embryos. Biol Trace Elem Res 2022; 201:3487-3496. [PMID: 36107303 DOI: 10.1007/s12011-022-03418-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
Arsenic is currently ranked as the most toxicant on the ATSDR 2015 substance priority list and is categorised as a Group 1 human carcinogen. Biota that are subjected to inorganic arsenicals through food, water, occupational or medical exposure pose a risk to the environment and to human health. The present study was carried out to investigate the toxicity caused by inorganic arsenic. After fertilisation, zebrafish embryos were exposed to sodium arsenite at several concentrations (100 nM to 600 nM) for 24 to 96 hpf. The indicators of teratogenicity (hatchability, morphological abnormalities, mortality), behavioural modifications (touch induced escape response (TIER), startle response (SR) and turning behaviour (TB)), biochemical testing (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione S transferase (GST)) and the expressions of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) were investigated. The aforementioned parameters were found to be altered in embryos exposed to sodium arsenite. According to the findings of the current study, even a low dose of inorganic arsenic compound caused teratogenicity, behavioural abnormalities, altered enzyme activities and the expression of proinflammatory cytokines in zebrafish embryos.
Collapse
Affiliation(s)
- Modi Kiran Piyushbhai
- Department of Fisheries Biotechnology, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, OMR Campus, Chennai, 603103, Tamil Nadu, India
| | - Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| | - S A Shanmugam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India.
| |
Collapse
|
13
|
Watanabe A, Muraki K, Tamaoki J, Kobayashi M. Soy-Derived Equol Induces Antioxidant Activity in Zebrafish in an Nrf2-Independent Manner. Int J Mol Sci 2022; 23:ijms23095243. [PMID: 35563633 PMCID: PMC9105299 DOI: 10.3390/ijms23095243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022] Open
Abstract
Antioxidant effects of soy-derived isoflavones are predicted to be mediated by the Keap1-Nrf2 pathway. Recently, we constructed an assay system to evaluate the antioxidant effects of dietary phytochemicals in zebrafish and revealed a relationship between these effects and the Keap1-Nrf2 pathway. In this study, we used this system to examine the antioxidant effects of seven isoflavones. Among those seven, equol showed strong antioxidant effects when arsenite was used as an oxidative stressor. The antioxidant effect of equol was also shown in Nrf2-mutant zebrafish nfe2l2afh318, suggesting that this effect was not mediated by the Keap1-Nrf2 pathway. To elucidate this unidentified mechanism, the gene expression profiles of equol-treated larvae were analyzed using RNA-seq and qRT-PCR, while no noticeable changes were detected in the expression of genes related to antioxidant effects, except weak induction of Nrf2 target genes. Because nfe2l2afh318 is an amino acid-substitution mutant (Arg485Lue), we considered that the antioxidant effect of equol in this mutant might be due to residual Nrf2 activity. To examine this possibility, we generated an Nrf2-knockout zebrafish nfe2l2ait321 using CRISPR-Cas9 and analyzed the antioxidant effect of equol. As a result, equol showed strong antioxidant effects even in Nrf2-knockout larvae, suggesting that equol indeed upregulates antioxidant activity in zebrafish in an Nrf2-independent manner.
Collapse
Affiliation(s)
- Asami Watanabe
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (A.W.); (K.M.); (J.T.)
| | - Kyoji Muraki
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (A.W.); (K.M.); (J.T.)
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (A.W.); (K.M.); (J.T.)
- Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (A.W.); (K.M.); (J.T.)
- Correspondence: ; Tel.: +81-029-853-8457
| |
Collapse
|
14
|
Napoli E, Flores A, Mansuri Y, Hagerman RJ, Giulivi C. Sulforaphane improves mitochondrial metabolism in fibroblasts from patients with fragile X-associated tremor and ataxia syndrome. Neurobiol Dis 2021; 157:105427. [PMID: 34153466 PMCID: PMC8475276 DOI: 10.1016/j.nbd.2021.105427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/09/2023] Open
Abstract
CGG expansions between 55 and 200 in the 5'-untranslated region of the fragile-X mental retardation gene (FMR1) increase the risk of developing the late-onset debilitating neuromuscular disease Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). While the science behind this mutation, as a paradigm for RNA-mediated nucleotide triplet repeat expansion diseases, has progressed rapidly, no treatment has proven effective at delaying the onset or decreasing morbidity, especially at later stages of the disease. Here, we demonstrated the beneficial effect of the phytochemical sulforaphane (SFN), exerted through NRF2-dependent and independent manner, on pathways relevant to brain function, bioenergetics, unfolded protein response, proteosome, antioxidant defenses, and iron metabolism in fibroblasts from FXTAS-affected subjects at all disease stages. This study paves the way for future clinical studies with SFN in the treatment of FXTAS, substantiated by the established use of this agent in clinical trials of diseases with NRF2 dysregulation and in which age is the leading risk factor.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Amanda Flores
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616;,Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Yasmeen Mansuri
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Randi J. Hagerman
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA;,Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States of America; Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817, USA.
| |
Collapse
|
15
|
Perumal E, Eswaran S, Parvin R, Balasubramanian S. Mitigation of arsenic induced developmental cardiotoxicity by ferulic acid in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109021. [PMID: 33631344 DOI: 10.1016/j.cbpc.2021.109021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022]
Abstract
We investigated whether ferulic acid (FA), a nutraceutical could mitigate the arsenic (As) induced cardiotoxicity. Zebrafish larvae (60 and 72 h post-fertilization [hpf]) were used to study the effect of FA on As at different time points (24 and 48 h after exposure). The FA exposure was given as pre-treatment (60 hpf) and simultaneous treatment (72 hpf) to translate the results for As contaminated areas. To accomplish this, the lethality assay was done, and based on the results, the dosage for As (1 mM) and FA (30 μM) was fixed. The FA intervention (30 μM) as 12 h pre-treatment (60 hpf) and simultaneous treatment along with As (72 hpf) decreased the As content in zebrafish larvae as evidenced by inductively coupled plasma-mass spectrometry. As exposure showed congenital deformities especially cardiac malformations in zebrafish larvae after 24 and 48 h. These teratogenic effects induced by As were reduced by FA supplementation in both groups. Also, o-dianisidine staining demonstrated that As treated larvae encountered abnormal cardiac function with reduced blood circulation, while FA supplementation reversed these effects. The acetylcholinesterase activity, a biomarker of As-induced cardiotoxicity was also found to be decreased in As group, which was rescued by FA. The modulation in the expression of the genes involved in cardiogenesis (nkx2.5, bmp2b, gata4, gata5, myh6, myl7, and tnnt2) further confirmed the ameliorative effect of FA on As induced malformations.
Collapse
Affiliation(s)
- Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| | - Sangavi Eswaran
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Reshma Parvin
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | | |
Collapse
|
16
|
Tanaka K, Adachi H, Akasaka H, Tamaoki J, Fuse Y, Kobayashi M, Kitazawa T, Teraoka H. Oxidative stress inducers potentiate 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated pre-cardiac edema in larval zebrafish. J Vet Med Sci 2021; 83:1050-1058. [PMID: 34024870 PMCID: PMC8349820 DOI: 10.1292/jvms.21-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We reported the involvement of oxidative stress and prostaglandins including thromboxane and prostacyclin in pre-cardiac edema (early edema) caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While the involvement of oxidative stress in TCDD-induced toxicity has been frequently reported, the mechanism of its action is still unclear. In the present study, oxidative stress inducers including paraquat, hydrogen peroxide (H2O2) and rotenone augmented early edema (edema) induced by a low concentration of TCDD (0.1 ppb) at 55 hr post fertilization (hpf), while each of them alone did not cause edema. Edema caused by TCDD plus oxidative stress inducers was almost abolished by antioxidants, an antagonist for thromboxane receptor (ICI-192,605) and an agonist for prostacyclin receptor (beraprost), suggesting that the site of action of these inducers was in the regular signaling pathway after activation of aryl hydrocarbon receptor type 2 (AHR2) by TCDD. Oxidative stress inducers also enhanced edema caused by an agonist for the thromboxane receptor (U46619), and the enhancement was also inhibited by antioxidants. Sulforaphane and auranofin, activators of Nrf2 that is a master regulator of anti-oxidative response, did not affect U46619-evoked edema but almost abolished TCDD-induced edema and potentiation by paraquat in both TCDD- and U46619-induced edema. Taken together, the results suggest that oxidative stress augments pre-cardiac edema caused by TCDD via activation of thromboxane receptor-mediated signaling in developing zebrafish. As paraquat and other oxidative stress inducers used also are environmental pollutants, interaction between dioxin-like compounds and exogenous source of oxidative stress should also be considered.
Collapse
Affiliation(s)
- Katsuki Tanaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hikaru Adachi
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hironobu Akasaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuji Fuse
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
17
|
De Anna JS, Castro JM, Darraz LA, Elías FD, Cárcamo JG, Luquet CM. Exposure to hydrocarbons and chlorpyrifos alters the expression of nuclear receptors and antioxidant, detoxifying, and immune response proteins in the liver of the rainbow trout, Oncorhynchus mykiss. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111394. [PMID: 33031985 DOI: 10.1016/j.ecoenv.2020.111394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The development of oil and gas production together with the fruit production in nearby areas of North Patagonia, Argentina, suggests aquatic pollution scenarios which include permanent oil pollution combined with short events of pesticides application. It has been reported that oil hydrocarbons activate the aryl hydrocarbon receptor (AhR) pathway in the rainbow trout, Oncorhynchus mykiss, and that the insecticide Chlorpyrifos (CPF) interacts with these effects. Thus, it is interesting to investigate whether hydrocarbons and insecticides, applied by separate or combined, can affect fish health and reproductive signaling by acting on different nuclear receptors' regulatory pathways. To study this kind of interactions, we exposed juvenile rainbow trout to water accommodated fraction (WAF) of crude oil (62 μg L-1 TPH) for 48 h and subsequently exposed the livers ex vivo to the insecticide Chlorpyrifos (CPF) (20 µg L-1) for 1 h. We analyzed the mRNA expression of nuclear receptors and proteins involved in detoxifying, antioxidant, immune and apoptosis responses by qRT-PCR. We also performed histopathological analysis. WAF induced the expression of the androgen (AR) and the Liver X receptor (LXR) by 8- and 3-fold, respectively. AR induction was reversed by subsequent exposure to CPF. The progesterone receptor (PR) and glucocorticoid receptor (GR) were increased 2-fold and 3-fold by WAF respectively, while estrogen and mineralocorticoid receptors were not affected. GR was also induced by CPF with an additive effect in the WAF-CPF treatment. The antioxidant genes, gamma glutamyl transferase (GGT), superoxide dismutase (SOD1) were induced by WAF (2-3-fold). WAF upregulated the ATP Binding Cassette Subfamily C Member 2 (ABCC2, MRP2) (4-fold) and downregulated alkaline phosphatase. WAF also induced the inflammatory interleukins (IL) IL-8, and IL-6 and the anti-inflammatory IL-10, while CPF induced the inflammatory tumor necrosis factor (-α) and IL-6, and activated the intrinsic apoptotic pathway through the induction of caspases 3 and 9. Both, WAF and CPF downregulated the expression of the extrinsic apoptosis initiator caspase 8 and the inflammatory caspase 1. In conclusion, WAF hydrocarbons alter O. mykiss endocrine regulation by inducing AR, PR and GR. The subsequent exposure to CPF reverses AR, suggesting a complex interaction of different pollutants in contaminated environments, WAF hydrocarbons alter liver metabolism by inducing the expression of LXR, GR, antioxidant and detoxifying enzymes, and both inflammatory and anti-inflammatory cytokines, and causing mild hepatic steatosis. CPF activates inflammatory and stress responses associated with the induction of inflammatory cytokines together with apoptosis initiator and executioner caspases.
Collapse
Affiliation(s)
- Julieta S De Anna
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina
| | - Juan M Castro
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina
| | - Luis Arias Darraz
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Federico D Elías
- Centro Atómico Bariloche e Instituto Balseiro, CNEA, CONICET, Universidad Nacional de Cuyo, Bariloche, Argentina
| | - Juan G Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina.
| |
Collapse
|
18
|
Delaney P, Ramdas Nair A, Palmer C, Khan N, Sadler KC. Arsenic induced redox imbalance triggers the unfolded protein response in the liver of zebrafish. Toxicol Appl Pharmacol 2020; 409:115307. [PMID: 33147493 DOI: 10.1016/j.taap.2020.115307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Inorganic arsenic (iAs) is one of the most endemic toxicants worldwide and oxidative stress is a key cellular pathway underlying iAs toxicity. Other cellular stress response pathways, such as the unfolded protein response (UPR), are also impacted by iAs exposure, however it is not known how these pathways intersect to cause disease. We optimized the use of zebrafish larvae to identify the relationship between these cellular stress response pathways and arsenic toxicity. We found that the window of iAs susceptibility during zebrafish development corresponds with the development of the liver, and that even a 24-h exposure can cause lethality if administered to mature larvae, but not to early embryos. Acute exposure of larvae to iAs generates reactive oxygen species (ROS), an antioxidant response, endoplasmic reticulum (ER) stress and UPR activation in the liver. An in vivo assay using transgenic larvae expressing a GFP-tagged secreted glycoprotein in hepatocytes (Tg(fabp10a:Gc-EGFP)) revealed acute iAs exposure selectively decreased expression of Gc-EGFP, indicating that iAs impairs secretory protein folding in the liver. The transcriptional output of UPR activation is preceded by ROS production and activation of genes involved in the oxidative stress response. These studies implicate redox imbalance as the mechanism of iAs-induced ER stress and suggest that crosstalk between these pathways underlie iAs-induced hepatic toxicity.
Collapse
Affiliation(s)
- Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Anjana Ramdas Nair
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Catherine Palmer
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Nouf Khan
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates.
| |
Collapse
|
19
|
Wang L, Yan R, Yang Q, Li H, Zhang J, Shimoda Y, Kato K, Yamanaka K, An Y. Role of GH/IGF axis in arsenite-induced developmental toxicity in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110820. [PMID: 32531574 DOI: 10.1016/j.ecoenv.2020.110820] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/09/2020] [Accepted: 05/26/2020] [Indexed: 05/25/2023]
Abstract
Growth hormone (GH)/insulin-like growth factor (IGF) axis plays a critical role in fetal development. However, the effect of arsenite exposure on the GH/IGF axis and its toxic mechanism are still unclear. Zebrafish embryos were exposed to a range of NaAsO2 concentrations (0.0-10.0 mM) between 4 and 120 h post-fertilization (hpf). Development indexes of survival, malformation, hatching rate, heart rate, body length and locomotor behavior were measured. Hormone levels, GH/IGF axis-related genes, and nerve-related genes were also tested. The results showed that survival rate, hatching rate, heart rate, body length and locomotor behavior all decreased, while deformity increased. At 120 hpf, the survival rate of zebrafish in 1.5 mM NaAsO2 group was about 70%, the deformity rate exceeded 20%, and the body length shortened to 3.35 mm, the movement distance of zebrafish decreased approximately 63.6% under light condition and about 52.4% under dark condition. The level of GH increased and those of IGF did not change significantly, while the expression of GH/IGF axis related genes (ghra, ghrb, igf2r, igfbp3, igfbp2a, igfbp5b) and nerve related genes (dlx2, shha, ngn1, elavl3, gfap) decreased. In 1.5 mM NaAsO2 group, the decrease of igfbp3 and igfbp5b was almost obvious, about 78.2% and 72.2%. The expression of nerve genes in 1.5 mM NaAsO2 group all have declined by more than 50%. These findings suggested that arsenite exerted disruptive effects on the endocrine system by interfering with the GH/IGF axis, leading to zebrafish embryonic developmental toxicity.
Collapse
Affiliation(s)
- Luna Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Heran Li
- Microwants International LTD, Hong Kong, China
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yasuyo Shimoda
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, 274-8555, Japan
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, 274-8555, Japan
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, 274-8555, Japan.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
20
|
Nguyen VT, Bian L, Tamaoki J, Otsubo S, Muratani M, Kawahara A, Kobayashi M. Generation and characterization of keap1a- and keap1b-knockout zebrafish. Redox Biol 2020; 36:101667. [PMID: 32828016 PMCID: PMC7452054 DOI: 10.1016/j.redox.2020.101667] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
The Keap1–Nrf2 pathway is an evolutionarily conserved mechanism that protects cells from oxidative stress and electrophiles. Under homeostatic conditions, Keap1 interacts with Nrf2 and leads to its rapid proteasomal degradation, but when cells are exposed to oxidative stress/electrophiles, Keap1 senses them, resulting in an improper Keap1–Nrf2 interaction and Nrf2 stabilization. Keap1 is therefore considered both an “inhibitor” of and “stress sensor” for Nrf2 activation. Interestingly, fish and amphibians have two Keap1s (Keap1a and Keap1b), while there is only one in mammals, birds and reptiles. A phylogenetic analysis suggested that mammalian Keap1 is an ortholog of fish Keap1b, not Keap1a. In this study, we investigated the differences and similarities between Keap1a and Keap1b using zebrafish genetics. We generated zebrafish knockout lines of keap1a and keap1b. Homozygous mutants of both knockout lines were viable and fertile. In both mutant larvae, the basal expression of Nrf2 target genes and antioxidant activity were up-regulated in an Nrf2-dependent manner, suggesting that both Keap1a and Keap1b can function as Nrf2 inhibitors. We also analyzed the effects of the Nrf2 activator sulforaphane in these mutants and found that keap1a-, but not keap1b-, knockout larvae responded to sulforaphane, suggesting that the stress/chemical-sensing abilities of the two Keap1s are different. Fish and amphibians have two Keap1s: Keap1a and Keap1b. Mammalian Keap1 is an ortholog of fish Keap1b, not Keap1a. Both Keap1a and Keap1b can function as Nrf2 inhibitors. The sulforaphane-sensing abilities of Keap1a and Keap1b are different.
Collapse
Affiliation(s)
- Vu Thanh Nguyen
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan; Division of Aquaculture Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Lixuan Bian
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Shiro Otsubo
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Atsuo Kawahara
- Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.
| |
Collapse
|
21
|
A Systematic Review of the Various Effect of Arsenic on Glutathione Synthesis In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9414196. [PMID: 32802886 PMCID: PMC7411465 DOI: 10.1155/2020/9414196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Background Arsenic is a toxic metalloid widely present in nature, and arsenic poisoning in drinking water is a serious global public problem. Glutathione is an important reducing agent that inhibits arsenic-induced oxidative stress and participates in arsenic methylation metabolism. Therefore, glutathione plays an important role in regulating arsenic toxicity. In recent years, a large number of studies have shown that arsenic can regulate glutathione synthesis in many ways, but there are many contradictions in the research results. At present, the mechanism of the effect of arsenic on glutathione synthesis has not been elucidated. Objective We will conduct a meta-analysis to illustrate the effects of arsenic on GSH synthesis precursors Glu, Cys, Gly, and rate-limiting enzyme γ-GCS in mammalian models, as well as the regulation of p38/Nrf2 of γ-GCS subunit GCLC, and further explore the molecular mechanism of arsenic affecting glutathione synthesis. Results This meta-analysis included 30 studies in vivo and 58 studies in vitro, among which in vivo studies showed that arsenic exposure could reduce the contents of GSH (SMD = -2.86, 95% CI (-4.45, -1.27)), Glu (SMD = -1.11, 95% CI (-2.20,-0.02)), and Cys (SMD = -1.48, 95% CI (-2.63, -0.33)), with no statistically significant difference in p38/Nrf2, GCLC, and GCLM. In vitro studies showed that arsenic exposure increased intracellular GSH content (SMD = 1.87, 95% CI (0.18, 3.56)) and promoted the expression of p-p38 (SMD = 4.19, 95% CI (2.34, 6.05)), Nrf2 (SMD = 4.60, 95% CI (2.34, 6.86)), and GCLC (SMD = 1.32, 95% CI (0.23, 2.41)); the p38 inhibitor inhibited the expression of Nrf2 (SMD = -1.27, 95% CI (-2.46, -0.09)) and GCLC (SMD = -5.37, 95% CI (-5.37, -2.20)); siNrf2 inhibited the expression of GCLC, and BSO inhibited the synthesis of GSH. There is a dose-dependent relationship between the effects of exposure on GSH in vitro. Conclusions. These indicate the difference between in vivo and in vitro studies of the effect of arsenic on glutathione synthesis. In vivo studies have shown that arsenic exposure can reduce glutamate and cysteine levels and inhibit glutathione synthesis, while in vitro studies have shown that chronic low-dose arsenic exposure can activate the p38/Nrf2 pathway, upregulate GCLC expression, and promote glutathione synthesis.
Collapse
|
22
|
Hahn ME, Sadler KC. Casting a wide net: use of diverse model organisms to advance toxicology. Dis Model Mech 2020; 13:dmm043844. [PMID: 32094287 PMCID: PMC7132827 DOI: 10.1242/dmm.043844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Toxicology - the study of how chemicals interact with biological systems - has clear relevance to human health and disease. Persistent exposure to natural and synthetic chemicals is an unavoidable part of living on our planet; yet, we understand very little about the effects of exposure to the vast majority of chemicals. While epidemiological studies can provide strong statistical inference linking chemical exposure to disease, research in model systems is essential to elucidate the mechanisms of action and to predict outcomes. Most research in toxicology utilizes a handful of mammalian models that represent a few distinct branches of the evolutionary tree. This narrow focus constrains the understanding of chemical-induced disease processes and systems that have evolved in response to exposures. We advocate for casting a wider net in environmental toxicology research to utilize diverse model systems, including zebrafish, and perform more mechanistic studies of cellular responses to chemical exposures to shift the perception of toxicology as an applied science to that of a basic science. This more-inclusive perspective will enrich the field and should remain central to research on chemical-induced disease.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543, USA
- Boston University Superfund Research Program, Boston, MA 02118, USA
| | | |
Collapse
|
23
|
Evaluation of Antioxidant Activity of Spice-Derived Phytochemicals Using Zebrafish. Int J Mol Sci 2020; 21:ijms21031109. [PMID: 32046157 PMCID: PMC7037855 DOI: 10.3390/ijms21031109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Various dietary phytochemicals seem to display antioxidant activity through the NF-E2-related factor 2 (Nrf2) pathway. However, few studies have demonstrated its antioxidant effect and Nrf2 dependency at the animal level. We constructed a zebrafish-based assay system to analyze the in vivo antioxidant activity of phytochemicals and examined the activity of 10 phytochemicals derived from spices, using this system as a pilot study. Hydrogen peroxide and arsenite were used as oxidative stressors, and Nrf2 dependency was genetically analyzed using an Nrf2-mutant zebrafish line. The activities of curcumin, diallyl trisulfide and quercetin were involved in the reduction of hydrogen peroxide toxicity, while those of cinnamaldehyde, isoeugenol and 6-(methylsulfinyl)hexyl isothiocyanate were involved in the reduction of arsenite toxicity. The antioxidant activities of these phytochemicals were all Nrf2 dependent, with the exception of cinnamaldehyde, which showed strong antioxidant effects even in Nrf2-mutant zebrafish. In summary, we succeeded in constructing an assay system to evaluate the in vivo antioxidant activity of various phytochemicals using zebrafish larvae. Using this system, we found that each spice-derived phytochemical has its own specific property and mechanism of antioxidant action.
Collapse
|
24
|
Wang R, Zhang H, Du J, Xu J. Heat resilience in embryonic zebrafish revealed using an in vivo stress granule reporter. J Cell Sci 2019; 132:jcs.234807. [PMID: 31558681 PMCID: PMC6826007 DOI: 10.1242/jcs.234807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Although the regulation of stress granules has become an intensely studied topic, current investigations of stress granule assembly, disassembly and dynamics are mainly performed in cultured cells. Here, we report the establishment of a stress granule reporter to facilitate the real-time study of stress granules in vivo. Using CRISPR/Cas9, we fused a green fluorescence protein (GFP) to endogenous G3BP1 in zebrafish. The GFP–G3BP1 reporter faithfully and robustly responded to heat stress in zebrafish embryos and larvae. The induction of stress granules varied by brain regions under the same stress condition, with the midbrain cells showing the highest efficiency and dynamics. Furthermore, pre-conditioning using lower heat stress significantly limited stress granule formation during subsequent higher heat stress. More interestingly, stress granule formation was much more robust in zebrafish embryos than in larvae and coincided with significantly elevated levels of phosphorylated eIF2α and enhanced heat resilience. Therefore, these findings have generated new insights into stress response in zebrafish during early development and demonstrated that the GFP–G3BP1 knock-in zebrafish could be a valuable tool for the investigation of stress granule biology. This article has an associated First Person interview with the first author of the paper. Summary: Establishment of a new transgenic zebrafish line with knock-in GFP-G3BP1 to visualize stress granule dynamics in live animals in real time.
Collapse
Affiliation(s)
- Ruiqi Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hefei Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
25
|
Li AL, Shen T, Wang T, Zhou MX, Wang B, Song JT, Zhang PL, Wang XL, Ren DM, Lou HX, Wang XN. Novel diterpenoid-type activators of the Keap1/Nrf2/ARE signaling pathway and their regulation of redox homeostasis. Free Radic Biol Med 2019; 141:21-33. [PMID: 31167117 DOI: 10.1016/j.freeradbiomed.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/15/2019] [Accepted: 06/01/2019] [Indexed: 12/25/2022]
Abstract
Oxidative stress is involved in the onset and progression of many human diseases. Activators of the Keap1/Nrf2/ARE pathway effectively inhibit the progression of oxidative stress-induced diseases. Herein, a small library of diterpenoids was established by means of phytochemical isolation, and chemical modification on naturally occurring molecules. The diterpenoids were subjected to a NAD(P)H: quinone reductase (QR) assay to evaluate its potential inhibition against oxidative stress. Sixteen diterpenoids were found to be novel potential activators of Nrf2-mediated defensive response. Of which, an isopimarane-type diterpenoid, sphaeropsidin A (SA), was identified as a potent activator of the Keap1/Nrf2/ARE pathway, and displayed approximately 5-folds potency than that of sulforaphane (SF). SA activated Nrf2 and its downstream cytoprotective genes through enhancing the stabilization of Nrf2 in a process involving PI3K, PKC, and PERK, as well as potentially interrupting Nrf2-Keap1 protein-protein interaction. In addition, SA conferred protection against sodium arsenite [As(III)]- and cigarette smoke extract (CSE)-induced redox imbalance and cytotoxicity in human lung epithelial cells, as wells as inhibited metronidazole (MTZ)-induced oxidative insult in Tg (krt4: NTR-hKikGR)cy17 transgenic zebrafish and lipopolysaccharide (LPS)-induced oxidative damage in wild-type AB zebrafish. These results imply that SA is a lead compound for therapeutic agent against oxidative stress-induced diseases, and diterpenoid is a good resource for discovering drug candidates and leads of antioxidant therapy.
Collapse
Affiliation(s)
- Ai-Ling Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Tian Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Ming-Xing Zhou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Bin Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Jin-Tong Song
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Peng-Liang Zhang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Xiao-Ling Wang
- The Second Hospital of Shandong University, No. 247 Bei-Yuan Street, Jinan, 250033, People's Republic of China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
26
|
Zhong L, Hao H, Chen D, Hou Q, Zhu Z, He W, Sun S, Sun M, Li M, Fu X. Arsenic trioxide inhibits the differentiation of fibroblasts to myofibroblasts through nuclear factor erythroid 2‐like 2 (NFE2L2) protein and the Smad2/3 pathway. J Cell Physiol 2018; 234:2606-2617. [PMID: 30317545 DOI: 10.1002/jcp.27073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/28/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Lingzhi Zhong
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Haojie Hao
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Deyun Chen
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Qian Hou
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Ziying Zhu
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Wenjun He
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Sujing Sun
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Mengli Sun
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| | - Meirong Li
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan BranchSanya China
| | - Xiaobing Fu
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General HospitalBeijing China
| |
Collapse
|
27
|
Raghunath A, Nagarajan R, Sundarraj K, Panneerselvam L, Perumal E. Genome-wide identification and analysis of Nrf2 binding sites - Antioxidant response elements in zebrafish. Toxicol Appl Pharmacol 2018; 360:236-248. [PMID: 30243843 DOI: 10.1016/j.taap.2018.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 12/30/2022]
Abstract
In the post-genomic era, deciphering the Nrf2 binding sites - antioxidant response elements (AREs) is an essential task that underlies and governs the Keap1-Nrf2-ARE pathway - a cell survival response pathway to environmental stresses in the vertebrate model system. AREs regulate the transcription of a repertoire of phase II detoxifying and/or oxidative-stress responsive genes, offering protection against toxic chemicals, carcinogens, and xenobiotics. In order to identify and analyze AREs in zebrafish, a pattern search algorithm was developed to identify AREs and computational tools available online were utilized to analyze the identified AREs in zebrafish. This study identified the AREs within 30 kb upstream from the transcription start site of antioxidant genes and mitochondrial genes. We report for the first time the AREs of all the known protein coding genes in the zebrafish genome. Western blotting, RT2 profiler array PCR, and qRT-PCR were performed to test whether AREs influence the Nrf2 target genes expression in the zebrafish larvae using sulforaphane. This study reveals unique AREs that have not been previously reported in the cytoprotective genes. Nine TGAG/CNNNTC and six TGAG/CNNNGC AREs were observed significantly. Our findings suggest that AREs drive the dynamic transcriptional events of Nrf2 target genes in the zebrafish larvae on exposure to sulforaphane. The identified abundant putative AREs will define the Keap1-Nrf2-ARE network and elucidate the precise regulation of Nrf2-ARE pathway in not only diseases but also in embryonic development, inflammation, and aerobic respiration. Our results help to understand the dynamic complexity of the Nrf2-ARE system in zebrafish.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India
| | - Raju Nagarajan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India
| | - Lakshmikanthan Panneerselvam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| |
Collapse
|
28
|
Timme-Laragy AR, Hahn ME, Hansen JM, Rastogi A, Roy MA. Redox stress and signaling during vertebrate embryonic development: Regulation and responses. Semin Cell Dev Biol 2018; 80:17-28. [PMID: 28927759 PMCID: PMC5650060 DOI: 10.1016/j.semcdb.2017.09.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022]
Abstract
Vertebrate embryonic development requires specific signaling events that regulate cell proliferation and differentiation to occur at the correct place and the correct time in order to build a healthy embryo. Signaling pathways are sensitive to perturbations of the endogenous redox state, and are also susceptible to modulation by reactive species and antioxidant defenses, contributing to a spectrum of passive vs. active effects that can affect redox signaling and redox stress. Here we take a multi-level, integrative approach to discuss the importance of redox status for vertebrate developmental signaling pathways and cell fate decisions, with a focus on glutathione/glutathione disulfide, thioredoxin, and cysteine/cystine redox potentials and the implications for protein function in development. We present a tissue-specific example of the important role that reactive species play in pancreatic development and metabolic regulation. We discuss NFE2L2 (also known as NRF2) and related proteins, their roles in redox signaling, and their regulation of glutathione during development. Finally, we provide examples of xenobiotic compounds that disrupt redox signaling in the context of vertebrate embryonic development. Collectively, this review provides a systems-level perspective on the innate and inducible antioxidant defenses, as well as their roles in maintaining redox balance during chemical exposures that occur in critical windows of development.
Collapse
Affiliation(s)
- Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Archit Rastogi
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Monika A Roy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
29
|
Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Proc Natl Acad Sci U S A 2018; 115:2758-2763. [PMID: 29472449 DOI: 10.1073/pnas.1714056115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nrf2 plays critical roles in animals' defense against electrophiles and oxidative stress by orchestrating the induction of cytoprotective genes. We previously isolated the zebrafish mutant it768, which displays up-regulated expression of Nrf2 target genes in an uninduced state. In this paper, we determine that the gene responsible for it768 was the zebrafish homolog of phosphomannomutase 2 (Pmm2), which is a key enzyme in the initial steps of N-glycosylation, and its mutation in humans leads to PMM2-CDG (congenital disorders of glycosylation), the most frequent type of CDG. The pmm2it768 larvae exhibited mild defects in N-glycosylation, indicating that the pmm2it768 mutation is a hypomorph, as in human PMM2-CDG patients. A gene expression analysis showed that pmm2it768 larvae display up-regulation of endoplasmic reticulum (ER) stress, suggesting that the activation of Nrf2 was induced by the ER stress. Indeed, the treatment with the ER stress-inducing compounds up-regulated the gstp1 expression in an Nrf2-dependent manner. Furthermore, the up-regulation of gstp1 by the pmm2 inactivation was diminished by knocking down or out double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), one of the main ER stress sensors, suggesting that Nrf2 was activated in response to the ER stress via the PERK pathway. ER stress-induced activation of Nrf2 was reported previously, but the results have been controversial. Our present study clearly demonstrated that ER stress can indeed activate Nrf2 and this regulation is evolutionarily conserved among vertebrates. Moreover, ER stress induced in pmm2it768 mutants was ameliorated by the treatment of the Nrf2-activator sulforaphane, indicating that Nrf2 plays significant roles in the reduction of ER stress.
Collapse
|
30
|
Fuse Y, Endo Y, Araoi S, Daitoku H, Suzuki H, Kato M, Kobayashi M. The possible repositioning of an oral anti-arthritic drug, auranofin, for Nrf2-activating therapy: The demonstration of Nrf2-dependent anti-oxidative action using a zebrafish model. Free Radic Biol Med 2018; 115:405-411. [PMID: 29277393 DOI: 10.1016/j.freeradbiomed.2017.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/07/2017] [Accepted: 12/17/2017] [Indexed: 11/25/2022]
Abstract
The Nrf2 pathway is a biological defense system against oxidative stress. The pharmacological activation of the Nrf2 pathway is a promising therapy for oxidative stress-related diseases, but it has been challenging to find an Nrf2 activator with acceptable toxicity. To circumvent this problem, we focused on an already approved oral anti-arthritic drug, auranofin that has been reported to have the potential to activate Nrf2. We used a zebrafish model to investigate whether auranofin has protective action against oxidative stress in vivo. Auranofin pre-treatment considerably improved the survival of zebrafish larvae that were challenged with a lethal dose of hydrogen peroxide. This protective effect was not observed in an Nrf2 mutant zebrafish strain, suggesting that the activation of the biological defense against oxidative stress was Nrf2-dependent. Auranofin-induced protection was further tested by challenges with redox-active heavy metals. A clear protective effect was observed against arsenite, a highly redox-reactive toxicant. In addition, this effect was also demonstrated to be Nrf2-dependent based on the analysis of an Nrf2 mutant strain. These results clearly demonstrate the anti-oxidative action of auranofin and encourage the repositioning of auranofin as a drug that improves oxidative stress-related pathology.
Collapse
Affiliation(s)
- Yuji Fuse
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan; Japan Society for the Promotion of Science, Japan
| | - Yuka Endo
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; College of Biological Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Sho Araoi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan; Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiroaki Daitoku
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiroyuki Suzuki
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| |
Collapse
|
31
|
Conservation of the Keap1-Nrf2 System: An Evolutionary Journey through Stressful Space and Time. Molecules 2017; 22:molecules22030436. [PMID: 28282941 PMCID: PMC6155405 DOI: 10.3390/molecules22030436] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 12/30/2022] Open
Abstract
The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Its regulatory mechanisms, e.g., stress-sensing mechanism, proteasome-based regulation of Nrf2 activity and selection of target genes, have been elucidated mainly in mammals. In addition, emerging model animals, such as zebrafish, fruit fly and Caenorhabditis elegans, have been shown to have similar anti-stress systems to mammals, suggesting that analogous defense systems are widely conserved throughout the animal kingdom. Experimental evidence in lower animals provides important information beyond mere laboratory-confined utility, such as regarding how these systems transformed during evolution, which may help characterize the mammalian system in greater detail. Recent advances in genome projects of both model and non-model animals have provided a great deal of useful information toward this end. We herein review the research on Keap1-Nrf2 and its analogous systems in both mammals and lower model animals. In addition, by comparing the amino acid sequences of Nrf2 and Keap1 proteins from various species, we can deduce the evolutionary history of the anti-stress system. This combinatorial approach using both experimental and genetic data will suggest perspectives of approach for researchers studying the stress response.
Collapse
|
32
|
Conservation of the Nrf2-Mediated Gene Regulation of Proteasome Subunits and Glucose Metabolism in Zebrafish. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5720574. [PMID: 28116036 PMCID: PMC5223048 DOI: 10.1155/2016/5720574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022]
Abstract
The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Besides the exogenous stress response, Nrf2 has been found to regulate numerous cellular functions, including protein turnover and glucose metabolism; however, the evolutionary origins of these functions remain unknown. In the present study, we searched for novel target genes associated with the zebrafish Nrf2 to answer this question. A microarray analysis of zebrafish embryos that overexpressed Nrf2 revealed that 115 candidate genes were targets of Nrf2, including genes encoding proteasome subunits and enzymes involved in glucose metabolism. A real-time quantitative PCR suggested that the expression of 3 proteasome subunits (psma3, psma5, and psmb7) and 2 enzymes involved in glucose metabolism (pgd and fbp1a) were regulated by zebrafish Nrf2. We thus next examined the upregulation of these genes by an Nrf2 activator, diethyl maleate, using Nrf2 mutant zebrafish larvae. The results of real-time quantitative PCR and whole-mount in situ hybridization showed that all of these 5 genes were upregulated by diethyl maleate treatment in an Nrf2-dependent manner, especially in the liver. These findings implied that the Nrf2-mediated regulation of the proteasome subunits and glucose metabolism is evolutionarily conserved among vertebrates.
Collapse
|