1
|
Liu F, Gu Z, Yi F, Liu X, Zou W, Xu Q, Yuan Y, Chen N, Tang J. Potential of Glycyrrhiza in the prevention of colitis-associated colon cancer. Fitoterapia 2025; 181:106398. [PMID: 39842555 DOI: 10.1016/j.fitote.2025.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza, a legume native to the Mediterranean region, has a long history of ethnomedicinal use in China. Due to its antiviral, antibacterial, anti-inflammatory, antioxidant, antitumor, anti-ulcer, and hepatoprotective properties, Glycyrrhiza is widely utilized in the treatment of gastrointestinal disorders. THE AIM OF THE REVIEW The specific mechanisms of the main active constituents of glycyrrhiza in the treatment of inflammatory bowel disease, precancerous lesions and colorectal cancer at all stages of the colitis-associated colon cancer "Inflammation-Dysplasia-Cancer" sequence, as well as its pharmacokinetics, toxicology, formulation improvements, and application studies, are reviewed to provide new insights and perspectives on glycyrrhiza as a dietary supplement to treat and prevent colitis-associated colon cancer. MATERIALS AND METHODS Information on Glycyrrhiza was retrieved from electronic databases, including PubMed and Web of Science. RESULTS Glycyrrhiza is a well-established medicinal plant with significant potential for applications in both the food and pharmaceutical industries. Over 400 active constituents have been identified in Glycyrrhiza, including terpenoids, flavonoids, isoflavones, coumarins, and polyphenols. Numerous studies have demonstrated that Glycyrrhiza and its active compounds can inhibit the "Inflammation-Dysplasia-Cancer" progression of colitis-associated colon cancer by mitigating inflammatory bowel disease, reducing the number of intestinal precancerous lesions, and counteracting colorectal cancer. Furthermore, derivatives and nanocarriers are crucial for the effective treatment of colitis-associated colon cancer using Glycyrrhiza and its active constituents. CONCLUSION In conclusion, Glycyrrhiza is a plant with both medicinal and nutritional value, making it a potential food ingredient and dietary supplement for the treatment of colitis-associated colon cancer.
Collapse
Affiliation(s)
- Fang Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; North Sichuan Medical College, Nanchong, China.
| | - Zhili Gu
- North Sichuan Medical College, Nanchong, China
| | - Feiyang Yi
- North Sichuan Medical College, Nanchong, China
| | - Xue Liu
- North Sichuan Medical College, Nanchong, China
| | - Wenxuan Zou
- North Sichuan Medical College, Nanchong, China
| | - Qingxia Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nianzhi Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Chen X, Ma R, Wu W, Gao R, Shu Y, Dong M, Guo M, Tang D, Li D, Ji S. Wighteone, a prenylated flavonoid from licorice, inhibits growth of SW480 colorectal cancer cells by allosteric inhibition of Akt. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118195. [PMID: 38641080 DOI: 10.1016/j.jep.2024.118195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/31/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is a frequently used herbal medicine worldwide, and is used to treat cough, hepatitis, cancer and influenza in clinical practice of traditional Chinese medicine. Modern pharmacological studies indicate that prenylated flavonoids play an important role in the anti-tumor activity of licorice, especially the tumors in stomach, lung, colon and liver. Wighteone is one of the main prenylated flavonoids in licorice, and its possible effect and target against colorectal cancer have not been investigated. AIM OF THE STUDY This study aimed to investigate the anti-colorectal cancer effect and underlying mechanism of wighteone. MATERIALS AND METHODS SW480 human colorectal cancer cells were used to evaluate the in vitro anti-colorectal cancer activity and Akt regulation effect of wighteone by flow cytometry, phosphoproteomic and Western blot analysis. Surface plasmon resonance (SPR) assay, molecular docking and dynamics simulation, and kinase activity assay were used to investigate the direct interaction between wighteone and Akt. A nude mouse xenograft model with SW480 cells was used to verify the in vivo anti-colorectal cancer activity of wighteone. RESULTS Wighteone inhibited phosphorylation of Akt and its downstream kinases in SW480 cells, which led to a reduction in cell viability. Wighteone had direct interaction with both PH and kinase domains of Akt, which locked Akt in a "closed" conformation with allosteric inhibition, and Gln79, Tyr272, Arg273 and Lys297 played the most critical role due to their hydrogen bond and hydrophobic interactions with wighteone. Based on Akt overexpression or activation in SW480 cells, further mechanistic studies suggested that wighteone-induced Akt inhibition led to cycle arrest, apoptosis and autophagic death of SW480 cells. Moreover, wighteone exerted in vivo anti-colorectal cancer effect and Akt inhibition activity in the nude mouse xenograft model. CONCLUSION Wighteone could inhibit growth of SW480 cells through allosteric inhibition of Akt, which led to cell cycle arrest, apoptosis and autophagic death. The results contributed to understanding of the anti-tumor mechanism of licorice, and also provided a rationale to design novel Akt allosteric inhibitors for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xiaofei Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ruili Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Weiguo Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ran Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yikang Shu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Mingxin Dong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510640, China.
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Danhua Li
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
3
|
Yang LJ, Han T, Liu RN, Shi SM, Luan SY, Meng SN. Plant-derived natural compounds: A new frontier in inducing immunogenic cell death for cancer treatment. Biomed Pharmacother 2024; 177:117099. [PMID: 38981240 DOI: 10.1016/j.biopha.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Immunogenic cell death (ICD) can activate adaptive immune response in the host with normal immune system. Some synthetic chemotherapeutic drugs and natural compounds have shown promising results in cancer treatment by triggering the release of damage-associated molecules (DAMPs) to trigger ICD. However, most chemotherapeutic drugs exhibit non-selective cytotoxicity and may also induce and promote metastasis, thereby significantly reducing their clinical efficacy. Among the natural compounds that can induce ICD, plant-derived compounds account for the largest proportion, which are of increasing value in the treatment of cancer. Understanding which plant-derived natural compounds can induce ICD and how they induce ICD is crucial for developing strategies to improve chemotherapy outcomes. In this review, we focus on the recent findings regarding plant-derived natural compounds that induce ICD according to the classification of flavonoids, alkaloids, glycosides, terpenoids and discuss the potential mechanisms including endoplasmic reticulum (ER) stress, DNA damage, apoptosis, necroptosis autophagy, ferroptosis. In addition, plant-derived natural compounds that can enhance the ICD induction ability of conventional therapies for cancer treatment is also elaborated. The rational use of plant-derived natural compounds to induce ICD is helpful for the development of new cancer treatment methods.
Collapse
Affiliation(s)
- Li-Juan Yang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ting Han
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ruo-Nan Liu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shu-Ming Shi
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Shi-Yun Luan
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Sheng-Nan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
4
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
5
|
Ji X, Liu N, Huang S, Zhang C. A Comprehensive Review of Licorice: The Preparation, Chemical Composition, Bioactivities and Its Applications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:667-716. [PMID: 38716617 DOI: 10.1142/s0192415x24500289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Licorice (Glycyrrhiza) is a medicinal and food homologue of perennial plants derived from the dried roots and rhizomes of the genus Glycyrrhiza in the legume family. In recent years, the comprehensive utilization of licorice resources has attracted people's attention. It is widely utilized to treat diseases, health food products, food production, and other industrial applications. Furthermore, numerous bioactive components of licorice are found using advanced extraction processes, which mainly include polyphenols (flavonoids, dihydrostilbenes, benzofurans, and coumarin), triterpenoids, polysaccharides, alkaloids, and volatile oils, all of which have been reported to possess a variety of pharmacological characteristics, including anti-oxidant, anti-inflammatory, antibacterial, antiviral, anticancer, neuroprotective, antidepressive, antidiabetic, antiparasitic, antisex hormone, skin effects, anticariogenic, antitussive, and expectorant activities. Thereby, all of these compounds promote the development of novel and more effective licorice-derived products. This paper reviews the progress of research on extraction techniques, chemical composition, bioactivities, and applications of licorice to provide a reference for further development and application of licorice in different areas.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, P. R. China
- Henan Engineering Research Center of Livestock and Poultry, Emerging Disease Detection and Control, Luoyang 471023, P. R. China
| | - Ning Liu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, P. R. China
- Henan Engineering Research Center of Livestock and Poultry, Emerging Disease Detection and Control, Luoyang 471023, P. R. China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, P. R. China
- Henan Engineering Research Center of Livestock and Poultry, Emerging Disease Detection and Control, Luoyang 471023, P. R. China
| |
Collapse
|
6
|
Wu PJ, Chiou HL, Hsieh YH, Lin CL, Lee HL, Liu IC, Ying TH. Induction of immunogenic cell death effect of licoricidin in cervical cancer cells by enhancing endoplasmic reticulum stress-mediated high mobility group box 1 expression. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37013980 DOI: 10.1002/tox.23793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Licoricidin (LCD) is an activity compound of the roots of Glycyrrhiza uralensis, which has therapeutic efficacy, including anti-virus, anti-cancer, and enhanced immunity in Traditional Chinese Medicine. Herein, this study aimed to clarify the effect of LCD on cervical cancer cells. In the present study, we found that LCD significantly inhibited cell viability via inducing cell apoptosis and companies with cleaved-PARP protein expression and caspase-3/-9 activity. Cell viability was markedly reversed these effects by pan-caspase inhibitor Z-VAD-FMK treatment. Furthermore, we showed that LCD-induced ER (endoplasmic reticulum) stress triggers upregulating the protein level of GRP78 (Bip), CHOP, and IRE1α, and subsequently confirmed the mRNA level by quantitative real-time polymerase chain reaction. In addition, LCD exhibited the release of danger-associated molecular patterns from cervical cancer cells, such as the release of high-mobility group box 1 (HMGB1), secretion of ATP, and exposure of calreticulin (CRT) on the cell surface, which led to immunogenic cell death (ICD). These results provide a novel foundation that LCD induces ICD via triggering ER stress in human cervical cancer cells. LCD might be an ICD inducer of immunotherapy in progressive cervical cancer.
Collapse
Affiliation(s)
- Pei-Ju Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - I-Chun Liu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Chitosan nanoparticles efficiently enhance the dispersibility, stability and selective antibacterial activity of insoluble isoflavonoids. Int J Biol Macromol 2023; 232:123420. [PMID: 36708890 DOI: 10.1016/j.ijbiomac.2023.123420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Natural isoflavonoids have attracted much attention in the treatment of oral bacterial infections and other diseases due to their excellent antibacterial activity and safety. However, their poor water solubility, instability and low bioavailability seriously limited the practical application. In this study, licoricidin-loaded chitosan nanoparticles (LC-CSNPs) were synthesized by self-assembly for improving the dispersion of licoricidin (LC) and strengthening antibacterial and anti-biofilm performance. Compared to free LC, the minimum inhibitory concentration of LC-CSNPs against Streptococcus mutans decreased >2-fold to 26 μg/mL, and LC-CSNPs could ablate 70 % biofilms at this concentration. The enhanced antibacterial activity was mainly attributed to the spontaneous surface adsorption of LC-CSNPs on cell membranes through electrostatic interactions. More valuably, LC-CSNPs had no inhibitory effect on the growth of probiotic. Mechanism study indicated that LC-CSNPs altered the transmembrane potential to cause bacterial cells in a hyperpolarized state, generating ROS to cause cells damage and eventually apoptosis. This work demonstrated that the chitosan-based nanoparticles have great potential in enhancing the dispersibility and antibacterial activity of insoluble isoflavonoids, offering a promising therapeutic strategy for oral infections.
Collapse
|
8
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
9
|
Shang Z, Liu C, Qiao X, Ye M. Chemical analysis of the Chinese herbal medicine licorice (Gan-Cao): An update review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115686. [PMID: 36067839 DOI: 10.1016/j.jep.2022.115686] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice, called Gan-Cao in China, is one of the most popular traditional herbal medicines. It is derived from the dried roots and rhizomes of Glycyrrhiza uralensis, G. glabra, and G. inflata. Licorice is recorded in the pharmacopoeias of China, Japan, US, and Europe. AIM This review updates research progress of licorice from the perspectives of chemical analysis, quality evaluation, drug metabolism, and pharmacokinetic studies from 2009 to April 2022. MATERIALS AND METHODS Both English and Chinese literatures were collected from databases including PubMed, Elsevier, Web of Science, and CNKI (Chinese). Licorice, extraction, structural characterization/identification, quality control, metabolism, and pharmacokinetics were used as keywords. RESULTS Newly developed analytical methods, including LC/UV, 2DLC, LC/MS, GC/MS, and mass spectrometry imaging (MSI) for chemical analysis of licorice were summarized. CONCLUSION This review provides a comprehensive summary on chemical analysis of licorice.
Collapse
Affiliation(s)
- Zhanpeng Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Chenrui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China; Yunnan Baiyao International Medical Research Center, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
10
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
11
|
Ma H, Wu F, Bai Y, Wang T, Ma S, Guo L, Liu G, Leng G, Kong Y, Zhang Y. Licoricidin combats gastric cancer by targeting the ICMT/Ras pathway in vitro and in vivo. Front Pharmacol 2022; 13:972825. [PMID: 36339587 PMCID: PMC9629146 DOI: 10.3389/fphar.2022.972825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Licoricidin, a type of isoflavonoid, is extracted from the root of Glycyrrhiza glabra. It has been widely proven that licoricidin possesses multiple biological activities, including anti-cancer effects and a powerful antimicrobial effect against Helicobacter pylori (H. pylori). However, the exact mechanism of licoricidin against gastric cancer remains unclear. In this study, we comprehensively explored the effects of licoricidin on MGC-803 gastric cancer cells in vitro and in vivo and further elucidated its mechanism of action. Our results revealed that licoricidin exhibited multiple anti-gastric cancer activities, including suppressing proliferation, inducing apoptosis, arresting the cell cycle in G0/G1 phase, and inhibiting the migration and invasion abilities of MGC-803 gastric cancer cells. In addition to this, a total of 5861 proteins were identified by quantitative proteomics research strategy of TMT labeling, of which 19 differential proteins (two upregulated and 17 downregulated) were screened out. Combining bioinformatics analyses and the reported roles in cancer progression of the 19 proteins, we speculated that isoprenyl carboxyl methyltransferase (ICMT) was the most likely target of licoricidin. Western blot assays and IHC assays subsequently proved that licoricidin significantly downregulated the expression of ICMT, both in MGC-803 cells and in xenograft tumors. Moreover, licoricidin effectively reduced the level of active Ras-GTP and blocked the phosphorylation of Raf and Erk, which may be involved in its anti-gastric cancer effects. In summary, we first demonstrated that licoricidin exerted favorable anti-gastric cancer activities via the ICMT/Ras pathway, which suggests that licoricidin, as a natural product, could be a novel candidate for the management of gastric cancer.
Collapse
Affiliation(s)
- Hanwei Ma
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Department of Pediatric Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fahong Wu
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yinliang Bai
- Pharmacy Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tianwei Wang
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Shangxian Ma
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liuqing Guo
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Guiyuan Liu
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Guangxian Leng
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yin Kong
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Youcheng Zhang
- Laboratory of Hepatic-Biliary-Pancreatic, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- *Correspondence: Youcheng Zhang,
| |
Collapse
|
12
|
Shao X, Chen X, Wang Z, Zhu C, Du Y, Tang D, Ji S. Diprenylated flavonoids from licorice induce death of SW480 colorectal cancer cells by promoting autophagy: Activities of lupalbigenin and 6,8-diprenylgenistein. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115488. [PMID: 35728712 DOI: 10.1016/j.jep.2022.115488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is a well-known herbal medicine, and we previously found that several licorice prenylated flavonoids could cause death of SW480 colorectal cancer cells by promoting autophagy. Given many kinds of prenylated flavonoids in licorice, the activities of other compounds deserve further investigation. In addition, the contribution of isoprenyl groups on the autophagy promotion activities has not been clarified. AIM OF THE STUDY This study aimed to investigate whether lupalbigenin (LPB) and 6,8-diprenylgenistein (DPG), two licorice diprenylated flavonoids, could induce autophagic cell death of SW480 cells, and clarify the contribution of isoprenyl groups. MATERIALS AND METHODS Cytotoxic activities of LPB and DPG were tested by using an MTT method, and apoptosis induction effects were evaluated by PI-Annexin V staining-based flow cytometry and protein levels of caspase-3 and PARP-1. Autophagy promotion effects of LPB and DPG were assessed by protein levels of LC3, p62, Akt and mTOR as well as number of autophagosomes in cells, and autophagy inhibitor chloroquine (CQ) was involved to identify the role of autophagy on LPB or DPG-caused death of SW480 cells. In addition, two groups of structurally similar diprenylated, mono-prenylated and free flavonoids were obtained from licorice, which were used to investigate the contribution of isoprenyl groups on their autophagy promotion activities. RESULTS Both LPB and DPG significantly induced apoptosis of SW480 cells with strong cytotoxic activities, and meanwhile, they also promoted autophagy probably through the Akt/mTOR signaling pathway. Further studies indicated that LPB and DPG could induce autophagic cell death of SW480 cells. Moreover, isoprenyl groups contributed mainly to the cytotoxic and autophagy promotion activities of licorice prenylated flavonoids. CONCLUSION This study reported for the first time that licorice diprenylated flavonoids LPB and DPG induced death of SW480 cells by promoting autophagy, which was mainly attributed to the isoprenyl groups. The results provided theoretical basis for researches on anti-colorectal cancer drugs and their structural modification.
Collapse
Affiliation(s)
- Xian Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Medical Research Center, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, 312000, China.
| | - Xiaofei Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ziyu Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Cuicui Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
13
|
Li Z, Si W, Jin W, Yuan Z, Chen Y, Fu L. Targeting autophagy in colorectal cancer: An update on pharmacological small-molecule compounds. Drug Discov Today 2022; 27:2373-2385. [PMID: 35589015 DOI: 10.1016/j.drudis.2022.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023]
Abstract
Autophagy, an evolutionarily highly conserved cellular degradation process, plays the Janus role (either cytoprotective or death-promoting) in colorectal cancer, so the targeting of several key autophagic pathways with small-molecule compounds may be a new therapeutic strategy. In this review, we discuss autophagy-associated cell death pathways and key cytoprotective autophagy pathways in colorectal cancer. Moreover, we summarize a series of small-molecule compounds that have the potential to modulate autophagy-associated cell death or cytoprotective autophagy for therapeutic purposes. Taken together, these findings demonstrate the Janus role of autophagy in colorectal cancer, and shed new light on the exploitation of a growing number of small-molecule compounds to target autophagy in future cancer drug discovery.
Collapse
Affiliation(s)
- Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wen Si
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences Limited, Hong Kong Special Administrative Region; Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhaoxin Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
14
|
de Freitas Rego Y, Morais Costa NE, Martins de Lacerda R, Faleiros da Silva Maia A, Moreira da Silva C, de Fátima Â. Anticancer properties of arylchromenes and arylchromans: an overview. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cancers are a set of pathologies originated by cells that have the ability to divide and multiply uncontrollably, associated with the capacity to invade and colonize adjacent tissues. Chemotherapy is one of the main approaches of treatment for cancer patients. Despite of the numerous antineoplastic drugs available, cancer cannot be cured; particularly at the late stages deprived of any side effect. Arylchromenes and arylchromans are a group of small molecules, of natural or synthetic origin, of great interest as prototypes for the drug development, especially against cancer. In this chapter, we will present the antineoplastic activity studies of the most promising examples of these arylchromenes and arylchroman derivatives.
Collapse
Affiliation(s)
- Yuri de Freitas Rego
- Departamento de Química, Grupo de Estudos em Química Orgânica e Biológica (GEQOB) , Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Nathália Evelyn Morais Costa
- Departamento de Química, Grupo de Estudos em Química Orgânica e Biológica (GEQOB) , Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Rodrigo Martins de Lacerda
- Departamento de Química, Grupo de Estudos em Química Orgânica e Biológica (GEQOB) , Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Angélica Faleiros da Silva Maia
- Departamento de Ensino, Pesquisa e Extensão - CCO , Instituto Federal do Amazonas - Campus Coari (IFAM/CCO) , Coari , AM , Brazil
| | - Cleiton Moreira da Silva
- Departamento de Química, Grupo de Estudos em Química Orgânica e Biológica (GEQOB) , Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Ângelo de Fátima
- Departamento de Química, Grupo de Estudos em Química Orgânica e Biológica (GEQOB) , Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| |
Collapse
|
15
|
Liu Y, Li Y, Xu L, Shi J, Yu X, Wang X, Li X, Jiang H, Yang T, Yin X, Du L, Lu Q. Quercetin Attenuates Podocyte Apoptosis of Diabetic Nephropathy Through Targeting EGFR Signaling. Front Pharmacol 2022; 12:792777. [PMID: 35069207 PMCID: PMC8766833 DOI: 10.3389/fphar.2021.792777] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Podocytes injury is one of the leading causes of proteinuria in patients with diabetic nephropathy (DN), and is accompanied by podocytes apoptosis and the reduction of podocyte markers such as synaptopodin and nephrin. Therefore, attenuation of podocyte apoptosis is considered as an effective strategy to prevent the proteinuria in DN. In this study, we evaluated the anti-podocyte-apoptosis effect of quercetin which is a flavonol compound possessing an important role in prevention and treatment of DN and verified the effect by using db/db mice and high glucose (HG)-induced mouse podocytes (MPs). The results show that administration of quercetin attenuated the level of podocyte apoptosis by decreasing the expression of pro-apoptotic protein Bax, cleaved caspase 3 and increasing the expression of anti-apoptotic protein Bcl-2 in the db/db mice and HG-induced MPs. Furthermore, epidermal growth factor receptor (EGFR) was predicted to be the potential physiological target of quercetin by network pharmacology. In vitro and vivo experiments confirmed that quercetin inhibited activation of the EGFR signaling pathway by decreasing phosphorylation of EGFR and ERK1/2. Taken together, this study demonstrates that quercetin attenuated podocyte apoptosis through inhibiting EGFR signaling pathway, which provided a novel approach for further research of the mechanism of quercetin in the treatment of DN.
Collapse
Affiliation(s)
- Yiqi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuan Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiasen Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiujuan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xue Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xizhi Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Hong Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021; 26:7134. [PMID: 34885716 PMCID: PMC8658833 DOI: 10.3390/molecules26237134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.
Collapse
Affiliation(s)
- Richard Kwamla Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Patrick Opare Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Ivan Addae-Mensah
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| |
Collapse
|
17
|
Jia Y, Shen P, Yan T, Zhou W, Sun J, Han X. Microfluidic Tandem Mechanical Sorting System for Enhanced Cancer Stem Cell Isolation and Ingredient Screening. Adv Healthc Mater 2021; 10:e2100985. [PMID: 34486235 DOI: 10.1002/adhm.202100985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/13/2021] [Indexed: 12/13/2022]
Abstract
Robust isolation of cancer stem cells (CSCs) in a high-throughput, label-free manner is critical for understanding tumor heterogeneity and developing therapeutic strategies targeting CSCs. Cell-mechanics-based microfluidic sorting systems provide efficient and specific platforms for investigation of stem cell-like characteristics on the basis of cell deformability and cell-substrate adhesion properties. In the present study, a microfluidic tandem mechanical sorting system is developed to enrich CSCs with high flexibility and low adhesive capacity. In the integrated microfluidic system, cancer cells are driven by hydrodynamic forces to flow continuously through two featured devices, which are functionalized with sequentially variable microbarriers and surface-coated fluid mixing microchannels, respectively. Collected deformable and low-adhesive cancer cells exhibit enhanced stem cell-like properties with higher stemness and metastasis capacity both in vitro and in vivo, compared with each single device separation. Using these devices, bioactive natural compound screening targeting CSCs is performed and a potent therapeutic compound isoliquiritigenin from licorice is identified to inhibit the lung cancer stem cell phenotype. Taken together, this microfluidic tandem mechanical sorting system can facilitate drug screening targeting CSCs and the analysis of signals regulating CSC function in drug resistance.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Peiliang Shen
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Tao Yan
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Weijia Zhou
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Jia Sun
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xin Han
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine Nanjing 210023 China
| |
Collapse
|
18
|
Tan X, Fu J, Yuan Z, Zhu L, Fu L. ACNPD: The Database for Elucidating the Relationships Between Natural Products, Compounds, Molecular Mechanisms, and Cancer Types. Front Pharmacol 2021; 12:746067. [PMID: 34497528 PMCID: PMC8419280 DOI: 10.3389/fphar.2021.746067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023] Open
Abstract
Objectives: Cancer is well-known as a collection of diseases of uncontrolled proliferation of cells caused by mutated genes which are generated by external or internal factors. As the mechanisms of cancer have been constantly revealed, including cell cycle, proliferation, apoptosis and so on, a series of new emerging anti-cancer drugs acting on each stage have also been developed. It is worth noting that natural products are one of the important sources for the development of anti-cancer drugs. To the best of our knowledge, there is not any database summarizing the relationships between natural products, compounds, molecular mechanisms, and cancer types. Materials and methods: Based upon published literatures and other sources, we have constructed an anti-cancer natural product database (ACNPD) (http://www.acnpd-fu.com/). The database currently contains 521 compounds, which specifically refer to natural compounds derived from traditional Chinese medicine plants (derivatives are not considered herein). And, it includes 1,593 molecular mechanisms/signaling pathways, covering 10 common cancer types, such as breast cancer, lung cancer and cervical cancer. Results: Integrating existing data sources, we have obtained a large amount of information on natural anti-cancer products, including herbal sources, regulatory targets and signaling pathways. ACNPD is a valuable online resource that illustrates the complex pharmacological relationship between natural products and human cancers. Conclusion: In summary, ACNPD is crucial for better understanding of the relationships between traditional Chinese medicine (TCM) and cancer, which is not only conducive to expand the influence of TCM, but help to find more new anti-cancer drugs in the future.
Collapse
Affiliation(s)
- Xiaojie Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiahui Fu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhaoxin Yuan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Lingjuan Zhu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Leilei Fu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
19
|
Tang S, Cai S, Ji S, Yan X, Zhang W, Qiao X, Zhang H, Ye M, Yu S. Isoangustone A induces autophagic cell death in colorectal cancer cells by activating AMPK signaling. Fitoterapia 2021; 152:104935. [PMID: 34004245 DOI: 10.1016/j.fitote.2021.104935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022]
Abstract
Phytochemicals, especially flavonoids, have been widely investigated for their diversified pharmacological activities including anticancer activities. Previously we identified isoangustone A from licorice-derived compounds as a potent inducer of cell death. In the present study, the exact mechanism by which isoangustone A induced cell death was further investigated, with autophagy as an indispensible part of this process. Isoangustone A treatment activated autophagic signaling and induced a complete autophagic flux in colorectal cancer cells. Knockdown of ATG5 or pre-treatment with autophagy inhibitors significantly reversed isoangustone A-induced apoptotic signaling and loss of cell viability, suggesting autophagy plays an important role in isoangustone A-induced cell death. Isoangustone A inhibited Akt/mTOR signaling, and overexpressing of a constitutively activated Akt mildly suppressed isoangustone A-induced cell death. More importantly, isoangustone A inhibited cellular ATP level and activated AMPK, and pre-treatment with AMPK inhibitor or overexpression of dominant negative AMPKα2 significantly reversed isoangustone A-induced autophagy and cell death. Further study shows isoangustone A dose-dependently inhibited mitochondrial respiration, which could be responsible for isoangustone A-induced activation of AMPK. Finally, isoangustone A at a dosage of 10 mg/kg potently activated AMPK and autophagic signaling in and inhibited the growth of SW480 human colorectal xenograft in vivo. Taken together, induction of autophagy through activation of AMPK is an important mechanism by which isoangustone A inhibits tumor growth, and isoangustone A deserves further investigation as a promising anti-cancer agent.
Collapse
Affiliation(s)
- Shunan Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Sina Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Shuai Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Xiaojin Yan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Weijia Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Hongquan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Anatomy, Histology and Embryology, Peking University School of Basic Medicinal Sciences, PR China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China.
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China.
| |
Collapse
|
20
|
Zhang Z, Yang L, Hou J, Tian S, Liu Y. Molecular mechanisms underlying the anticancer activities of licorice flavonoids. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113635. [PMID: 33246112 DOI: 10.1016/j.jep.2020.113635] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/25/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice has been commonly used in traditional Chinese medicine for treatment of gastric, liver, and respiratory disease conditions for more than two thousand years. It is a major component of several Chinese patent medicines certificated by National Medical Products Administration that possess great anticancer activities. AIM OF THE STUDY To comprehensively summarize the anticancer activities of licorice flavonoids, explain the underlying molecular mechanisms, and assess their therapeutic potentials and side-effects. METHODS PubMed, Research Gate, Web of Science, Google Scholar, academic journals, and Science Direct were used as information sources, with the key words of "anticancer", "licorice", "flavonoids", and their combinations, mainly from 2000 to 2019. RESULTS Sixteen licorice flavonoids are found to possess anticancer activities. These flavonoids inhibit cancer cells through blocking cell cycle and regulating multiple signaling pathways. The major pathways targeted by licorice flavonoids include: the MAPK pathway, PI3K/AKT pathway, NF-κB pathway, death receptor - dependent extrinsic signaling pathway, and mitochondrial apoptotic pathway. CONCLUSION Licorice flavonoids are a group of versatile molecules that have pleiotropic effects on cell growth, survival and cell signaling. Many of the flavonoids possess inhibitory activities toward cancer cell growth and hence have a great therapeutic potential in cancer treatment. However, additional preclinical studies are still needed to assess their in vivo efficacy and possible toxicities. It is also imperative to evaluate the effects of licorice flavonoids on the metabolism of other drugs and explore the potential synergistic mechanism.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
21
|
Gu X, Li X, Guan M, Jiang C, Song Q, Sun N, Zou Y, Zhou Q, Chen J, Qiu J. Discovery of thiosemicarbazone-containing compounds with potent anti-proliferation activity against drug-resistant K562/A02 cells. Bioorg Med Chem Lett 2020; 30:127638. [PMID: 33132117 DOI: 10.1016/j.bmcl.2020.127638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/18/2020] [Indexed: 01/30/2023]
Abstract
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) is a major obstacle to successful chemotherapy for leukemia. In this study, a series of thiosemicarbazone-containing compounds (4a-b, 7a-q) were synthesized. Biological evaluation showed that the most active compound 7e displayed potent anti-leukemia activity against P-gp overexpressing drug-resistant K562/A02 cells, with an IC50 value of 0.44 μM. Notably, compound 7e exhibited a selective killing effect on K562/A02 cells by dose-dependently increasing the intracellular levels of reactive oxygen species (ROS), thus exerting a potential collateral sensitivity (CS)-promoting effect in vitro. Moreover, compound 7e could inhibit HDAC1 and HDAC6, and induce the apoptosis of K562/A02 cells by increasing the expression of Bax, decreasing Bcl-2 protein level, and promoting the cleavage of caspase-3 and PARP, respectively. Overall, 7e may be a potential anti-cancer agent against drug-resistant myelogenous leukemia.
Collapse
Affiliation(s)
- Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, People's Republic of China.
| | - Xin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Mingyu Guan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Chunyu Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Qinghua Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Nan Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Yueting Zou
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Qingqing Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Jing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Jingying Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, People's Republic of China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, People's Republic of China.
| |
Collapse
|
22
|
Gu X, Guan M, Jiang C, Song Q, Li X, Sun N, Chen J, Qiu J. Assessment of Thiosemicarbazone-Containing Compounds as Potential Antileukemia Agents against P-gp Overexpressing Drug Resistant K562/A02 Cells. Chem Biodivers 2020; 18:e2000775. [PMID: 33314614 DOI: 10.1002/cbdv.202000775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/11/2020] [Indexed: 11/06/2022]
Abstract
P-Glycoprotein (P-gp) overexpression is considered to be the leading cause of multidrug resistance (MDR) and failure of chemotherapy for leukemia. In this study, seventeen thiosemicarbazone-containing compounds were prepared and evaluated as potential antileukemia agents against drug resistant K562/A02 cell overexpressing P-gp. Among them, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide could significantly inhibit K562/A02 cells proliferation with an IC50 value of 0.96 μM. Interestingly, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide could dose-dependently increase ROS levels of drug resistant K562/A02 cells, thus displaying a potential collateral sensitivity (CS)-inducing effect and selectively killing K562/A02 cells. Furthermore, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide possessed potent inhibitory effect on HDAC1 and HDAC6, and could promote K562/A02 cells apoptosis via dose-dependently increasing Bax expression, reducing Bcl-2 protein level, and inducing the cleavage of PARP and caspase3. These present findings suggest that N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide might be a promising lead to discover novel antileukemia agents against P-gp overexpressing leukemic cells.
Collapse
Affiliation(s)
- Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Mingyu Guan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Chunyu Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Qinghua Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Xin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Nan Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Jing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| | - Jingying Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, P. R. China
| |
Collapse
|
23
|
Yang L, Jiang Y, Zhang Z, Hou J, Tian S, Liu Y. The anti-diabetic activity of licorice, a widely used Chinese herb. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113216. [PMID: 32763420 DOI: 10.1016/j.jep.2020.113216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A great deal of valuable experience has been accumulated in the traditional Chinese medicine (TCM) system for the treatment of "Xiaoke" disease which is known as diabetes mellitus now. As the most-commonly used Chinese herb, licorice has been used in TCM for more than two thousand years. It is often used in combination with other herbs to treat metabolic disorders, especially diabetes mellitus. AIM OF THE STUDY To summarize the characteristics, mechanisms, and clinical use of licorice and its active components for treating diabetes mellitus. METHODS PubMed, Web of Science, Research Gate, Science Direct, Google Scholar, and Academic Journals were used as information sources by the inclusion of the search terms 'diabetes', 'licorice', 'licorice extracts', 'flavonoids', 'triterpenoids', and their combinations, mainly from 2005 to 2019. RESULTS Licorice extracts, five flavonoids and three triterpenoids isolated from licorice possess great antidiabetic activities in vivo and in vitro. This was done by several mechanisms such as increasing the appetency and sensitivity of insulin receptor site to insulin, enhancing the use of glucose in different tissues and organs, clearing away the free radicals and resist peroxidation, correcting the metabolic disorder of lipid and protein, and improving microcirculation in the body. Multiple signaling pathways, including the PI3K/Akt, AMPK, AGE-RAGE, MAPK, NF-кB, and NLRP3 signaling pathways, are targets of the licorice compounds. CONCLUSION Licorice and its metabolites have a great therapeutic potential for the treatment of diabetes mellitus. However, a better understanding of their pharmacological mechanisms is needed for evaluating its efficacy and safety.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, PA, 15261, USA
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
24
|
Yuan XL, Li XQ, Xu K, Hou XD, Zhang ZF, Xue L, Liu XM, Zhang P. Transcriptome Profiling and Cytological Assessments for Identifying Regulatory Pathways Associated With Diorcinol N-Induced Autophagy in A3 Cells. Front Pharmacol 2020; 11:570450. [PMID: 33178020 PMCID: PMC7593552 DOI: 10.3389/fphar.2020.570450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Fungal secondary metabolites serve as a rich resource for exploring lead compounds with medicinal importance. Diorcinol N (DN), a fungal secondary metabolite isolated from an endophytic fungus, Arthrinium arundinis, exhibits robust anticancer activity. However, the anticancer mechanism of DN remains unclear. In this study, we examined the growth-inhibitory effect of DN on different human cancer cell lines. We found that DN decreased the viability of A3 T-cell leukemia cells in a time- and concentration-dependent manner. Transcriptome analysis indicated that DN modulated the transcriptome of A3 cells. In total, 9,340 differentially expressed genes were found, among which 4,378 downregulated genes and 4,962 upregulated genes were mainly involved in autophagy, cell cycle, and DNA replication. Furthermore, we demonstrated that DN induced autophagy, cell cycle arrest in the G1/S phase, and downregulated the expression of autophagy- and cell cycle-related genes in A3 cells. By labeling A3 cells with acridine orange/ethidium bromide, Hoechst 33,258, and monodansylcadaverine and via transmission electron microscopy, we found that DN increased plasma membrane permeability, structural disorganization, vacuolation, and autophagosome formation. Our study provides evidence for the mechanism of anticancer activity of DN in T-cell leukemia (A3) cells and demonstrates the promise of DN as a lead or even candidate molecule for the treatment of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Xiao-Long Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiu-Qi Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kuo Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao-Dong Hou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lin Xue
- Wannan Tobacco Group Company Limited, Xuancheng, China
| | - Xin-Min Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Peng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
25
|
Yao R, Xie Y, Sun X, Zhang M, Zhou J, Liu L, Gao J, Xu K. Identification of a Novel c-Myc Inhibitor 7594-0037 by Structure-Based Virtual Screening and Investigation of Its Anti-Cancer Effect on Multiple Myeloma. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3983-3993. [PMID: 33061303 PMCID: PMC7532311 DOI: 10.2147/dddt.s264077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/07/2020] [Indexed: 01/12/2023]
Abstract
Introduction Multiple myeloma (MM) is an extremely malignant and incurable hematological cancer. Increased expression of the c-Myc oncoprotein is closely associated with shorter overall survival of MM patients, implying that c-Myc is a potential therapeutic target. Main Methods We identified a potential c-Myc inhibitor 7594-0037 by structure-based virtual screening from the ChemDiv database. CCK8 assay and flow cytometry were used to detect MM cell viability, cell cycle and apoptosis. Q-PCR and Western blot were used to measure corresponding mRNA and protein expression levels. Protein stability assay measured the stability of c-Myc. Results Compound 7594-0037 exhibited stronger anti-proliferative activity against MM cells, and induced MM cell cycle G2 phase arrest and apoptosis. More importantly, compound 7594-0037 overcame myeloma resistance to bortezomib and exhibited a synergistic effect with bortezomib, resulting in increased MM cell death. The mechanism consists of compound 7594-0037 facilitating c-Myc protein degradation via decreasing the c-Myc S62 phosphorylation levels mediated by PIM1 kinase. Molecular dynamics simulation with the c-Myc/7594-0037 complex showed that compound 7594-0037 bound tightly to the N-terminus of c-Myc, and blocked the binding interaction of the two termini of c-Myc, which resulted in c-Myc entering into an unstable state. Conclusion Overall, our study provides preliminary data for compound 7594-0037, which can be used as a novel c-Myc inhibitor and is a potential candidate therapeutic drug for multiple myeloma.
Collapse
Affiliation(s)
- Ruosi Yao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yu Xie
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Xiaoyang Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Menghui Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Jian Zhou
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Linlin Liu
- College of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| |
Collapse
|
26
|
Ma W, Zhang Q, Li X, Ma Y, Liu Y, Hu S, Zhou Z, Zhang R, Du K, Syed A, Yao X, Chen P. IPM712, a vanillin derivative as potential antitumor agents, displays better antitumor activity in colorectal cancers cell lines. Eur J Pharm Sci 2020; 152:105464. [PMID: 32668313 DOI: 10.1016/j.ejps.2020.105464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC), a major health threat in the world, ranks third in incidence and second in mortality among cancers. Chemotherapy, an important treatment for colorectal cancer, have be limited in the clinic due to the resistance and side effect. Studies have shown that PI3K-related regulatory pathways play a colossal role in colorectal cancer. Therefore, it is a good strategy to find a new drug which works by affecting the PI3K signaling pathway. In this paper, we obtained a new vanillin derivative (IPM712) by modifying the structure of IPM711 and tested its anticancer activity in vitro and toxicity in vivo. Results showed that IPM712 has a better anticancer activity than 5-Fu in HCT116 and SW480 cell lines. Furthermore, IPM712 can inhibit cell proliferation, migration and induce the apoptosis by affecting PI3K-related protein expression. Acute toxicity experiments show that IPM712 has no significant toxicity at therapeutic concentrations. Based on these results, IPM712 is a promising anticancer drug candidate for human colorectal cancer therapy.
Collapse
Affiliation(s)
- Wantong Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qianqian Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xue Li
- College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, PR China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Yuheng Liu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Shujian Hu
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Rentao Zhang
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangjia Du
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ashikujaman Syed
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaojun Yao
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
27
|
Licoricidin improves neurological dysfunction after traumatic brain injury in mice via regulating FoxO3/Wnt/β-catenin pathway. J Nat Med 2020; 74:767-776. [PMID: 32656716 DOI: 10.1007/s11418-020-01434-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability around the world with no effective treatments currently. The present study was aimed to investigate the neuroprotective effect of licoricidin, one of the major components of licorice extract, on TBI mice and further explore the underlying mechanism. Male C57BL/6 mice were modeled by a modified weight-drop method to mimic TBI. All animals received treatment 30 min after TBI. The modified Neurological Severity Score (NSS) tests were performed at 2 h and 1-3 days after TBI. The brain edema was analyzed by dry-wet weight method. The malonaldehyde (MDA) levels and the activities of glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and catalase (CAT) were determined by Elisa. Apoptotic neurons were detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) immunofluorescence and the expression of apoptotic proteins were measured by western blot. Activation of the FoxO3/Wnt/β-catenin was evaluated by western blot. The results showed that treatment with licoricidin could significantly decline the NSS scores and reduce the brain edema, hence promote the recovery of neurological function in TBI mice. It also elevated the phosphorylation of p66shc, brought down the levels of MDA, as well as antagonized the decrement in activities of GSH-PX, SOD and CAT induced by TBI. Moreover, licoricidin decreased the TUNEL positive neurons, downregulated the expression of Cyt-C, cleaved-Caspase-3, cleaved-Caspase-9 and Bax and upregulated the Bcl-2, attenuated cellular apoptosis. Licoricidin decreased the expression of FoxO3 and increased the Wnt/β-catenin in TBI mice. In conclusion, Licoricidin exerted neuroprotective effect on TBI model and the effect was possibly due to its antioxidative effect and antiapoptotic effect via regulating the FoxO3/Wnt/β-catenin pathway. Licoricidin may be a candidate drug for TBI therapy.
Collapse
|
28
|
Qiu J, Zhou Q, Zhang Y, Guan M, Li X, Zou Y, Huang X, Zhao Y, Chen W, Gu X. Discovery of novel quinazolinone derivatives as potential anti-HBV and anti-HCC agents. Eur J Med Chem 2020; 205:112581. [PMID: 32791397 DOI: 10.1016/j.ejmech.2020.112581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
As a continuation of earlier works, a series of novel quinazolinone derivatives (5a-s) were synthesized and evaluated for their in vitro anti-HBV and anti-hepatocellular carcinoma cell (HCC) activities. Among them, compounds 5j and 5k exhibited most potent inhibitory effect on HBV DNA replication in both drug sensitive and resistant (lamivudine and entecavir) HBV strains. Interestingly, besides the anti-HBV effect, compound 5k could significantly inhibit the proliferation of HepG2, HUH7 and SK- cells, with IC50 values of 5.44, 6.42 and 6.75 μM, respectively, indicating its potential anti-HCC activity. Notably, the in vitro anti-HCC activity of 5k were more potent than that of positive control 5-fluorouracil and sorafenib. Further studies revealed that compound 5k could induce HepG2 cells apoptosis by dose-dependently upregulating Bad and Bax expression and decreasing Bcl-2 and Bcl-xl protein level. Considering the potent anti-HBV and anti-HCC effect, compound 5k might be a promising lead to develop novel therapeutic agents towards HBV infection and HBV-induced HCC.
Collapse
Affiliation(s)
- Jingying Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Qingqing Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yinpeng Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Mingyu Guan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yueting Zou
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xuan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yali Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Wang Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
29
|
Hou P, Shi P, Jiang T, Yin H, Chu S, Shi M, Bai J, Song J. DKC1 enhances angiogenesis by promoting HIF-1α transcription and facilitates metastasis in colorectal cancer. Br J Cancer 2020; 122:668-679. [PMID: 31857720 PMCID: PMC7054532 DOI: 10.1038/s41416-019-0695-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita 1 (DKC1) is dysregulated in several cancers. However, the expression and function of DKC1 in colorectal cancer (CRC) is rarely reported. METHODS Tissue microarrays (TAMs) including 411 cases of CRC tissues and corresponding paracancerous tissues were used to examine the DKC1 expression. The correlations between the DKC1 expression and clinicopathological or survival characters were further analysed. The functions and molecular mechanism of DKC1 in CRC were investigated through a series of in vitro and in vivo experiments. RESULTS The result showed that DKC1 expression was increased in CRC tissues. Increased DKC1 expression was associated with high grade of TNM stage, additional lymph node metastasis, and poor prognosis of patients with CRC. Multivariate COX analysis indicated that DKC1 can act as an independent prognostic factor for patients with CRC. DKC1 also facilitated the CRC angiogenesis and metastasis by increasing HIF-1α and VEGF expression levels. Chromatin immunoprecipitation assay demonstrated that DKC1 facilitated HIF-1α expression by regulating HIF-1α promoter activity. CONCLUSION DKC1 appears to regulate CRC angiogenesis and metastasis through directly activating HIF-1α transcription. DKC1 can serve as an accurate indicator in predicting the prognosis of patients with CRC and act as a potential therapeutic target for CRC.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Line, Tumor
- Cell Movement/physiology
- Colorectal Neoplasms/blood supply
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Female
- HCT116 Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Immunohistochemistry
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Prognosis
- Promoter Regions, Genetic
- Tissue Array Analysis
- Transcription, Genetic
Collapse
Affiliation(s)
- Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peicong Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hang Yin
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jun Song
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
30
|
Zhang Q, Hong Z, Zhu J, Zeng C, Tang Z, Wang W, Huang H. miR-4999-5p Predicts Colorectal Cancer Survival Outcome and Reprograms Glucose Metabolism by Targeting PRKAA2. Onco Targets Ther 2020; 13:1199-1210. [PMID: 32103988 PMCID: PMC7024870 DOI: 10.2147/ott.s234666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is the third most common cancer, and the second leading cause of cancer death worldwide. Dysregulation of microRNAs has been shown to modulate glucose metabolic reprogramming in CRC. However, the functional role of miR-4999-5p in the CRC glucose metabolic shift has not been characterized. Patients and Methods The levels of miR-4999-5p and PRKAA2 were evaluated by RT-qPCR. Univariate and multivariate survival analyses were conducted to evaluate the prognostic value of miR-4999-5p. Cell proliferation was assessed using the CCK-8 and colony formation assays. Extracellular acidification rate, glucose uptake, cellular glucose-6-phosphate level, and lactate production were evaluated to assess the effects of miR-4999-5p on CRC glycolysis. Dual-luciferase reporter assay was conducted to investigate the direct interaction between miR-4999-5p and PRKAA2. Mouse xenograft models were established to assess the functions of miR-4999-5p in vivo. Results miR-4999-5p was highly expressed in CRC tissues and cell lines. In addition, miR-4999-5p was associated with tumor differentiation and TNM stage, and elevated expression of miR-4999-5p was an independent predictor of poorer overall survival. Furthermore, miR-4999-5p promoted cell proliferation and glycolysis in CRC. miR-4999-5p targeted PRKAA2 to exert its tumor-promoting functions, and PRKAA2 knockdown rescued decreased cell proliferation and glycolysis in miR-4999-5p-silenced CRC cells. In vivo experiments showed that miR-4999-5p promoted CRC growth. Conclusion miR-4999-5p facilitated cell growth and glucose metabolic reprogramming through direct targeting of PRKAA2. Our results showed that miR-4999-5p may be a novel prognostic marker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Qiwei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, People's Republic of China
| | - Zhi Hong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, People's Republic of China
| | - Jieyao Zhu
- Department of General Surgery, Lujiang County People's Hospital, Hefei 231500, Anhui, People's Republic of China
| | - Chao Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, People's Republic of China
| | - Zhen Tang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, People's Republic of China
| | - Weiqiang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, People's Republic of China
| | - He Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, People's Republic of China
| |
Collapse
|
31
|
Wang C, Chen L, Xu C, Shi J, Chen S, Tan M, Chen J, Zou L, Chen C, Liu Z, Liu X. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:17-45. [PMID: 31931596 DOI: 10.1142/s0192415x20500020] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Licorice is extensively applied in food as well as herbal medicine across the world, possessing a substantial share in the global market. It has made great progress in chemical and pharmacological research in recent years. Currently, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. were officially used as Gan-Cao according to the Chinese Pharmacopoeia. Accumulating evidence demonstrated three varieties of licorice have their own special compounds except for two quality markers set by Pharmacopoeia, providing great possibility for better understanding their characteristics, evaluating quality of each species and studying biosynthesis mechanisms of species-specific compounds. As a special "guide drug" in clinic, licorice plays an important role in Chinese herbal formulas. The interaction between licorice with other ingredients and their metabolism in vivo should also be taken into consideration. In addition, draft genome annotation, and success of the final step of glycyrrhizin biosynthesis have paved the way for biosynthesis of other active constituents in licorice, a promising beginning of solving source shortage. Accordingly, we comprehensively explored the nearly 400 chemical compounds found in the three varieties of licorice so far, systematically excavated various pharmacological activities, including metabolism via CYP450 system in vivo, and introduced the complete biosynthesis pathway of glycyrrhizin in licorice. The review will facilitate the further research toward this herbal medicine.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chaoqie Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Cuihua Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Collaborative Innovation Center of Chinese, Medicinal Resources Industrialization, Nanjing 210023, P. R. China.,National and Local Collaborative Engineering, Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
32
|
An L, Wang C, Han L, Liu J, Huang T, Zheng Y, Yan C, Sun J. Structural Design, Synthesis, and Preliminary Biological Evaluation of Novel Dihomooxacalix[4]arene-Based Anti-tumor Agents. Front Chem 2019; 7:856. [PMID: 31921778 PMCID: PMC6923765 DOI: 10.3389/fchem.2019.00856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Calixarene and its derivatives have extensively served as promising anti-tumor agents. Previously, we have synthesized a series of calix[n]arene polyhydroxyamine derivatives (n = 4, 6, 8) and found that 5,11,17,23-tetra-tert-butyl-25,27-bis [N-(2-hydroxyethyl)aminocarbonylmethoxyl] calix[4]arene (CLX-4) displayed significant effect toward SKOV3, A549, SW1990, HeLa, Raji, and MDA-MB-231 cancer cells. In the present work, we find a replacement of calix[4]arene bone and synthesized 19 novel structurally related dihomooxacalix[4]arene amide derivatives 4A-4S to optimize its efficacy. Their abilities to induce cytotoxicity in human lung carcinoma (A549) cells, breast cancer (MCF-7) cells, cervical cancer (HeLa) cells, hepatocellular carcinoma (HepG2) cells, as well as human umbilical vein endothelial (HUVEC) cells are evaluated in vitro. Encouraging results show that the majority of dihomooxacalix[4]arene amide derivatives are effective at inhibiting A549 cell proliferation with the corresponding IC50 ranging from 0.6 to 20.1 μM. In particular, compounds 4A, 4D, and 4L explore markedly increased potency (IC50 value is 2.0 ± 0.5 μM, 0.7 ± 0.1 μM, and 1.7 ± 0.4 μM) over the cytotoxicity profiles of control CLX-4, whose IC50 value is 2.8 ± 0.3 μM. More interestingly, 4A also demonstrates the perfect cytotoxic effect against MCF-7, HeLa, and HepG2 cells with IC50 values of 1.0 ± 0.1 μM, 0.8 ± 0.2 μM, and 2.7 ± 0.4 μM. In addition, the results proved that our synthesized 4A has much lower toxicity (41%) to normal cells at a concentration of 10 μM than that of 4D (90%). To reveal the mechanisms, the key indicators including the cell cycle and apoptosis are observed by the flow cytometry analysis in MCF-7 cells. The results demonstrate that both 4A and 4D can induce the MCF-7 cell cycle arrest in G0/G1 phase and cell apoptosis. Therefore, our finding proves that the dihomooxacalix[4]arene amide derivatives are convenient platforms for potential supramolecular anticancer agents.
Collapse
Affiliation(s)
- Lin An
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chan Wang
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lili Han
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jiadong Liu
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Tonghui Huang
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Youguang Zheng
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chaoguo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Highly efficient and selective extraction of minor bioactive natural products using pure ionic liquids: Application to prenylated flavonoids in licorice. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Shan L, Zhang G, Guo Z, Shi X. In vitro investigation of permeability and metabolism of licoricidin. Life Sci 2019; 234:116770. [DOI: 10.1016/j.lfs.2019.116770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/04/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023]
|
35
|
Li Q, Zhou X, Fang Z, Zhou H. Knockdown of KLK12 inhibits viability and induces apoptosis in human colorectal cancer HT-29 cell line. Int J Mol Med 2019; 44:1667-1676. [PMID: 31485623 PMCID: PMC6777684 DOI: 10.3892/ijmm.2019.4327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/26/2019] [Indexed: 01/10/2023] Open
Abstract
Kallikrein-related peptidase 12 (KLK12) is overexpressed in cancer tissues including gastric, breast and prostate cancer. However, the role of KLK12 in colorectal cancer is not fully understood. In the present study, the level of KLK12 was determined by performing reverse transcription-polymerase chain reaction (RT-qPCR) in colorectal cancer tissues and cell lines. Lipofectamine® 2000 was used to transfect HT-29 cells to overexpress and knockdown KLK12. Cell viability, migration, invasion and apoptosis were detected by MTT, wound healing, Transwell and flow cytometry assays, respectively. The mRNA and protein expression levels of EMT-associated proteins, apoptosis-associated proteins, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) and phosphorylated mammalian target of rapamycin (p-mTOR) were determined by RT-qPCR and western blot analysis. It was identified that the KLK12 mRNA levels were increased significantly in colorectal cancer tissues and cell lines. KLK12 small interfering RNA inhibited cell viability, migration and invasion. Furthermore, epithelial-mesenchymal transition (EMT)-associated proteins were altered by siKLK12. Cell apoptosis was induced by KLK12 downregulation, which was demonstrated by the changes in apoptosis-associated proteins; however, KLK12 overexpression produced the opposite effect. SiKLK12 enhanced the expression of p-AMPK and suppressed the expression of p-mTOR, while KLK12 overexpression had the opposite effect. Promotion of KLK12 overexpression-induced cell viability was reversed by 5-aminoimidazole-4-carboxamide ribonucleotide, an activator of the AMPK signaling pathway, and rapamycin, a specific inhibitor of the mTOR signaling pathway. Taken together, the results of the present study indicated that KLK12 was overexpressed in colorectal cancer and may regulate cell behavior, potentially via the AMPK and mTOR pathways.
Collapse
Affiliation(s)
- Qianyuan Li
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiukou Zhou
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhengyu Fang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Huamiao Zhou
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
36
|
Gioti K, Papachristodoulou A, Benaki D, Beloukas A, Vontzalidou A, Aligiannis N, Skaltsounis AL, Mikros E, Tenta R. Glycyrrhiza glabra-Enhanced Extract and Adriamycin Antiproliferative Effect on PC-3 Prostate Cancer Cells. Nutr Cancer 2019; 72:320-332. [PMID: 31274029 DOI: 10.1080/01635581.2019.1632357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men worldwide, which is almost incurable, once it progresses into the metastatic stage. Adriamycin (ADR) is a known chemotherapeutic agent that causes severe side effects. In recent years, studies in natural plant products have revealed their anticancer activities. In particular, Glycyrrhiza glabra enhanced extract (GGE), commonly known as licorice, has been reported to exert antiproliferative properties against cancer cells. In this study, the cytotoxic potential of GGE was assessed in PC-3 cells, when it is administrated alone or in combination with Adriamycin. PC-3 cells were treated with GGE and/or ADR, and the inhibition of cell proliferation was evaluated by the MTT assay. Cell cycle alterations and apoptosis rate were measured through flow cytometry. Expression levels of autophagy-related genes were evaluated with specific ELISA kits, Western blotting, and real-time PCR, while NMR spectrometry was used to identify the implication of specific metabolites. Our results demonstrated that GGE alone or in co-treatment with ADR shows antiproliferative properties against PC-3 cells, which are mediated by both apoptosis and autophagy mechanisms.
Collapse
Affiliation(s)
- Katerina Gioti
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Anastasia Papachristodoulou
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.,Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Zografou, Greece
| | - Dimitra Benaki
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Zografou, Greece
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, Athens, Greece.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Argyro Vontzalidou
- Faculty of Pharmacy, Department of Pharmacognosy and Natural Products Chemistry, University of Athens, Zografou, Greece
| | - Nektarios Aligiannis
- Faculty of Pharmacy, Department of Pharmacognosy and Natural Products Chemistry, University of Athens, Zografou, Greece
| | - Alexios-Leandros Skaltsounis
- Faculty of Pharmacy, Department of Pharmacognosy and Natural Products Chemistry, University of Athens, Zografou, Greece
| | - Emmanuel Mikros
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Zografou, Greece
| | - Roxane Tenta
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| |
Collapse
|
37
|
Cho PJ, Kim JH, Lee HS, Kim JA, Lee S. Identification of specific UGT1A9-mediated glucuronidation of licoricidin in human liver microsomes. Biopharm Drug Dispos 2019; 40:94-98. [DOI: 10.1002/bdd.2169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/29/2018] [Accepted: 12/16/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Pil Joung Cho
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu 41566 Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy; Yeungnam University; Gyeongsan 38541 Republic of Korea
| | - Hye Suk Lee
- BK21 Plus Team for Creative Leader Program for Pharmacomics-based Future, Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy; The Catholic University of Korea; Bucheon 14662 Republic of Korea
| | - Jeong Ah Kim
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu 41566 Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu 41566 Republic of Korea
| |
Collapse
|
38
|
Yang GJ, Ko CN, Zhong HJ, Leung CH, Ma DL. Structure-Based Discovery of a Selective KDM5A Inhibitor that Exhibits Anti-Cancer Activity via Inducing Cell Cycle Arrest and Senescence in Breast Cancer Cell Lines. Cancers (Basel) 2019; 11:E92. [PMID: 30650517 PMCID: PMC6360022 DOI: 10.3390/cancers11010092] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the one of the most frequent causes of female cancer mortality. KDM5A, a histone demethylase, can increase the proliferation, metastasis, and drug resistance of cancers, including breast cancer, and is thus an important therapeutic target. In the present work, we performed hierarchical virtual screening towards the KDM5A catalytic pocket from a chemical library containing 90,000 compounds. Using multiple biochemical methods, the cyclopenta[c]chromen derivative 1 was identified as the top candidate for KDM5A demethylase inhibitory activity. Compared with the well-known KDM5 inhibitor CPI-455 (18), 1 exhibited higher potency against KDM5A and much higher selectivity for KDM5A over both KDM4A and other KDM5 family members (KDM5B and KDM5C). Additionally, compound 1 repressed the proliferation of various KDM5A-overexpressing breast cancer cell lines. Mechanistically, 1 promoted accumulation of p16 and p27 by blocking KDM5A-mediated H3K4me3 demethylation, leading to cell cycle arrest and senescence. To date, compound 1 is the first cyclopenta[c]chromen-based KDM5A inhibitor reported, and may serve as a novel motif for developing more selective and efficacious pharmacological molecules targeting KDM5A. In addition, our research provides a possible anti-cancer mechanism of KDM5A inhibitors and highlights the feasibility and significance of KDM5A as a therapeutic target for KDM5A-overexpressing breast cancer.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| |
Collapse
|
39
|
Zhang X, Zhao S, Song X, Jia J, Zhang Z, Zhou H, Fu H, Cui H, Hu S, Fang M, Liu X, Bian Y. Inhibition effect of glycyrrhiza polysaccharide (GCP) on tumor growth through regulation of the gut microbiota composition. J Pharmacol Sci 2018; 137:324-332. [PMID: 30150145 DOI: 10.1016/j.jphs.2018.03.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
Glycyrrhiza Uralensis Polysaccharide (GCP), as a macromolecular polysaccharide extracted from the Traditional Chinese Medicine (TCM) - Licorice has been proved to inhibit tumor growth in vitro and in vivo; however, the specific anti-tumor mechanism of GCP needs to be further investigated. In this study, we explore the anti-tumor mechanism of GCP from the angle of gut microbiota. Colon carcinoma cells (CT-26) were used to set up a tumor-bearing mouse model. After 14 days of GCP treatment, the weights of tumors were significantly reduced. In addition, HE staining of tissue sections reflected that GCP could effectively inhibit tumor metastasis. 16SrRNA high-throughput sequencing of fecal samples showed a significant change between the model group and GCP group in the composition of gut microbiota. Subsequently, gut microbiota depletion and fecal transplantation experiments further confirmed the relationship between the anti-tumor effects of GCP and gut microbiota. Following depletion of gut microbiota, GCP cannot inhibit tumor growth. Fecal transplantation experiments found that transplanting the feces of GCP-treated mice, to a certain extent, could inhibit tumor growth and metastasis. These results indicate that Glycyrrhiza Polysaccharides exert anti-tumor effects by affecting gut microbiota composition.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Shuwu Zhao
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Xinbo Song
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Jianwei Jia
- The Second People's Hospital of Tianjin, 7 Sudi Sorthen Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Zhaiyi Zhang
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Huifang Zhou
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Hui Fu
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Huantian Cui
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Shuo Hu
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Minjie Fang
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Xiaomin Liu
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Yuhong Bian
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Nankai District, Tianjin, 300193, People's Republic of China.
| |
Collapse
|
40
|
Total Flavonoids from Radix Glycyrrhiza Exert Anti-Inflammatory and Antitumorigenic Effects by Inactivating iNOS Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6714282. [PMID: 29951107 PMCID: PMC5987298 DOI: 10.1155/2018/6714282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022]
Abstract
Inducible nitric oxide synthase (iNOS) plays an important role in inflammation, which has also been considered as a major driver of breast cancer disease progression. Radix Glycyrrhiza (RG) has been broadly used for its anti-inflammatory and antitumorigenic effects. However, the mechanisms of regulation of iNOS in inflammation and cancer have not been fully explored. Total flavonoids isolated from RG (TFRG) exhibited anti-inflammatory activity through the regulation of ERK/NF-κB/miR-155 signaling and suppression of iNOS expression in LPS/IFN-γ stimulated RAW264.7 macrophages without cytotoxicity. TFRG also markedly reduced tumor mass of breast cancer cell MDA-MB-231 xenografts with suppression of iNOS expression, formation of 3-nitrotyrosine (3-NT), and inactivation of protumorigenic JAK2/STAT3 signaling pathway. These results suggested that TFRG limited the development of breast cancer and inflammation due to its property of iNOS inhibition.
Collapse
|
41
|
Wang Y, Wang S, Liu J, Lu Y, Li D. Licoricidin enhances gemcitabine-induced cytotoxicity in osteosarcoma cells by suppressing the Akt and NF-κB signal pathways. Chem Biol Interact 2018; 290:44-51. [PMID: 29782821 DOI: 10.1016/j.cbi.2018.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/13/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
Osteosarcoma (OS) is the most common bone malignancy in children and adolescents. Combined treatments of anti-cancer drugs can remarkably improve chemotherapeutic outcomes. Gemcitabine and licoricidin both have potential anti-tumor activity in several cancers. However, the combined therapeutic efficiency of gemcitabine and licoricidin for OS has not been explored. Here, we found that licoricidin or gemcitabine inhibited OS cell viability in a dose-dependent manner. Cotreatment with licoricidin and gemcitabine enhanced gemcitabine-induced cytotoxicity in OS cells. Licoricidin suppressed activation of the Akt and nuclear factor-kappa B (NF-κB) pathways. Gemcitabine had no effect on Akt signal, but facilitated the activation of NF-κB signal in OS cells. Moreover, combined treatment of licoricidin and gemcitabine markedly curbed the activation of Akt and NF-κB pathways in OS cells. Inhibition of the Akt and NF-κB pathways enhanced gemcitabine-induced cytotoxicity in OS cells. In vivo assay further manifested that licoricidin enhanced gemcitabine-induced cytotoxicity in tumor xenograft models of OS via inactivation of the Akt and NF-κB pathways. In conclusion, licoricidin enhanced gemcitabine-induced cytotoxicity in OS cells by inactivation of the Akt and NF-κB pathways in vitro and in vivo.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Shengli Wang
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng 475001, China.
| | - Jianhua Liu
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Yanxiao Lu
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Donghui Li
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| |
Collapse
|
42
|
Deng B, Sun W. Herbal medicine for hand-foot syndrome induced by fluoropyrimidines: A systematic review and meta-analysis. Phytother Res 2018; 32:1211-1228. [PMID: 29682836 DOI: 10.1002/ptr.6068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
The aims of this study were to evaluate the efficacy of herbal medicine for the prevention and management of hand-foot syndrome (HFS) induced by fluoropyrimidines and to identify herbs associated with HFS alleviation for further research. The PubMed, Cochrane, Springer, China National Knowledge Infrastructure, and Wanfang databases were searched up to May 2017 for randomized controlled trials (RCTs) that evaluated herbal medicine for relieving HFS in patients undergoing fluoropyrimidine-based chemotherapy. Study evaluation and synthesis methods were in accordance with the Cochrane Handbook, and data were analyzed using RevMan 5.3. In total, 35 RCTs (2,668 participants) were included. Meta-analysis showed that the addition of herbal medicine significantly reduced the incidences of all-grade and high-grade HFS. The total effective rate and complete remission rate of HFS patients increased significantly with herbal medicine arm. Further sensitivity analysis identified Paeoniae Radix Alba, Carthami Flos, Cinnamomi Ramulus, and Glycyrrhizae Radix et Rhizoma as being consistently associated with significant reductions in HFS incidence without important heterogeneity. However, the lack of blinding in most studies may have led to overestimation of these effects. More high-quality RCTs and experimental research are needed to confirm and investigate the efficacy of the herbs identified in this study.
Collapse
Affiliation(s)
- Bo Deng
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| |
Collapse
|
43
|
Zhao Y, Lv B, Feng X, Li C. Perspective on Biotransformation and De Novo Biosynthesis of Licorice Constituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11147-11156. [PMID: 29179542 DOI: 10.1021/acs.jafc.7b04470] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Licorice, an important herbal medicine, is derived from the dried roots and rhizomes of Glycyrrhiza genus plants. It has been widely used in food, pharmaceutical, tobacco, and cosmetics industries with high economic value. However, overexploitation of licorice resources has severely destroyed the local ecology. Therefore, producing bioactive compounds of licorice through the biotransformation and bioengineering methods is a hot spot in recent years. In this perspective, we comprehensively summarize the biotransformation of licorice constituents into high-value-added derivatives by biocatalysts. Furthermore, successful cases and the strategies for de novo biosynthesizing compounds of licorice in microbes have been summarized. This paper will provide new insights for the further research of licorice.
Collapse
Affiliation(s)
- Yujia Zhao
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Bo Lv
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Xudong Feng
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Chun Li
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| |
Collapse
|
44
|
Zhang B, Zhang S, Zhu L, Chen X, Zhao Y, Chao L, Zhou J, Wang X, Zhang X, Ma N. Arginine methyltransferase inhibitor 1 inhibits gastric cancer by downregulating eIF4E and targeting PRMT5. Toxicol Appl Pharmacol 2017; 336:1-7. [PMID: 28987382 DOI: 10.1016/j.taap.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
Arginine methylation is carried out by protein arginine methyltransferase (PRMTs) family. Arginine methyltransferase inhibitor 1 (AMI-1) is mainly used to inhibit type I PRMT activity in vitro. However, the effects of AMI-1 on type II PRMT5 activity and gastric cancer (GC) remain unclear. In this study, we provided the first evidence that AMI-1 significantly inhibited GC cell proliferation and migration while induced GC cell apoptosis, and reduced the expression of PRMT5, eukaryotic translation initiation factor 4E (eIF4E), symmetric dimethylation of histone 3 (H3R8me2s) and histone 4 (H4R3me2s). In addition, AMI-1 inhibited tumor growth, downregulated eIF4E, H4R3me2s and H3R8me2s expression in mice xenografts model of GC. Collectively, our results suggest that AMI-1 inhibits GC by downregulating eIF4E and targeting type II PRMT5.
Collapse
Affiliation(s)
- Baolai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China.
| | - Su Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Lijuan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China; Department of Pharmacology, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Xue Chen
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Yunfeng Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Li Chao
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Juanping Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Xing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Xinyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| | - Nengqian Ma
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, PR China
| |
Collapse
|