1
|
Lu YY, Yang R, Cao M, Lu L, Zhu W, Hua W, Tian M, Sun Y, Huang Q. Reversibility of polystyrene nanoplastics-induced disruption of testosterone biosynthesis in mice: The role of histone modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125506. [PMID: 39662582 DOI: 10.1016/j.envpol.2024.125506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/19/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Nanoplastics (NPs) exposure could disrupt the synthesis of steroid hormones, thereby posing a potential threat to male reproductive health. However, the existing comprehension of the molecular mechanisms participating in this process remains limited, and the reversibility of NPs-triggered male reproductive toxicity is poorly understood. This investigation focused on the impact of histone modification on testosterone production in mice under long-term exposure to environmentally relevant doses of polystyrene nanoplastics (PS-NPs). The results showed 500 nm and 100 nm PS-NPs could accumulate in mouse testis, with a subsequent significant decrease following a period of self-recovery. The testosterone levels significantly increased after exposure to 500 nm and 100 nm PS-NPs, and the protein levels of CYP11A1, CYP17A1, and 17β-HSD were upregulated. Furthermore, PS-NPs exposure decreased the levels of multiple histone modifications (H3K9me1/2, H3K4me2/3, and H3K4/9ac) while increased H3K9me3 in mouse testis. Histone H3K9 methylation is linked with gene inhibition, whereas H3K4 methylation and H3K4/9 acetylation contribute to gene activation. ChIP analysis further confirmed that H3K9me2 was markedly decreased in the promoter regions of Cyp11a1 and Hsd17b. Additionally, H3K9me2 demethylase Jhdm2a was significantly increased. These findings suggested that low-level PS-NPs inhibited H3K9me2 through upregulating Jhdm2a, thereby activating key steroidogenic proteins CYP11A1 and 17β-HSD, ultimately promoting testosterone synthesis in mouse testis. Importantly, the changes in testosterone, steroidogenic proteins and histone modifications were effectively reversed upon the cessation of exposure to 500 nm and 100 nm PS-NPs. Collectively, these discoveries offer fresh perspectives on the epigenetic mechanisms underlying male reproductive endocrine disruption caused by PS-NPs, and contribute to assessing the human health hazards associated with exposure to environmental NPs.
Collapse
Affiliation(s)
- Yan-Yang Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Rui Yang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, China
| | - Meiyi Cao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lu Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Wanqing Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Weizhen Hua
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, China.
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
2
|
Li X, Shen K, Yuan D, Li X, Quan J, Tian F, Yang Y, Zhang L, Wang J. Sodium arsenite impairs sperm quality via downregulating the ZMYND15 and ZMYND10. ENVIRONMENTAL TOXICOLOGY 2024; 39:4385-4396. [PMID: 38798119 DOI: 10.1002/tox.24327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Zinc finger MYND-type containing 15 (ZMYND15) has been documented to play important roles in spermatogenesis, and mutants contribute to recessive azoospermia, severe oligozoospermia, non-obstructive azoospermia, teratozoospermia, even male infertility. ZMYND10 is involved in sperm motility. Whether environmental pollutants impair male fertility via regulating the expression of ZMYND15 and ZMYND10 has not been studied. Arsenic exposure results in poor sperm quality and male infertility. In order to investigate whether arsenic-induced male reproductive toxicity is related to the expression of ZMYND15, ZMYND10 and their target genes, we established a male rat model of sodium arsenite exposure-induced reproductive injury, measured sperm quality, serum hormone levels, mRNA and protein expressions of intratesticular ZMYND15 and ZMYND10 as well as their target genes. The results showed that, in addition to the increased mRNA expression of Tnp1, sodium arsenite exposure reduced sperm quality, serum hormone levels, and mRNA and protein expression of intratesticular ZMYND15 and ZMYND10 and their target genes in male rats compared with the control group (p < .05). Therefore, our study first showed that the environmental pollutant arsenic impairs sperm quality in male rats by reducing the expression of ZMYND10 and ZMYND15 and their regulatory genes, which provides a possible diagnostic marker for environmental pollutants-induced male infertility.
Collapse
Affiliation(s)
- Xiangli Li
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Kaina Shen
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Dunxuan Yuan
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Xi Li
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Jinrou Quan
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Fangzhou Tian
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Yan Yang
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Li Zhang
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| | - Junling Wang
- Lanzhou University of Public Health, Lanzhou, People's Republic of China
| |
Collapse
|
3
|
Zhang J, Huang H, Ding B, Liu Z, Chen D, Li S, Shen T, Zhu Q. Histone demethylase KDM4A mediating macrophage polarization: A potential mechanism of trichloroethylene induced liver injury. Cell Biol Int 2024; 48:1148-1159. [PMID: 38800986 DOI: 10.1002/cbin.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Trichloroethylene (TCE) is a commonly used organic solvent in industry. Our previous studies have found that TCE can cause liver injury accompanied by macrophage polarization, but the specific mechanism is unclear. The epigenetic regulation of macrophage polarization is mainly focused on histone modification. Histone lysine demethylase 4A (KDM4A) is involved in the activation of macrophages. In this study, we used a mouse model we investigated the role of KDM4A in the livers of TCE-drinking mice and found that the expression of KDM4A, M1-type polarization indicators, and related inflammatory factors in the livers of TCE-drinking mice. In the study, BALB/c mice were randomly divided into four groups: 2.5 mg/mL TCE dose group and 5.0 mg/mL TCE dose group, the vehicle control group, and the blank control group. We found that TCE triggered M1 polarization of mouse macrophages, characterized by the expression of CD11c and robust production of inflammatory cytokines. Notably, exposure to TCE resulted in markedly increased expression of KDM4A in macrophages. Functionally, the increased expression of KDM4A significantly impaired the expression of H3K9me3 and H3K9me2 and increased the expression of H3K9me1. In addition, KDM4A potentially represents a novel epigenetic modulator, with its upregulation connected to β-catenin activation, a signal critical for the pro-inflammatory activation of macrophages. Furthermore, KDM4A inhibitor JIB-04 treatment resulted in a decrease in β-catenin expression and prevented TCE-induced M1 polarization and the expression of the pro-inflammatory cytokines TNF-α and IL-1β. These results suggest that the association of KDM4A and Wnt/β-catenin cooperatively establishes the activation and polarization of macrophages and global changes in H3K9me3/me2/me1. Our findings identify KDM4A as an essential regulator of the polarization of macrophages and the expression of inflammatory cytokines, which might serve as a potential target for preventing and treating liver injury caused by TCE.
Collapse
Affiliation(s)
- Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
| | - Hua Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department Of Infectious Disease Prevention and Control, Linan District Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Baiwang Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department Of Infectious Disease Prevention and Control, Linan District Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Zhibing Liu
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Daojun Chen
- Institute of Medical Technology, Anhui Medical College, Hefei, Anhui, China
| | - Shulong Li
- The Center for Scientific Research, Anhui Medical University, Hefei, Anhui, China
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
| | - Qixing Zhu
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Li F, Yang R, Lu L, Hua W, Sun Y, Tian M, Lu Y, Huang Q. Comparative steroidogenic effects of hexafluoropropylene oxide trimer acid (HFPO-TA) and perfluorooctanoic acid (PFOA): Regulation of histone modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124030. [PMID: 38663511 DOI: 10.1016/j.envpol.2024.124030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/01/2024] [Accepted: 04/21/2024] [Indexed: 04/30/2024]
Abstract
As a widely used alternative to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been detected in the environment and humans; however, little is known regarding its male reproductive toxicity. To compare the effects of HFPO-TA on steroid hormone synthesis with PFOA, we exposed Leydig cells (MLTC-1) to non-lethal doses (0.1, 1, and 10 μM) of PFOA and HFPO-TA for 48 h. It was found that the levels of steroid hormones, 17α-hydroxyprogesterone (OHP), androstenedione (ASD), and testosterone (T) were significantly increased in 1 and 10 μM of PFOA and HFPO-TA groups, with greater elevation being observed in the HFPO-TA groups than in the PFOA groups at 10 μM. We further showed that the two rate-limiting steroidogenic genes (Star and Cyp11a1) were up-regulated, while Hsd3b, Cyp17a1, and Hsd17b were down-regulated or unchanged after PFOA/HFPO-TA exposure. Moreover, PFOA exposure significantly up-regulated histone H3K4me1/3 and H3K9me1, while down-regulated H3K4me2 and H3K9me2/3 levels. By contrast, H3K4me2/3 and H3K9me2/3 were enhanced, while H3K4me1 and H3K9me1 were repressed after HFPO-TA treatment. It was further confirmed that H3K4me1/3 were increased and H3K9me2 was decreased in Star and Cyp11a1 promoters by PFOA, while HFPO-TA increased H3K4me2/3 and decreased H3K9me1 in the two gene promoters. Therefore, we propose that low levels of PFOA/HFPO-TA enhance the expression of Star and Cyp11a1 by regulating H3K4 and H3K9 methylation, thus stimulating the production of steroid hormones in MLTC-1 cells. Collectively, HFPO-TA exhibits stronger effects on steroidogenesis compared to PFOA, which may be ascribed to the distinct regulation of histone modifications. These data suggest that HFPO-TA does not appear to be a safer alternative to PFOA on the aspect of male reproductive toxicity.
Collapse
Affiliation(s)
- Fuping Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Rui Yang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Lu Lu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Weizhen Hua
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yanyang Lu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
5
|
Liu Y, Chen SJ, Ai C, Yu PX, Fang M, Wang H. Prenatal dexamethasone exposure impairs rat blood-testis barrier function and sperm quality in adult offspring via GR/KDM1B/FSTL3/TGFβ signaling. Acta Pharmacol Sin 2024; 45:1237-1251. [PMID: 38472317 PMCID: PMC11130295 DOI: 10.1038/s41401-024-01244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Both epidemiological and animal studies suggest that adverse environment during pregnancy can change the offspring development programming, but it is difficult to achieve prenatal early warning. In this study we investigated the impact of prenatal dexamethasone exposure (PDE) on sperm quality and function of blood-testis barrier (BTB) in adult offspring and the underlying mechanisms. Pregnant rats were injected with dexamethasone (0.1, 0.2 and 0.4 mg·kg-1·d-1, s.c.) from GD9 to GD20. After weaning (PW4), the pups were fed with lab chow. At PW12 and PW28, the male offspring were euthanized to collect blood and testes samples. We showed that PDE significantly decreased sperm quality (including quantity and motility) in male offspring, which was associated with impaired BTB and decreased CX43/E-cadherin expression in the testis. We demonstrated that PDE induced morphological abnormalities of fetal testicle and Sertoli cell development originated from intrauterine. By tracing to fetal testicular Sertoli cells, we found that PDE dose-dependently increased expression of histone lysine demethylases (KDM1B), decreasing histone 3 lysine 9 dimethylation (H3K9me2) levels of follistatin-like-3 (FSTL3) promoter region and increased FSTL3 expression, and inhibited TGFβ signaling and CX43/E-cadherin expression in offspring before and after birth. These results were validated in TM4 Sertoli cells following dexamethasone treatment. Meanwhile, the H3K9me2 levels of FSTL3 promoter in maternal peripheral blood mononuclear cell (PBMC) and placenta were decreased and its expression increased, which was positively correlated with the changes in offspring testis. Based on analysis of human samples, we found that the H3K9me2 levels of FSTL3 promoter in maternal blood PBMC and placenta were positively correlated with fetal blood testosterone levels after prenatal dexamethasone exposure. We conclude that PDE can reduce sperm quality in adult offspring rats, which is related to the damage of testis BTB via epigenetic modification and change of FSTL3 expression in Sertoli cells. The H3K9me2 levels of the FSTL3 promoter and its expression in the maternal blood PBMC can be used as a prenatal warning marker for fetal testicular dysplasia.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Si-Jia Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Can Ai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Peng-Xia Yu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Man Fang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Li J, Nan B, Xu Z, Chang H, Xu S, Ren M, Zhang Y, Wu Y, Chen Y, Guo D, Shen H. Arsenic exposure caused male infertility indicated by testis and sperm metabolic dysfunction in SD rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166838. [PMID: 37689206 DOI: 10.1016/j.scitotenv.2023.166838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/12/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Arsenic containment is one of the most severe environmental problems. It has been reported that arsenic exposure could cause male reproductive damage. However, the evidence chain from sodium arsenite (NaAsO2) exposure to adverse male fertility outcomes has not been completed by molecular events. In this study, adult male rats were exposed to NaAsO2 for eight weeks via drinking water for verifying their reproductive capacity by checking the phenotypes of testis damage, sperm quality, and female pregnancy rate. H&E staining indicated testicular cells had atrophied, and necrosis was observed under transmission electron microscopy. Sperm viability tended to decrease, and sperm malformation increased. Notably, metabolites in the testes and sperm showed substantial disruption, especially sperm metabolites. The pregnancy rate tests showed that arsenic decreased male rats' reproduction, with some adverse outcomes of the increased numbers of unpregnant females. However, the fetal crown-rump length remained unaltered, indicating that the pregnancy rate was impacted by arsenic exposure but not fetal growth. On arsenic toxicometabolomics analysis, docosahexaenoic acid (DHA) in sperm was the clearest metabolic sign to correlate with the unpregnant rate. In summary, arsenic exposure can cause male infertility via the injured sperm, which results in decreased female pregnancy. The DHA information may imply the dietary intervention for improving sperm quality. Although the fetal growth of the successful pregnancy has not been affected, the changes in epigenetic phenotypes carried by sperms still need to be verified.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Zehua Xu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Hao Chang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Song Xu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Miaomiao Ren
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Yike Zhang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Yaru Wu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Yujie Chen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Dongbei Guo
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China
| | - Heqing Shen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361003, PR China; Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, PR China.
| |
Collapse
|
7
|
Li X, Shen K, Yuan D, Fan J, Yang Y, Tian F, Quan J, Li C, Wang J. Sodium arsenite exposure enhances H3K14 acetylation and impairs male spermatogenesis in rat testes. Reprod Toxicol 2023; 122:108474. [PMID: 37757915 DOI: 10.1016/j.reprotox.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/26/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Histone modifications play important roles in the epigenetic regulation of spermatogenesis via mediating gene transcription. Steroidogenic regulatory enzymes control testosterone biosynthesis, which are essential for spermatogenesis. Arsenic exposure inhibits the expression of steroidogenic genes by significantly increasing tri-methylation of H3K9 (H3K9me3) level in rat testis, finally diminishes testosterone release and lowers the rat sperm quality. Acetylation of H3K14 (H3K14ac) is associated with testosterone production and spermatogenesis. Co-occurrence of H3K9me3/H3K14ac has been identified previously by mass spectrometry in histone H3 isolated from different human cell types. H3K9me3/H3K14ac dually marked regions are in a poised inactive state to inhibit the gene expression. Whereas, whether inorganic arsenic exposure affects spermatogenesis and steroidogenic regulatory enzymes via mediating H3K14ac level has not been studied. Thereupon, the male Sprague-Dawley (SD) rats were exposed to (NaAsO2) for 6 weeks, then the sperm density and motility, testosterone level in serum, arsenic in rat testis were detected. mRNA expression of steroidogenic regulatory enzymes Star, Cyp11a1, Hsd3b and Hsd17b were determined by RT-PCR. H3K14ac level and the expression of histone acetylases of H3K14 (KAT2A and EP300), histone deacetylases of H3K14 (HDAC6 and HDAC3), the reader of H3K14ac (BAZ2A) were determined. The results suggested arsenic enhances H3K14ac in rat testis, which was associated with repression of steroidogenic regulatory genes expression, further reduced testosterone production, and impaired the spermatogenesis.
Collapse
Affiliation(s)
- Xiangli Li
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Kaina Shen
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Dunxuan Yuan
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Jinping Fan
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Yan Yang
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Fangzhou Tian
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Jinrou Quan
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Chengyun Li
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Junling Wang
- School of Public Health, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
8
|
Yildiz A, Ozhan O, Ulu A, Dogan T, Bakar B, Ugur Y, Taslidere E, Gokbulut I, Polat S, Parlakpinar H, Ates B, Vardi N. Effects of the apricot diets containing sulfur dioxide at different concentrations on rat testicles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27692-w. [PMID: 37204578 DOI: 10.1007/s11356-023-27692-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Due to its antioxidant and antimicrobial properties, sulfur dioxide (SO2) is widely used in foods and beverages to prevent the growth of microorganisms and to preserve the color and flavor of fruits. However, the amount of SO2 used in fruit preservation should be limited due to its possible adverse effects on human health. The present study was designed to investigate the effects of different SO2 concentrations in apricot diets on rat testes. Animals were randomly divided into six groups. The control group was fed a standard diet, and the other groups were fed apricot diet pellets prepared with (w/w) 10% dried apricots containing SO2 at different concentrations (1500 ppm, 2000 ppm, 2500 ppm, 3000 ppm, and 3500 ppm/kg) for 24 weeks. After sacrification, testicles were evaluated biochemically, histopathologically, and immunohistopathologically. Our results showed that an apricot diet containing 1500 ppm and 2000 ppm SO2 did not cause significant changes in testis. However, it was determined that tissue testosterone levels decreased as the amount of SO2 (2500 ppm and above) increased. Apricot diet containing 3500 ppm SO2 caused a significant increase in spermatogenic cell apoptosis, oxidative damage, and histopathological changes. In addition, a decrease in the expression of connexin-43, vimentin, and 3β-hydroxysteroid dehydrogenase (3β-HSD) was observed in the same group. In summary, the results show that sulfurization of apricot at high concentrations such as 3500 ppm may lead to male fertility problems in the long term through mechanisms such as oxidative stress, spermatogenic cell apoptosis, and inhibition of steroidogenesis.
Collapse
Affiliation(s)
- Azibe Yildiz
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey.
| | - Onural Ozhan
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Ahmet Ulu
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Tugba Dogan
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Busra Bakar
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Yilmaz Ugur
- Vocational School of Health Service, Inonu University, Malatya, Turkey
| | - Elif Taslidere
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Incilay Gokbulut
- Department of Food Engineering, Faculty of Engineering, Inonu University, 44280, Malatya, Turkey
| | - Seyhan Polat
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Nigar Vardi
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
9
|
Does environmental pollution affect male reproductive system in naturally exposed vertebrates? A systematic review. Theriogenology 2023; 198:305-316. [PMID: 36634444 DOI: 10.1016/j.theriogenology.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Due to environmental contamination, the environment constantly receives pollutants from various anthropic actions. These pollutants put ecological health at risk due to contamination and accumulation in living organisms, including wild animals and humans. Exposure can cause physiological, morphological, and behavioral changes in living beings. In this context, laboratory studies have frequently investigated how environmental contaminants affect the male reproductive system and gametes. However, few studies have examined how these contaminants affect male reproduction in naturally exposed animals. To better understand this topic, we conducted a systematic review of the effects of exposing male vertebrate animals to polluted environments on their reproductive functions. After an extensive search using the PubMed/MEDLINE, Scopus, and Web of Science databases, 39 studies met our inclusion criteria and were eligible for this review. This study showed that reproductive damages were frequent in fishes, amphibians, reptiles, birds, and mammals exposed to contaminated environments. Wild animals are exposed mainly to endocrine-disrupting compounds (EDCs), toxic metals, and radiation. Exposure to pollutants causes a reduction in androgen levels, impaired spermatogenesis, morphological damage to reproductive organs, and decreased sperm quality, leading to reduced fertility and population decline. Although several species have been studied, the number of studies is limited for some groups of vertebrates. Wildlife has proven valuable to our understanding of the potential effects of environmental contaminants on human and ecosystem health. Thus, some recommendations for future investigations are provided. This review also creates a baseline for the understanding state of the art in reproductive toxicology studies.
Collapse
|
10
|
Rachamalla M, Chinthada J, Kushwaha S, Putnala SK, Sahu C, Jena G, Niyogi S. Contemporary Comprehensive Review on Arsenic-Induced Male Reproductive Toxicity and Mechanisms of Phytonutrient Intervention. TOXICS 2022; 10:toxics10120744. [PMID: 36548577 PMCID: PMC9784647 DOI: 10.3390/toxics10120744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/26/2023]
Abstract
Arsenic (As) is a poisonous metalloid that is toxic to both humans and animals. Drinking water contamination has been linked to the development of cancer (skin, lung, urinary bladder, and liver), as well as other disorders such as diabetes and cardiovascular, gastrointestinal, neurological, and developmental damage. According to epidemiological studies, As contributes to male infertility, sexual dysfunction, poor sperm quality, and developmental consequences such as low birth weight, spontaneous abortion, and small for gestational age (SGA). Arsenic exposure negatively affected male reproductive systems by lowering testicular and accessory organ weights, and sperm counts, increasing sperm abnormalities and causing apoptotic cell death in Leydig and Sertoli cells, which resulted in decreased testosterone synthesis. Furthermore, during male reproductive toxicity, several molecular signalling pathways, such as apoptosis, inflammation, and autophagy are involved. Phytonutrient intervention in arsenic-induced male reproductive toxicity in various species has received a lot of attention over the years. The current review provides an in-depth summary of the available literature on arsenic-induced male toxicity, as well as therapeutic approaches and future directions.
Collapse
Affiliation(s)
- Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Joshi Chinthada
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
11
|
Yin G, Xia L, Hou Y, Li Y, Cao D, Liu Y, Chen J, Liu J, Zhang L, Yang Q, Zhang Q, Tang N. Transgenerational male reproductive effect of prenatal arsenic exposure: abnormal spermatogenesis with Igf2/H19 epigenetic alteration in CD1 mouse. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1248-1260. [PMID: 33406855 DOI: 10.1080/09603123.2020.1870668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Developmental exposure to environmental toxicants can induce transgenerational reproductive disease phenotypes through epigenetic mechanisms. We treated pregnant CD-1 (F0) mice with drinking water containing sodium arsenite (85 ppm) from days 8 to 18 of gestation. Male offspring were bred with untreated female mice until the F3 generation was produced. Our results revealed that F0 transient exposure to arsenic can cause decreased sperm quality and histological abnormalities in the F1 and F3. The overall methylation status of Igf2 DMR2 and H19 DMR was significantly lower in the arsenic-exposed group than that of the control group in both F1 and F3. The relative mRNA expression levels of Igf2 and H19 in arsenic-exposed males were significantly increased in both F1 and F3. This study indicates that ancestral exposure to arsenic may result in transgenerational inheritance of an impaired spermatogenesis phenotyping involving both epigenetic alterations and the abnormal expression of Igf2 and H19.
Collapse
Affiliation(s)
- Guoying Yin
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Liting Xia
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yaxing Hou
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yaoyan Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Deqing Cao
- Central Laboratory of Preventive Medicine, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yanan Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jingshan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Juan Liu
- Department of Biomedical Information and Library, Tianjin Medical University, Tianjin, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Han X, Alam MN, Cao M, Wang X, Cen M, Tian M, Lu Y, Huang Q. Low Levels of Perfluorooctanoic Acid Exposure Activates Steroid Hormone Biosynthesis through Repressing Histone Methylation in Rats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5664-5672. [PMID: 35438966 DOI: 10.1021/acs.est.1c08885] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant, which has endocrine-disrupting properties and can interfere with the synthesis and secretion of testicular steroid hormones, but the underlying molecular mechanisms are still not fully understood. In this study, we investigated the effects of low doses of PFOA exposure on testicular steroidogenesis in rats and revealed the role of histone modifications. It was found that the serum levels of progesterone, testosterone, and estradiol were significantly increased after 0.015 and 0.15 mg/kg of PFOA exposure, and the expression of Star, a key rate-limiting gene, was up-regulated, while other steroidogenic genes Cyp11a1, Hsd3b, Cyp17a1, and Hsd17b were down-regulated. In addition, the levels of multiple histone modifications (H3K9me1/2/3 and H3K9/18/23ac) were all significantly reduced by PFOA in rat testis. Histone H3K9 methylation is associated with gene silencing, while histone acetylation leads to gene activation. ChIP analysis further showed that H3K9me1/3 was significantly decreased in the promoter region of Star, while H3K18ac levels were down-regulated in other gene promoters. Accordingly, we suggest that low-level PFOA enhances StAR expression through the repression of H3K9me1/3, which stimulates steroid hormone production in rat testis. These results are expected to shed new light on the molecular mechanisms by which low-dose PFOA disturbs male reproductive endocrine from an epigenetic aspect and may be useful for human health risk assessment regarding environmental PFOA exposure.
Collapse
Affiliation(s)
- Xuejingping Han
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Md Nur Alam
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meiyi Cao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaojuan Wang
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Meifeng Cen
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanyang Lu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
13
|
Machado-Neves M. Effect of heavy metals on epididymal morphology and function: An integrative review. CHEMOSPHERE 2022; 291:133020. [PMID: 34848222 DOI: 10.1016/j.chemosphere.2021.133020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Male fertility has deteriorated over the last decades, and environmental risk factors are among the possible causes of this phenomenon. Pollutants such as heavy metals might accumulate in male reproductive organs to levels that are associated with reproductive disorders. Several studies reported detrimental effects of inorganic arsenic (iAs+3/iAs+5), cadmium (Cd+2), lead (Pb+2), and mercury (Hg+2/CH3Hg+2) on the epididymis, which plays a crucial role in sperm maturation. However, the magnitude of their effects and the consequences on the physiology of the epididymis are still unclear. Therefore, an integrative review with meta-analyses was conducted examining 138 studies to determine how exposure to arsenic, cadmium, lead, and mercury affects epididymal morphology and functions, using primarily murine data from experimental studies as a source. This study showed that exposure to metal(loids) reduced epididymal weight, sperm motility, and sperm number. Inorganic arsenic, cadmium, and lead damaged sperm structures within the epididymal duct. While sodium arsenite, sodium arsenate, and lead acetate generate oxidative stress by an imbalance between ROS production and scavenging, cadmium chloride causes an increase in the pH level of the luminal fluid (from 6.5 to 7.37) that diminishes sperm viability. Inorganic arsenic induced a delay in the sperm transit time by modulating noradrenaline and dopamine secretion. Subacute exposure to heavy metals at concentrations < 0.1 mg L-1 initiates a dyshomeostasis of calcium, copper, iron, and zinc that disturbs sperm parameters and reduces epididymal weight. These alterations worsen with prolonged exposure time and higher doses. Most studies evaluated the effects of concentrations > 1.1 mg L-1 of heavy metals on the epididymis rather than doses with relevant importance for human health risk. This meta-analytical study faced limitations regarding a deeper analysis of epididymis physiology. Hence, several recommendations for future investigations are provided. This review creates a baseline for the comprehension of epididymal toxicology.
Collapse
Affiliation(s)
- Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, DBG, Campus Universitário, Viçosa, 36570-900, Minas Gerais, Brasil.
| |
Collapse
|
14
|
Huang Q, Luo L, Han X, Li F, Zhang X, Tian M. Low-dose perfluorooctanoic acid stimulates steroid hormone synthesis in Leydig cells: Integrated proteomics and metabolomics evidence. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127656. [PMID: 34774353 DOI: 10.1016/j.jhazmat.2021.127656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA), one of the well-known perfluoroalkyl substances (PFASs), has been widespread in the environment and associated with male reproductive toxicity. However, the molecular mechanism involved in low-level PFOA-induced male endocrine disruption remains to be elucidated. In this study, we performed a combined proteomics and metabolomics analysis to investigate the proteomic and metabolic alterations in MLTC-1 Leydig cells responsive to low levels of PFOA exposure. The results showed that PFOA significantly regulated the expressions of 67 proteins and 17 metabolites, among which 18 proteins and 7 metabolites were specifically tied to lipid and fatty acid metabolism as well as testicular steroidogenesis. It is further suggested that low-dose PFOA stimulates steroid hormone synthesis by accelerating fatty acid metabolism and steroidogenic process, which is involved in the repression of p38 and cAMP-dependent ERK signaling pathway. The animal studies also revealed that environmentally relevant levels of PFOA increased serum steroid hormone levels accompanied by the activated cAMP and inhibited p38/ERK pathway in testis, which confirmed our in vitro findings. Overall, the present study will provide novel insights into the toxicological mechanisms of low-level PFOA-mediated steroidogenic disturbance, and may implicate the reproductive health risk of humans with environmental PFOA exposure.
Collapse
Affiliation(s)
- Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Lianzhong Luo
- Xiamen Key Laboratory of Marine Biomedicine Resources, Xiamen Medical College, Xiamen 361023, China
| | - Xuejingping Han
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuping Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
15
|
Abarikwu SO, Njoku RCC, John IG, Amadi BA, Mgbudom-Okah CJ, Onuah CL. Antioxidant and anti-inflammatory protective effects of rutin and kolaviron against busulfan-induced testicular injuries in rats. Syst Biol Reprod Med 2021; 68:151-161. [PMID: 34753368 DOI: 10.1080/19396368.2021.1989727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There are few treatment options, including the use of natural phenolics-based combination therapy for mitigating male infertility conditions associated with chemotherapy. Busulfan is an anti-cancer drug that leads to testicular problems in humans. Here, we studied the effect of co-treatment of rutin and kolaviron against busulfan-induced testis damage. Young adult male Wistar rats were intraperitoneally injected busulfan (4 mg/kg b.w), and then orally administered rutin (30 mg/kg b.w), and kolaviron (50 mg/kg b.w) alone and combined for 60 days. Results revealed that rutin and kolaviron alone or in combination reversed busulfan-induced increase in oxidative stress along with sperm quality of treated animals. However, kolaviron and rutin separately improved the concentrations of MDA and GSH and sperm quality more than when they were combined. Similarly, rutin and kolaviron separately or in combination preserved spermatogenesis and relieved busulfan-induced increase in nitric oxide concentration, myeloperoxidase and 3β-hydroxysteroid dehydrogenase activities. Co-supplementation with kolaviron but not rutin nor when rutin was combined with kolaviron also improved the testicular level of tumor necrosis-alpha. Finally, the histological features in the testes caused by busulfan were reversed by rutin, whereas treatment with kolaviron alone or in combination with rutin partially protected the testis from busulfan-induced injury as demonstrated by the appearance of few germ cells, damaged tubules, loss of round spermatids and defoliation of the seminiferous epithelium. Thus, the combined treatment regimen of rutin and kolaviron sparingly prevented busulfan-induced testicular injuries in rats.Abbreviations: CAT: Catalase; GSH: Glutathione; 3β-HSD: 3β- hydroxysteroid Dehydrogenase; MDA: Malondialdehyde; TNF-α: Tumor necrosis-alpha; BUS: Busulfan; RUT: Rutin; KV: Kolaviron; TBARS: Thiobarbituric Acid Reactive Substances; MPO: Myeloperoxidase; ELISA: Enzyme-Linked Immunoassay; NAD: Nicotinamide Adenine Dinucleotide (oxidized); ROS: Reactive Oxygen Species.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Rex-Clovis C Njoku
- Department of Chemistry/Biochemistry & Molecular Biology, Alex Ekwueme-Federal University Ndufu-Alike, Ikwo, Nigeria
| | - Ifeoma G John
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Benjamin A Amadi
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Chigozie L Onuah
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
16
|
Olfati A, Tvrda E. Riboflavin recovery of spermatogenic dysfunction via a dual inhibition of oxidative changes and regulation of the PINK1-mediated pathway in arsenic-injured rat model. Physiol Res 2021; 70:591-603. [PMID: 34062077 PMCID: PMC8820542 DOI: 10.33549/physiolres.934658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023] Open
Abstract
Arsenic trioxide (As2O3) poisoning and associated potential lesions are of a global concern. Inversely, riboflavin (vitamin B2, VB2) as a component of flavoproteins could play a vital role in the spermatogenic enzymatic reactions. Thus, this research aimed to explore potential beneficial roles of VB2 during As2O3-injured-toxicity. Rats were randomly allocated into 4 groups (n=8/group) and challenged as follows (for 30 days continuously): Group 1 received normal saline; Group 2 was treated with 3 mg As2O3/L; Group 3 received 40 mg VB2/L; Group 4 received 3 mg As2O3/L + 40 mg VB2/L. Both As2O3 and VB2 were dissolved in deionized water. Malondialdehyde (MDA), Glutathione Peroxidase (GSH-Px), Superoxide dismutase (SOD), and Catalase (CAT) were assessed for the oxidative profile, while TAS (Total Antioxidative Status) levels were evaluated for the antioxidant system, in both serum and testicular tissue. P<0.05 was considered statistically significant. The results show that As2O3 significantly decreased the body weight, testicular weight and testis volume, semen quality and testicular cell count (p<0.05). Furthermore, MDA content in the testicular tissue of the As2O3 group rats was significantly higher in comparison to the vehicle group (p<0.05). Likewise, TAS and the activities of GSH-Px, CAT and SOD were reduced (p<0.05) when compared to the control. As(2)O(3) induced testicular damage and seminiferous tubular atrophy. Monodansylcadaverine assays mirrored the histopathology observations. Meanwhile, As2O3 upregulated the expression of mitophagy-related genes including PINK1, Parkin, USP8, LC3-I, Fis1 and Mfn2. The p38 gene, responsible to stress stimuli, was also upregulated by As2O3 administration. Meanwhile, exposure to VB2 led to a significant decrease of the expression levels of mitophagy related genes. Our study revealed that VB2 supplementation protected testicular structures against As2O3-induced injury via a dual inhibition of oxidative changes and a regulation of the PINK1-mediated pathway.
Collapse
Affiliation(s)
- A Olfati
- Young Researchers and Elites Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
| | | |
Collapse
|
17
|
Environmental pollutants exposure and male reproductive toxicity: The role of epigenetic modifications. Toxicology 2021; 456:152780. [PMID: 33862174 DOI: 10.1016/j.tox.2021.152780] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Male fertility rates have shown a progressive decrease in recent decades. There is a growing concern about the male reproductive dysfunction caused by environmental pollutants exposure, however the underlying molecular mechanisms are still not well understood. Epigenetic modifications play a key role in the biological responses to external stressors. Therefore, this review discusses the roles of epigenetic modifications in male reproductive toxicity induced by environmental pollutants, with a particular emphasis on DNA methylation, histone modifications and miRNAs. The available literature proposed that environmental pollutants can directly or cause oxidative stress and DNA damage to induce a variety of epigenetic changes, which lead to gene dysregulation, mitochondrial dysfunction and consequent male reproductive toxicity. However, future studies focusing on more kinds of epigenetic modifications and their crosstalk as well as epidemiological data are still required to fill in the current research gaps. In addition, the intrinsic links between pollutants-mediated epigenetic regulations and male reproduction-related physiological responses deserve to be further explored.
Collapse
|
18
|
Tian M, Wang YX, Wang X, Wang H, Liu L, Zhang J, Nan B, Shen H, Huang Q. Environmental doses of arsenic exposure are associated with increased reproductive-age male urinary hormone excretion and in vitro Leydig cell steroidogenesis. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124904. [PMID: 33385727 DOI: 10.1016/j.jhazmat.2020.124904] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/04/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Humans are ubiquitously exposed to arsenic from multiple sources, and chronic arsenic exposure may be associated with male reproductive health. Although association regarding arsenic exposure and sex hormone secretion in blood has been reported, sex hormone excretion in urine studies is lacking. Urinary sex hormone excretion has emerged as a complementary strategy to evaluate gonadal function. Herein, we determined the associations between environmental exposure to arsenic and urinary sex hormone elimination and in vitro Leydig cell steroidogenesis. Concentrations of arsenic and testosterone (T), estradiol (E2) and progesterone (P) in repeated urine samples were determined among 451 reproductive-age males. Moreover, an in vitro Leydig cell MLTC-1 steroidogenesis experiment was designed to simulate real-world scenarios of low human exposure. Multivariable linear regression models were used to assess the associations of urinary arsenic levels with urinary hormones. Urinary arsenic concentrations were positively associated with urinary sex hormone (T, E2, and P) levels. An in vitro test further demonstrated that a population-based environmental exposure range (0.01-5 μM) of arsenic induced Leydig cell steroidogenesis potency. Our results indicate that low-dose arsenic exposure exhibits an endocrine disrupting effect by stimulating Leydig cell steroidogenesis and accelerating urinary steroid excretion, which extends previous knowledge of the inverse association of high-dose arsenic exposure with sexual steroid production that is assumed to be anti-androgen.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Xiaofei Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Bingru Nan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
19
|
Seif M, Abd El-Aziz T, Sayed M, Wang Z. Zingiber officinale ethanolic extract attenuates oxidative stress, steroidogenic gene expression alterations, and testicular histopathology induced by sodium arsenite in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19783-19798. [PMID: 33405108 DOI: 10.1007/s11356-020-11509-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Arsenic (As) indelibly exists in the environment and may reach to a food chain. Flavors and herbs are recognized sources of natural antioxidants that play imperative against harmful chemical pollutants. Ginger is utilized around the world as a zesty condiment. This study assessed the ability of ginger extract (GE) as a protector to improve regenerative disabilities initiated by sodium arsenate in reproductive functions in male rats. Thirty-two Sprague-Dawley male rats weighted 240 ± 10 g were arbitrarily relegated into four experimental groups (n = 8): the control group; the GE-treated group received at 100 mg/kg BW; the As-treated group received sodium arsenite at 10 mg/kg BW; the fourth group received sodium arsenite additionally GE at mentioned doses for 4 weeks. Phytochemical results of GE revealed that GE had good antioxidative characteristics and high content of total flavonoid, tannins, alkaloids, and total phenolic components. Simultaneously, treatment of GE showed protection against oxidative stress induced by As and restoration of the serum cholesterol, testosterone, LH, and sperm parameter to normal levels. GE significantly improved the antioxidant activities (GSH, SOD, and CAT) as well as H2O2 and MDA in rats received concurrently the GE and As compared with control group. Moreover, the expression of genes controlling the cholesterol transportation and testosterone synthesis (SR-B1, StAR, CYP11A1, 3b-HSD, 17b-HSD, and CYP17a) as well as LHR showed a meaningful improvement in rats treated by GE plus As compared with their expression in the As-treated group. Besides, GE treatment exhibited significant recovered testis histopathological alterations, reduced the arsenic content in testes, and improved the sperm parameters.
Collapse
Affiliation(s)
- Mohamed Seif
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Toxicology and Food Contaminants Department, Food Industries and Nutrition Research Division, National Research Centre, P.O. Box 12622, Dokki, Giza, Egypt.
| | - Tamer Abd El-Aziz
- Parasitology and Animal Diseases Department, Veterinary Research Division, National Research Center, P.O. Box 12622, Dokki, Giza, Egypt
| | - Mohamed Sayed
- Animal Reproductions and Artificial Insemination Department, Veterinary Research Division, National Research Center, P.O. Box 12622, Dokki, Giza, Egypt
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
20
|
Zhang AL, Tang SF, Yang Y, Li CZ, Ding XJ, Zhao H, Wang JH, Yang GH, Li J. Histone demethylase JHDM2A regulates H3K9 dimethylation in response to arsenic-induced DNA damage and repair in normal human liver cells. J Appl Toxicol 2020; 40:1661-1672. [PMID: 32608101 DOI: 10.1002/jat.4026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Long-term arsenic exposure is a worldwide public health problem that causes serious harm to human health. The liver is the main target organ of arsenic toxicity; arsenic induces disruption of the DNA damage repair pathway, but its mechanisms remain unclear. In recent years, studies have found that epigenetic mechanisms play an important role in arsenic-induced lesions. In this study, we conducted experiments in vitro using normal human liver cells (L-02) to explore the mechanism by which the histone demethylase JHDM2A regulates H3K9 dimethylation (me2) in response to arsenic-induced DNA damage. Our results indicated that arsenic exposure upregulated the expression of JHDM2A, downregulated global H3K9me2 modification levels, increased the H3K9me2 levels at the promoters of base excision repair (BER) genes (N-methylpurine-DNA glycosylase [MPG], XRCC1 and poly(ADP-ribose)polymerase 1) and inhibited their expression levels, causing DNA damage in cells. In addition, we studied the effects of overexpression and inhibition of JHDM2A and found that JHDM2A can participate in the molecular mechanism of arsenic-induced DNA damage via the BER pathway, which may not be involved in the BER process because H3K9me2 levels at the promoter region of the BER genes were unchanged following JHDM2A interference. These results suggest a potential mechanism by which JHDM2A can regulate the MPG and XRCC1 genes in the process of responding to DNA damage induced by arsenic exposure and can participate in the process of DNA damage repair, which provides a scientific basis for understanding the epigenetic mechanisms and treatments for endemic arsenic poisoning.
Collapse
Affiliation(s)
- An-Liu Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Shun-Fang Tang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yue Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Chang-Zhe Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Xue-Jiao Ding
- First Affiliated Hospital of Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Hua Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun-Hua Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Guang-Hong Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
21
|
Liang C, Feng Z, Manthari RK, Wang C, Han Y, Fu W, Wang J, Zhang J. Arsenic induces dysfunctional autophagy via dual regulation of mTOR pathway and Beclin1-Vps34/PI3K complex in MLTC-1 cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122227. [PMID: 32044640 DOI: 10.1016/j.jhazmat.2020.122227] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Arsenic poisoning and induced potential lesion is a global concern. However, the exact mechanisms underlying its toxicity especially in male reproductive system still remain unclear. Hence, this study aimed to explore the roles of mTOR and Beclin1-Vps34/PI3K complex during As-induced-toxicity using Rapamycin (mTOR inhibitor), Beclin1 siRNA and 3-methyladenine (3-MA, Vps34/PI3K inhibitor) in testicular stromal cells. For this, mouse testis Leydig Tumor Cell lines (MLTC-1) were challenged with As2O3 (0, 3, 6 and 9 μM) exposure for 24 hs. Lyso-Tracker Red and Monodansylcadaverine (MDC) staining results depicted a significant accumulation of autophagosomes in MLTC-1 cells exposed to arsenic. Meanwhile, arsenic treatment up-regulated autophagic markers including LC3, Atg7, Beclin1 and Vps34 expressions, mTOR downstream autophagy related genes and the Beclin1-Vps34/PI3K complex associated members. Furthermore, silencing of Beclin1, and inhibition of Vps34/PI3K and mTOR altered the arsenic-induced autophagosomes formation. However, p62, the substrate protein of autophagy, was also up-regulated by arsenic administration independent on Beclin1-Vps34/PI3K complex. Altogether, our results revealed that arsenic exposure induced autophagosomes formation via regulation of the Beclin1-Vps34/PI3K complex and mTOR pathway; the blockage of autophagosomes degradation maybe due to impaired function of lysosomes. Thus, this study provides a novel mechanistic approach with respect to As-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Chen Liang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Zhiyuan Feng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Ram Kumar Manthari
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Yongli Han
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Weixiang Fu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jundong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jianhai Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
22
|
Rodriguez KF, Mellouk N, Ungewitter EK, Nicol B, Liu C, Brown PR, Willson CJ, Yao HHC. In utero exposure to arsenite contributes to metabolic and reproductive dysfunction in male offspring of CD-1 mice. Reprod Toxicol 2020; 95:95-103. [PMID: 32428649 DOI: 10.1016/j.reprotox.2020.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/13/2023]
Abstract
In utero exposure to arsenite (iAs) is known to increase disease risks later in life. We investigated the effect of in utero exposure to iAs in the drinking water on metabolic and reproductive parameters in male mouse offspring at postnatal and adult stages. Pregnant CD-1 mice were exposed to iAs (as sodium arsenite) in the drinking water at 0 (control), 10 ppb (EPA standard for drinking water), and 42.5 ppm (tumor-inducing dose in mice) from embryonic day (E) 10-18. At birth, pups were fostered to unexposed females. Male offspring exposed to 10 ppb in utero exhibited increase in body weight at birth when compared to controls. Male offspring exposed to 42.5 ppm in utero showed a tendency for increased body weight and a smaller anogenital distance. The body weight in iAs-exposed pups continued to increase significantly compared to control at 3 weeks and 11 weeks of age. At 5 months of age, iAs-exposed males exhibited greater body fat content and glucose intolerance. Male offspring exposed to 10 ppb in utero had higher circulating levels of leptin compared to control. In addition, males exposed to 42.5 ppm in utero exhibited decreased total number of pups born compared to controls and lower average number of litters sired over a six-month period. These results indicate that in utero exposure to iAs at either human relevant concentration or tumor-inducing concentration is a potential cause of developmental origin of metabolic and reproductive dysfunction in adult male mice.
Collapse
Affiliation(s)
- Karina F Rodriguez
- Reproductive Developmental Biology Group, Reproduction and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Reproductive Developmental Biology Group, Reproduction and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Erica K Ungewitter
- Reproductive Developmental Biology Group, Reproduction and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Barbara Nicol
- Reproductive Developmental Biology Group, Reproduction and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Chang Liu
- Reproductive Developmental Biology Group, Reproduction and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Paula R Brown
- Reproductive Developmental Biology Group, Reproduction and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Cynthia J Willson
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive Developmental Biology Group, Reproduction and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States.
| |
Collapse
|
23
|
Zubair M, Ahmad M, Saleemi MK, Gul ST, Ahmad M, Martyniuk CJ, Ullah Q, Umar S. Sodium arsenite toxicity on hematology indices and reproductive parameters in Teddy goat bucks and their amelioration with vitamin C. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15223-15232. [PMID: 32072415 DOI: 10.1007/s11356-020-08049-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Arsenic is a major environmental toxicant of concern, affecting both female and male reproductive systems. The present study was conducted to investigate the toxic effects of arsenic on semen quality and reproductive hormones of Teddy bucks, an important domestic species in regions of Pakistan. In addition to arsenic, vitamin C was fed to a subset of animals to determine if there were ameliorative effects on reproductive parameters. Sixteen adult Teddy bucks were randomly divided into four experimental groups: A (control), B (arsenic 5 mg/kg BW/day orally), and C (arsenic 5 mg/kg BW/day plus vitamin C of an oral dose of 200 mg/kg BW/day). The animals in experimental group D were given only vitamin C (oral dose of 200 mg/kg BW/day). Animals were fed treated food once a day for 12 weeks. Semen quality parameters (volume, motility, count, sperm morphology, live dead ratio, sperm membrane integrity, and sperm DNA integrity) of bucks from each experimental group were evaluated on a weekly basis. Hematology and the level of arsenic in the blood were assessed every 2 weeks. Serum was collected fortnightly to measure reproductive and stress hormones (testosterone, luteinizing hormone, follicle-stimulating hormones, and cortisol). At the end of the study, all the animals were slaughtered, and the testes of all the animals were collected and evaluated for histopathology. Semen parameters in arsenic-treated bucks were significantly reduced (p < 0.05) compared with controls. Moreover, the levels of male hormones (testosterone, luteinizing hormone, and follicle-stimulating hormone) were significantly decreased in arsenic-treated animals, while cortisol was significantly increased with arsenic exposure. The histopathological lesions in the testes were present in the form of the loss of germinal epithelium and atrophy of Leydig cells. Supplementation of vitamin C however ameliorated the adverse effects of arsenic on semen quality and hormones. The histopathological lesions were also ameliorated due to vitamin C treatment. This study demonstrates that arsenic can adversely affect reproductive endpoints in Teddy goat bucks and supports the hypothesis that vitamin C is an effective treatment in arsenic-induced toxicosis. This study has high significance for Pakistan, as water contaminated with arsenic is a top health concern and is a recurring issue for both domestic animals and humans.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad kashmir, Pakistan.
| | - Maqbool Ahmad
- Department of Theriogenology, University of Agriculture Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Muhammad Kashif Saleemi
- Department of Pathology, University of Agriculture Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Shafia Tehseen Gul
- Department of Pathology, University of Agriculture Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Mushtaq Ahmad
- Department of Theriogenology, University of Veterinary and Animal Sciences Lahore, Lahore, Punjab, 54000, Pakistan
| | - Christopher Joseph Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Qudrat Ullah
- Department of Theriogenology, University of Agriculture Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Saqib Umar
- Department of Theriogenology, University of Agriculture Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| |
Collapse
|
24
|
Bhattacharjee P, Paul S, Bhattacharjee P. Understanding the mechanistic insight of arsenic exposure and decoding the histone cipher. Toxicology 2020; 430:152340. [PMID: 31805316 DOI: 10.1016/j.tox.2019.152340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The study of heritable epigenetic changes in arsenic exposure has intensified over the last decade. Groundwater arsenic contamination causes a great threat to humans and, to date, no accurate measure has been formulated for remediation. The fascinating possibilities of epi-therapeutics identify the need for an in-depth mechanistic understanding of the epigenetic landscape. OBJECTIVE In this comprehensive review, we have set to analyze major studies pertaining to histone post-translational modifications in arsenic-mediated disease development and carcinogenesis during last ten years (2008-2018). RESULTS The role of the specific histone marks in arsenic toxicity has been detailed. A comprehensive list that includes major arsenic-induced histone modifications identified for the last 10 years has been documented and details of different states of arsenic, organisms, exposure type, study platform, and findings were provided. An arsenic signature panel was suggested to help in early prognosis. An attempt has been made to identify the grey areas of research. PROSPECTS Future prospective multi-target analyses of the inter-molecular crosstalk among different histone marks are needed to be explored further in order to understand the mechanism of arsenic toxicity and carcinogenicity and to confirm the suitability of these epi-marks as prognostic markers.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, UT M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
25
|
Xu SY, Lv HQ, Li WQ, Hong H, Peng YJ, Zhu BM. Electroacupuncture Alleviates Cerebral Ischemia/Reperfusion Injury in Rats by Histone H4 Lysine 16 Acetylation-Mediated Autophagy. Front Psychiatry 2020; 11:576539. [PMID: 33391046 PMCID: PMC7775364 DOI: 10.3389/fpsyt.2020.576539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Electroacupuncture (EA) treatment in ischemic stroke has been highlighted recently; however, the specific mechanism is still elusive. Autophagy is considered a new target for cerebral ischemia/reperfusion (I/R), but whether it plays a role of protecting or causing rapid cell apoptosis remains unclear. Studies have reported that the reduction in lysine 16 of histone H4 acetylation coheres with autophagy induction. The primary purpose of the study was to explore whether EA could alleviate I/R via autophagy-mediated histone H4 lysine 16 acetylation in the middle cerebral artery occlusion (MCAO) rat model. Methods: One hundred and twenty male Sprague-Dawley rats were divided into five groups: control group, MCAO group, MCAO+EA group, MCAO+EA+hMOF siRNA group, and MCAO+EA+Sirt1 inhibitor group. EA was applied to "Baihui" (Du20) and "Renzhong" (Du26) at 5 min after modeling and 16 h after the first EA intervention. The structure and molecular markers of the rat brain were evaluated. Results: EA significantly alleviated I/R injury by upregulating the expressions of Sirt1, Beclin1, and LC3-II and downregulating the expressions of hMOF and H4K16ac. In contrast, the Sirt1 inhibitor lowered the increase in Sirt1, Beclin1, and LC3-II and enhanced the level of hMOF and H4K16ac expressions associated with EA treatment. Besides, ChIP assay revealed that the binding of H4K16ac in the Beclin1 promoter region of the autophagy target gene was significantly raised in the MCAO+EA group and MCAO+EA+hMOF siRNA group. Conclusions: EA treatment inhibited the H4K16ac process, facilitated autophagy, and alleviated I/R injury. These findings suggested that regulating histone H4 lysine 16 acetylation-mediated autophagy may be a key mechanism of EA at Du20 and Du26 to treat I/R.
Collapse
Affiliation(s)
- Shu-Ying Xu
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - He-Qun Lv
- Department of Acupuncture and Encephalopathy, Yancheng Hospital of Traditional Chinese Medicine, Yancheng, China
| | - Wen-Qian Li
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Hong
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong-Jun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Zhang Q, Pei LG, Liu M, Lv F, Chen G, Wang H. Reduced testicular steroidogenesis in rat offspring by prenatal nicotine exposure: Epigenetic programming and heritability via nAChR/HDAC4. Food Chem Toxicol 2019; 135:111057. [PMID: 31846720 DOI: 10.1016/j.fct.2019.111057] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
Abstract
Prenatal nicotine exposure (PNE) may lead to offspring's testicular dysplasia. Here, we confirmed the intergenerational effect of PNE on testosterone synthetic function and explored its epigenetic programming mechanism. Pregnant Wistar rats were injected subcutaneously with nicotine (2 mg/kg.d) from gestational day 9-20. Some dams were anesthetized to obtain fetal rats, the rest were allowed to spontaneous labor to generate F1 and F2 generation. In utero, PNE impaired testicular development and testosterone production. Meanwhile, the expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) were decreased both in F1 and F2 generations. Furthermore, PNE enhanced the expression of fetal testicular nicotinic acetylcholine receptors (nAChRs) and histone deacetylase 4 (HDAC4), while obviously weakened histone 3 lysine 9 acetylation (H3K9ac) level of StAR/3β-HSD promoter from GD20 to postnatal week 12 and even in F2 generation. In vitro, nicotine increased nAChRs and HDAC4 expression, and decreased the StAR/3β-HSD H3K9ac level and expression, as well as the testosterone production in Leydig cells. Antagonism of nAChRs and inhibition of HDAC4 reversed the aforementioned changes. In conclusion, PNE programmed testicular low steroidogenesis and its heritability in male offspring rats. The underlying mechanism was associated to the low-level programming of StAR/3β-HSD H3K9ac via nAChR/HDAC4.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lin-Guo Pei
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Basic Medical College of Nanyang Medical University, Nanyang, 473041, China
| | - Min Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Feng Lv
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
27
|
Bai L, Tang Q, Zou Z, Meng P, Tu B, Xia Y, Cheng S, Zhang L, Yang K, Mu S, Wang X, Qin X, Lv B, Cao X, Qin Q, Jiang X, Chen C. m6A Demethylase FTO Regulates Dopaminergic Neurotransmission Deficits Caused by Arsenite. Toxicol Sci 2019; 165:431-446. [PMID: 29982692 DOI: 10.1093/toxsci/kfy172] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Arsenite exposure is known to increase the risk of neurological disorders via alteration of dopamine content, but the detailed molecular mechanisms remain largely unknown. In this study, using both dopaminergic neurons of the PC-12 cell line and C57BL/6J mice as in vitro and in vivo models, our results demonstrated that 6 months of arsenite exposure via drinking water caused significant learning and memory impairment, anxiety-like behavior and alterations in conditioned avoidance and escape responses in male adult mice. We also were the first to reveal that the reduction in dopamine content induced by arsenite mainly resulted from deficits in dopaminergic neurotransmission in the synaptic cleft. The reversible N6- methyladenosine (m6A) modification is a novel epigenetic marker with broad roles in fundamental biological processes. We further evaluated the effect of arsenite on the m6A modification and tested if regulation of the m6A modification by demethylase fat mass and obesity-associated (FTO) could affect dopaminergic neurotransmission. Our data demonstrated for the first time that arsenite remarkably increased m6A modification, and FTO possessed the ability to alleviate the deficits in dopaminergic neurotransmission in response to arsenite exposure. Our findings not only provide valuable insight into the molecular neurotoxic pathogenesis of arsenite exposure, but are also the first evidence that regulation of FTO may be considered as a novel strategy for the prevention of arsenite-associated neurological disorders.
Collapse
Affiliation(s)
- LuLu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Pan Meng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Baijie Tu
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Lina Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Kai Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shaoyu Mu
- Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuefeng Wang
- Chongqing Key Laboratory of Neurology, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bo Lv
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xianqing Cao
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qizhong Qin
- Center of Experimental Teaching for Public Health
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health.,Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China.,Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
28
|
Han X, Zhang P, Shen W, Zhao Y, Zhang H. Estrogen Receptor-Related DNA and Histone Methylation May Be Involved in the Transgenerational Disruption in Spermatogenesis by Selective Toxic Chemicals. Front Pharmacol 2019; 10:1012. [PMID: 31572187 PMCID: PMC6749155 DOI: 10.3389/fphar.2019.01012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
Air pollution is a global threat to human health especially spermatogenesis. Animal and epidemiological studies suggest that epigenetic factors can transmit the pathologies transgenerationally. Paternal epigenetic effects can greatly impact offspring health. In this study and together with our previous report, we found that H2S donor Na2S and/or NH3 donor NH4Cl diminished mouse fertility, decreased spermatozoa concentration and motility, and impaired spermatogenesis in three consequent generations (F0, F1, and F2). In the current study, we found that DNA methylation, histone methylation, and estrogen receptor alpha (ERα) were impaired by NH4Cl and/or Na2S in F0, F1, and F2 mouse testes. Moreover, NH4Cl and/or Na2S might act as environmental endocrine-disrupting chemicals to decrease estrogen and testosterone in mouse blood. It has been reported that ERα signaling is intertwined together with DNA methylation and histone methylation, which plays very important roles in spermatogenesis. These data together indicate that the transgenerational disruption in spermatogenesis by NH4Cl and/or Na2S may be through ERα-related DNA methylation and histone methylation pathways. Therefore, we strongly recommend that greater attention should be paid to NH3 and/or H2S contamination to minimize their impact on human health especially spermatogenesis.
Collapse
Affiliation(s)
- Xiao Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Pengfei Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Hou X, Zhu L, Zhang X, Zhang L, Bao H, Tang M, Wei R, Wang R. Testosterone disruptor effect and gut microbiome perturbation in mice: Early life exposure to doxycycline. CHEMOSPHERE 2019; 222:722-731. [PMID: 30738315 DOI: 10.1016/j.chemosphere.2019.01.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Veterinary tetracyclines drugs are emerging organic pollutants detected at high concentrations in the urine of school children and a potential public health risk. However, the implications of early-life exposure to tetracyclines on testosterone production, being new endocrine disruptors, remain unknown. We investigated whether the early-life exposure to low-doxycycline, a widely used tetracycline, on mitochondria dysfunction and testosterone disruption in Leydig cells in vitro and in vivo. Next, we determined the mRNA levels of testis cells markers for early-life exposure to low-doxycycline outcomes of testis health in later-life. Finally, we compared the weight gain performance exposed to low- and therapeutic-doses through 15 weeks and examined the role of the microbiota during development. Our results showed doxycycline disturbed steroidogenesis process by mitochondrial dysfunction in mouse Leydig tumor cell line (MLTC-1) cells in vitro. Leydig cells mitochondrial function was disrupted by early-life exposure to low-doxycycline from birth to 49 days, causing testosterone deficiency and decreased quality of the sperm in mice. Early-life exposure to low-doxycycline significantly altered the mRNA levels of key genes in Leydig cells (Cyp11a1, Cyp17a1 and 17β-HSD) and spermatogenic cells (Grfal, Plzf, and Stra8) in later-life in mice. Subchronic low- and therapeutic-doses doxycycline changed gut microbiota differences in diversity reduction and compositional alteration. Moreover, the weight gain effects of doxycycline were only observed in low-dose in male mice. Overall, these results provide insight into the effects of doxycycline on both testis and gut microbiota health. The results provide insight that environmental antibiotics are needed additional research to classify as ECDs.
Collapse
Affiliation(s)
- Xiang Hou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Lei Zhu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xianwei Zhang
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lili Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Hongduo Bao
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Minmin Tang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Ruicheng Wei
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
| | - Ran Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
Alamdar A, Tian M, Huang Q, Du X, Zhang J, Liu L, Shah STA, Shen H. Enhanced histone H3K9 tri-methylation suppresses steroidogenesis in rat testis chronically exposed to arsenic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:513-520. [PMID: 30557709 DOI: 10.1016/j.ecoenv.2018.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/19/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Arsenic poses a profound health risk including male reproductive dysfunction upon prolonged exposure. Histone methylation is an important epigenetic driver; however, its role in arsenic- induced steroidogenic pathogenesis remains obscure. In current study, we investigated the effect of histone H3K9 tri-methylation (H3K9me3) on expression pattern of steroidogenic genes in rat testis after long-term arsenic exposure. Our results revealed that arsenic exposure down-regulated the mRNA expressions of all studied steroidogenic genes (Lhr, Star, P450scc, Hsd3b, Cyp17a1, Hsd17b and Arom). Moreover, arsenic significantly increased the H3K9me3 level in rat testis. The plausible explanation of increased H3K9me3 was attributable to the up-regulation of histone H3K9me3 methyltransferase, Suv39h1 and down-regulation of demethylase, Jmjd2a. Since H3K9me3 activation leads to gene repression, we further investigated whether the down-regulation of steroidogenic genes was ascribed to the increased H3K9me3 level. To elucidate this, we determined the H3K9me3 levels in steroidogenic gene promoters, which also showed significant increase of H3K9me3 in the investigated regions after arsenic exposure. In conclusion, arsenic exposure suppressed the steroidogenic gene expression by activating H3K9me3 status, which contributed to steroidogenic inhibition in rat testis.
Collapse
Affiliation(s)
- Ambreen Alamdar
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Xiaoyan Du
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Liangpo Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
31
|
Liu M, Zhang Q, Pei L, Zou Y, Chen G, Wang H. Corticosterone rather than ethanol epigenetic programmed testicular dysplasia caused by prenatal ethanol exposure in male offspring rats. Epigenetics 2019; 14:245-259. [PMID: 30821590 DOI: 10.1080/15592294.2019.1581595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Prenatal ethanol exposure (PEE) could affect offspring's testicular development. This study aimed to illuminate its intrauterine origin and the programming mechanism caused by PEE. Pregnant Wistar rats were given ethanol (4 g/kg.d) by gavage administration during gestational days (GD) 9-20. Serum samples and testes of male offspring rats were collected on GD20, postnatal week (PW) 6, and PW12. We found that PEE induced testicular morphological abnormality, low serum testosterone levels, expressive suppression of 3β-hydroxysteroid dehydrogenase (3β-HSD), and low acetylation levels of histone 3 lysine 14 (H3K14ac) of 3β-HSD before and after birth. In utero, when fetal rats were overexposed to corticosterone by PEE, the expression levels of testicular glucocorticoid receptor (GR) and histone deacetylase 2 (HDAC2) were increased, while that of steroidogenic factor 1 (SF1) was decreased. In vitro, corticosterone (rather than ethanol) at 500 to 2,000 nM concentration decreased testosterone production and 3β-HSD expression in a concentration-dependent manner. Moreover, corticosterone downregulated SF1 and upregulated HDAC2 via activating GR, accompanied by a low H3K14ac level of 3β-HSD; SF1 overexpression could reverse the increased HDAC2 expression, and knockdown of HDAC2 could partially reverse the inhibitory effects of corticosterone on H3K14ac level and 3β-HSD expression but not on SF1 expression. Taken together, PEE caused testicular dysplasia in male offspring rats, which was associated with corticosterone-induced low-functional programming of 3β-HSD through the GR/SF1/HDAC2/H3K14ac pathway. This study provides new academic perspectives to illuminate the theory of 'Developmental Origins of Health and Disease.'
Collapse
Affiliation(s)
- Min Liu
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China
| | - Qi Zhang
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China
| | - Linguo Pei
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China.,b Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan , China
| | - Yunfei Zou
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China.,c School of public health , Wannan Medical College , Wuhu , China
| | - Guanghui Chen
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China
| | - Hui Wang
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China.,b Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan , China
| |
Collapse
|
32
|
Udagawa O, Okamura K, Suzuki T, Nohara K. Arsenic Exposure and Reproductive Toxicity. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2019. [DOI: 10.1007/978-981-13-2565-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Cacabelos R, Carril JC, Sanmartín A, Cacabelos P. Pharmacoepigenetic Processors: Epigenetic Drugs, Drug Resistance, Toxicoepigenetics, and Nutriepigenetics. PHARMACOEPIGENETICS 2019:191-424. [DOI: 10.1016/b978-0-12-813939-4.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
34
|
Zeng Q, Yi H, Huang L, An Q, Wang H. Reduced testosterone and Ddx3y expression caused by long-term exposure to arsenic and its effect on spermatogenesis in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:84-91. [PMID: 30189373 DOI: 10.1016/j.etap.2018.08.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Arsenic (As) has been recognized as a cause of male reproductive toxicity. However, effects of long-term arsenic exposure (puberty-adult) on spermatogenesis, testosterone synthesis, and the expression of androgen binding protein (ABP) and Ddx3y remain unclear. The objective of this investigation was to explore these effects and the underlying mechanisms. Male mice were treated with 5 and 50 ppm arsenic for 6 months via drinking water. The results showed that arsenic reduced sperm count and sperm motility and enhanced the abnormal sperm percentage. The decrease in the number of spermatogenic cells and sperm in seminiferous tubules and the decline in the Johnsen score were observed in both arsenic-treated groups, suggesting spermatogenesis disorders. Moreover, arsenic diminished serum testosterone, along with the reduced expression of luteinizing hormone receptor (LHR), steroidogenic acute regulatory protein (StAR) and 17-β-hydroxysteroid dehydrogenase (17β-HSD) genes. Arsenic also down-regulated mRNA levels of ABP and Ddx3y in a dose-dependent manner. Meanwhile, the protein levels of StAR, 17β-HSD and Ddx3y were significantly reduced in arsenic-treated groups. Taken together, these results suggest that the reduced testosterone through inhibition of the expression of multiple genes responsible for the biosynthesis, the damaged androgen homeostasis partially via lessening the expression levels of the ABP gene and the down-regulated expression of Ddx3y, may contribute to spermatogenesis disorders in mice exposed to arsenic.
Collapse
Affiliation(s)
- Qun Zeng
- School of Life Science, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China; School of Basic Medicine, Shanxi University of Chinese Medicine, Taiyuan 030024, China
| | - Huilan Yi
- School of Life Science, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| | - Liqun Huang
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Quan An
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Hong Wang
- School of Life Science, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
35
|
Orta Yilmaz B, Yildizbayrak N, Erkan M. Sodium arsenite-induced detriment of cell function in Leydig and Sertoli cells: the potential relation of oxidative damage and antioxidant defense system. Drug Chem Toxicol 2018; 43:479-487. [DOI: 10.1080/01480545.2018.1505902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Banu Orta Yilmaz
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Nebahat Yildizbayrak
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Melike Erkan
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| |
Collapse
|
36
|
Zhu Y, Li Y, Lou D, Gao Y, Yu J, Kong D, Zhang Q, Jia Y, Zhang H, Wang Z. Sodium arsenite exposure inhibits histone acetyltransferase p300 for attenuating H3K27ac at enhancers in mouse embryonic fibroblast cells. Toxicol Appl Pharmacol 2018; 357:70-79. [PMID: 30130555 DOI: 10.1016/j.taap.2018.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/07/2023]
Abstract
Both epidemiological investigations and animal studies have linked arsenic-contaminated water to cancers, including skin, liver and lung cancers. Besides genotoxicity, arsenic exposure-related pathogenesis of disease is widely considered through epigenetic mechanisms; however, the underlying mechanism remains to be determined. Herein we explore the initial epigenetic changes via acute sodium arsenite (As) exposures of mouse embryonic fibroblast (MEF) cells and histone H3K79 methyltransferase Dot1L knockout (Dot1L-/-) MEF cells. Our RNA-seq and Western blot data demonstrated that, in both cell lines, acute As exposure abolished histone acetyltransferase p300 at the RNA level and subsequent protein level. Consequently, p300-specific main target histone H3K27ac, a marker separating active from poised enhancers, decreased dramatically as validated by both Western blot and ChIP-qPCR/seq analyses. Concomitantly, H3K4me1 as another well-known marker for enhancers also showed significant decreases, suggesting an underappreciated crosstalk between H3K4me1 and H3K27ac involved in As exposure. Significantly, As exposure-reduced H3K27ac and H3K4me1 inhibited the expression of genes including EP300 itself and Kruppel Like Factor 4(Klf4) that both are tumor suppressor genes. Collectively, our investigations identified p300 as an internal bridging factor within cells to sense external environmental As exposure to alter chromatin, thereby changing gene transcription for disease pathogenesis.
Collapse
Affiliation(s)
- Yan Zhu
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Yanqiang Li
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Dan Lou
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Yang Gao
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Jing Yu
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Dehui Kong
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei Province 430062, China
| | - Qiang Zhang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Yankai Jia
- GENEWIZ Suzhou, 218 Xinghu Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Haimou Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei Province 430062, China.
| | - Zhibin Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei Province 430062, China; Fengxian Central Hospital, 9588 Nanfeng Hwy, Fengxian District, Shanghai 201406, China.
| |
Collapse
|
37
|
Ke X, Johnson H, Jing X, Michalkiewicz T, Huang YW, Lane RH, Konduri GG. Persistent pulmonary hypertension alters the epigenetic characteristics of endothelial nitric oxide synthase gene in pulmonary artery endothelial cells in a fetal lamb model. Physiol Genomics 2018; 50:828-836. [PMID: 30004838 DOI: 10.1152/physiolgenomics.00047.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Decreased expression of endothelial nitric oxide synthase (eNOS), a key mediator of perinatal transition, characterizes persistent pulmonary hypertension of the newborn (PPHN) in neonates and a fetal lamb model; the mechanisms are unclear. We investigated whether increased DNA CpG methylation at the eNOS promoter in estrogen response elements (EREs) and altered histone code together contribute to decreased eNOS expression in PPHN. We isolated pulmonary artery endothelial cells (PAEC) from fetal lambs with PPHN induced by prenatal ductus arteriosus constriction from 128 to 136 days gestation or gestation-matched twin controls. We measured right ventricular systolic pressure (RVSP) and Fulton index and determined eNOS expression in PAEC in control and PPHN lambs. We determined DNA CpG methylation by pyrosequencing and activity of ten eleven translocase demethylases (TET) by colorimetric assay. We quantified the occupancy of transcription factors, specificity protein 1 (Sp1), and estrogen receptors and density of four histone marks around Sp1 binding sites by chromatin immunoprecipitation (ChIP) assays. Fetal lambs with PPHN developed increased RVSP and Fulton index. Levels of eNOS mRNA and protein were decreased in PAEC from PPHN lambs. PPHN significantly increased the DNA CpG methylation in eNOS promoter and decreased TET activity in PAEC. PPHN decreased Sp1 occupancy and density of the active mark, lysine 12 acetylation of histone 4, and increased density of the repression mark, lysine 9 trimethylation of histone 3 around Sp1 binding sites in eNOS promoter. These results suggest that epigenetic modifications are primed to decrease Sp1 binding at the eNOS gene promoter in PPHN.
Collapse
Affiliation(s)
- Xingrao Ke
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Hollis Johnson
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Xigang Jing
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Teresa Michalkiewicz
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Robert H Lane
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Girija G Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
38
|
Tu W, Liu Y, Xie C, Zhou X. Arsenite downregulates H3K4 trimethylation and H3K9 dimethylation during transformation of human bronchial epithelial cells. J Appl Toxicol 2017; 38:480-488. [DOI: 10.1002/jat.3555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Tu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei 430030 People's Republic of China
| | - Yin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei 430030 People's Republic of China
| | - Chengfeng Xie
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei 430030 People's Republic of China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei 430030 People's Republic of China
| |
Collapse
|