1
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Zhang H, Cai W, Dong L, Yang Q, Li Q, Ran Q, Liu L, Wang Y, Li Y, Weng X, Zhu X, Chen Y. Jiaohong pills attenuate neuroinflammation and amyloid-β protein-induced cognitive deficits by modulating the mitogen-activated protein kinase/nuclear factor kappa-B pathway. Animal Model Exp Med 2024; 7:222-233. [PMID: 38177948 PMCID: PMC11228096 DOI: 10.1002/ame2.12369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Jiaohong pills (JHP) consist of Pericarpium Zanthoxyli (PZ) and Radix Rehmanniae, two herbs that have been extensively investigated over many years due to their potential protective effects against cognitive decline and memory impairment. However, the precise mechanisms underlying the beneficial effects remain elusive. Here, research studies were conducted to investigate and validate the therapeutic effects of JHP on Alzheimer's disease. METHODS BV-2 cell inflammation was induced by lipopolysaccharide. AD mice were administered amyloid-β (Aβ). Behavioral experiments were used to evaluate learning and memory ability. The levels of nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-10 (IL-10) were detected using enzyme-linked immunosorbent assay (ELISA). The protein expressions of inducible nitric oxide synthase (iNOS) and the phosphorylation level of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) were detected using Western blot. Nissl staining was used to detect neuronal degeneration. RESULTS The results demonstrated that an alcoholic extract of PZ significantly decreased the levels of NO, IL-1β, TNF-α, and iNOS; increased the expression level of IL-10; and significantly decreased the phosphorylation levels of MAPK and NF-κB. These inhibitory effects were further confirmed in the AD mouse model. Meanwhile, JHP improved learning and memory function in AD mice, reduced neuronal damage, and enriched the Nissl bodies in the hippocampus. Moreover, IL-1β and TNF-α in the cortex were significantly downregulated after JHP administration, whereas IL-10 showed increased expression. CONCLUSIONS It was found that JHP reduced neuroinflammatory response in AD mice by targeting the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingsen Ran
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Muramoto M, Mineoka N, Fukuda K, Kuriyama S, Masatani T, Fujita A. Coordinated regulation of phosphatidylinositol 4-phosphate and phosphatidylserine levels by Osh4p and Osh5p is an essential regulatory mechanism in autophagy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184308. [PMID: 38437942 DOI: 10.1016/j.bbamem.2024.184308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Macroautophagy (hereafter autophagy) is an intracellular degradative pathway in budding yeast cells. Certain lipid types play essential roles in autophagy; yet the precise mechanisms regulating lipid composition during autophagy remain unknown. Here, we explored the role of the Osh family proteins in the modulating lipid composition during autophagy in budding yeast. Our results showed that osh1-osh7∆ deletions lead to autophagic dysfunction, with impaired GFP-Atg8 processing and the absence of autophagosomes and autophagic bodies in the cytosol and vacuole, respectively. Freeze-fracture electron microscopy (EM) revealed elevated phosphatidylinositol 4-phosphate (PtdIns(4)P) levels in cytoplasmic and luminal leaflets of autophagic bodies and vacuolar membranes in all deletion mutants. Phosphatidylserine (PtdSer) levels were significantly decreased in the autophagic bodies and vacuolar membranes in osh4∆ and osh5∆ mutants, whereas no significant changes were observed in other osh deletion mutants. Furthermore, we identified defects in autophagic processes in the osh4∆ and osh5∆ mutants, including rare autophagosome formation in the osh5∆ mutant and accumulation of autophagic bodies in the vacuole in the osh4∆ mutant, even in the absence of the proteinase inhibitor PMSF. These findings suggest that Osh4p and Osh5p play crucial roles in the transport of PtdSer to autophagic bodies and autophagosome membranes, respectively. The precise control of lipid composition in the membranes of autophagosomes and autophagic bodies by Osh4p and Osh5p represents an important regulatory mechanism in autophagy.
Collapse
Affiliation(s)
- Moe Muramoto
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Nanaru Mineoka
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Kayoko Fukuda
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Sayuri Kuriyama
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Tatsunori Masatani
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akikazu Fujita
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| |
Collapse
|
4
|
Ramírez Sanchez FA, Madrigal Aguilar D, Tufiño C, Castro García S, Bobadilla Lugo RA. Preeclampsia pravastatin early VS late treatment: Effects on oxidative stress and vascular reactivity. Pregnancy Hypertens 2024; 35:96-102. [PMID: 38306739 DOI: 10.1016/j.preghy.2024.01.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
Early diagnosis and efficient treatment of preeclampsia remains a medical challenge and etiological factors converge in a deficient placentation that triggers oxidative stress. There is evidence that statins show antioxidant effects that can improve endothelial function without adverse perinatal effects. We aimed to compare early vs. late pravastatin treatment on the oxidative stress and cardiovascular features of an experimental model of preeclampsia. Female Wistar rats were randomly divided into preeclampsia phenotype rats (PEP) developed by sub renal aortic coarctation (SRAC) and healthy pregnant rats (C). Each group received pravastatin (5 mg/Kg) p.o. either for one week before and during the first week or during the last two weeks of gestation. Blood pressure was determined using the plethysmographic method. Phenylephrine (Phe)-induced contractility was evaluated in isolated thoracic and abdominal aortic rings with or without endothelium. Blood samples were obtained to determine anion superoxide concentration as indicator of NADPH activity. Two-way ANOVA and Bonferroni post hoc tests were used to define statistical significance. Early or late pravastatin treatment decreased hypertension of PEP animals but did not change BP of the healthy pregnant group. Thoracic and abdominal aorta from PEP rats showed increased contractility that was reverted by pravastatin early treatment in endothelium intact rings. Pravastatin did not significantly change contractility neither in the thoracic nor in the abdominal aorta segments from healthy pregnant control rats (C), and decrease anion superoxide concentration by NADPH activity. We conclude pravastatin can improve both blood pressure and endothelium-dependent Phe-induced contractility in an experimental model of preeclampsia by reducing oxidative stress.
Collapse
Affiliation(s)
| | | | - Cecilia Tufiño
- Escuela Superior de Medicina Instituto Politécnico Nacional, Mexico City, Mexico
| | - Seidy Castro García
- Escuela Superior de Medicina Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
5
|
Bobermin LD, Sesterheim P, da Costa DS, Rezena E, Schmitz I, da Silva A, de Moraes ADM, Souza DO, Wyse AT, Leipnitz G, Netto CA, Quincozes-Santos A, Gonçalves CA. Simvastatin Differentially Modulates Glial Functions in Cultured Cortical and Hypothalamic Astrocytes Derived from Interferon α/β Receptor Knockout mice. Neurochem Res 2024; 49:732-743. [PMID: 38063948 DOI: 10.1007/s11064-023-04073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 02/23/2024]
Abstract
Astrocytes have key regulatory roles in central nervous system (CNS), integrating metabolic, inflammatory and synaptic responses. In this regard, type I interferon (IFN) receptor signaling in astrocytes can regulate synaptic plasticity. Simvastatin is a cholesterol-lowering drug that has shown anti-inflammatory properties, but its effects on astrocytes, a main source of cholesterol for neurons, remain to be elucidated. Herein, we investigated the effects of simvastatin in inflammatory and functional parameters of primary cortical and hypothalamic astrocyte cultures obtained from IFNα/β receptor knockout (IFNα/βR-/-) mice. Overall, simvastatin decreased extracellular levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), which were related to a downregulation in gene expression in hypothalamic, but not in cortical astrocytes. Moreover, there was an increase in anti-inflammatory interleukin-10 (IL-10) in both structures. Effects of simvastatin in inflammatory signaling also involved a downregulation of cyclooxygenase 2 (COX-2) gene expression as well as an upregulation of nuclear factor κB subunit p65 (NFκB p65). The expression of cytoprotective genes sirtuin 1 (SIRT1) and nuclear factor erythroid derived 2 like 2 (Nrf2) was also increased by simvastatin. In addition, simvastatin increased glutamine synthetase (GS) activity and glutathione (GSH) levels only in cortical astrocytes. Our findings provide evidence that astrocytes from different regions are important cellular targets of simvastatin in the CNS, even in the absence of IFNα/βR, which was showed by the modulation of cytokine production and release, as well as the expression of cytoprotective genes and functional parameters.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil
| | - Daniele Schauren da Costa
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ester Rezena
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Daniel Moreira de Moraes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Ts Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Cheng Y, Jin W, Zheng L, Huang X, Luo S, Hong W, Liao J, Samruajbenjakun B, Leethanakul C. The role of autophagy in SIM mediated anti-inflammatory osteoclastogenesis through NLRP3 signaling pathway. Immun Inflamm Dis 2024; 12:e1145. [PMID: 38270300 PMCID: PMC10777745 DOI: 10.1002/iid3.1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Inflammatory bone resorption is a prominent risk factor for implantation failure. Simvastatin (SIM) has anti-inflammatory effects independent of cholesterol lowering and reduces osteoclastogenesis by decreasing both the number and activity of osteoclasts. However, the specific mechanism of inflammatory bone loss alleviation by SIM remains to be elucidated. We hypothesized that SIM relieves inflammatory bone loss by modulating autophagy and suppressing the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) signaling pathway. METHODS AND RESULTS RAW264.7 cells were stimulated by lipopolysaccharide (LPS) after being pretreated with various concentrations of SIM. Osteoclast (OC) differentiation, formation and activity were evaluated by tartrate-resistant acid phosphatase staining, F-actin ring staining and bone resorption pit assays, respectively. We observed autophagosomes by transmission electron microscopy. Then NLRP3 inhibitor MCC950 was used to further explore the corresponding molecular mechanism underlying anti-inflammatory bone resorption, the expression of autophagy-related proteins and NLRP3 signaling pathway factors in pre-OCs were evaluated by western blot analysis, and the expression of OC-specific molecules was analyzed using reverse transcription-quantitative polymerase chain reaction. The results showed that SIM decreased the expression of tumor necrosis factor-α, whereas increased Interleukin-10. In addition, SIM inhibited LPS-induced OC differentiation, formation, bone resorption activity, the level of autophagosomes, and OC-specific markers. Furthermore, SIM significantly suppressed autophagy by downregulating LC3II, Beclin1, ATG7, and NLRP3-related proteins expression while upregulating P62 under inflammatory conditions. CONCLUSIONS SIM may reduce autophagy secretion to attenuate LPS-induced osteoclastogenesis and the NLRP3 signaling pathway participates in this process, thus providing theoretical basis for the application of this drug in peri-implantitis.
Collapse
Affiliation(s)
- Yuting Cheng
- Faculty of DentistryPrince of Songkla UniversityHat YaiThailand
- School/Hospital of StomatologyGuizhou Medical UniversityGuiyangChina
| | - Wenjun Jin
- School/Hospital of StomatologyGuizhou Medical UniversityGuiyangChina
| | - Lin Zheng
- School/Hospital of StomatologyGuizhou Medical UniversityGuiyangChina
| | | | - Shanshan Luo
- School/Hospital of StomatologyGuizhou Medical UniversityGuiyangChina
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of EducationGuizhou Medical UniversityGuiyangChina
| | - Jian Liao
- School/Hospital of StomatologyGuizhou Medical UniversityGuiyangChina
| | | | | |
Collapse
|
7
|
Orbe EB, Benros ME. Immunological Biomarkers as Predictors of Treatment Response in Psychotic Disorders. J Pers Med 2023; 13:1382. [PMID: 37763150 PMCID: PMC10532612 DOI: 10.3390/jpm13091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Psychotic disorders, notably schizophrenia, impose a detrimental burden on both an individual and a societal level. The mechanisms leading to psychotic disorders are multifaceted, with genetics and environmental factors playing major roles. Increasing evidence additionally implicates neuro-inflammatory processes within at least a subgroup of patients with psychosis. While numerous studies have investigated anti-inflammatory add-on treatments to current antipsychotics, the exploration of immunological biomarkers as a predictor of treatment response remains limited. This review outlines the current evidence from trials exploring the potential of baseline inflammatory biomarkers as predictors of the treatment effect of anti-inflammatory drugs as add-ons to antipsychotics and of antipsychotics alone. Several of the studies have found correlations between baseline immunological biomarkers and treatment response; however, only a few studies incorporated baseline biomarkers as a primary endpoint, and the findings thus need to be interpreted with caution. Our review emphasizes the need for additional research on the potential of repurposing anti-inflammatory drugs while utilizing baseline inflammatory biomarkers as a predictor of treatment response and to identify subgroups of individuals with psychotic disorders where add-on treatment with immunomodulating agents would be warranted. Future studies investigating the correlation between baseline inflammatory markers and treatment responses can pave the way for personalized medicine approaches in psychiatry centred around biomarkers such as specific baseline inflammatory biomarkers in psychotic disorders.
Collapse
Affiliation(s)
- Elif Bayram Orbe
- Copenhagen Research Centre for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Michael Eriksen Benros
- Copenhagen Research Centre for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| |
Collapse
|
8
|
González-Herrera F, Clayton NS, Guzmán-Rivera D, Carrillo I, Castillo C, Catalán M, Anfossi R, Quintero-Pertuz H, Quilaqueo ME, Olea-Azar C, Rivera-Meza M, Kemmerling U, Ridley AJ, Vivar R, Maya JD. Statins change the cytokine profile in Trypanosoma cruzi-infected U937 macrophages and murine cardiac tissue through Rho-associated kinases inhibition. Front Immunol 2023; 13:1035589. [PMID: 36713380 PMCID: PMC9874148 DOI: 10.3389/fimmu.2022.1035589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Chronic Chagasic cardiomyopathy (CCC), caused by the protozoan Trypanosoma cruzi, is the most severe manifestation of Chagas disease.CCC is characterized by cardiac inflammation and fibrosis caused by a persistent inflammatory response. Following infection, macrophages secrete inflammatory mediators such as IL-1β, IL-6, and TNF-α to control parasitemia. Although this response contains parasite infection, it causes damage to the heart tissue. Thus, the use of immunomodulators is a rational alternative to CCC. Rho-associated kinase (ROCK) 1 and 2 are RhoA-activated serine/threonine kinases that regulate the actomyosin cytoskeleton. Both ROCKs have been implicated in the polarization of macrophages towards an M1 (pro-inflammatory) phenotype. Statins are FDA-approved lipid-lowering drugs that reduce RhoA signaling by inhibiting geranylgeranyl pyrophosphate (GGPP) synthesis. This work aims to identify the effect of statins on U937 macrophage polarization and cardiac tissue inflammation and its relationship with ROCK activity during T. cruzi infection. Methods PMA-induced, wild-type, GFP-, CA-ROCK1- and CA-ROCK2-expressing U937 macrophages were incubated with atorvastatin, or the inhibitors Y-27632, JSH-23, TAK-242, or C3 exoenzyme incubated with or without T. cruzi trypomastigotes for 30 min to evaluate the activity of ROCK and the M1 and M2 cytokine expression and secretion profiling. Also, ROCK activity was determined in T. cruzi-infected, BALB/c mice hearts. Results In this study, we demonstrate for the first time in macrophages that incubation with T. cruzi leads to ROCK activation via the TLR4 pathway, which triggers NF-κB activation. Inhibition of ROCKs by Y-27632 prevents NF-κB activation and the expression and secretion of M1 markers, as does treatment with atorvastatin. Furthermore, we show that the effect of atorvastatin on the NF-kB pathway and cytokine secretion is mediated by ROCK. Finally, statin treatment decreased ROCK activation and expression, and the pro-inflammatory cytokine production, promoting anti-inflammatory cytokine expression in chronic chagasic mice hearts. Conclusion These results suggest that the statin modulation of the inflammatory response due to ROCK inhibition is a potential pharmacological strategy to prevent cardiac inflammation in CCC.
Collapse
Affiliation(s)
- Fabiola González-Herrera
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Natasha S. Clayton
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Daniela Guzmán-Rivera
- Escuela de Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Ileana Carrillo
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Christian Castillo
- Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Mabel Catalán
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renatto Anfossi
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Helena Quintero-Pertuz
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María Elena Quilaqueo
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Claudio Olea-Azar
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mario Rivera-Meza
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Integrative Biology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Anne J. Ridley
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Raúl Vivar
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile,*Correspondence: Juan Diego Maya, ; Raúl Vivar,
| | - Juan Diego Maya
- Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile, Santiago, Chile,*Correspondence: Juan Diego Maya, ; Raúl Vivar,
| |
Collapse
|
9
|
Ng MYW, Charsou C, Lapao A, Singh S, Trachsel-Moncho L, Schultz SW, Nakken S, Munson MJ, Simonsen A. The cholesterol transport protein GRAMD1C regulates autophagy initiation and mitochondrial bioenergetics. Nat Commun 2022; 13:6283. [PMID: 36270994 PMCID: PMC9586981 DOI: 10.1038/s41467-022-33933-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
During autophagy, cytosolic cargo is sequestered into double-membrane vesicles called autophagosomes. The contributions of specific lipids, such as cholesterol, to the membranes that form the autophagosome, remain to be fully characterized. Here, we demonstrate that short term cholesterol depletion leads to a rapid induction of autophagy and a corresponding increase in autophagy initiation events. We further show that the ER-localized cholesterol transport protein GRAMD1C functions as a negative regulator of starvation-induced autophagy and that both its cholesterol transport VASt domain and membrane binding GRAM domain are required for GRAMD1C-mediated suppression of autophagy initiation. Similar to its yeast orthologue, GRAMD1C associates with mitochondria through its GRAM domain. Cells lacking GRAMD1C or its VASt domain show increased mitochondrial cholesterol levels and mitochondrial oxidative phosphorylation, suggesting that GRAMD1C may facilitate cholesterol transfer at ER-mitochondria contact sites. Finally, we demonstrate that expression of GRAMD family proteins is linked to clear cell renal carcinoma survival, highlighting the pathophysiological relevance of cholesterol transport proteins.
Collapse
Affiliation(s)
- Matthew Yoke Wui Ng
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Chara Charsou
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Ana Lapao
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Sakshi Singh
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Laura Trachsel-Moncho
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Sebastian W. Schultz
- grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital Montebello, 0379 Oslo, Norway
| | - Sigve Nakken
- grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Montebello, 0379 Oslo, Norway
| | - Michael J. Munson
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway ,grid.418151.80000 0001 1519 6403Present Address: Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anne Simonsen
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital Montebello, 0379 Oslo, Norway
| |
Collapse
|
10
|
Amyloid β, Lipid Metabolism, Basal Cholinergic System, and Therapeutics in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012092. [PMID: 36292947 PMCID: PMC9603563 DOI: 10.3390/ijms232012092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.
Collapse
|
11
|
Wang H, Chen Y, Li P, Chen Y, Yu D, Tan Q, Liu X, Guo Z. Biphasic effects of statins on neuron cell functions under oxygen-glucose deprivation and normal culturing conditions via different mechanisms. Pharmacol Res Perspect 2022; 10:e01001. [PMID: 36029136 PMCID: PMC9419152 DOI: 10.1002/prp2.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/11/2022] Open
Abstract
While there is a growing interest in the use of statins, HMG‐CoA reductase inhibitors, to treat neurodegenerative diseases, statins are associated with conflicting effects within the central nervous system (CNS) without clear evidence of the underlying mechanisms. This study systematically investigated effects of four statins (atorvastatin, pitavastatin, cerivastatin, and lovastatin) on neuronal cells under pathological condition using an in vitro model depicting ischemic injury, as well as tested under physiological condition. All four statins at micromolar concentrations display toxic effects on neuron cells under physiological condition. Atorvastatin and cerivastatin but not pitavastatin or lovastatin at nanomolar concentrations display protective effects on neuron cells under ischemic injury condition, via decreased ischemic injury‐induced oxidative stress, oxidative damage, and inflammation. Mechanistically, atorvastatin, pitavastatin, and lovastatin induces neuron cell apoptosis via prenylation‐independent manner. Other mechanisms are involved in the pro‐apoptotic effect of cerivastatin. Prenylation is not involved in the protective effects of statins under ischemic injury condition. Our work provides better understanding on the multiple differential effects of statins on neuron cells under physiological condition and ischemic injury, and elucidate their underlying mechanisms, which may be of relevance to the influence of statins in CNS.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Yun Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Ping Li
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Yan Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Danfang Yu
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Qian Tan
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Xiaoli Liu
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Zhenli Guo
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| |
Collapse
|
12
|
Wang Q, Lu M, Zhu X, Gu X, Zhang T, Xia C, Yang L, Xu Y, Zhou M. The role of microglia immunometabolism in neurodegeneration: Focus on molecular determinants and metabolic intermediates of metabolic reprogramming. Biomed Pharmacother 2022; 153:113412. [DOI: 10.1016/j.biopha.2022.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
|
13
|
Zhu H, Bai Y, Wang G, Su Y, Tao Y, Wang L, Yang L, Wu H, Huang F, Shi H, Wu X. Hyodeoxycholic acid inhibits lipopolysaccharide-induced microglia inflammatory responses through regulating TGR5/AKT/NF-κB signaling pathway. J Psychopharmacol 2022; 36:849-859. [PMID: 35475391 DOI: 10.1177/02698811221089041] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hyodeoxycholic acid (HDCA) is a natural secondary bile acid with enormous pharmacological effects, such as modulating inflammation in neuron. However, whether HDCA could suppress microglial inflammation has not been elucidated yet. AIMS To determine the anti-microglial inflammatory effect of HDCA in lipopolysaccharide (LPS) models and its mechanisms. METHODS The effect of HDCA was evaluated in LPS-stimulated BV2 microglial cells in vitro and the cortex of LPS-treated mice in vivo. Immunohistochemistry and immunofluorescence were used to visualize the localization of nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) and ionized calcium-binding adaptor protein-1 (Iba-1), respectively. The mRNA expression of inflammatory cytokines was measured by RT-qPCR. The protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), takeda G-coupled protein receptor 5 (TGR5), and the phosphorylation of protein kinase B (AKT), NF-κB, and inhibitor of NF-κB protein α (IκBα) was examined by Western blot. RESULTS HDCA inhibited the inflammatory responses in LPS-treated BV2 cells and in the cortex of LPS-treated mice, evidenced by decreased production of inflammatory mediators such as iNOS, COX-2, tumor necrosis factor (TNF-α), interleukin (IL)-6, and IL-1β. Further study demonstrated that HDCA repressed the phosphorylation, nuclear translocation, and transcriptional activity of NF-κB and inhibited the activation of AKT in BV-2 cells induced by LPS. Meanwhile, addition of TGR5 inhibitor, triamterene, abolished the effects of HDCA on TGR5, AKT, and NF-κB. CONCLUSION The present study demonstrated that HDCA prevents LPS-induced microglial inflammation in vitro and in vivo, the action of which is via regulating TGR5/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Han Zhu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyan Bai
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaorui Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yousong Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lupeng Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
The Role of Non-Coding RNAs in the Pathogenesis of Parkinson’s Disease: Recent Advancement. Pharmaceuticals (Basel) 2022; 15:ph15070811. [PMID: 35890110 PMCID: PMC9315906 DOI: 10.3390/ph15070811] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is a prevalent neurodegenerative aging disorder that manifests as motor and non-motor symptoms, and its etiopathogenesis is influenced by non-coding RNAs (ncRNAs). Signal pathway and gene sequence studies have proposed that alteration of ncRNAs is relevant to the occurrence and development of PD. Furthermore, many studies on brain tissues and body fluids from patients with PD indicate that variations in ncRNAs and their target genes could trigger or exacerbate neurodegenerative pathogenesis and serve as potential non-invasive biomarkers of PD. Numerous ncRNAs have been considered regulators of apoptosis, α-syn misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation in PD etiology, and evidence is mounting for the determination of the role of competing endogenous RNA (ceRNA) mechanisms in disease development. In this review, we discuss the current knowledge regarding the regulation and function of ncRNAs as well as ceRNA networks in PD pathogenesis, focusing on microRNAs, long ncRNAs, and circular RNAs to increase the understanding of the disease and propose potential target identification and treatment in the early stages of PD.
Collapse
|
15
|
Pierzchlińska A, Droździk M, Białecka M. A Possible Role for HMG-CoA Reductase Inhibitors and Its Association with HMGCR Genetic Variation in Parkinson's Disease. Int J Mol Sci 2021; 22:12198. [PMID: 34830081 PMCID: PMC8620375 DOI: 10.3390/ijms222212198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterised by both motor- and non-motor symptoms, including cognitive impairment. The aetiopathogenesis of PD, as well as its protective and susceptibility factors, are still elusive. Neuroprotective effects of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors-statins-via both cholesterol-dependent and independent mechanisms have been shown in animal and cell culture models. However, the available data provide conflicting results on the role of statin treatment in PD patients. Moreover, cholesterol is a vital component for brain functions and may be considered as protective against PD. We present possible statin effects on PD under the hypothesis that they may depend on the HMG-CoA reductase gene (HMGCR) variability, such as haplotype 7, which was shown to affect cholesterol synthesis and statin treatment outcome, diminishing possible neuroprotection associated with HMG-CoA reductase inhibitors administration. Statins are among the most prescribed groups of drugs. Thus, it seems important to review the available data in the context of their possible neuroprotective effects in PD, and the HMG-CoA reductase gene's genetic variability.
Collapse
Affiliation(s)
- Anna Pierzchlińska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.P.); (M.B.)
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Monika Białecka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.P.); (M.B.)
| |
Collapse
|
16
|
Tang L, Xiang Q, Xiang J, Zhang Y, Li J. Tripterygium glycoside ameliorates neuroinflammation in a mouse model of Aβ25-35-induced Alzheimer's disease by inhibiting the phosphorylation of IκBα and p38. Bioengineered 2021; 12:8540-8554. [PMID: 34592905 PMCID: PMC8806986 DOI: 10.1080/21655979.2021.1987082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is acommon neurodegenerative disease in the aged population. Tripterygium glycoside (TG) has been reported to protect the nervous system. However, the effect of TG on AD is still unknown. We aimed to explore the effect of TG on AD. Thirty-two C57BL/6J mice were randomly selected and assigned to the normal control, AD model, AD+donepezil, and AD+TG groups. PC12 cells were assigned to the normal control, AD cell model, and AD+TG groups. The alterations in spatial memory and learning abilities of mice were measured by Morris water maze. Neuronal damage in mice was detected using Nissl staining. The expression levels of Aβ25-35, p-Tau, and CD11b in brain tissues were detected using immunohistochemistry. The expression levels of IL-1β, TNF-α, NO, p-P38, P38, p-IκBα, Caspase1, COX2, and iNOS were measured using ELISAs, qRT-PCR, and western blotting.TG significantly improved the spatial memory and learning abilities of AD mice. Compared toAD model group, significantly lower expression levels of Aβ25-35, p-Tau, and CD11b were observed in AD+TG group (p < 0.05). The neuron density significantly increased in AD+TG group (p < 0.05). Significantly lower expression levels of IL-1β, TNF-α, NO, caspase-1, COX2, iNOS, p-IκBα and p-P38 MAPK were detected in AD+TG group (p < 0.05). In summary, TG may exert aneuroprotective effect by suppressing the release of inflammatory factors and microglial activity and inhibiting the phosphorylation of IκBα and p38 MAPK. These findings may improve our understanding of the mechanism of TG intervention in AD.
Collapse
Affiliation(s)
- Liang Tang
- Department of Basic Biology, Changsha Medical College, Changsha, China.,Department of Basic Biology, Wuzhou Medical College, Wuzhou, China.,Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China.,Academics Working Station, Changsha Medical College, Changsha, China
| | - Qin Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, China.,Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
| | - Ju Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, China.,Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
| | - Yan Zhang
- Academics Working Station, Changsha Medical College, Changsha, China.,School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jianming Li
- Department of Basic Biology, Changsha Medical College, Changsha, China.,Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China.,Academics Working Station, Changsha Medical College, Changsha, China.,Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha, China
| |
Collapse
|
17
|
Implications on the Therapeutic Potential of Statins via Modulation of Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9599608. [PMID: 34373771 PMCID: PMC8349293 DOI: 10.1155/2021/9599608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/20/2021] [Indexed: 01/05/2023]
Abstract
Statins, which are functionally known as 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) inhibitors, are lipid-lowering compounds widely prescribed in patients with cardiovascular diseases (CVD). Several biological and therapeutic functions have been attributed to statins, including neuroprotection, antioxidation, anti-inflammation, and anticancer effects. Pharmacological characteristics of statins have been attributed to their involvement in the modulation of several cellular signaling pathways. Over the past few years, the therapeutic role of statins has partially been attributed to the induction of autophagy, which is critical in maintaining cellular homeostasis and accounts for the removal of unfavorable cells or specific organelles within cells. Dysregulated mechanisms of the autophagy pathway have been attributed to the etiopathogenesis of various disorders, including neurodegenerative disorders, malignancies, infections, and even aging. Autophagy functions as a double-edged sword during tumor metastasis. On the one hand, it plays a role in inhibiting metastasis through restricting necrosis of tumor cells, suppressing the infiltration of the inflammatory cell to the tumor niche, and generating the release of mediators that induce potent immune responses against tumor cells. On the other hand, autophagy has also been associated with promoting tumor metastasis. Several anticancer medications which are aimed at inducing autophagy in the tumor cells are related to statins. This review article discusses the implications of statins in the induction of autophagy and, hence, the treatment of various disorders.
Collapse
|
18
|
Davis AG, Donovan J, Bremer M, Van Toorn R, Schoeman J, Dadabhoy A, Lai RP, Cresswell FV, Boulware DR, Wilkinson RJ, Thuong NTT, Thwaites GE, Bahr NC. Host Directed Therapies for Tuberculous Meningitis. Wellcome Open Res 2021; 5:292. [PMID: 35118196 PMCID: PMC8792876 DOI: 10.12688/wellcomeopenres.16474.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
A dysregulated host immune response significantly contributes to morbidity and mortality in tuberculous meningitis (TBM). Effective host directed therapies (HDTs) are critical to improve survival and clinical outcomes. Currently only one HDT, dexamethasone, is proven to improve mortality. However, there is no evidence dexamethasone reduces morbidity, how it reduces mortality is uncertain, and it has no proven benefit in HIV co-infected individuals. Further research on these aspects of its use, as well as alternative HDTs such as aspirin, thalidomide and other immunomodulatory drugs is needed. Based on new knowledge from pathogenesis studies, repurposed therapeutics which act upon small molecule drug targets may also have a role in TBM. Here we review existing literature investigating HDTs in TBM, and propose new rationale for the use of novel and repurposed drugs. We also discuss host variable responses and evidence to support a personalised approach to HDTs in TBM.
Collapse
Affiliation(s)
- Angharad G. Davis
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,
| | - Joseph Donovan
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marise Bremer
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Ronald Van Toorn
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Johan Schoeman
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Ariba Dadabhoy
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | - Rachel P.J. Lai
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Fiona V Cresswell
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Wilkinson
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nathan C Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | | |
Collapse
|
19
|
Davis AG, Donovan J, Bremer M, Van Toorn R, Schoeman J, Dadabhoy A, Lai RP, Cresswell FV, Boulware DR, Wilkinson RJ, Thuong NTT, Thwaites GE, Bahr NC. Host Directed Therapies for Tuberculous Meningitis. Wellcome Open Res 2021; 5:292. [PMID: 35118196 PMCID: PMC8792876 DOI: 10.12688/wellcomeopenres.16474.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
A dysregulated host immune response significantly contributes to morbidity and mortality in tuberculous meningitis (TBM). Effective host directed therapies (HDTs) are critical to improve survival and clinical outcomes. Currently only one HDT, dexamethasone, is proven to improve mortality. However, there is no evidence dexamethasone reduces morbidity, how it reduces mortality is uncertain, and it has no proven benefit in HIV co-infected individuals. Further research on these aspects of its use, as well as alternative HDTs such as aspirin, thalidomide and other immunomodulatory drugs is needed. Based on new knowledge from pathogenesis studies, repurposed therapeutics which act upon small molecule drug targets may also have a role in TBM. Here we review existing literature investigating HDTs in TBM, and propose new rationale for the use of novel and repurposed drugs. We also discuss host variable responses and evidence to support a personalised approach to HDTs in TBM.
Collapse
Affiliation(s)
- Angharad G. Davis
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,
| | - Joseph Donovan
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marise Bremer
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Ronald Van Toorn
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Johan Schoeman
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Ariba Dadabhoy
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | - Rachel P.J. Lai
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Fiona V Cresswell
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Wilkinson
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nathan C Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | | |
Collapse
|
20
|
Dehnavi S, Kiani A, Sadeghi M, Biregani AF, Banach M, Atkin SL, Jamialahmadi T, Sahebkar A. Targeting AMPK by Statins: A Potential Therapeutic Approach. Drugs 2021; 81:923-933. [PMID: 33939118 PMCID: PMC8144155 DOI: 10.1007/s40265-021-01510-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Statins are a group of lipid-lowering drugs that inhibit cholesterol biosynthesis and have anti-inflammatory, anti-tumor, and immunomodulatory properties. Several lines of evidence indicate that statins regulate multiple proteins associated with the regulation of differing cellular pathways. The 5'-adenosine monophosphate-activated protein kinase (AMPK) pathway plays an important role in metabolism homeostasis with effects on cellular processes including apoptosis and the inflammatory responses through several pathways. Recently, it has been shown that statins can affect the AMPK pathway in differing physiological and pathological ways, resulting in anti-cancer, cardio-protective, neuro-protective, and anti-tubercular effects; additionally, they have therapeutic effects on non-alcoholic fatty liver disease and diabetes mellitus-associated complications. Statins activate AMPK as an energy sensor that inhibits cell proliferation and induces apoptosis in cancer cells, whilst exerting its cardio-protective effects through inhibition of inflammation and fibrosis, and promotion of angiogenesis. Furthermore, statin-associated AMPK activation leads to decreased lipid accumulation and decreased amyloid beta deposition in the liver and brain, respectively, and may have therapeutic effects on the liver and neurons. In this review, we summarize the results of studies of AMPK-associated therapeutic effects of statins in different pathological conditions.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Kiani
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Farhadi Biregani
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Razavi Khorasan Province, Daneshgah Street, 9177948564, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Jo JH, Park HS, Lee DH, Han JH, Heo KS, Myung CS. Rosuvastatin Inhibits the Apoptosis of Platelet-Derived Growth Factor-Stimulated Vascular Smooth Muscle Cells by Inhibiting p38 via Autophagy. J Pharmacol Exp Ther 2021; 378:10-19. [PMID: 33846234 DOI: 10.1124/jpet.121.000539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
The secretion of platelet-derived growth factors (PDGFs) into vascular smooth muscle cells (VSMCs) induced by specific stimuli, such as oxidized low-density lipoprotein (LDL) cholesterol, initially increases the proliferation and migration of VSMCs, and continuous stimulation leads to VSMC apoptosis, resulting in the formation of atheroma. Autophagy suppresses VSMC apoptosis, and statins can activate autophagy. Thus, this study aimed to investigate the mechanism of the autophagy-mediated vasoprotective activity of rosuvastatin, one of the most potent statins, in VSMCs continuously stimulated with PDGF-BB, a PDGF isoform, at a high concentration (100 ng/ml) to induce phenotypic switching of VSMC. Rosuvastatin inhibited apoptosis in a concentration-dependent manner by reducing cleaved caspase-3 and interleukin-1β (IL-1β) levels and reduced intracellular reactive oxygen species (ROS) levels in PDGF-stimulated VSMCs. It also inhibited PDGF-induced p38 phosphorylation and increased the expression of microtubule-associated protein light chain 3 (LC3) and the conversion of LC3-I to LC3-II in PDGF-stimulated VSMCs. The ability of rosuvastatin to inhibit apoptosis and p38 phosphorylation was suppressed by treatment with 3-methyladenine (an autophagy inhibitor) but promoted by rapamycin (an autophagy activator) treatment. SB203580, a p38 inhibitor, reduced the PDGF-induced increase in intracellular ROS levels and inhibited the formation of cleaved caspase-3, indicating the suppression of apoptosis. In carotid ligation model mice, rosuvastatin decreased the thickness and area of the intima and increased the area of the lumen. In conclusion, our observations suggest that rosuvastatin inhibits p38 phosphorylation through autophagy and subsequently reduces intracellular ROS levels, leading to its vasoprotective activity. SIGNIFICANCE STATEMENT: This study shows the mechanism responsible for the vasoprotective activity of rosuvastatin in vascular smooth muscle cells under prolonged platelet-derived growth factor stimulation. Rosuvastatin inhibits p38 activation through autophagy, thereby suppressing intracellular reactive oxygen species levels, leading to the inhibition of apoptosis and reductions in the intima thickness and area. Overall, these results suggest that rosuvastatin can be used as a novel treatment to manage chronic vascular diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Jun-Hwan Jo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Hyun-Soo Park
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Do-Hyung Lee
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Joo-Hui Han
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| |
Collapse
|
22
|
Wei G, Xue L, Zhu Y, Qian X, Zou L, Jin Q, Wang D, Ge G. Differences in susceptibility of HT-29 and A549 cells to statin-induced toxicity: An investigation using high content screening. J Biochem Mol Toxicol 2021; 35:e22699. [PMID: 33398916 DOI: 10.1002/jbt.22699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023]
Abstract
Statins are a group of hydroxymethylglutaryl coenzyme A reductase inhibitors that are used in the treatment of cardiovascular diseases. However, statins have been found to be cytotoxic, and many unexpected side effects have been reported in clinical applications. The susceptibilities of different cell lines toward statins are diverse, and the mechanisms of cytotoxicity remain unknown. Therefore, the present study aimed to investigate differences in the susceptibility to and mechanisms of statin-induced cytotoxicity in two cell lines, HT-29 and A549, using a high content screening-based multiparametric toxicity assay panel. We found that the two cell types exhibited differing susceptibilities to the cytotoxic effects of the different statins. Additionally, the cytotoxicity was inconsistent between different statins in the two cell lines. Four statins with strong cytotoxicity decreased the viability of HT-29 cells via the mitochondrial pathway, as evidenced by decreased mitochondrial membrane potential, and elevated mitochondrial mass, calcium release and cell apoptosis, and reactive oxygen species. In contrast, these four statins only induced a decrease in the mitochondrial membrane potential in A549 cells. The above results provide an objective reason for future evaluations of cytotoxic differences in cell types and the underlying mechanisms of cytotoxicity in different statins, and provide a good scientific basis for further research on countermeasures against statin-induced cell injuries.
Collapse
Affiliation(s)
- Guilin Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijuan Xue
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadi Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingkai Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liwei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dandan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Jeppesen R, Christensen RHB, Pedersen EMJ, Nordentoft M, Hjorthøj C, Köhler-Forsberg O, Benros ME. Efficacy and safety of anti-inflammatory agents in treatment of psychotic disorders - A comprehensive systematic review and meta-analysis. Brain Behav Immun 2020; 90:364-380. [PMID: 32890697 DOI: 10.1016/j.bbi.2020.08.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Antipsychotic effects of immunomodulating drugs have been suggested; however, a thorough, comprehensive meta-analysis on the effect and safety of anti-inflammatory add-on treatment on psychotic disorders is lacking. METHOD Multiple databases were searched up until February 2020. Only double-blinded, randomized, placebo-controlled clinical trials (RCTs) were included. Primary outcomes were change in total psychopathology and adverse events. Secondary outcomes included, amongst others, positive and negative symptoms, general psychopathology and cognitive domains. We performed random-effects meta-analyses estimating mean differences (MD) and standardized mean differences (SMD) for effect sizes. RESULTS Seventy RCTs (N = 4104) were included, investigating either primarily anti-inflammatory drugs, i.e. drugs developed for immunomodulation, such as NSAIDs, minocycline and monoclonal antibodies (k = 15), or drugs with potential anti-inflammatory properties (k = 55), e.g. neurosteroids, N-acetyl cysteine, estrogens, fatty acids, statins, and glitazones. Antipsychotics plus anti-inflammatory treatment, compared to antipsychotics plus placebo, was associated with a PANSS scale MD improvement of -4.57 (95%CI = -5.93 to -3.20) points, corresponding to a SMD effect size of -0.29 (95%CI = -0.40 to -0.19). Trials on schizophrenia (MD = -6.80; 95%CI, -9.08 to -4.52) showed greater improvement (p < 0.01) than trials also including other psychotic disorders. However, primarily anti-inflammatory drugs (MD = 4.00; 95%CI = -7.19 to -0.80) were not superior (p = 0.69) to potential anti-inflammatory drugs (MD = 4.71; 95%CI = -6.26 to -3.17). Furthermore, meta-regression found that smaller studies showed significantly larger effect sizes than the larger studies (p = 0.0085), and only 2 studies had low risk of bias on all domains. Small but significant effects were found on negative symptoms (MD = -1.29), positive symptoms (MD = -0.53), general psychopathology (MD = -1.50) and working memory (SMD = 0.21). No differences were found regarding adverse events, but only 26 studies reported hereon. CONCLUSIONS Anti-inflammatory add-on treatment to antipsychotics showed improvement of psychotic disorders; however, no superiority was found in primarily anti-inflammatory drugs, raising the question of the mechanism behind the effect, and treatment effect might be overestimated due to the large number of small studies.
Collapse
Affiliation(s)
- Rose Jeppesen
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rune H B Christensen
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emilie M J Pedersen
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark; iPSYCH The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark; iPSYCH The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; University of Copenhagen, Department of Public Health, Section of Epidemiology, Denmark
| | - Ole Köhler-Forsberg
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark; Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael E Benros
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Bagheri H, Ghasemi F, Barreto GE, Sathyapalan T, Jamialahmadi T, Sahebkar A. The effects of statins on microglial cells to protect against neurodegenerative disorders: A mechanistic review. Biofactors 2020; 46:309-325. [PMID: 31846136 DOI: 10.1002/biof.1597] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
Microglia are the primary innate immune system cells in the central nervous system (CNS). They are crucial for the immunity, neurogenesis, synaptogenesis, neurotrophic support, phagocytosis of cellular debris, and maintaining the CNS integrity and homeostasis. Invasion by pathogens as well as in CNS injuries and damages results in activation of microglia known as microgliosis. The activated microglia have the capacity to release proinflammatory mediators leading to neuroinflammation. However, uncontrolled neuroinflammation can give rise to various neurological disorders (NDs), especially the neurodegenerative diseases including Parkinson's disease (PD) and related disorders, Alzheimer's disease (AD) and other dementias, multiple sclerosis (MS), Huntington's disease (HD), spinocerebellar ataxia (SCA), spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and stroke. Statins (HMG-CoA reductase inhibitors) are among the most widely prescribed medications for the management of hypercholesterolemia worldwide. It can be used for primary prevention in healthy individuals who are at higher risk of cardiovascular and coronary heart diseases as well as the secondary prevention in patients with cardiovascular and coronary heart diseases disease. A growing body of evidence has indicated that statins have the potential to attenuate the proinflammatory mediators and subsequent NDs by controlling the microglial activation and consequent reduction in neuroinflammatory mediators. In this review, we have discussed the recent studies on the effects of statins on microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Hossein Bagheri
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Clemente GS, Rickmeier J, Antunes IF, Zarganes-Tzitzikas T, Dömling A, Ritter T, Elsinga PH. [ 18F]Atorvastatin: synthesis of a potential molecular imaging tool for the assessment of statin-related mechanisms of action. EJNMMI Res 2020; 10:34. [PMID: 32296962 PMCID: PMC7158976 DOI: 10.1186/s13550-020-00622-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Background Statins are lipid-lowering agents that inhibit cholesterol synthesis and are clinically used in the primary and secondary prevention of cardiovascular diseases. However, a considerable group of patients does not respond to statin treatment, and the reason for this is still not completely understood. [18F]Atorvastatin, the 18F-labeled version of one of the most widely prescribed statins, may be a useful tool for statin-related research. Results [18F]Atorvastatin was synthesized via an optimized ruthenium-mediated late-stage 18F-deoxyfluorination. The defluoro-hydroxy precursor was produced via Paal-Knorr pyrrole synthesis and was followed by coordination of the phenol to a ruthenium complex, affording the labeling precursor in approximately 10% overall yield. Optimization and automation of the labeling procedure reliably yielded an injectable solution of [18F]atorvastatin in 19% ± 6% (d.c.) with a molar activity of 65 ± 32 GBq·μmol−1. Incubation of [18F]atorvastatin in human serum did not lead to decomposition. Furthermore, we have shown the ability of [18F]atorvastatin to cross the hepatic cell membrane to the cytosolic and microsomal fractions where HMG-CoA reductase is known to be highly expressed. Blocking assays using rat liver sections confirmed the specific binding to HMG-CoA reductase. Autoradiography on rat aorta stimulated to develop atherosclerotic plaques revealed that [18F]atorvastatin significantly accumulates in this tissue when compared to the healthy model. Conclusions The improved ruthenium-mediated 18F-deoxyfluorination procedure overcomes previous hurdles such as the addition of salt additives, the drying steps, or the use of different solvent mixtures at different phases of the process, which increases its practical use, and may allow faster translation to clinical settings. Based on tissue uptake evaluations, [18F]atorvastatin showed the potential to be used as a tool for the understanding of the mechanism of action of statins. Further knowledge of the in vivo biodistribution of [18F]atorvastatin may help to better understand the origin of off-target effects and potentially allow to distinguish between statin-resistant and non-resistant patients.
Collapse
Affiliation(s)
- Gonçalo S Clemente
- Department of Nuclear Medicine and Molecular Imaging - University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Jens Rickmeier
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Inês F Antunes
- Department of Nuclear Medicine and Molecular Imaging - University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Tryfon Zarganes-Tzitzikas
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging - University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands.
| |
Collapse
|
26
|
Pezeshki-Nia S, Asle-Rousta M, Mahmazi S. Spinacia oleracea L. extract attenuates hippocampal expression of TNF-α and IL-1β in rats exposed to chronic restraint stress. Med J Islam Repub Iran 2020; 34:10. [PMID: 32284934 PMCID: PMC7139264 DOI: 10.34171/mjiri.34.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 11/06/2022] Open
Abstract
Background: Restraint stress causes inflammation in nervous system that leads to emersion of neurodegenerative diseases. Spinach (Spinacia oleracea L.) contains different agents with antioxidant, antiapoptosis, and hepatoprotective properties. This study examined the effect of spinach hydroalcoholic extract (SHE) on TNF-α and IL-1β expression in hippocampus of male Wistar rats exposed to chronic restraint stress.
Methods: Rats were divided into 6 groups of 5: (1) control (intact); (2) nS-S200; (3) nS-S400; (4) stress; (5) stress-S200; (6) stressS400. Groups 2 and 3 and groups 5 and 6 received S. oleracea leaf hydroalcoholic extract in 200 and 400 mg/kg doses for 21 consecutive days by gavage. Groups 4, 5 and 6 were put in a restrainer 6 hours per day for 21 consecutive days. Then, the expression of IL-1β and TNF-α mRNAs and neuronal death in the hippocampus of rats were assessed by real time PCR and Nissl staining, respectively. Oneway analysis of variance was used for data analysis, and p<0.05 was considered statistically significant.
Results: The results showed that the expression of IL-1β and TNF-α was increased in hippocampus of rats exposed to stress compared to control groups (p<0.001). Furthermore, the expression of these proinflammatory cytokines was decreased in the stress-S200 and stress-S400 groups when compared to stress group (p<0.001). Immobility also caused neuronal death in CA1 region of hippocampus, and SHE reduced damage in CA1 pyramidal neurons layer in stressed rats.
Conclusion: Spinach decreases neuroinflammation in hippocampus of stressed rats, which may be due to its abundant antiinflammatory and antioxidant phytochemicals. The results of this study suggest that spinach may be effective in the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sogand Pezeshki-Nia
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Sanaz Mahmazi
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
27
|
Xue B, Xiao W, Tian H. Nei-like 1 inhibition results in motor dysfunction and promotes inflammation in Parkinson’s disease mice model. Biochem Biophys Res Commun 2020; 521:245-251. [DOI: 10.1016/j.bbrc.2019.10.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/13/2019] [Indexed: 01/02/2023]
|
28
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Modulatory effects of statins on the autophagy: A therapeutic perspective. J Cell Physiol 2019; 235:3157-3168. [DOI: 10.1002/jcp.29227] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center Birjand University of Medical Sciences Birjand Iran
| | - Saeed Samarghandian
- Department of Basic Medical Science Neyshabur University of Medical Sciences Neyshabur Iran
| |
Collapse
|
29
|
El-Gazar AA, Soubh AA, Mohamed EA, Awad AS, El-Abhar HS. Morin post-treatment confers neuroprotection in a novel rat model of mild repetitive traumatic brain injury by targeting dementia markers, APOE, autophagy and Wnt/β-catenin signaling pathway. Brain Res 2019; 1717:104-116. [DOI: 10.1016/j.brainres.2019.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
|
30
|
He M, Xiang Z, Xu L, Duan Y, Li F, Chen J. Lipopolysaccharide induces human olfactory ensheathing glial apoptosis by promoting mitochondrial dysfunction and activating the JNK-Bnip3-Bax pathway. Cell Stress Chaperones 2019; 24:91-104. [PMID: 30374881 PMCID: PMC6363633 DOI: 10.1007/s12192-018-0945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing glia (OEG) play an important role in regulating the regeneration of an injured nervous system. However, chronic inflammation damage reduces the viability of OEG via poorly understood mechanisms. We aimed to investigate the pathological responses of OEG in response to LPS-mediated inflammation stress in vitro. The results indicated that lipopolysaccharide (LPS) treatment significantly reduced the viability of OEG in a dose-dependent fashion. Mechanistically, LPS stimuli induced mitochondrial oxidative damage, mitochondrial fragmentation, mitochondrial metabolism disruption, and mitochondrial apoptosis activation. Furthermore, we verified that LPS modulated mitochondrial apoptosis by promoting Bax upregulation, and this process was regulated by the JNK-Bnip3 pathway. Inhibition of the JNK-Bnip3 pathway prevented LPS-mediated Bax activation, thus attenuating OEG apoptosis. Altogether, our data illustrated that LPS-mediated inflammation injury evoked mitochondrial abnormalities in OEG damage via the JNK-Bnip3-Bax pathway. This finding provides a potential target to protect OEG against chronic inflammation stress.
Collapse
Affiliation(s)
- Maowei He
- Bengbu Medical College, Affiliated Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Zimin Xiang
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Libin Xu
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Yanting Duan
- Bengbu Medical College, Affiliated Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Fangqin Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jianmei Chen
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China.
| |
Collapse
|