1
|
Herrera-Muñoz J, Ibáñez M, Calzadilla W, Cabrera-Reina A, García V, Salazar-González R, Hernández F, Campos-Mañas M, Miralles-Cuevas S. Assessment of contaminants of emerging concern and antibiotic resistance genes in the Mapocho River (Chile): A comprehensive study on water quality and municipal wastewater impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176198. [PMID: 39278476 DOI: 10.1016/j.scitotenv.2024.176198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
The primary objective of this study was to evaluate the persistence and elimination of Contaminants of Emerging Concern (CECs) in municipal wastewater treatment plants (MWWTPs) and their presence in the Mapocho River within the metropolitan area of Santiago, Chile. The use of advanced analytical techniques, based on liquid chromatography coupled to both low and high-resolution mass spectrometry, allowed a comprehensive overview on the presence of CECs in samples. Additionally, a preliminary assessment of the microbiological aspects aimed to determine the presence of indicator microorganisms of fecal contamination, such as Escherichia coli and total coliforms was conducted. Furthermore, a qualitative assessment of Antibiotic Resistant Genes (ARGs) was performed. No CECs were detected upstream to the MWWTPs. However, the results from various wastewater samples (influent, secondary, and tertiary effluents) revealed significant diversity, with 73 CECs detected alongside prevalent ARGs including sulI, sulfII, qnrB, and blaTEM. The presence of CECs and ARGs downstream of the MWWTP in the Mapocho River was mainly attributed to effluent discharge. On the other hand, typical values for a healthy river and a MWWTP with a final disinfection stage were found in terms of fecal contamination. Consequently, the imperative for developing tertiary or quaternary treatments capable of degrading CECs and ARGs to minimize environmental impact is underscored. These findings hold public health significance, offering insights into potential risks and influencing future legislative measures in Chile.
Collapse
Affiliation(s)
- José Herrera-Muñoz
- Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile; Grupo de Investigación de Análisis, Tratamiento, Electroquímica, Recuperación y Reúso de Agua (WATER(b)), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile; Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Wendy Calzadilla
- Grupo de Investigación de Análisis, Tratamiento, Electroquímica, Recuperación y Reúso de Agua (WATER(b)), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Alejandro Cabrera-Reina
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile
| | - Verónica García
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile; Centro de Estudio en Ciencia y Tecnología de los Alimentos (CECTA-USACH), Obispo Manuel Umaña 050, Estación Central, Santiago, Chile
| | - Ricardo Salazar-González
- Grupo de Investigación de Análisis, Tratamiento, Electroquímica, Recuperación y Reúso de Agua (WATER(b)), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Marina Campos-Mañas
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Sara Miralles-Cuevas
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
| |
Collapse
|
2
|
Li YH, Li XH, Cui YY, Abdukayum A, Yang CX. Fabrication of sea urchin shaped polyaniline-modified magnetic microporous organic network for efficient extraction of non-steroidal anti-inflammatory drugs from animal-derived food samples. J Chromatogr A 2024; 1730:465140. [PMID: 38986401 DOI: 10.1016/j.chroma.2024.465140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
In this work, a novel polyaniline-modified magnetic microporous organic network (MMON-PANI) composite was fabricated for effective magnetic solid phase extraction (MSPE) of five typical nonsteroidal anti-inflammatory drugs (NSAIDs) from animal-derived food samples before high performance liquid chromatography (HPLC) detection. The core-shell sea urchin shaped MMON-PANI integrates the merits of Fe3O4, MON, and PANI, exhibiting large specific surface area, rapid magnetic responsiveness, good stability, and multiple binding sites to NSAIDs. Convenient and effective extraction of trace NSAIDs from chicken, beef and pork samples is realized on MMON-PANI via the synergetic π-π, hydrogen bonding, hydrophobic, and electrostatic interactions. Under optimal conditions, the MMON-PANI-MSPE-HPLC-UV method exhibits wide linear ranges (0.2-1000 μg L-1), low limits of detection (0.07-1.7 μg L-1), good precisions (intraday and inter-day RSDs < 5.4 %, n = 3), large enrichment factors (98.6-99.9), and less adsorbent consumption (3 mg). The extraction mechanism and selectivity of MMON-PANI are also evaluated in detail. This work proves the incorporation of PANI onto MMON is an efficient way to promote NSAIDs enrichment and provides a new strategy to synthesize multifunctional MON-based composites in sample pretreatment.
Collapse
Affiliation(s)
- Yan-Hong Li
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashgar 844000, China
| | - Xu-Hui Li
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashgar 844000, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashgar 844000, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
3
|
Muniandy Y, Mohamad S, Raoov M. Green and efficient magnetic micro-solid phase extraction utilizing tea waste impregnated with magnetic nanoparticles for the analysis of ibuprofen in water samples by using UV-vis spectrophotometry. RSC Adv 2024; 14:11977-11985. [PMID: 38623288 PMCID: PMC11017375 DOI: 10.1039/d4ra00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
A green method based on magnetic micro-solid phase extraction (MNP-TW-μ-SPE) of tea waste impregnated with magnetic nanoparticles (MNP-TW) was developed for the extraction of ibuprofen (IBP) in water samples prior to UV-Vis spectrophotometric analysis. Experimenting parameters that affect the extraction efficiency of IBP, such as pH of the sample solution, sorbent dosage, extraction time, ionic strength, volume of the sample, type of desorption solvent, desorption time, and desorption volume, were studied and optimized in detail. The characterization studies for the MNP-TW were carried out by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectrometry (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, a vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). Under the optimum conditions, the linearity ranges from 30 to 700 μg L-1 for IBP, with determination coefficients (R2) of 0.9983. The limit of detection (LOD) and limit of quantification (LOQ) were 9.40 μg L-1 and 28.50 μg L-1, respectively. The method also demonstrated good precision in reproducibility (RSD ≤ 1.53%), repeatability (RSD ≤ 1.48%), and recovery (86-115%). This method represents the advantages of low solvent consumption, flexibility, and better sensitivity compared to other studies employing spectrophotometric analysis. The usage of tea waste in the extraction process presents many advantages, as it is biodegradable, versatile, and contributes to an intelligent and sustainable economic strategy projected toward a circular economy approach.
Collapse
Affiliation(s)
- Yagulan Muniandy
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- Universiti Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- Universiti Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
4
|
Lee JW, Han J, Choi YK, Park S, Lee SH. Reswellable alginate/activated carbon/carboxymethyl cellulose hydrogel beads for ibuprofen adsorption from aqueous solutions. Int J Biol Macromol 2023; 249:126053. [PMID: 37517753 DOI: 10.1016/j.ijbiomac.2023.126053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
In this study, alginate (Alg) composite beads were prepared by blending with activated carbon (AC) to enhance adsorption capacity for ibuprofen and carboxymethyl cellulose (CMC) to create a reswellable hydrogel. The dried Alg/AC/CMC composite beads could be recovered to sizes and morphologies similar to the initial hydrogel states via a simple reswelling process; however, the dried Alg/AC composite beads without CMC could not be recovered to the initial hydrogel state. Following the reswelling process, the dried Alg/AC/CMC beads demonstrated an 86 % recovery (qe = 34.0 mg/g) in the adsorption capacity for ibuprofen compared to the initial hydrogel beads (qe = 39.6). In contrast, the reswelled Alg/AC beads exhibited only 18 % (qe = 8.6) of the initial adsorption capacity (qe = 48.1). We elucidated the effects of the substitution degree of CMC, AC content, and solution pH on the reswelling property and ibuprofen adsorption capacity of the Alg/AC/CMC composite beads. The adsorption kinetics and isotherms of the prepared composite beads in the hydrogel and reswelled states fit the pseudo-second-order and Langmuir models, respectively. Furthermore, the reswelled Alg composite beads exhibited high adsorption capacity (>93 %) after 10 cycles. Taken together, our findings indicate that the Alg/AC/CMC composite beads can be used as adsorbents without a considerable decrease in adsorption performance by reswelling the beads with distilled water after long-term storage in a dry state.
Collapse
Affiliation(s)
- Jeong Woo Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiwoo Han
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Keun Choi
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, ChoiLab Inc., Seoul 01811, Republic of Korea
| | - Saerom Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, ChoiLab Inc., Seoul 01811, Republic of Korea.
| | - Sang Hyun Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Hsen EB, Latrous L. Magnetic Solid-Phase Extraction Based on Magnetite-Multiwalled Carbon Nanotubes of Non-Steroidal Anti-Inflammatories from Water Followed by LC-ESI-MS/MS. J Chromatogr Sci 2023; 61:186-194. [PMID: 35091741 DOI: 10.1093/chromsci/bmac006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 11/13/2022]
Abstract
An analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry detection (LC-ESI-MS/MS) has been developed for the determination of pharmaceutical compounds in water samples. Five non-steroidal anti-inflammatory drugs (NSAIDs) namely Naproxen, Ketoprofen, Piroxicam, Diflunisal and Celecoxib were investigated. Magnetic solid phase extraction (MSPE) was used for sample pre concentration of water samples and magnetic carbon nanotubes (Fe3O4-MWCNTs) were considered as solid phase extraction sorbent. Important parameters influencing the extraction efficiency such as nature and volume of eluent, sample pH and adsorbent mass were optimized. The developed MSPE method involved 75 mg of Fe3O4-MWCNTs sorbent, 5 mL of water sample at pH = 4 and 5 mL of 10% ammonia in methanol in the elution step. Under the optimized extraction conditions, linearity, detection and quantification limits and reproducibility were evaluated. The proposed method was successfully applied to the analysis of NSAIDs in surface waters, and mean recoveries of all the NSAIDs were above 90% with relative standard deviations < 17%. The detection and quantification limits were comprised between 0.05-3.6 ng.mL-1 and 0.2-11.9 ng.mL-1, respectively.
Collapse
Affiliation(s)
- Ele Ben Hsen
- Département de Chimie, Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie Campus Universitaire Farhat Hached, Tunis 2092, Tunisia
| | - Latifa Latrous
- Département de Chimie, Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Minérale Appliquée (LR19ES02), Campus Universitaire Farhat Hached, Tunis 2092, Tunisia.,Département de Chimie, Université de Tunis El Manar, Institut Préparatoire aux Etudes d'Ingénieurs d'El Manar, B.P.244 El Manar II, Tunis 2092, Tunisia
| |
Collapse
|
6
|
Honda L, Arismendi D, Richter P. Integration of rotating disk sorptive extraction and dispersive-solid phase extraction for the determination of estrogens and their metabolites in urine by liquid chromatography/mass spectrometry. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Wu J, Cai Z. Enrichment of nucleobase adducts from genomic DNA in the cytoplasm by solid-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123574. [PMID: 36586340 DOI: 10.1016/j.jchromb.2022.123574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The exact levels of some DNA adducts, like N7-deoxyguanosine (N7-dG), can be under-calculated since these adducts may depurinate due to their chemical instability, leading to corresponding nucleobase adducts being released into the cytoplasm. To accurately quantify the levels of DNA adducts, it is necessary to consider those modified nucleobases. However, high levels and diversity of cytoplasmic small molecule metabolites (SMMs) can strongly interfere with the detection of adducts, and it is almost impossible to remove them with nucleobase adducts being well retained. Therefore, we aimed to establish an optimized enrichment method based on solid-phase extraction (SPE) to reduce the co-elution of SMMs with target analytes. In this vein, we employed three bisphenols (BPA, BPF, and BPAF) as examples, prepared corresponding N7-guanine (N7-Gua) adducts, loaded on an Oasis hydrophilic-lipophilic balance ® (HLB) cartridge, used a series of mobile phases containing different percentage of methanol for elution, and evaluated the levels of these adducts in each eluent. First, we found that neutral samples led to the best retention for all three adducts compared with acidified or basified ones. We next employed normal distribution fitting model to characterize the elution of analytes from H2O/methanol with different pHs and observed that neutral mobile phases resulted in more hydrophobic elution for all three adducts. Besides, N7-BPA-Gua and N7-BPF-Gua obtained narrow fitted peaks at neutral pH, while N7-BPAF-Gua had minimized elution windows at low pH. After optimization, we exposed 293T cells to the aforementioned bisphenols and quantified the N7-Gua adducts in the cytoplasm and the corresponding N7-dG adducts in genomic DNA. The results revealed that with the same levels of BPs exposure, BPAF led to the highest levels of adducts in both cytoplasm and genomic DNA samples, followed by BPA and BPF in order. In summary, our research established an appropriate model to describe the elution of DNA adducts in the SPE, applied it to optimize the loading and elution conditions, and discussed the genotoxicity of bisphenols by accurate quantification of both cleaved and uncleaved N7-dG adducts.
Collapse
Affiliation(s)
- Jiabin Wu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, People's Republic of China.
| |
Collapse
|
8
|
Baratta M, Tursi A, Curcio M, Cirillo G, Nezhdanov AV, Mashin AI, Nicoletta FP, De Filpo G. Removal of Non-Steroidal Anti-Inflammatory Drugs from Drinking Water Sources by GO-SWCNT Buckypapers. Molecules 2022; 27:molecules27227674. [PMID: 36431774 PMCID: PMC9696248 DOI: 10.3390/molecules27227674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmaceutical products such as antibiotics, analgesics, steroids, and non-steroidal anti-inflammatory drugs (NSAIDs) are new emerging pollutants, often present in wastewater, potentially able to contaminate drinking water resources. Adsorption is considered the cheapest and most effective technique for the removal of pollutants from water, and, recently, membranes obtained by wet filtration method of SWCNT aqueous solutions (SWCNT buckypapers, SWCNT BPs) have been proposed as self-standing porous adsorbents. In this paper, the ability of graphene oxide/single-walled carbon nanotube composite membranes (GO-SWCNT BPs) to remove some important NSAIDs, namely Diclofenac, Ketoprofen, and Naproxen, was investigated at different pH conditions (pH 4, 6, and 8), graphene oxide amount (0, 20, 40, 60, and 75 wt.%), and initial NSAIDs concentration (1, 10, and 50 ppm). For the same experimental conditions, the adsorption capacities were found to strongly depend on the graphene oxide content. The best results were obtained for 75 wt.% graphene oxide with an adsorption capacity of 118 ± 2 mg g-1 for Diclofenac, 116 ± 2 mg g-1 for Ketoprofen, and 126 ± 3 mg g-1 for Naproxen at pH 4. Overall, the reported data suggest that GO-SWCNT BPs can represent a promising tool for a cheap and fast removal of NSAIDs from drinking water resources, with easy recovery and reusability features.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | | | - Alexandr Ivanovic Mashin
- Applied Physics & Microelectronics, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod 603105, Russia
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Correspondence: (F.P.N.); (G.D.F.); Tel.: +39-0984493194 (F.P.N.); +39-0984492105 (G.D.F.)
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- Correspondence: (F.P.N.); (G.D.F.); Tel.: +39-0984493194 (F.P.N.); +39-0984492105 (G.D.F.)
| |
Collapse
|
9
|
Lu H, Huang Y, Cui H, Li L, Ding Y. A molecularly imprinted electrochemical aptasensor based on zinc oxide and co-deposited gold nanoparticles/reduced graphene oxide composite for detection of amoxicillin. Mikrochim Acta 2022; 189:421. [PMID: 36251097 DOI: 10.1007/s00604-022-05497-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
The molecularly imprinted electrochemical aptasensor was constructed based on co-deposition of zinc oxide and gold nanoparticles/reduced graphene oxide composite. Aptamer was used as a new kind of functional monomer and the aptamer-amoxicillin complex was formed by hydrogen bond. Then, the complex was fixed on the surface of the modified electrode by Au-S bond. Three-dimensional imprinted polymeric membrane was formed by electropolymerization of dopamine, and the imprinted sites with good specificity and affinity were formed after elution. Combined with the specificity of molecularly imprinted technology and the affinity of aptamer, the selective recognition of amoxicillin can be realized. Under the optimal experimental conditions, the linear range was from 10-14 to 10-8 M, and the detection limit was 3.3 × 10-15 M. The sensor exhibited satisfactory selectivity, repeatability, and stability and was successfully used for 10-9 M amoxicillin determination in real water and food samples.
Collapse
Affiliation(s)
- Huan Lu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yan Huang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hanyue Cui
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Yaping Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
10
|
Green method to determine triazine pesticides in water using Rotating Disk Sorptive Extraction (RDSE). Heliyon 2021; 7:e07878. [PMID: 34522798 PMCID: PMC8426532 DOI: 10.1016/j.heliyon.2021.e07878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/23/2020] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The following work presents the development of the solid phase extraction technique with rotary disk (RDSE) in which the analysis for seven triazines in surface waters was first implemented. All the variables involved in extraction have been studied and optimized using a solid phase of octadecyl (C18) deposited on surface of the disk. Triazines were analyzed quantitatively by gas chromatography with simple quadruple mass detector, recoveries obtained for seven triazines were between 80% and 120%, accuracy expressed as RSD was between 3.21% and 6.34%, and detection limit of the method was between 0.020-0.056 μgL-1 according to each analyte, which indicates a good reproducibility and precision of the method. Finally, the method was applied to analyze the objective compounds in water samples obtained in the Bolo River (Palmira-Colombia), in which triazines were not detected.
Collapse
|
11
|
A simultaneous extraction and enrichment method for rapid detection of polar chlorophenoxy acid and non-steroidal anti-inflammatory drugs from wastewater based on low-generation dendrimer poly(propylene imine). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Ultrasonic assisted magnetic solid phase extraction based on the use of magnetic waste-tyre derived activated carbon modified with methyltrioctylammonium chloride adsorbent for the preconcentration and analysis of non-steroidal anti-inflammatory drugs in wastewater. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Liu H, Dang S, A G, Ye B. A magnetic MOF derivative with rich interactions formed under mild preparation conditions for the extraction of non-steroidal anti-inflammatory drugs from the Yellow River. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3256-3263. [PMID: 34219133 DOI: 10.1039/d1ay00378j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For sorbents, good magnetic properties and rich interactions with targets are important ways to improve the efficiency of magnetic solid-phase extraction (MSPE). The magnetic MOF-101 derivative (MD) was obtained by heat-treating MOF-101 at different temperatures. After a series of characterizations, it was found that MD-350 had the best magnetic properties and retained more functional groups of the original MOF-101, and had better extraction efficiency as compared to MD obtained under other treatment temperatures for the MSPE of four non-steroidal anti-inflammatory drugs (NSAIDs) in water samples, coupled with high-performance liquid chromatography (HPLC). The remaining functional groups of MD-350 can produce more interactions with NSAIDs, such as hydrogen bonding, π-π conjugation, and coordination interactions; good magnetic properties facilitate the separation of the sorbent and the solution. These advantages indicate that the established extraction method demonstrated satisfactory extraction performance: an excellent recovery rate (96.73-100.61%) with a short extraction time (15 min), a wide linear range (4-400 μg L-1) with a determination coefficient of 0.9975-0.9993, a low LOD of 0.2-0.5 μg L-1 and up to 12 times service-life without the loss of the recovery rate. Satisfactory results were also obtained in extracting NSAIDs from Yellow River. All these results indicate that MD-350 prepared under mild conditions has potential as an MSPE sorbent to detect and remove NSAIDs from environmental waters with high efficiency and long service life.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Shihao Dang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Gu A
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Baogui Ye
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| |
Collapse
|
14
|
|
15
|
Mohammadi P, Masrournia M, Es’haghi Z, Pordel M. Hollow fiber coated Fe3O4@Maleamic acid-functionalized graphene oxide as a sorbent for stir bar sorptive extraction of ibuprofen, aspirin, and venlafaxine in human urine samples before determining by gas chromatography–mass spectrometry. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02185-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Mohiuddin I, Grover A, Aulakh JS, Malik AK, Lee SS, Brown RJC, Kim KH. Starch-Mg/Al layered double hydroxide composites as an efficient solid phase extraction sorbent for non-steroidal anti-inflammatory drugs as environmental pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123782. [PMID: 33113735 DOI: 10.1016/j.jhazmat.2020.123782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Using a co-precipitation method, starch-Mg/Al layered double hydroxide (S-Mg/Al LDH) composites were synthesized. Their physicochemical properties were assessed by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermo-gravimetric analysis. The quantification of six non-steroidal anti-inflammatory drugs (NSAIDs) was conducted using real samples (e.g., hospital waste water, river water, sewage treatment plant water, and tablet formulations) by gas chromatography-mass spectrometry. For the development of this method, the system was optimized in terms of several key variables (e.g., pH, flow rate, and eluent type/volume). The developed method for NSAIDs exhibited good resolution, sensitivity, reproducibility, and specificity even in complex matrices with limits of detection between 4 and 20 pg/mL. Hence, S-Mg/Al LDH composites were proven to be efficient and fast solid phase extraction (SPE) sorbents for NSAIDs. In addition, each LDH-SPE cartridge showed good reusability without a noticeable change in performance (e.g., up to 30 cycles) and target recoveries between 99.5 - 82.9 %. This work should open up new opportunities for a sesnsitive and sustainable quantitative method for the determination of NSAIDs in complex samples.
Collapse
Affiliation(s)
- Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Aman Grover
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | | | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington TW11 0LW, UK
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
17
|
Valdez-Carrillo M, Abrell L, Ramírez-Hernández J, Reyes-López JA, Carreón-Diazconti C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44863-44891. [PMID: 32986197 DOI: 10.1007/s11356-020-10842-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Pharmaceutical active compounds (PhACs) are environmentally ubiquitous around the world, and the countries of Latin America (LATAM) are not the exception; however there is still little knowledge of the magnitude and conditions of their occurrence in LATAM and of the environmental consequences of their presence. The present work reviews 79 documents published from 2007 to 2019 on the occurrence, concentrations, and sources of PhACs and hormones in surface water (SW), wastewater (WW), and treated wastewater (TWW) in LATAM and on the circumstances of their release to the environment. Research efforts are reported in only ten countries and confirm the presence of 159 PhACs, mainly analgesics and anti-inflammatories, although extraordinarily high concentrations of carbamazepine (830 μg/L) and ethinylestradiol (6.8 μg/L) were found in Ecuador and Brazil, respectively. The analysis of maximum concentrations and the ecotoxicological risk assessment corroborate that (1) these values exceed the environmental concentrations found in other parts of the world, (2) the environmental risk posed by these concentrations is remarkably high, and (3) there is no statistically significant difference between the maximum concentrations found in WW and those found in TWW. The main source of PhACs in LATAM's aquatic environment is WW; hence, these countries should direct substantial efforts to develop efficient and cost-effective treatment technologies and plan and apply WW management strategies and regulations. This analysis presents the current states of occurrence, concentrations, and sources of PhACs in the aquatic environment of LATAM and outlines the magnitude of the environmental problem in that part of the world.
Collapse
Affiliation(s)
- Melissa Valdez-Carrillo
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Leif Abrell
- Arizona Laboratory for Emerging Contaminants, Departments of Soil, Water & Environmental Science and Chemistry & Biochemistry, University of Arizona, 1040 E. 4th St., Room 606/611, Tucson, AZ, 85721, USA
| | - Jorge Ramírez-Hernández
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Jaime A Reyes-López
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Concepción Carreón-Diazconti
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico.
| |
Collapse
|
18
|
Silva M, Feijão E, da Cruz de Carvalho R, Duarte IA, Matos AR, Cabrita MT, Barreiro A, Lemos MFL, Novais SC, Marques JC, Caçador I, Reis-Santos P, Fonseca VF, Duarte B. Comfortably numb: Ecotoxicity of the non-steroidal anti-inflammatory drug ibuprofen on Phaeodactylum tricornutum. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105109. [PMID: 32871462 DOI: 10.1016/j.marenvres.2020.105109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Emerging pollutants such as pharmaceuticals are continuously released to aquatic environments posing a rising threat to marine ecosystems. Yet, monitoring routines and ecotoxicity data on biota worldwide for these substances are lacking. Non-steroidal anti-inflammatory drugs are among the most prescribed and found pharmaceuticals in aquatic environments. The toxicity effects of environmentally relevant concentrations of ibuprofen on primary productivity, oxidative stress and lipid metabolism of the diatom Phaeodactylum tricornutum were assessed. Diatom cultures were exposed to 0, 0.8, 3, 40, 100 and 300 μg L-1 ibuprofen concentrations, usually found in the vicinity of wastewater treatment plants and coastal environments. Higher concentrations (100 and 300 μg L-1) had a negative impact in P. triconutum growth, inhibiting the chloroplastic energy transduction in the electron transport chain resulting in lower energy reaching the PS I (r2 = -0.55, p < 0.05). In contrast, the mitochondrial electron transport and available energy increased (r2 = 0.68 and r2 = 0.85, p < 0.05 respectively), mostly due to enhancements in lipid and protein contents as opposed to reduction of carbohydrates. A general up-regulation of the antioxidant enzymes could contributed to alleviate oxidative stress resulting in the decrease of lipid peroxidation products (r2 = 0.77, p < 0.05). Canonical analysis of principal components was performed and successfully discriminated exposure groups, with optical data excelling in classifying samples to different ibuprofen concentrations, being potentially used as environmental indicators. Finally, the identified mild to severe effects of ibuprofen on diatoms are likely to be exacerbated by the sustained use of this drug worldwide, underpinning the urgency of evaluating the impacts of this pharmaceutical on coastal and marine trophic webs.
Collapse
Affiliation(s)
- Marisa Silva
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ricardo da Cruz de Carvalho
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisboa, Portugal
| | - Aldo Barreiro
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208, S/N Matosinhos, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Avenida do Porto de Pesca, 2520-630, Peniche, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Avenida do Porto de Pesca, 2520-630, Peniche, Portugal
| | - João Carlos Marques
- MARE - Marine and Environmental Sciences Centre, c/o Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, 3000, Coimbra, Portugal
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA, 5005, Australia
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
19
|
Liu Z, Zhou W, Wang C, Hu W, Chen Z. Cotton thread modified with ionic liquid copolymerized polymer for online in‐tube solid‐phase microextraction and HPLC analysis of nonsteroidal anti‐inflammatory drugs. J Sep Sci 2020; 43:2827-2833. [DOI: 10.1002/jssc.202000212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Zichun Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationHubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticalsand Wuhan University School of Pharmaceutical Sciences Wuhan P. R. China
- State Key Laboratory of Transducer TechnologyChinese Academy of Sciences Beijing P. R. China
| | - Wei Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationHubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticalsand Wuhan University School of Pharmaceutical Sciences Wuhan P. R. China
- State Key Laboratory of Transducer TechnologyChinese Academy of Sciences Beijing P. R. China
| | - Chenlu Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationHubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticalsand Wuhan University School of Pharmaceutical Sciences Wuhan P. R. China
| | - Wei Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationHubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticalsand Wuhan University School of Pharmaceutical Sciences Wuhan P. R. China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationHubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticalsand Wuhan University School of Pharmaceutical Sciences Wuhan P. R. China
- State Key Laboratory of Transducer TechnologyChinese Academy of Sciences Beijing P. R. China
| |
Collapse
|
20
|
TiO 2 nanoparticles and C-Nanofibers modified magnetic Fe 3O 4 nanospheres (TiO 2@Fe 3O 4@C-NF): A multifunctional hybrid material for magnetic solid-phase extraction of ibuprofen and photocatalytic degradation of drug molecules and azo dye. Talanta 2020; 213:120813. [PMID: 32200918 DOI: 10.1016/j.talanta.2020.120813] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 11/23/2022]
Abstract
Accurate sensitive analysis of drug ingredient substances in biological, pharmaceutical and environmental samples and removal of drug ingredient substances in environmental samples owngreat importance for sustaining viability. The realization of these processes using a single material offers significant advantages in terms of cost, time and ease of use. In this study, TiO2 nanoparticles and C-Nanofibers modified magnetic Fe3O4 nanospheres (TiO2@Fe3O4@C-NFs) synthesized as a multifunctional material employing a simple hydrothermal synthesis method. This innovative material was exploited in the magnetic solid-phase extraction (MSPE) method for the preconcentration of ibuprofen and photocatalytic degradation of antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), and azo dye. To our knowledge, no studies have been previously conducted using the same material as magnetic solid-phase extraction adsorbent and magnetically separable photocatalyst. The characterization of TiO2@Fe3O4@C-NFs was carried out by XRD, FE-SEM, EDX and Raman techniques. The main analytical parameters affecting MSPE performance of ibuprofen such as pH, sorbent amount eluent type and volume and sample volume were optimized. The optimum values of the method were determined at the following parameters: pH 4.0, adsorbent amount 150 mg and eluent 2 mL of acetone. Ibuprofen analysis after MSPE was carried out using a high-performance liquid chromatography diode array detection system (HPLC-DAD). The photocatalytic degradation efficiencies of TiO2@Fe3O4@C-NF hybrid material for probe-analytes reached 80-100% and the complete degradation attained within the range of 8-125 min under UV irradiation. Simple preparation, practical isolation from solutions, high efficiency, reproducibility, and sustainability are the main advantages of the TiO2@Fe3O4@C-NFs for MSPE and photocatalytic degradation applications.
Collapse
|
21
|
Vieira CM, Mafra G, Brognoli R, Richter P, Rosero-Moreano M, Carasek E. A high throughput approach to rotating-disk sorptive extraction (RDSE) using laminar cork for the simultaneous determination of multiclass organic micro-pollutants in aqueous sample by GC-MS. Talanta 2020; 208:120459. [DOI: 10.1016/j.talanta.2019.120459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 01/18/2023]
|
22
|
Koltsakidou Α, Katsiloulis C, Εvgenidou Ε, Lambropoulou DA. Photolysis and photocatalysis of the non-steroidal anti-inflammatory drug Nimesulide under simulated solar irradiation: Kinetic studies, transformation products and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:245-257. [PMID: 31271990 DOI: 10.1016/j.scitotenv.2019.06.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
In this study, the degradation of Nimesulide (NIM), a non-steroidal anti-inflammatory drug, using photolysis, heterogeneous (TiO2 in dispersion) and homogeneous (photo-Fenton reactant) photocatalysis, under simulated solar light (SSL) radiation, was investigated. Various parameters affecting the degradation rate of the target compound during the applied processes were optimized. The efficiency of all treatments used (direct photolysis; TiΟ2/SSL; TiΟ2/Η2Ο2/SSL; TiΟ2/S2Ο82-/SSL; Fe3+/H2O2/SSL; Fe3+/S2O82-/SSL and [Fe(C2O4)3]3-/H2O2/SSL) was evaluated by means of initial reaction rate and mineralization. Moreover, the generated transformation products (TPs) by each basic process (photolysis; TiΟ2/SSL and Fe3+/H2O2/SSL) were identified, using liquid chromatography coupled to high resolution mass spectrometry, and their formation kinetic profiles were given. The main transformation routes of NIM were hydroxylation and fragmentation, for all three treatments applied. Finally, toxicity measurements were conducted using Microtox bioassay in order to evaluate the potential risk of NIM and its TPs to aqueous organisms. Although, the acute toxicity increased during the first stages of treatment the final outcome lead to very low toxicity levels even within 60 min of TiO2/SSL treatment. Concluding, the obtained results suggest that the photocatalytic degradation of NIM can lead to its complete elimination and simultaneously to the detoxification of the solution.
Collapse
Affiliation(s)
- Α Koltsakidou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ch Katsiloulis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ε Εvgenidou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - D A Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
23
|
Castillo-Aguirre A, Maldonado M. Preparation of Methacrylate-based Polymers Modified with Chiral Resorcinarenes and Their Evaluation as Sorbents in Norepinephrine Microextraction. Polymers (Basel) 2019; 11:E1428. [PMID: 31480387 PMCID: PMC6780700 DOI: 10.3390/polym11091428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 11/17/2022] Open
Abstract
Aminomethylation reactions between chiral amino compounds (S)-(-)-1-phenylethylamine and l-proline with tetranonylresorcinarene and tetra-(4-hydroxyphenyl)resorcinarene in presence of formaldehyde were studied. The reaction between l-proline and resorcinarenes generated regioselectively chiral tetra-Mannich bases, due to the molecular incorporation of the fragment of the chiral amino acid. On the other hand, tetranonylresorcinarene and (S)-(-)-1-phenylethylamine formed regio- and diasteroselectively chiral tetrabenzoxazines, both by chiral auxiliary functionalization and by the transformation of the molecular structure that confers inherent chirality. The products obtained were characterized using IR, 1H-NMR, 13C-NMR, COSY, HMQC, and HMBC techniques. The reaction of (S)-(-)-1-phenylethylamine with tetra-(4-hydroxyphenyl)resorcinarene did not proceed under the experimental conditions. Once the chiral aminomethylated tetra-(4-hydroxyphenyl)resorcinarene was obtained, the chemical modification of poly(GMA-co-EDMA) was studied, and the results showed an efficient incorporation of the aminomethylated compound. For the physical modification, chiral aminomethylated tetranonylresorcinarenes were employed, finding that the incorporation of modified resorcinarenes occurs, but with less efficiency than that observed using chemical modification. The modified polymers were characterized via FT-IR, scanning electron microscopy imaging, and elemental analysis. Finally, polymers modified with chiral resorcinarenes were used as sorbents in norepinephrine microextraction; for practical purposes, artificial urine was prepared and used. To perform the microextraction, the decision was made to use the modern rotating-disk sorptive extraction technique (RDSE), because of its analytical attributes as a green, or eco-friendly, technique. According to the results, the method preliminarily validated for the determination of norepinephrine in artificial urine shows that the modified polymer with chiral derivative of tetra-(4-hydroxyphenyl)resorcinarene worked effectively as a new sorbent phase for the quantitative microextraction of norepinephrine, exhibiting high stability and homogeneity of composition and structure within the working range.
Collapse
Affiliation(s)
- Alver Castillo-Aguirre
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, 30 No. 45, Carrera 03, Colombia
| | - Mauricio Maldonado
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, 30 No. 45, Carrera 03, Colombia.
| |
Collapse
|
24
|
Manzo V, Goya-Pacheco J, Arismendi D, Becerra-Herrera M, Castillo-Aguirre A, Castillo-Felices R, Rosero-Moreano M, Carasek E, Richter P. Cork sheet as a sorptive phase to extract hormones from water by rotating-disk sorptive extraction (RDSE). Anal Chim Acta 2019; 1087:1-10. [PMID: 31585556 DOI: 10.1016/j.aca.2019.08.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022]
Abstract
This work reports for the first time the use of laminar cork as a sorptive phase in a microextraction technique, rotating-disk sorptive extraction (RDSE). Typical hormones (estrone, estradiol, estriol and ethinyl estradiol) were selected as analyte models and extracted from wastewater samples on laminar cork with statistically equivalent extraction efficiency to that provided by Oasis HLB. The cork characterization was performed by confocal fluorescence microscopy (CLSM), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), allowing the identification of lignin, suberin and polysaccharides (cellulose and hemicellulose) as the main components of the cork. The best conditions for extraction were as follows: rotation velocity of the disk, 2000 rpm; extraction time, 45 min; and sample volume, 20 mL. The analytical features of the developed method show that calibration curves for all analytes have R2 values higher than 0.99. The absolute recoveries were higher than 63%, and the precision, expressed as relative standard deviation, ranged from 2 to 16%. The LOD and LOQ ranges were 3-19 and 10-62 ng L-1, respectively. The proposed method was applied to the analysis of wastewater, and the concentrations of hormones in a wastewater treatment plant in Santiago, Chile, ranged from <LOQ to 48 ng L-1.
Collapse
Affiliation(s)
- Valentina Manzo
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Jairón Goya-Pacheco
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Daniel Arismendi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Mercedes Becerra-Herrera
- Department of Chemistry, Faculty of Sciences, University of Chile, P.O. Box 653, Santiago, Chile
| | - Alver Castillo-Aguirre
- Department of Chemistry, Faculty of Sciences, National University of Colombia, Headquarters Bogotá, Road 30 N°. 45-03, Colombia
| | - Rosario Castillo-Felices
- Department of Instrumental Analysis, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, 4070043, Concepcion, Chile
| | - Milton Rosero-Moreano
- Research Group in Chromatography and Related Techniques (GICTA), Department of Chemistry, Faculty of Exact and Natural Sciences, University of Caldas, Calle 65 Nº. 26-10, Manizales, Colombia
| | - Eduardo Carasek
- Department of Chemistry, Federal University of Santa Catalina, Florianópolis, 88040900, SC, Brazil
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile.
| |
Collapse
|
25
|
Husein DZ, Hassanien R, Al-Hakkani MF. Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon 2019; 5:e02339. [PMID: 31485528 PMCID: PMC6716349 DOI: 10.1016/j.heliyon.2019.e02339] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/04/2019] [Accepted: 08/15/2019] [Indexed: 11/26/2022] Open
Abstract
The release of Non-Steroidal Anti-Inflammatory drugs (NSAIDs) such as Ibuprofen (Ibu), Naproxen (Nab) and Diclofenac (Dic) to the aquatic system cause serious environmental problems. In this study, green-synthesized copper nanoparticles (Cu NPs) have been used as nano-adsorbent for the removal of Ibu, Nab, and Dic from wastewater samples. Formation of Cu NPs was confirmed by different analytical techniques. The adsorption parameters such as temperature, pH, adsorbate concentration, adsorbent dose and contact time were studied. The best removal results were obtained at these conditions: temperature 298 K, pH = 4.5, 10.0 mg Cu NPs, 60 min. At these conditions, the removal percentage of Ibu, Nap, and Dic were found to be 74.4, 86.9 and 91.4% respectively. The maximum monolayer adsorption capacities were calculated as 36.0, 33.9 and 33.9 mg/g for Dic, Nap, and Ibu respectively. The kinetic studies conducted that the sorption process obeyed the second order kinetic model, while the thermodynamic results revealed that the adsorption process was spontaneous, endothermic (+23.8, +40.8 and +38.3 kJ/mol for Ibu, Nap and Dic respectively). The results revealed that green-synthesized copper nano-adsorbent may be used for the removal of the anti-inflammatory drugs from real wastewater efficiently.
Collapse
Affiliation(s)
- Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt
| | - Reda Hassanien
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt
| | - Mostafa F Al-Hakkani
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt
| |
Collapse
|
26
|
Arismendi D, Becerra-Herrera M, Cerrato I, Richter P. Simultaneous determination of multiresidue and multiclass emerging contaminants in waters by rotating-disk sorptive extraction–derivatization-gas chromatography/mass spectrometry. Talanta 2019; 201:480-489. [DOI: 10.1016/j.talanta.2019.03.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
|
27
|
Opriş O, Ciorîţă A, Soran ML, Lung I, Copolovici D, Copolovici L. Evaluation of the photosynthetic parameters, emission of volatile organic compounds and ultrastructure of common green leafy vegetables after exposure to non-steroidal anti-inflammatory drugs (NSAIDs). ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:631-642. [PMID: 31161525 DOI: 10.1007/s10646-019-02059-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Understanding the effects of many essential non-steroidal anti-inflammatory drugs (NSAIDs) on plants is still limited, especially at environmentally realistic concentrations. This paper presents the influence of three of the most frequently used NSAIDs (diclofenac, ibuprofen, and naproxen) at environmentally realistic concentrations on the autochthonous green leafy vegetables: orache (Atriplex patula L.), spinach (Spinacia oleracea L.) and lettuce (Lactuca sativa L.). Our research was focused on the determination of the photosynthetic parameters, the emission rate of volatile organic compounds, and the evaluation of the ultrastructure of leaves of studied vegetables after exposure to abiotic stress induced by environmental pollutants, namely NSAIDs. The data obtained indicate a moderate reduction of foliage physiological activity as a response to the stress induced by NSAIDs to the selected green leafy vegetables. The increase of the 3-hexenal and monoterpene emission rates with increasing NSAIDs concentration could be used as a sensitive and a rapid indicator to assess the toxicity of the NSAIDs. Microscopic analysis showed that the green leafy vegetables were affected by the selected NSAIDs. In comparison to the controls, the green leafy vegetables treated with NSAIDs presented irregular growth of glandular trichomes on the surface of the adaxial side of the leaves, less stomata, cells with less cytoplasm, irregular cell walls and randomly distributed chloroplasts. Of the three NSAIDs investigated in this study, ibuprofen presented the highest influence. The results obtained in this study can be used to better estimate the impact of drugs on the environment and to improve awareness on the importance of the responsible use of drugs.
Collapse
Affiliation(s)
- Ocsana Opriş
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Alexandra Ciorîţă
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Ildikó Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Dana Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection and Institute of Research, Innovation and Development in Technical and Natural Sciences of "Aurel Vlaicu" University, 2 Elena Drăgoi, 310330, Arad, Romania
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection and Institute of Research, Innovation and Development in Technical and Natural Sciences of "Aurel Vlaicu" University, 2 Elena Drăgoi, 310330, Arad, Romania.
| |
Collapse
|
28
|
Lis H, Stepnowski P, Caban M. Salinity and pH as factors affecting the passive sampling and extraction of pharmaceuticals from water. J Sep Sci 2019; 42:2949-2956. [PMID: 31267662 DOI: 10.1002/jssc.201900346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 11/05/2022]
Abstract
Passive sampling is an attractive technique for the long-term monitoring of pharmaceuticals in the water environment. The reliability of the received results depends on the properly performed calibration, namely the determination of analyte sampling rates. This step can be the source of a systematic error, as the sampling rate values are dependent on the water donor phase parameters. This is especially important for pharmaceuticals, since their chemical characteristics and ionic form change with pH. In this study, the cross-effect of pH (3, 7, and 9) and salinity (0, 7, and 35 practical salinity unit, using artificial sea water) on the passive sampling of 21 pharmaceuticals (antiparasitics, beta-blockers, non-steroidal anti-inflammatory drugs, sulfonamides) was tested. The primarily determined parameter was the sampling rate. In addition, the extraction efficiency, partitioning coefficient, and the concentration of the analytes on the sorbent were calculated. Generally, for the non-steroidal anti-inflammatory drugs, beta-blockers, and antiparasitics, the change both in pH and salinity had a negligible impact on the mentioned experimental parameters. In contrast, the extraction of sulfonamides was impacted by both pH and salinity, while lipophilicity was not a decisive parameter.
Collapse
Affiliation(s)
- Hanna Lis
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Piotr Stepnowski
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Magda Caban
- Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| |
Collapse
|
29
|
Judák P, Polet M, Van Eenoo P, Benoit A, Buisson C, Deventer K. Peptide enrichment by ion-pair solid-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1121:89-95. [PMID: 31132734 DOI: 10.1016/j.jchromb.2019.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/05/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
The technique of Solid-Phase Extraction (SPE) is widely used in various fields to concentrate samples and the search for tools to improve recoveries remains of outmost importance. The use of polymer based cartridges has become prevailing in a broad range of fields to enrich peptides from biological matrices. However, the existing SPE protocols are characterized by disparity. Ion-pairing (IP) reagents are commonly used in chromatographic applications, but their combination with SPE is less known. The aim of this study was to evaluate various SPE loading conditions, including the use of IP reagents, to improve the recoveries of nine selected peptide molecules. Control of pH and the use of IP reagents were found to be crucial to improve the enrichment of the peptides, especially cationic peptides, for which an up to ten-fold increase was observed. The practical potential of the presented theoretical findings were verified by employing IP-SPE for the development of an efficient extraction method for the doping relevant peptide Synacthen. The general proof of principle was obtained by analysis of excretion study urine samples and validation was performed with focus on the limit of detection (20 pg/ml) and recovery (37%).
Collapse
Affiliation(s)
- Péter Judák
- Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Technologiepark 30 B, B-9052 Zwijnaarde, Belgium.
| | - Michaël Polet
- Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Technologiepark 30 B, B-9052 Zwijnaarde, Belgium
| | - Peter Van Eenoo
- Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Technologiepark 30 B, B-9052 Zwijnaarde, Belgium
| | - Aurélie Benoit
- AFLD, Département des Analyses, 143 avenue Roger Salengro, 92290 Châtenay-Malabry, France
| | - Corinne Buisson
- AFLD, Département des Analyses, 143 avenue Roger Salengro, 92290 Châtenay-Malabry, France
| | - Koen Deventer
- Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Technologiepark 30 B, B-9052 Zwijnaarde, Belgium
| |
Collapse
|
30
|
A rotating cotton‐based disk packed with a cation-exchange resin: Separation of ofloxacin from biological fluids followed by chemiluminescence determination. Talanta 2019; 196:117-123. [DOI: 10.1016/j.talanta.2018.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/24/2022]
|
31
|
Mirzajani R, Kardani F, Ramezani Z. Preparation and characterization of magnetic metal–organic framework nanocomposite as solid-phase microextraction fibers coupled with high-performance liquid chromatography for determination of non-steroidal anti-inflammatory drugs in biological fluids and tablet formulation samples. Microchem J 2019. [DOI: 10.1016/j.microc.2018.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Vieira CMS, Mazurkievicz M, Lopez Calvo AM, Debatin V, Micke GA, Richter P, Rosero-Moreano M, Rocha ECD. Exploiting green sorbents in rotating-disk sorptive extraction for the determination of parabens by high-performance liquid chromatography with tandem electrospray ionization triple quadrupole mass spectrometry. J Sep Sci 2018; 41:4047-4054. [DOI: 10.1002/jssc.201800426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Camila M. S. Vieira
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Melaine Mazurkievicz
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Angela Maria Lopez Calvo
- Grupo de Investigación en Cromatografía y Técnicas Afines GICTA, Departamento de Química, Facultad de Ciencias Exactas y Naturales; Universidad de Caldas; Manizales Colombia
| | - Vítor Debatin
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Gustavo Amadeu Micke
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis SC Brazil
| | - Pablo Richter
- Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Inorgánica y Analítica; Universidad de Chile; Santiago Chile
| | - Milton Rosero-Moreano
- Grupo de Investigación en Cromatografía y Técnicas Afines GICTA, Departamento de Química, Facultad de Ciencias Exactas y Naturales; Universidad de Caldas; Manizales Colombia
| | | |
Collapse
|
33
|
Wang R, Li W, Chen Z. Solid phase microextraction with poly(deep eutectic solvent) monolithic column online coupled to HPLC for determination of non-steroidal anti-inflammatory drugs. Anal Chim Acta 2018; 1018:111-118. [DOI: 10.1016/j.aca.2018.02.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
|
34
|
A magnetic adsorbent grafted with pendant naphthyl polymer brush for enrichment of the nonsteroidal anti-inflammatory drugs indomethacin and diclofenac. Mikrochim Acta 2018; 185:370. [DOI: 10.1007/s00604-018-2913-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022]
|
35
|
Wan Ibrahim WN, Sanagi MM, Mohamad Hanapi NS, Kamaruzaman S, Yahaya N, Wan Ibrahim WA. Solid-phase microextraction based on an agarose-chitosan-multiwalled carbon nanotube composite film combined with HPLC-UV for the determination of nonsteroidal anti-inflammatory drugs in aqueous samples. J Sep Sci 2018; 41:2942-2951. [PMID: 29877605 DOI: 10.1002/jssc.201800064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023]
Abstract
We describe the preparation, characterization, and application of a composite film adsorbent based on blended agarose-chitosan-multiwalled carbon nanotubes for the preconcentration of selected nonsteroidal anti-inflammatory drugs in aqueous samples before determination by high performance liquid chromatography with ultraviolet detection. The composite film showed a high surface area (4.0258 m2 /g) and strong hydrogen bonding between the multiwalled carbon nanotubes and agarose/chitosan matrix, which prevent adsorbent deactivation and ensure long-term stability. Several parameters, such as sample pH, addition of salt, extraction time, desorption solvent, and concentration of multiwalled carbon nanotubes in the composite film were optimized using a one-factor-at-time approach. The optimum extraction conditions obtained were as follows: isopropanol as conditioning solvent, 10 mL of sample solution at pH 2, extraction time of 30 min, stirring speed of 600 rpm, 100 μL of isopropanol as desorption solvent, desorption time of 5 min under ultrasonication, and 0.4% w/v of composite film. Under the optimized conditions, the calibration curve showed good linearity in the range of 1-500 ng/mL (r2 = 0.997-0.999), and good limits of detection (0.89-8.05 ng/mL) were obtained with good relative standard deviations of < 4.59% (n = 3) for the determination of naproxen, diclofenac sodium salt, and mefenamic acid drugs.
Collapse
Affiliation(s)
| | - Mohd Marsin Sanagi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | | | - Sazlinda Kamaruzaman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Wan Aini Wan Ibrahim
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
36
|
Feng Y, Song Q, Lv W, Liu G. Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. CHEMOSPHERE 2017; 189:643-651. [PMID: 28965059 DOI: 10.1016/j.chemosphere.2017.09.109] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
Ketoprofen (KET) is a mostly used nonsteroidal anti-inflammatory drug that has been frequently detected in wastewater effluents and surface waters. In this study, we investigated the degradation of KET by sulfate radical (SO4-) based advanced oxidation processes (SR-AOPs) in aqueous solution. The degradation kinetics, mechanisms, and effects of natural water matrices on thermally activated persulfate (TAP) oxidation of KET were systematically investigated. Increasing the temperature and persulfate (PS) concentrations greatly enhanced the degradation of KET. KET degradation is pH-dependent with an optimum pH of 5.0. Reactions in the presence of radical quenchers revealed the dominant role of SO4- in oxidizing KET. Water matrix significantly influenced the degradation of KET. The common inorganic anions present in natural waters exhibited inhibitory effect on KET degradation, and the inhibition followed the order of Cl- > CO32- > HCO3- > NO3-; however, no significant inhibition of KET degradation was observed in the presence of Ca2+ and Mg2+ cations. The presence of natural organic matter (NOM) suppressed KET degradation, and the suppression increased as NOM concentration increase. Products identification and mineralization experiments revealed that KET and its degradation intermediates were finally transformed into CO2 and H2O. The results of this study indicated that applying SR-AOPs for the remediation of KET contaminated water matrix is technically possible.
Collapse
Affiliation(s)
- Yiping Feng
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Qingyun Song
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Wenying Lv
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Guoguang Liu
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
37
|
Evaluation of the rotating disk sorptive extraction technique with polymeric sorbent for multiresidue determination of pesticides in water by ultra-high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 2017; 1516:54-63. [DOI: 10.1016/j.chroma.2017.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 01/05/2023]
|
38
|
Magnetic solid phase extraction of non-steroidal anti-inflammatory drugs from water samples using a metal organic framework of type Fe3O4/MIL-101(Cr), and their quantitation by UPLC-MS/MS. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2319-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Ahmed MJ. Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: Review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 190:274-282. [PMID: 28063293 DOI: 10.1016/j.jenvman.2016.12.073] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceutical pollutants are of significant effect on the environment, so that their treatments have been addressed in many studies. Activated carbon (AC) adsorbent shows best attraction for these compounds due to its unique characteristics represented by high capacity and porosity. In this article, the adsorption performance of AC towards non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, ketoprofen, naproxen, and diclofenac were reviewed. According to collected data, maximum adsorption capacities of 417, 25, 290, and 372 mg/g were obtained from Langmuir isotherm for these drugs, respectively. The values of 1/n for Freundlich isotherm were lower than unity for all studied drugs, confirming the nonlinear and favorable adsorption. In addition, kinetics data were well represented by the pseudo-second-order model and mechanism was not controlled by the pore diffusion step alone. AC adsorption demonstrated superior performance for all selected NSAIDs, thus being efficient technology for treatment of these pharmaceutical pollutants.
Collapse
Affiliation(s)
- Muthanna J Ahmed
- Department of Chemical Engineering, University of Baghdad, P.O. Box 47024, Aljadria, Baghdad, Iraq.
| |
Collapse
|
40
|
Dimpe KM, Nomngongo PN. Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.023] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Becerra-Herrera M, Honda L, Richter P. Ultra-high-performance liquid chromatography—Time-of-flight high resolution mass spectrometry to quantify acidic drugs in wastewater. J Chromatogr A 2015; 1423:96-103. [DOI: 10.1016/j.chroma.2015.10.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
|
42
|
Corrotea Y, Aguilera N, Honda L, Richter P. Determination of Hormones in Wastewater Using Rotating Disk Sorptive Extraction and Gas Chromatography–Mass Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1098653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
A molecularly imprinted polymer as the sorptive phase immobilized in a rotating disk extraction device for the determination of diclofenac and mefenamic acid in wastewater. Anal Chim Acta 2015; 889:130-7. [DOI: 10.1016/j.aca.2015.07.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 11/23/2022]
|
44
|
Schmidt W, Redshaw CH. Evaluation of biological endpoints in crop plants after exposure to non-steroidal anti-inflammatory drugs (NSAIDs): implications for phytotoxicological assessment of novel contaminants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 112:212-22. [PMID: 25463873 DOI: 10.1016/j.ecoenv.2014.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Abstract
Human pharmaceuticals have been detected in the terrestrial environment at µg to mg kg(-1) concentrations. Repeated application of sewage sludge (biosolids) and increasing reclaimed wastewater use for irrigation could lead to accumulation of these novel contaminants in soil systems. Despite this, potential phytotoxicological effects on higher plants have rarely been evaluated. These studies aimed to test effects upon germination, development, growth and physiology of two crop plants, namely radish (Raphanus sativus Spakler 3) and lettuce (Lactuca sativa All Year Around), after exposure to different, but structurally related non-steroidal anti-inflammatory drugs (NSAIDs) at environmentally relevant concentrations. A range of biological endpoints comprising biomass, length, water content, specific root and shoot length, root to shoot ratio, daily progress of stages of cell elongation and organ emergence (primary root, hypocotyl elongation, cotyledon emergence, cotyledon opening, and no change), as well as photosynthetic measurements were evaluated. Compounds from the fenamic acid class were found to affect R. sativus root endpoints (root length and water content), while ibuprofen affected early root development of L. sativa. In general, phytotoxicological effects on root endpoints demonstrated that impacts upon higher plants are not only compound specific, but also differ between plant species. It was found that the usage of a wide range of biological endpoints (all simple, cost-effective and ecologically relevant) were beneficial in detecting differences in plant responses to NSAID exposure. Due to paucity and discrepancy within the few previously available phytotoxicological studies with pharmaceuticals, it is now essential to allocate time and resources to consider development of suitable chronic toxicity tests, and some suggestions regarding this are presented.
Collapse
Affiliation(s)
- Wiebke Schmidt
- European Centre for Environment and Human Health (ECEHH), University of Exeter Medical School, Cornwall, United Kingdom; School of Geography Earth and Environmental Sciences, University of Plymouth, Devon, United Kingdom.
| | - Clare H Redshaw
- European Centre for Environment and Human Health (ECEHH), University of Exeter Medical School, Cornwall, United Kingdom; School of Geography Earth and Environmental Sciences, University of Plymouth, Devon, United Kingdom
| |
Collapse
|
45
|
Cañas A, Richter P, Escandar GM. Chemometrics-assisted excitation–emission fluorescence spectroscopy on nylon-attached rotating disks. Simultaneous determination of polycyclic aromatic hydrocarbons in the presence of interferences. Anal Chim Acta 2014; 852:105-11. [DOI: 10.1016/j.aca.2014.09.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
|
46
|
Programmable flow-based dynamic sorptive microextraction exploiting an octadecyl chemically modified rotating disk extraction system for the determination of acidic drugs in urine. J Chromatogr A 2014; 1368:64-9. [DOI: 10.1016/j.chroma.2014.09.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/05/2014] [Accepted: 09/27/2014] [Indexed: 11/18/2022]
|