1
|
Mohanty S, Paul A, Banerjee S, Rajendran KV, Tripathi G, Das PC, Sahoo PK. Ultrastructural, molecular and haemato-immunological changes: Multifaceted toxicological effects of microcystin-LR in rohu, Labeo rohita. CHEMOSPHERE 2024; 358:142097. [PMID: 38657687 DOI: 10.1016/j.chemosphere.2024.142097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
No water body is resilient to afflicts of algal bloom, if goes unmanaged. With the increasing trend of intensification, eutrophication and climate change, Labeo rohita (rohu) is highly anticipated to suffer from the deleterious effects of bloom and eventually its toxins. A comprehensive study was conducted to understand the toxicopathological effects of microcystin-LR (MC-LR) in rohu following intraperitoneal injection of 96 h-LD50 dose i.e., 713 μg kg-1. Substantial changes in micro- and ultrastructural level were evident in histopathology and transmission electron microscope (TEM) study. The haematological, biochemical, cellular and humoral innate immune biomarkers were significantly altered (p < 0.05) in MC-LR treated fish. The mRNA transcript levels of IL-1β, IL-10, IgM and IgZ in liver and kidney tissues were significantly up-regulated in 12 hpi and declined in 96 hpi MC-LR exposed fish. The relative mRNA expression of caspase 9 in the liver and kidney indicates mitochondrial-mediated apoptosis which was strongly supported by TEM study. In a nutshell, our study illustrates for the first time MC-LR induced toxicological implications in rohu displaying immunosuppression, enhanced oxidative stress, pathophysiology, modulation in mRNA transcription, genotoxicity, structural and ultrastructural alterations signifying it as a vulnerable species for MC-LR intoxication.
Collapse
Affiliation(s)
- Snatashree Mohanty
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, India
| | - Anirban Paul
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, India
| | | | - K V Rajendran
- ICAR- Central Institute of Fisheries Education, Mumbai, India; Central University of Kerala, Kasaragod, 671 316, India
| | | | - Pratap Chandra Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, India.
| |
Collapse
|
2
|
Veerabadhran M, Manivel N, Sarvalingam B, Seenivasan B, Srinivasan H, Davoodbasha M, Yang F. State-of-the-art review on the ecotoxicology, health hazards, and economic loss of the impact of microcystins and their ultrastructural cellular changes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106417. [PMID: 36805195 DOI: 10.1016/j.aquatox.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Cyanobacteria are ubiquitously globally present in both freshwater and marine environments. Ample reports have been documented by researchers worldwide for pros and cons of cyanobacterial toxins. The implications of cyanobacterial toxin on health have received much attention in recent decades. Microcystins (MCs) represent the unique class of toxic metabolites produced by cyanobacteria. Although the beneficial aspects of cyanobacterial are numerous, the deleterious effect of MCs overlooked. Several studies on MCs evidently reported that MCs exhibit a plethora of harmful effect on animals, plants, and cell lines. Accordingly, numerous histopathological studies have also found that MCs cause detrimental effects to cells by damaging cellular organelles, including nuclear envelope, Golgi apparatus, endoplasmic reticulum, mitochondria, plastids, flagellum, pilus membrane structures and integrity, vesicle structures, and autolysosomes and autophagosomes. Such ultrastructural cellular damages holistically influence the morphological, biochemical, physiological, and genetic status of the host. Indeed, MCs have also been found to cause the deleterious effect to different animals and plants. Such deleterious effects of MCs have greater impact on agriculture, public health which in turn influences ecotoxicology and economic consequences. The impairments correspond to oxidative stress, organ failure, carcinogenesis, aquaculture loss, with an emphasis for blooms and respective bioaccumulation prospects. The preservation of mortality among life forms is addressed in a critical cellular perspective for multitude benefits. The comprehensive cellular assessment could provide opportunity to develop strategy for therapeutic implications.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Hunan 410078, China
| | - Nagarajan Manivel
- ICAR-Central Marine Fisheries Research Institute, Chennai 600 0028, India
| | - Barathkumar Sarvalingam
- National Centre for Coastal Research (NCCR), Ministry of Earth Science, NIOT Campus, Chennai 600100, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Hemalatha Srinivasan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| |
Collapse
|
3
|
van Dyk C, Nyoni H, Barnhoorn I. Hepatic nodular alterations in wild fish from a hyper-eutrophic freshwater system with cyanobacterial blooms: a species and seasonal comparison. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15729-15742. [PMID: 34636005 DOI: 10.1007/s11356-021-16635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
This paper reports on the seasonal and species comparison of hepatic nodular alterations in two indicator fish species from the hyper-eutrophic Roodeplaat Dam in South Africa. This freshwater system is characterized by seasonal cyanobacterial algal blooms which release bio-toxins, including hepato-toxins, which can have negative effects on the health of the resident fish population. A total of 115 Clarias gariepinus (Burchell) and 98 Oreochromis mossambicus (Peters) were collected seasonally across six different surveys over a period of 3 years. Nodular alterations in livers were assessed both macroscopically and microscopically. We found a species difference with a 48% prevalence of nodular alterations in C. gariepinus and no macroscopically visible alterations in O. mossambicus. Affected fish also showed an increase in the ratio of liver mass to body mass, i.e., the hepatosomatic index. The microscopic characteristics of the nodules were primarily associated with pre-neoplastic, focal areas of cellular alterations; most prevalent were focal areas of steatosis. However, we could not establish a seasonal pattern regarding the occurrence of these alterations and therefore no association between the occurrence of the liver pathology and the cyanobacterial blooms. Our results therefore suggest that the occurrence of nodular alterations is not an acute, seasonal response, but rather a chronic, and possibly, and more interestingly, a species-specific, pathological response.
Collapse
Affiliation(s)
- Cobus van Dyk
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.
| | - Hlengilizwe Nyoni
- College of Science, Engineering and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, UNISA Science Campus, 1710, Roodepoort, South Africa
| | - Irene Barnhoorn
- Department of Zoology, University of Venda, Thohoyandou, 0950, South Africa
| |
Collapse
|
4
|
De Novo Profiling of Long Non-Coding RNAs Involved in MC-LR-Induced Liver Injury in Whitefish: Discovery and Perspectives. Int J Mol Sci 2021; 22:ijms22020941. [PMID: 33477898 PMCID: PMC7833382 DOI: 10.3390/ijms22020941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin for which a substantial gap in knowledge persists regarding the underlying molecular mechanisms of liver toxicity and injury. Although long non-coding RNAs (lncRNAs) have been extensively studied in model organisms, our knowledge concerning the role of lncRNAs in liver injury is limited. Given that lncRNAs show low levels of sequence conservation, their role becomes even more unclear in non-model organisms without an annotated genome, like whitefish (Coregonus lavaretus). The objective of this study was to discover and profile aberrantly expressed polyadenylated lncRNAs that are involved in MC-LR-induced liver injury in whitefish. Using RNA sequencing (RNA-Seq) data, we de novo assembled a high-quality whitefish liver transcriptome. This enabled us to find 94 differentially expressed (DE) putative evolutionary conserved lncRNAs, such as MALAT1, HOTTIP, HOTAIR or HULC, and 4429 DE putative novel whitefish lncRNAs, which differed from annotated protein-coding transcripts (PCTs) in terms of minimum free energy, guanine-cytosine (GC) base-pair content and length. Additionally, we identified DE non-coding transcripts that might be 3′ autonomous untranslated regions (3′UTRs) of mRNAs. We found both evolutionary conserved lncRNAs as well as novel whitefish lncRNAs that could serve as biomarkers of liver injury.
Collapse
|
5
|
Wang Y, Xiao X, Wang F, Yang Z, Yue J, Shi J, Ke F, Xie Z, Fan Y. An identified PfHMGB1 promotes microcystin-LR-induced liver injury of yellow catfish (Pelteobagrus fulvidraco). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111266. [PMID: 32919194 DOI: 10.1016/j.ecoenv.2020.111266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin that can cause liver inflammation and injury. However, the mode of action of related inflammatory factors is not fully understood. PfHMGB1 is an inflammatory factor induced at the mRNA level in the liver of juvenile yellow catfish (Pelteobagrus fulvidraco) that were intraperitoneally injected with 50 μg/kg MC-LR. The PfHMGB1 mRNA level was highest in the liver and muscle among 11 tissues examined. The full-length cDNA sequence of PfHMGB1 was cloned and overexpressed in E. coli, and the purified protein rPfHMGB1 demonstrated DNA binding affinity. Endotoxin-free rPfHMGB1 (6-150 μg/mL) also showed dose-dependent hepatotoxicity and induced inflammatory gene expression of primary hepatocytes. PfHMGB1 antibody (anti-PfHMGB1) in vitro reduced MC-LR (30 and 50 μmol/L)-induced hepatotoxicity, suggesting PfHMGB1 is important in the toxic effects of MC-LR. In vivo study showed that MC-LR upregulated PfHMGB1 protein in the liver. The anti-PfHMGB1 blocked its counterpart and reduced ALT/AST activities after MC-LR exposure. Anti-PfHMGB1 partly neutralized MC-LR-induced hepatocyte disorganization, nucleus shrinkage, mitochondria, and rough endoplasmic reticula destruction. These findings suggest that PfHMGB1 promotes MC-LR-induced liver damage in the yellow catfish. HMGB1 may help protect catfish against widespread microcystin pollution.
Collapse
Affiliation(s)
- Yun Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Hubei Province, Wuhan, 430056, China; Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Xiaoxue Xiao
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Feijie Wang
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zupeng Yang
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Jingkai Yue
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Jiale Shi
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhaohui Xie
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yanru Fan
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
6
|
Paulino MG, Tavares D, Terezan AP, Sakuragui MM, Pesenti E, Giani A, Cestari MM, Fernandes JB, Fernandes MN. Biotransformations, Antioxidant System Responses, and Histopathological Indexes in the Liver of Fish Exposed to Cyanobacterial Extract. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1041-1051. [PMID: 32102115 DOI: 10.1002/etc.4696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Radiocystis fernandoi, a microcystin (MC) producer, has been common in cyanobacterial blooms in tropical regions. Microcystin is a hepatotoxin that causes tissue damage and even death in animals, including humans; its detoxification process may involve biotransformation and activation of the antioxidant defense system. We evaluated the detoxification pathway, examined the antioxidant defense system responses, and determined the alterations and the organ histopathological indexes in the liver of the tropical fish Hoplias malabaricus after acute and subchronic intraperitoneal exposure to microcystin. The crude microcystin extract of R. fernandoi had predominantly MC-RR and MC-YR. The detoxification process was activated by increasing ethoxyresorufin-O-deethylase activity, whereas glutathione S-transferase was inhibited. The activity of the antioxidant defense enzymes superoxide dismutase (SOD) and glutathione peroxidase decreased after acute exposure; the SOD-catalase system and the glutathione level increased after subchronic exposure. The carbonyl protein level, lipid peroxidation (LPO), and DNA damage were unchanged after acute exposure, whereas protein carbonyl was unchanged, LPO decreased, and DNA damage increased after subchronic exposure. Histopathological alteration indexes differed between acute and subchronic exposure, but the histopathological organ indexes indicate liver dysfunction in both exposure periods. We conclude that MC-RR and MC-YR induce different liver responses depending on the time of exposure, and the antioxidant defense responses after subchronic exposure may help to partially restore the liver function. Environ Toxicol Chem 2020;39:1041-1051. © 2020 SETAC.
Collapse
Affiliation(s)
- Marcelo Gustavo Paulino
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Driele Tavares
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Ana Paula Terezan
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | | | - Emanuele Pesenti
- Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Alessandra Giani
- Department of Botany, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - João Batista Fernandes
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
7
|
Wang L, Lin W, Zha Q, Guo H, Zhang D, Yang L, Li L, Li D, Tang R. Persistent Exposure to Environmental Levels of Microcystin-LR Disturbs Cortisol Production via Hypothalamic-Pituitary-Interrenal (HPI) Axis and Subsequently Liver Glucose Metabolism in Adult Male Zebrafish ( Danio rerio). Toxins (Basel) 2020; 12:toxins12050282. [PMID: 32353954 PMCID: PMC7290660 DOI: 10.3390/toxins12050282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/28/2022] Open
Abstract
There is growing evidence that microcystin-LR (MC-LR) is a new endocrine disruptor, whereas the impacts of persistent exposure to MC-LR on the hypothalamic-pituitary-interrenal (HPI) axis and health hazards thereafter have not been investigated. In this work, adult male zebrafish (Danio rerio) were immersed into MC-LR solutions at concentrations of 0, 1, 5 and 25 μg/L for 30 d, respectively. The results showed that persistent MC-LR exposure caused an extensive upregulation of HPI-axis genes but an inhibition of brain nuclear receptors (gr and mr), which finally increased serum cortisol levels. Furthermore, the decreased expression of hepatic gr might partly be responsible for the strong inhibition on the expression of downstream genes involved in glucose metabolic enzymes, including gluconeogenesis-related genes (pepck, fbp1a, g6pca), glycogenolysis-related gene (pyg), glycolysis-related genes (gk, pfk1b, pk) and glycogenesis-related gene (gys2). These findings are in accordance with the decline in serum glucose, indicating that long-term MC-LR exposure caused a lower production of glucose relative to glucose lysis. Our above results firstly establish the link between persistent MC-LR exposure and impaired glucose metabolism, suggesting that long-term MC-LR-mediated stress might threaten fish’s health.
Collapse
Affiliation(s)
- Lingkai Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingji Zha
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dandan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture (Huazhong Agricultural University), Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, China
- Correspondence:
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture (Huazhong Agricultural University), Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture (Huazhong Agricultural University), Wuhan 430070, China
- National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, China
| |
Collapse
|
8
|
Łakomiak A, Brzuzan P, Jakimiuk E, Florczyk M, Woźny M. Molecular characterization of the cyclin-dependent protein kinase 6 in whitefish (Coregonus lavaretus) and its potential interplay with miR-34a. Gene 2019; 699:115-124. [PMID: 30858134 DOI: 10.1016/j.gene.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent protein kinase 6 (CDK6) plays a pivotal role in the regulation of the cell cycle and cell proliferation in mammals, and disruption of its expression by various microRNAs has been implicated in the pathogenesis of multiple human cancers. In mammals, miR-34a acts as a downstream effector of p53, and thus indirectly targets Cdk6, abrogating its effects. However, no studies have been done so far to examine the mechanistic involvement of miR-34a in the silencing of cdk6 in fish. In the present study, we found that the cDNA sequence of whitefish cdk6 has a 3'UTR region that contains a binding site for miR-34a. Using a luciferase reporter assay, we demonstrated that whitefish cdk6 is a direct target of miR-34a in vitro. In order to confirm this relationship in vivo, we measured the miR-34a and cdk6 mRNA expression patterns in the liver of whitefish after short-term (8, 24, and 48 h) and long-term (14 and 28 days) exposure to microcystin-LR (MC-LR), a known hepatotoxin and tumor promoter. In contrast to the in vitro findings, we noticed an up-regulation of miR-34a and cdk6 expression after long-term MC-LR treatment. While these results indicate that both, miR-34a and cdk6 are responsive to MC-LR treatment, they do not support the presence of a miR-34a:cdk6 mRNA regulatory pair in the MC-LR-challanged whitefish liver in vivo. On the other hand, our findings suggests that cell regulatory elements, partnering with either miR-34a or cdk6, are worthy of further screening to better understand the molecular mechanisms that underlie the physiological response of fish challenged with hepatotoxic environmental pollutants like microcystins.
Collapse
Affiliation(s)
- Alicja Łakomiak
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland.
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Ewa Jakimiuk
- Division of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13, 10-950 Olsztyn, Poland
| | - Maciej Florczyk
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Maciej Woźny
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| |
Collapse
|
9
|
Brzuzan P, Woźny M, Lewczuk B, Florczyk M, Gomułka P, Budzińska P, Wesołowski M, Dobosz S. In vivo miRNA delivery in whitefish: Synthetic MiR92b-3p uptake and the efficacy of gene expression silencing. Exp Biol Med (Maywood) 2019; 244:52-63. [PMID: 30664358 DOI: 10.1177/1535370218824573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT The delivery of short snippets of RNA, such as synthetic miRNA agents, is an essential step for achieving RNA-mediated knockdown, which has not been studied in sufficient detail in fish. Our results indicate that a MiR92b-3p mimic may be effectively delivered via intraperitoneal injection to the spleen and the liver of whitefish, and that it likely achieves functionality without causing any apparent toxic effects in the challenged animals. We report the novel finding that the MiR92b-3p mimic reduced the in vivo liver mRNA expression levels of its putative pro-apoptotic targets (p53, cdkn1a, and pcna), and important metabolic genes, e.g. cdo1. This shows that this methodology of MiR92b-3p mimic transfection in vivo may be a useful tool for studies that investigate the molecular pathways that confer pro-proliferative and anti-apoptotic phenotypes or those that regulate intracellular metabolism in fish and other vertebrates.
Collapse
Affiliation(s)
- Paweł Brzuzan
- 1 Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn 10-709, Poland
| | - Maciej Woźny
- 1 Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn 10-709, Poland
| | - Bogdan Lewczuk
- 2 Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn 10-713, Poland
| | - Maciej Florczyk
- 1 Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn 10-709, Poland
| | - Piotr Gomułka
- 3 Department of Ichthyology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn 10-719, Poland
| | - Paulina Budzińska
- 1 Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn 10-709, Poland
| | - Michał Wesołowski
- 1 Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn 10-709, Poland
| | - Stefan Dobosz
- 4 Department of the Salmonid Research in Rutki, Inland Fisheries Institute in Olsztyn, Żukowo 83-330, Poland
| |
Collapse
|
10
|
Fonseca VB, Sopezki MDS, Yunes JS, Zanette J. Effect of a toxic Microcystis aeruginosa lysate on the mRNA expression of proto-oncogenes and tumor suppressor genes in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:729-734. [PMID: 29957580 DOI: 10.1016/j.ecoenv.2018.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/23/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacterial blooms of Microcystis aeruginosa represent a significant risk to the environment and have become a worldwide concern. M. aeruginosa can produce the hepatotoxins microcystins (MCs) with potential for tumor promotion. The present study evaluated the time-dependent effects in the transcription of tumor-related genes in the zebrafish, Danio rerio, exposed to dilutions of a M. aeruginosa lysate containing 3.5 and 54.6 µg L-1 MCs. We used a cultured M. aeruginosa strain, RST 9501, which contains mainly the variant [D-Leu1] MC-LR and originated from the Patos Lagoon Estuary (RS, Brazil). The exposure caused short-term repression of tumor suppressor genes and long-term repression of proto-oncogenes. These responses were more evident for p53 that was repressed with exposure for 6, 24 and 96 h, and fosab and myca that were consistently repressed with exposure for 384 h, when fish were exposed to both M. aeruginosa lysate dilutions, compared to controls (p < 0.05). The suppressor genes, baxa and gadd45α, and the proto-oncogene, junba, were suppressed mainly at 96 h, where both dilutions of the lysate caused repression compared to controls (p < 0.05). The p53 gene was the only gene to be induced; this occurred in fish exposed to lysate containing 3.5 µg L-1 for 384 h. This is the first study to show that M. aeruginosa containing an environmentally relevant concentration of [D-Leu1] MC-LR could cause time-dependent repression of proto-oncogenes and tumor suppressor genes in fish. The results suggest that short-term repression of tumor suppressor genes could participate in the mechanism of tumor promotion caused by M. aeruginosa in fish.
Collapse
Affiliation(s)
- Viviane Barneche Fonseca
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil
| | - Mauricio da Silva Sopezki
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil
| | - João Sarkis Yunes
- Laboratório de Cianobactérias e Ficotoxinas, Instituto de Oceanografia (IO), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil
| | - Juliano Zanette
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
11
|
Microcystin-LR-Triggered Neuronal Toxicity in Whitefish Does Not Involve MiR124-3p. Neurotox Res 2018; 35:29-40. [PMID: 29882005 PMCID: PMC6313356 DOI: 10.1007/s12640-018-9920-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin that has also been pointed out of causing neurotoxicity, but the exact mechanisms of action still remain ambiguous and need to be elucidated. Data from studies on mammals show that pathology of astrocyte cells points to perturbations of microRNA signaling. Glial fibrillary acidic protein (GFAP), a neuronal cell/astrocyte-specific protein, and a microRNA-124-3p (MiR124-3p) are among putative triggers and regulators of neuronal cell/astrocyte reactivity. In the present study on whitefish (Coregonus lavaretus), we found that gfap mRNA contains a putative target site for MIR124-3p, to potentially affect its expression changes. qPCR expression study of gfap:MiR124-3p pair in the midbrain of juvenile whitefish, during 28 days of exposure to a repeated subacute dose of MC-LR (100 μg kg−1 body mass), showed marginally significant up-regulation of gfap only on the 7th day of exposure period which suggests neuronal toxicity. During the whole exposure period, neither midbrain nor blood plasma levels of MiR124-3p were changed. Furthermore, double luciferase gene reporter assay confirmed the lack of MiR124-3p involvement in mediating control over gfap mRNA expression. These data show that, although MC-LR may trigger neuronal toxicity in whitefish, this does not involve MiR124-3p in response to the treatment.
Collapse
|
12
|
Tavares D, Paulino MG, Terezan AP, Fernandes JB, Giani A, Fernandes MN. Biochemical and morphological biomarkers of the liver damage in the Neotropical fish, Piaractus mesopotamicus, injected with crude extract of cyanobacterium Radiocystis fernandoi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15349-15356. [PMID: 29564700 DOI: 10.1007/s11356-018-1746-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacterial proliferation in river and lakes is the result of eutrophication. The cyanobacterium Radiocystis fernandoi strain R28 produces mostly two MC variants MC-RR and MC-YR and small amounts of other oligopeptides, but does not produce MC-LR. The present study investigated the hepatotoxic potential of the crude extract of the R. fernandoi strain R28 on the Neotropical fish, Piaractus mesopotamicus, at 3, 6, and 24 h after intraperitoneal injection (100 μg MC-LR equivalent per kg-1 body mass) using biochemical and morphological biomarkers of liver damage. Although the protein phosphatases PP1 and PP2A were not inhibited during the 24-h treatment, liver parenchyma and hepatocyte structure were disrupted. Alkaline phosphatase increased at 3 h post-injection and decreased after 24 h; alanine aminotransferase and aspartate aminotransferase increased in a time-dependent manner up to 24 h indicating impaired liver function. Progressive histopathological changes were consistent with biochemical results demonstrating alterations in liver structure and function. In conclusion, the crude extract of R. fernandoi strain R28 has high hepatotoxic potential and can severely compromise fish health.
Collapse
Affiliation(s)
- Driele Tavares
- Department of Physiological Sciences, Federal University of São Carlos, PO Box 676, Via Washington Luiz, km 235, São Carlos, 13565-905, São Paulo, Brazil
| | - Marcelo Gustavo Paulino
- Department of Physiological Sciences, Federal University of São Carlos, PO Box 676, Via Washington Luiz, km 235, São Carlos, 13565-905, São Paulo, Brazil
- Federal University of Tocantins, Campus Araguaina, Avenida Paraguai, s/n°, Araguaína, Tocantins, 77824-838, Brazil
| | - Ana Paula Terezan
- Department of Chemistry, Federal University of São Carlos, PO Box 676, Via Washington Luiz, km 235, São Carlos, 13565-905, São Paulo, Brazil
| | - João Batista Fernandes
- Department of Chemistry, Federal University of São Carlos, PO Box 676, Via Washington Luiz, km 235, São Carlos, 13565-905, São Paulo, Brazil
| | - Alessandra Giani
- Department of Botany, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, MG, Brazil
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, PO Box 676, Via Washington Luiz, km 235, São Carlos, 13565-905, São Paulo, Brazil.
- Department of Physiological Sciences, Federal University of São Carlos, PO Box 676, Via Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
13
|
Tumor-promoting cyanotoxin microcystin-LR does not induce procarcinogenic events in adult human liver stem cells. Toxicol Appl Pharmacol 2018. [PMID: 29534881 DOI: 10.1016/j.taap.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HL1-hT1 cell line represents adult human liver stem cells (LSCs) immortalized with human telomerase reverse transcriptase. In this study, HL1-hT1 cells were found to express mesenchymal markers (vimentin, CD73, CD90/THY-1 and CD105) and an early hepatic endoderm marker FOXA2, while not expressing hepatic progenitor (HNF4A, LGR5, α-fetoprotein) or differentiated hepatocyte markers (albumin, transthyretin, connexin 32). In response to microcystin-LR (MC-LR), a time- and concentration-dependent formation of MC-positive protein bands in HL1-hT1 cells was observed. Cellular accumulation of MC-LR occurred most likely via mechanisms independent on organic anion transporting polypeptides (OATPs) or multidrug resistance (MDR) proteins, as indicated (a) by a gene expression analysis of 11 human OATP genes and 4 major MDR genes (MDR1/P-glycoprotein, MRP1, MRP2 and BCRP); (b) by non-significant effects of OATP or MDR1 inhibitors on MC-LR uptake. Accumulation of MC-positive protein bands in HL1-hT1 cells was associated neither with alterations of cell viability and growth, dysregulations of ERK1/2 and p38 kinases, reactive oxygen species formation, induction of double-stranded DNA breaks nor modulations of stress-inducible genes (ATF3, HSP5). It suggests that LSCs might have a selective, MDR1-independent, survival advantage and higher tolerance towards MC-induced cytotoxic, genotoxic or cancer-related events than differentiated adult hepatocytes, fetal hepatocyte or malignant liver cell lines. HL1-hT1 cells provide a valuable in vitro tool for studying effects of toxicants and pharmaceuticals on LSCs, whose important role in the development of chronic toxicities and liver diseases is being increasingly recognized.
Collapse
|
14
|
Le Manach S, Sotton B, Huet H, Duval C, Paris A, Marie A, Yépremian C, Catherine A, Mathéron L, Vinh J, Edery M, Marie B. Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: A proteomic and metabolomic study on liver. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:523-537. [PMID: 29220784 DOI: 10.1016/j.envpol.2017.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacterial blooms have become a common phenomenon in eutrophic freshwater ecosystems worldwide. Microcystis is an important bloom-forming and toxin-producing genus in continental aquatic ecosystems, which poses a potential risk to Human populations as well as on aquatic organisms. Microcystis is known to produce along with various bioactive peptides, the microcystins (MCs) that have attracted more attention notably due to their high hepatotoxicity. To better understand the effects of cyanobacterial blooms on fish, medaka fish (Oryzias latipes) were sub-chronically exposed to either non-MC-producing or MC-producing living strains and, for this latter, to its subsequent MC-extract of Microcystis aeruginosa. Toxicological effects on liver have been evaluated through the combined approach of histopathology and 'omics' (i.e. proteomics and metabolomics). All treatments induce sex-dependent effects at both cellular and molecular levels. Moreover, the modalities of exposure appear to induce differential responses as the direct exposure to the cyanobacterial strains induce more acute effects than the MC-extract treatment. Our histopathological observations indicate that both non-MC-producing and MC-producing strains induce cellular impairments. Both proteomic and metabolomic analyses exhibit various biological disruptions in the liver of females and males exposed to strain and extract treatments. These results support the hypothesis that M. aeruginosa is able to produce bioactive peptides, other than MCs, which can induce toxicological effects in fish liver. Moreover, they highlight the importance of considering cyanobacterial cells as a whole to assess the realistic environmental risk of cyanobacteria on fish.
Collapse
Affiliation(s)
- Séverine Le Manach
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France.
| | - Benoit Sotton
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Hélène Huet
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, BioPôle Alfort, F-94704 Maisons-Alfort Cedex, France
| | - Charlotte Duval
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Alain Paris
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Arul Marie
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Claude Yépremian
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Arnaud Catherine
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Lucrèce Mathéron
- Institut de Biologie Paris Seine/FR 3631, Plateforme Spectrométrie de masse et Protéomique, Institut de Biologie Intégrative IFR 83, Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Joelle Vinh
- USR 3149 ESPCI/CNRS SMPB, Laboratory of Biological Mass Spectrometry and Proteomics, ESPCI Paris, PSL Research University, Paris, France
| | - Marc Edery
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Benjamin Marie
- UMR 7245 CNRS/MNHN Molécules de communication et adaptation des microorganismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, 12 rue Buffon, F-75231 Paris Cedex 05, France.
| |
Collapse
|
15
|
Hu M, Qu X, Pan L, Fu C, Jia P, Liu Q, Wang Y. Effects of toxic Microcystis aeruginosa on the silver carp Hypophthalmichtys molitrix revealed by hepatic RNA-seq and miRNA-seq. Sci Rep 2017; 7:10456. [PMID: 28874710 PMCID: PMC5585339 DOI: 10.1038/s41598-017-10335-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 12/27/2022] Open
Abstract
High-throughput sequencing was applied to analyze the effects of toxic Microcystis aeruginosa on the silver carp Hypophthalmichthys molitrix. Silver carps were exposed to two cyanobacteria species (toxic and non-toxic) for RNA-seq and miRNA-seq analysis. RNA-seq revealed that the liver tissue contained 105,379 unigenes. Of these genes, 143 were significantly differentiated, 82 were markedly up-regulated, and 61 were remarkably down-regulated. GO term enrichment analysis indicated that 35 of the 154 enriched GO terms were significantly enriched. KEGG pathway enrichment analysis demonstrated that 17 of the 118 enriched KEGG pathways were significantly enriched. A considerable number of disease/immune-associated GO terms and significantly enriched KEGG pathways were also observed. The sequence length determined by miRNA-seq was mainly distributed in 20-23 bp and composed of 882,620 unique small RNAs, and 53% of these RNAs were annotated to miRNAs. As confirmed, 272 known miRNAs were differentially expressed, 453 novel miRNAs were predicted, 112 miRNAs were well matched with 7,623 target genes, and 203 novel miRNAs were matched with 15,453 target genes. qPCR also indicated that Steap4, Cyp7a1, CABZ01088134.1, and PPP1R3G were significantly differentially expressed and might play major roles in the toxic, detoxifying, and antitoxic mechanisms of microcystin in fish.
Collapse
Affiliation(s)
- Menghong Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
- Centre for Research on Environmental Ecology and Fish Nutrion (CREEFN) of the Ministry Agriculture, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Ministry, Ocean University, Shanghai, China
| | - Xiancheng Qu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
- Centre for Research on Environmental Ecology and Fish Nutrion (CREEFN) of the Ministry Agriculture, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Ministry, Ocean University, Shanghai, China
| | - Lisha Pan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Chunxue Fu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Peixuan Jia
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qigen Liu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China.
- Centre for Research on Environmental Ecology and Fish Nutrion (CREEFN) of the Ministry Agriculture, Shanghai Ocean University, Shanghai, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Ministry, Ocean University, Shanghai, China.
| | - Youji Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China.
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.
| |
Collapse
|