1
|
Chenchula S, Ghanta MK, Alhammadi M, Mohammed A, Anitha K, Nuthalapati P, Raju GSR, Huh YS, Bhaskar L. Phytochemical compounds for treating hyperuricemia associated with gout: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03686-4. [PMID: 39636406 DOI: 10.1007/s00210-024-03686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Gout is a prevalent metabolic disorder characterized by increased uric acid (UA) synthesis or decreased UA clearance from the bloodstream, leading to the formation of urate crystals in joints and surrounding tissues. Hyperuricemia (HUA), the underlying cause of gout, poses a growing challenge for healthcare systems in developed and developing countries. Currently, the most common therapeutic approaches for gouty HUA primarily involve the use of allopathic or modern medicine. However, these treatments are often accompanied by adverse effects and may not be universally effective for all patients. Therefore, this systematic review aims to provide a comprehensive outline of phytochemical compounds that have emerged as alternative treatments for HUA associated with gout and to examine their specific mechanisms of action. A systematic search was conducted to identify phytochemicals that have previously been evaluated for their effectiveness in reducing HUA. From a review of > 800 published articles, 100 studies reporting on 50 phytochemicals associated with the management of HUA and gout were selected for analysis. Experimental models were used to investigate the effects of these phytochemicals, many of which exhibited multiple mechanisms beneficial for managing HUA. This review offers valuable insights for identifying and developing novel compounds that are safer and more effective for treating HUA associated with gout.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Mohan Krishna Ghanta
- Department of Pharmacology, MVJ Medical College and Research Hospital, Bangalore, 562114, Karnataka, India
| | - Munirah Alhammadi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
- College of Agriculture, KL University, Vaddeswaram Campus, Guntur, Andhra Pradesh, 522302, India
| | - Kuttiappan Anitha
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Poojith Nuthalapati
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, India.
| |
Collapse
|
2
|
Karantas ID, Miliotou AN, Siafaka PI. An Updated Review For Hyperuricemia and Gout Management; Special Focus on the Available Drug Delivery Systems and Clinical Trials. Curr Med Chem 2024; 31:5856-5883. [PMID: 37559248 DOI: 10.2174/0929867331666230809143758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Hyperuricemia belongs to metabolic syndromes where increased uric acid levels are identified in the blood serum. Such a syndrome could be responsible for kidney stone formation, gout, hypertension, and chronic kidney diseases. It has been reported that cardiovascular risks have been linked with hyperuricemia. Gout is of the most frequent manifestations due to hyperuricemia; its management involves various pharmacological available options and dietary changes. Throughout the literature, various dosage forms are studied as alternative options to the present drug delivery systems. OBJECTIVE To update and summarize the current information for gout and hyperuricemia management. METHODS Authors have performed a thorough literature research from 2010-2023 using keywords such as hyperuricemia, gout, diagnosis, guidelines, drug delivery and clinical trials. The databases used were PubMed, ScienceDirect. According to our inclusion criteria, all studies which include the previous terms, as well as drugs or other molecules that can be applied for gout and/or hyperuricemia management, were added. RESULTS In this article, authors have summarized the pathogenesis, diagnosis and updated guidelines for gout and hyperuricemia management. Moreover, the authors have reviewed and discussed current drug delivery systems found in the literature, including drugs targeting the above disorders. Finally, the available clinical trials assessing the efficacy of newer drugs or combinations of the past ones, are being discussed. CONCLUSION The available drugs and dosage forms are limited, and therefore, scientific society should focus on the development of more efficient drug delivery systems for hyperuricemia and gout management.
Collapse
Affiliation(s)
| | - Androulla N Miliotou
- Department of Health Sciences, KES College, Nicosia, Cyprus
- Department of Life and Health Sciences, Faculty of Pharmacy, University of Nicosia, Nicosia, Cyprus
| | - Panoraia I Siafaka
- Department of Life Sciences, Faculty of Pharmacy, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
3
|
Zhou H, Xu M, Hao X, Xu Z, Pan Y, Liu X. Association of serum uric acid levels with benign prostatic hyperplasia in US men: results from NHANES 2005-2008. Aging Male 2023; 26:2275775. [PMID: 37897234 DOI: 10.1080/13685538.2023.2275775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The relationship between uric acid (UA) and benign prostatic hyperplasia (BPH) is controversial and has rarely been studied in American populations. METHODS Data from two cycles of the National Health and Nutrition Examination Surveys, comprising data from 2005 to 2008, were used. The majority of BPH were identified by self-report. We investigated the relationship between UA and BPH using univariate and multivariate logistic regression analyses. RESULTS 2,845 participants were enrolled in the study, including 531 participants with BPH and 2,314 controls. After fully adjusting for all confounders, the risk of developing BPH was reduced by 18% for every 100 μmol/L increase in UA (OR = 0.82, 95% CI: 0.69-0.97, p = 0.023). Participants in the highest quartile of UA were found to have a reduced likelihood of developing BPH (ORQ4vs1 = 0.61, 95% CI: 0.41-0.91) in comparison to those in the lowest quartile of UA. Subgroup analyses found that among those younger than 60 years, non-Hispanic whites, former smokers, heavy drinkers, those without diabetes, or those with hypertension, high UA remained negatively associated with BPH. CONCLUSIONS The above results suggest that UA may be a potential protective factor for BPH, but the mechanism needs to be further explored.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingming Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuexue Hao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhunan Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Abo-El Fetoh ME, Abdel-Fattah MM, Mohamed WR, Ramadan LAA, Afify H. Cyclooxygenase-2 activates EGFR-ERK1/2 pathway via PGE2-mediated ADAM-17 signaling in testosterone-induced benign prostatic hyperplasia. Inflammopharmacology 2023; 31:499-516. [PMID: 36586043 PMCID: PMC9958186 DOI: 10.1007/s10787-022-01123-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/25/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE AND DESIGN Prostatic inflammation is the driving force in benign prostatic hyperplasia (BPH). This work investigated the potential modulatory effect of COX-2 inhibition on ADAM-17/EGFR/ERK1/2 axis. MATERIALS OR SUBJECTS Adult male Wistar rats were used. TREATMENT Celecoxib (10 and 20 mg/kg; i.p.) was injected i.p. daily for three weeks. Testosterone (TST) (3 mg/kg; s.c.) was used to induce BPH. METHODS Prostatic inflammation and hyperplasia were assessed by organ weight and histopathology. Inflammatory mediators were measured using ELISA technique. Protein analysis was performed using western blotting and immunohistochemistry. Gene expression analysis was performed using qRT-PCR. Statistical analyses included one-way ANOVA and Tukey's multiple comparison test. RESULTS Testosterone-treated rats had a marked increase in COX-2, prostate weight, and index. Moreover, TST-induced COX-2 was inferred from cytoskeletal changes and was attributable to the overexpression of PGE2, NF-κB (p65), and IL-6. COX-2-derived PGE2 increased the activity of ADAM-17, TGF-α, and TNF-α. Consequently, EGFR-ERK1/2 pathway was over-activated, disrupting anti-apoptotic Bcl-2, cyclin D1, and pro-apoptotic Bax. Celecoxib reversed these effects. CONCLUSION COX-2 stimulates the ERK1/2 pathway via PGE2-ADAM-17-catalyzed shedding of TGF-α in testosterone-induced BPH. The results indicate a functional correlation between inflammation and hyperplasia in BPH.
Collapse
Affiliation(s)
- Mohammed E. Abo-El Fetoh
- grid.442695.80000 0004 6073 9704Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Maha M. Abdel-Fattah
- grid.411662.60000 0004 0412 4932Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Wafaa R. Mohamed
- grid.411662.60000 0004 0412 4932Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Laila A. A. Ramadan
- grid.442695.80000 0004 6073 9704Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt.
| |
Collapse
|
5
|
Muacevic A, Adler JR, Nachiappa Ganesh R. Cleistanthins A and B Ameliorate Testosterone-Induced Benign Prostatic Hyperplasia in Castrated Rats by Regulating Apoptosis and Cell Differentiation. Cureus 2022; 14:e32141. [PMID: 36601166 PMCID: PMC9805890 DOI: 10.7759/cureus.32141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background The aging male population is at higher risk for benign prostatic hyperplasia (BPH) wherein increased proliferation of stromal and epithelial cells of the prostate is observed. In this study, we investigated the effect of cleistanthins A and B on the inhibition of testosterone-induced BPH in castrated rats. Methodology Male Wistar rats were divided into eight groups (n = 6) and surgical castration was performed. BPH was induced by the administration of testosterone propionate in corn oil at 5 mg/kg for four weeks. The control group received corn oil, and the model group received testosterone propionate. The standard treatment group received finasteride orally along with testosterone. Cleistanthins A and B at 0.3, 1, and 3 mg/kg were administered by oral gavage along with testosterone. After four weeks, rats were sacrificed, and prostates were weighed and assessed for histomorphological, inflammatory, apoptotic, and proliferative markers. Results Cleistanthins A and B decreased prostatic enlargement and histopathological abnormalities. Elevated serum dihydrotestosterone levels were lowered significantly in both the cleistanthin A and cleistanthin B groups compared to the BPH model group. Cleistanthins A and B significantly lowered the serum interleukin (IL)-1β and tumor necrosis factor-alpha inflammatory markers in the test groups. Western blot analysis revealed cleistanthin A downregulated the IL-6, signal transducer and activator of transcription 3/cyclin D1 signaling pathway. Both cleistanthins A and B upregulated the apoptotic markers caspase-3 and cleaved caspase-3, whereas the cell proliferation markers cyclin D1 and proliferating cell nuclear antigen were found to be downregulated. Conclusions Both cleistanthins A and B inhibited BPH in a rat model by apoptotic induction and impeded cell proliferation.
Collapse
|
6
|
Qian D, Tian J, Wang S, Shan X, Zhao P, Chen H, Xu M, Guo W, Zhang C, Lu R. Trans-cinnamaldehyde protects against phenylephrine-induced cardiomyocyte hypertrophy through the CaMKII/ERK pathway. BMC Complement Med Ther 2022; 22:115. [PMID: 35468773 PMCID: PMC9040265 DOI: 10.1186/s12906-022-03594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/14/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Trans-cinnamaldehyde (TCA) is one of the main pharmaceutical ingredients of Cinnamomum cassia Presl, which has been shown to have therapeutic effects on a variety of cardiovascular diseases. This study was carried out to characterize and reveal the underlying mechanisms of the protective effects of TCA against cardiac hypertrophy. METHODS We used phenylephrine (PE) to induce cardiac hypertrophy and treated with TCA in vivo and in vitro. In neonatal rat cardiomyocytes (NRCMs), RNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out to identify potential pathways of TCA. Then, the phosphorylation and nuclear localization of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-related kinase (ERK) were detected. In adult mouse cardiomyocytes (AMCMs), calcium transients, calcium sparks, sarcomere shortening and the phosphorylation of several key proteins for calcium handling were evaluated. For mouse in vivo experiments, cardiac hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, and the expression of hypertrophic genes and proteins. RESULTS TCA suppressed PE-induced cardiac hypertrophy and the phosphorylation and nuclear localization of CaMKII and ERK in NRCMs. Our data also demonstrate that TCA blocked the hyperphosphorylation of ryanodine receptor type 2 (RyR2) and phospholamban (PLN) and restored Ca2+ handling and sarcomere shortening in AMCMs. Moreover, our data revealed that TCA alleviated PE-induced cardiac hypertrophy in adult mice and downregulated the phosphorylation of CaMKII and ERK. CONCLUSION TCA has a protective effect against PE-induced cardiac hypertrophy that may be associated with the inhibition of the CaMKII/ERK pathway.
Collapse
Affiliation(s)
- Dongdong Qian
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Tian
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Sining Wang
- Department of Comprehensive Internal Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Xiaoli Shan
- Public Experiment Platform, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Pei Zhao
- Public Experiment Platform, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huihua Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ming Xu
- Department of Physiology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Guo
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Zhang
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Rong Lu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Mechanisms of cinnamic aldehyde against myocardial ischemia/hypoxia injury in vivo and in vitro: Involvement of regulating PI3K/AKT signaling pathway. Biomed Pharmacother 2022; 147:112674. [DOI: 10.1016/j.biopha.2022.112674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/27/2022] Open
|
8
|
Park WY, Park J, Lee S, Song G, Nam IK, Ahn KS, Choe SK, Um JY. PEX13 is required for thermogenesis of white adipose tissue in cold-exposed mice. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159046. [PMID: 34517131 DOI: 10.1016/j.bbalip.2021.159046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
Non-shivering thermogenesis (NST) is a heat generating process controlled by the mitochondria of brown adipose tissue (BAT). In the recent decade, 'functionally' acting brown adipocytes in white adipose tissue (WAT) has been identified as well: the so-called process of the 'browning' of WAT. While the importance of uncoupling protein 1 (UCP1)-oriented mitochondrial activation has been intensely studied, the role of peroxisomes during the browning of white adipocytes is poorly understood. Here, we assess the change in peroxisomal membrane proteins, or peroxins (PEXs), during cold stimulation and importantly, the role of PEX13 in the cold-induced remodeling of white adipocytes. PEX13, a protein that originally functions as a docking factor and is involved in protein import into peroxisome matrix, was highly increased during cold-induced recruitment of beige adipocytes within the inguinal WAT of C57BL/6 mice. Moreover, beige-induced 3 T3-L1 adipocytes and stromal vascular fraction (SVF) cells by exposure to the peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone showed a significant increase in mitochondrial thermogenic factors along with peroxisomal proteins including PEX13, and these were confirmed in SVF cells with the beta 3 adrenergic receptor (β3AR)-selective agonist CL316,243. To verify the relevance of PEX13, we used the RNA silencing method targeting the Pex13 gene and evaluated the subsequent beige development in SVF cells. Interestingly, siPex13 treatment suppressed expression of thermogenic proteins such as UCP1 and PPARγ coactivator 1 alpha (PGC1α). Overall, our data provide evidence supporting the role of peroxisomal proteins, in particular PEX13, during beige remodeling of white adipocytes.
Collapse
Affiliation(s)
- Woo Yong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation and Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sujin Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Gahee Song
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - In-Koo Nam
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation and Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Jae-Young Um
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Basic Research Laboratory for Comorbidity Regulation and Department of Comorbodity Research, KyungHee Institute of Convergence Korean Medicine, Kyung Hee University, Seoul 02447, Korea..
| |
Collapse
|
9
|
Azouz AA, Saleh E, Abo-Saif AA. Aliskiren, tadalafil, and cinnamaldehyde alleviate joint destruction biomarkers; MMP-3 and RANKL; in complete Freund's adjuvant arthritis model: Downregulation of IL-6/JAK2/STAT3 signaling pathway. Saudi Pharm J 2020; 28:1101-1111. [PMID: 32922141 PMCID: PMC7474170 DOI: 10.1016/j.jsps.2020.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease, which is accompanied by progressive joint damage and disability. The intolerability of conventional antirheumatic drugs by some patients necessitates the search for effective antirheumatic agents having better tolerability. In the current work, we aimed to investigate the efficacy of cinnamaldehyde, tadalafil, and aliskiren as potential antirheumatic candidates and to explore their modulatory effects on joint destruction, inflammatory response, and intracellular signaling. Arthritis was induced in female Wistar rats by complete Freund's adjuvant (CFA) 0.4 ml s.c. on days 1, 4, and 7. Treated groups received their respective drugs, starting from day 13, daily for 3 weeks. Methotrexate and prednisolone were the standard antirheumatic drugs, while cinnamaldehyde, tadalafil, and aliskiren were the test agents. Treatment with cinnamaldehyde, tadalafil, or aliskiren reduced serum levels of rheumatoid factor, and pro-inflammatory cytokines; tumor necrosis factor-alpha and interleukin-6 (IL-6), along with elevated level of IL-10 which is an anti-inflammatory cytokine. Besides, cartilage and bone destruction biomarkers; matrix metalloproteinase-3 (MMP-3) and receptor activator of nuclear factor-kappa B ligand (RANKL); were significantly reduced after treatment with the test agents, which was further confirmed by histopathological investigation. The elevated protein expressions of phosphorylated-Janus kinase 2 (p-JAK2), phosphorylated-signal transducer and activator of transcription 3 (p-STAT3), and inducible nitric oxide synthase (iNOS) in articular tissue were markedly attenuated after treatment with cinnamaldehyde, tadalafil, or aliskiren, while that of endothelial nitric oxide synthase (eNOS) was greatly enhanced. In addition, oxidative stress and inflammatory markers such as malondialdehyde, nitric oxide, and myeloperoxidase were reduced in joint tissue after treatment with the test agents, while glutathione content was elevated. Furthermore, the renin inhibitor aliskiren produced effects close to those of the normal and methotrexate, the gold standard antirheumatic drug, in most of the measured parameters. Collectively, these findings led to the assumption that the downregulation of IL-6/JAK2/STAT3 signaling by cinnamaldehyde, tadalafil, and aliskiren could alleviate joint destruction by MMP-3 and RANKL, reduce iNOS, and enhance eNOS expressions. Moreover, aliskiren could be a promising therapeutic agent for RA, because of its ability to normalize most of the measured parameters after CFA-induced arthritis.
Collapse
Key Words
- Aliskiren
- CFA, complete Freund's adjuvant
- CFA-induced arthritis
- DMARD, disease-modifying antirheumatic drug
- GSH, reduced glutathione
- H&E, hematoxylin and eosin
- IL-10, interleukin-10
- IL-6, interleukin-6
- IL-6/JAK2/STAT3 signaling
- JAK2, Janus kinase 2
- MDA, malondialdehyde
- MMP-3
- MMP-3, matrix metalloproteinase-3
- MPO, myeloperoxidase
- NO, nitric oxide
- PDE, phosphodiesterase
- RA, rheumatoid arthritis
- RANKL
- RANKL, receptor activator of nuclear factor-kappa B ligand
- RAS, renin angiotensin system
- STAT3, signal transducer and activator of transcription 3
- TNF-α, tumor necrosis factor-alpha
- eNOS, endothelial nitric oxide synthase
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Esraa Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.,Operations Pharmacy, General Fayoum Hospital, Fayoum, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|