1
|
Bajagain R, Noh S, Kim YH, Kim H, Seok KS, Bailon MX, Hong Y. Application of diffusive gradient in thin films probes to monitor trace levels of labile methylmercury in freshwaters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:404. [PMID: 38557915 DOI: 10.1007/s10661-024-12564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
This study aimed to optimize the methods for sampling and analyzing methylmercury (MeHg) concentrated within diffusive gradients in thin films (DGT) and its application to different water bodies. We explored the elution solution for MeHg, comprised of 1.13 mM thiourea and 0.1M HCl, optimizing its volume to 50 mL. In addition, we found that it is necessary to analyze the entire extraction solution after adjusting its pH, to ensure completion of the ethylation reaction. The DGT samplers were deployed in two distinct aquatic environments (i.e., Okjeong Lake and Nakdong River) for up to 6 weeks, and this study demonstrated to predict the time-weighted average concentration with a diffusion coefficient of 7.65 × 10-6 cm2 s-1 for MeHg in the diffusive gel. To assess the diffusive boundary layer (DBL) effects, the DGT samplers with different agarose diffusive gel thickness were deployed. The mass of MeHg accumulated in the DGT resin at a given time decreased with increasing diffusive gel thickness, because of creating longer diffusion pathways within thicker gels. The labile MeHg concentration estimated by the DGT in Okjeong Lake and Nakdong River are found in the range of 61-111 and 55-105 pg L-1, respectively, which were found to be similar to the grab sampling data. Additionally, this study evaluated depth-dependent MeHg in Okjeong Lake. The vertical profile results showed that the concentration of MeHg at the depth of 2.3 and 15.7 m are about 1.5 and 4.6 times of the DGT installed at 0.3 m of the surface layer, respectively, suggesting potential mercury methylation in deep waters. These findings have practical implications for predicting bioavailability, assessing risks, and formulating strategies for water body management and contamination remediation.
Collapse
Affiliation(s)
- Rishikesh Bajagain
- Department of Environmental Engineering, Korea University Sejong Campus, 30019, Sejong, Republic of Korea
| | - Seam Noh
- Chemicals Research Division, National Institute of Environmental Research, 22689, Incheon, Republic of Korea
| | - Young-Hee Kim
- Chemicals Research Division, National Institute of Environmental Research, 22689, Incheon, Republic of Korea
| | - Hyuk Kim
- Chemicals Research Division, National Institute of Environmental Research, 22689, Incheon, Republic of Korea
| | - Kwang-Seol Seok
- Chemicals Research Division, National Institute of Environmental Research, 22689, Incheon, Republic of Korea
| | - Mark Xavier Bailon
- Department of Environmental Engineering, Korea University Sejong Campus, 30019, Sejong, Republic of Korea
- Department of Science and Technology - Philippines, Philippine Science High School - Central Luzon Campus, Lily Hill, Clark Freeport Zone, Mabalacat City, Pampanga, 2010, Philippines
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 30019, Sejong, Republic of Korea.
| |
Collapse
|
2
|
Senila M, Levei EA, Frentiu T, Mihali C, Angyus SB. Assessment of mercury bioavailability in garden soils around a former nonferrous metal mining area using DGT, accumulation in vegetables, and implications for health risk. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1554. [PMID: 38036722 DOI: 10.1007/s10661-023-12144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Mercury (Hg) is a toxic, non-essential element for living organisms, frequently present in high concentrations in soils from industrial areas. The total, dissolved, and labile Hg concentrations in garden soils and their accumulation in edible vegetables (onion, garlic, lettuce, and parsley) grown on contaminated soils in localities situated a former mining area were evaluated. The labile Hg fraction was estimated by diffusive gradient in thin films (DGT). The soil-to-vegetable transfer factors, as well as the health risk by exposure to Hg, were calculated based on the labile Hg concentration in soil. The total Hg concentration in soil varied widely (0.11-3.77 mg kg-1), Hg in soil solution ranged between 2.14 and 20.2 μg L-1 and labile Hg between 1.13 and 18.6 μg L-1. About 36-96% (84% on average) of the Hg concentration in soil solution was found in labile form. Multivariate analysis revealed significant correlations between the labile Hg concentration in soil and Hg accumulated in vegetables. The hazard indices showed that, although the study area is affected by legacy pollution, exposure to soil and consumption of locally grown vegetables do not pose health risks.
Collapse
Affiliation(s)
- Marin Senila
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293, Cluj-Napoca, Romania.
| | - Erika Andrea Levei
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293, Cluj-Napoca, Romania
| | - Tiberiu Frentiu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028, Cluj-Napoca, Romania
| | - Cristina Mihali
- Faculty of Sciences, Technical University of Cluj Napoca, Baia Mare, Victoriei 76, 430122, Baia-Mare, Romania
| | - Simion Bogdan Angyus
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, Donath 67, 400293, Cluj-Napoca, Romania
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Amico D, Tassone A, Pirrone N, Sprovieri F, Naccarato A. Recent applications and novel strategies for mercury determination in environmental samples using microextraction-based approaches: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128823. [PMID: 35405590 DOI: 10.1016/j.jhazmat.2022.128823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The growing need to monitor Hg levels in the environment to control its emissions and evaluate the effectiveness of reduction policies is driving the scientific community to focus efforts on creating analytical methods that are simpler, lower cost, more performing, and environmentally sustainable. In this context, an important contribution is provided by microextraction techniques, which have long proven to be simple, reliable, and to ensure an environmentally responsible sample preparation. This manuscript reviews the recent progress in the determination of environmental Hg using microextraction techniques. The considered studies involve all environmental compartments (i.e., air, water, soil, and biota) and have been discussed by grouping them according to the employed technique while pointing out the main advances achieved and the most important limitations. The ultimate goal is to provide an up-to-date overview of the analytical potential of microextraction techniques that can be exploited in various investigation fields and to highlight the most important knowledge gaps that should be addressed in the coming years, such as in-situ sampling, the use of natural materials, and the value of metrological support to obtain data SI-traceable and comparable.
Collapse
Affiliation(s)
- Domenico Amico
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | - Attilio Naccarato
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy; Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Rende, Italy.
| |
Collapse
|
4
|
Marrugo-Madrid S, Salas-Moreno M, Gutiérrez-Mosquera H, Salazar-Camacho C, Marrugo-Negrete J, Díez S. Assessment of dissolved mercury by diffusive gradients in thin films devices in abandoned ponds impacted by small scale gold mining. ENVIRONMENTAL RESEARCH 2022; 208:112633. [PMID: 34973194 DOI: 10.1016/j.envres.2021.112633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
In order to fulfil the Minamata Convention on Mercury, it is necessary to monitor the Hg contamination in freshwater ecosystems nearby artisanal and small scale gold mining (ASGM) areas. Since most of these ASGM communities are located in remote areas, a convenient method for sampling, preserving and transporting samples is needed. In this study we evaluated the feasibility of the diffusive gradient in thin-films (DGT) technique to detect and quantify the labile fraction of Hg and other metals (Pb, Cu, Zn, Cd, Ni, Mn and Cr) in a hard-to-reach gold mining district in the state of Chocó, Colombia. We deployed DGT at sampling sites along the Atrato river and abandoned mining ponds (AMPs) which were deserted in different periods since 1997 to 2019 (6-15 years). In average, the labile THg concentrations in AMPs (148.9 ± 43.2 ng L-1) were a 50% higher than in the river water (99.9 ± 37.4 ng L-1). In the ponds, no significant differences were found in labile Hg with respect abandonment period. Labile Ni (0.9-493.1), Mn (1.33-11.48), Cu (0.030-2.233), and Zn (0.67-10.29) (in μg L-1) were found in higher amounts than for the rest of metals. Labile concentrations of metals are related with their downstream proximity to gold mining activities, being higher in devices deployed close to ASGM sites. Moreover, this study demonstrates the feasibility of the DGT technique to sample, transport, storage, and preserve labile Hg from hard-to-reach ASGM areas.
Collapse
Affiliation(s)
- Siday Marrugo-Madrid
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain
| | - Manuel Salas-Moreno
- Faculty of Natural Sciences, Department of Biology, Universidad Tecnológica del Chocó, Quibdó, Colombia
| | - Harry Gutiérrez-Mosquera
- Faculty of Natural Sciences, Department of Biology, Universidad Tecnológica del Chocó, Quibdó, Colombia
| | - Carlos Salazar-Camacho
- Faculty of Natural Sciences, Department of Biology, Universidad Tecnológica del Chocó, Quibdó, Colombia
| | | | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
5
|
Galceran J, Gao Y, Puy J, Leermakers M, Rey-Castro C, Zhou C, Baeyens W. Speciation of Inorganic Compounds in Aquatic Systems Using Diffusive Gradients in Thin-Films: A Review. Front Chem 2021; 9:624511. [PMID: 33889563 PMCID: PMC8057345 DOI: 10.3389/fchem.2021.624511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
The speciation of trace metals in an aquatic system involves the determination of free ions, complexes (labile and non-labile), colloids, and the total dissolved concentration. In this paper, we review the integrated assessment of free ions and labile metal complexes using Diffusive Gradients in Thin-films (DGT), a dynamic speciation technique. The device consists of a diffusive hydrogel layer made of polyacrylamide, backed by a layer of resin (usually Chelex-100) for all trace metals except for Hg. The best results for Hg speciation are obtained with agarose as hydrogel and a thiol-based resin. The diffusive domain controls the diffusion flux of the metal ions and complexes to the resin, which strongly binds all free ions. By using DGT devices with different thicknesses of the diffusive or resin gels and exploiting expressions derived from kinetic models, one can determine the labile concentrations, mobilities, and labilities of different species of an element in an aquatic system. This procedure has been applied to the determination of the organic pool of trace metals in freshwaters or to the characterization of organic and inorganic complexes in sea waters. The concentrations that are obtained represent time-weighted averages (TWA) over the deployment period.
Collapse
Affiliation(s)
- Josep Galceran
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Yue Gao
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jaume Puy
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Martine Leermakers
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Rey-Castro
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Chunyang Zhou
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Willy Baeyens
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Elias G, Díez S, Zhang H, Fontàs C. Development of a new binding phase for the diffusive gradients in thin films technique based on an ionic liquid for mercury determination. CHEMOSPHERE 2020; 245:125671. [PMID: 31883501 DOI: 10.1016/j.chemosphere.2019.125671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Determining bioavailable trace concentrations of mercury (Hg) in water is still a challenging analytical task. In this study, we report a methodology for determining labile Hg in natural waters using newly developed sorbents. Silicon dioxide at a nanoparticle range (Si-np) and cellulose powder at a microparticle range (Cel-p), both modified with the ionic liquid trioctylmethylammonium thiosalicylate (TOMATS), have been tested as sorbents (sorb-TOMATS) for Hg(II) uptake from solution. These novel sorb-TOMATS materials were characterized, and parameters affecting the uptake were examined. A similar Hg(II) uptake efficiency (97%) and binding capacity (9 mg Hg/g) was obtained for both sorb-TOMATS, while only a 25% of Hg(II) was taken up using non-impregnated materials. Moreover, these sorb-TOMATS were effectively embedded in agarose gel and were tested as a novel binding phase for the Diffusive Gradients in Thin Films (DGT) technique. Research revealed Si(np)-TOMATS sorbent as a suitable binding phase in the DGT technique for Hg(II) measurements, since it also allowed the efficient elution of the bound Hg(II). This new binding phase showed strong linear correlation between the accumulated Hg(II) mass and deployment time, which is in agreement with the DGT principle. In summary, this novel sorbent has a great potential to improve Hg monitoring in natural waters when integrated it in the DGT design.
Collapse
Affiliation(s)
- Gemma Elias
- Chemistry Department, University of Girona, C/ Maria Aurèlia Capmany, 69, 17003, Girona, Spain; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Clàudia Fontàs
- Chemistry Department, University of Girona, C/ Maria Aurèlia Capmany, 69, 17003, Girona, Spain.
| |
Collapse
|
7
|
Peng W, Li X, Lin M, Gui H, Xiang H, Zhao Q, Fan W. Biosafety of cadmium contaminated sediments after treated by indigenous sulfate reducing bacteria: Based on biotic experiments and DGT technique. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121439. [PMID: 31640935 DOI: 10.1016/j.jhazmat.2019.121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Sulfate reducing bacteria (SRB) biostabilization has attracted particular attention due to its ability to prevent and control heavy metal pollution. In this study, biotic experiments (immobilisation test of Daphnia (D.) magna, germination experiment of cucumber seeds, and in vitro experiment using gut juices of Sipunculus (S.) nudus) and diffusive gradients in thin films (DGT) technique were performed to investigate the biosafety of cadmium (Cd) contaminated sediments after being treated by indigenous SRB. Results showed that SRB treatment reduced Cd bioaccessibility of sediment to S. nudus, Cd levels in the overlying water and Cd bioavailability to D. magna. However, the treatment increased the biotoxicity of overlying water due to significant reduction in the root length and germination index of cucumber seeds. DGT results confirmed that SRB treatment increased Cd stability in sediment, and reduced its release from the sediment into the overlying water. The biotoxicity of overlying water was not caused by Cd, but possibly by the added culture medium, SRB itself, or its metabolites. More attention is required to assess the safety of SRB treatment when it is used to remediate environmental matrix contaminated by heavy metals.
Collapse
Affiliation(s)
- Weihua Peng
- School of Space and Environment, Beihang University, Beijing 100191, PR China; National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China
| | - Xiaomin Li
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Manli Lin
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China; School of Resources and Civil Engineering, Suzhou University, Suzhou 234000, PR China
| | - Herong Gui
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institute, Suzhou University, Suzhou 234000, PR China
| | - Huidong Xiang
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Qing Zhao
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| |
Collapse
|
8
|
Sanders JP, McBurney A, Gilmour CC, Schwartz GE, Washburn S, Kane Driscoll SB, Brown SS, Ghosh U. Development of a Novel Equilibrium Passive Sampling Device for Methylmercury in Sediment and Soil Porewaters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:323-334. [PMID: 31692059 PMCID: PMC9188764 DOI: 10.1002/etc.4631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
We explored the concept of equilibrium passive sampling for methylmercury (MeHg) using the strategy developed for hydrophobic organic chemicals. Passive sampling should allow prediction of the concentration of the chemically labile fraction of MeHg in sediment porewaters based on equilibrium partitioning into the sampler, without modeling diffusion rates through the sampler material. Our goals were to identify sampler materials with the potential to mimic MeHg partitioning into animals and sediments and provide reversible sorption in a time frame appropriate for in situ samplers. Candidate materials tested included a range of polymers embedded with suitable sorbents for MeHg. The most promising were activated carbon (AC) embedded in agarose, thiol-self-assembled monolayers on mesoporous supports embedded in agarose, and cysteine-functionalized polyethylene terephthalate, which yielded log sampler-water partition coefficients of 2.8 to 5 for MeHgOH and MeHg complexed with dissolved organic matter (Suwannee River humic acid). Sampler equilibration time in sediments was approximately 1 to 2 wk. Investigation of the MeHg accumulation mechanism by AC embedded in agarose suggested that sampling was kinetically influenced by MeHg interactions with AC particles and not limited by diffusion through the gel for this material. Also, AC exhibited relatively rapid desorption of Hg and MeHg, indicating that this sorbent is capable of reversible, equilibrium measurements. In sediment:water microcosms, porewater concentrations made with isotherm-calibrated passive samplers agreed within a factor of 2 (unamended sediment) or 4 (AC-amended sediment) with directly measured concentrations. The present study demonstrates a potential new approach to passive sampling of MeHg. Environ Toxicol Chem 2020;39:323-334. © 2019 SETAC.
Collapse
Affiliation(s)
- James P Sanders
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Alyssa McBurney
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | | | - Grace E Schwartz
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Spencer Washburn
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | | | | | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Taylor VF, Buckman KL, Burgess RM. Preliminary investigation of polymer-based in situ passive samplers for mercury and methylmercury. CHEMOSPHERE 2019; 234:806-814. [PMID: 31247490 PMCID: PMC6742538 DOI: 10.1016/j.chemosphere.2019.06.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 05/24/2023]
Abstract
Development of an in situ passive sampler for mercury (Hg), and its toxic form, methylmercury (MeHg), using simple polymer films, was explored for the potential to make an efficient and environmentally relevant monitoring tool for this widespread aquatic pollutant. The sulfur-containing polymers polysulfone (PS), and polyphenylene sulfide (PPS), were found to accumulate both MeHg and inorganic Hg (iHg), whereas polyethylene (PE) sorbed iHg but not MeHg, and polyoxymethylene (POM) and polyethersulfone (PES) films had low affinity for both Hg species. Uptake rates of Hg species into polymers were linear over two weeks, and dissolved organic matter at natural levels had no effect on partitioning of MeHg or iHg to the polymers. Sorption of MeHg to PS and PPS from three estuarine sediments correlated with uptake into diffusive gel-type samplers over time, and in PPS, with accumulation by the estuarine amphipod, Leptocheirus plumulosus. These polymers had lower MeHg adsorption rates, but are simpler to assemble, than diffusive gel-type samplers. Higher contaminant concentrations in polymer and gel-type samplers corresponded with porewater concentrations across sediments, suggesting they sample the dissolved MeHg pool, whereas MeHg levels in amphipods were more elevated with higher bulk sediment MeHg, which may reflect feeding strategy. While polymers with higher affinity for MeHg and iHg are needed for some environmental applications, this work suggests a simple sampling approach has potential for time-integrated, environmentally-meaningful MeHg monitoring in contaminated sediments.
Collapse
Affiliation(s)
- Vivien F Taylor
- Department of Earth Science, Dartmouth College, Hanover, NH, USA.
| | - Kate L Buckman
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert M Burgess
- U.S. Environmental Protection Agency, Office of Research and Development, Atlantic Ecology Division, Narragansett, RI, USA
| |
Collapse
|
10
|
Turull M, Fontàs C, Díez S. Conventional and novel techniques for the determination of Hg uptake by lettuce in amended agricultural peri-urban soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:40-46. [PMID: 30851683 DOI: 10.1016/j.scitotenv.2019.02.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Peri-urban agriculture provides environmental benefits to the nearby urban areas. However, domestic and industrial infrastructures can be sources of pollution that can affect agricultural production. In this work, the diffusive gradient in thin film (DGT) technique was used to assess the bioavailability of mercury (Hg) in organic-amended agricultural soils, and uptake by lettuce. Two different amendments were studied individually in three different sets using a wood-based biochar at two rates (3% and 6%, w/w), and compost at one rate (30% w/w). The effect of the amendments on Hg bioavailability, mobility and uptake was investigated by means of both DGT analyses and accumulation of Hg by lettuce. DGT manufactured in-house devices with polyacrylamide gel using both open and restricted diffusive layers (ODL and RDL, respectively) were used to determine organic and inorganic Hg labile species in soils, respectively. The Hg concentration in lettuce leaves and roots were analyzed and compared with DGT measurements to predict the uptake of Hg from the different organic-amended soils and the non-amended soils. Results show that the application of biochar reduces the bioavailability of Hg in soil and, in consequence, the Hg uptake by lettuce. Inorganic Hg species were predominant in all the different sets of the experiment (62-97%), although the addition of the different amendments reduced the free ionic species in soil.
Collapse
Affiliation(s)
- Marta Turull
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034 Barcelona, Spain
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69,17003 Girona, Spain
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|
11
|
Passive sampler measurements of inorganic arsenic species in environmental waters: A comparison between 3-mercapto-silica, ferrihydrite, Metsorb®, zinc ferrite, and zirconium dioxide binding gels. Talanta 2019; 198:518-526. [PMID: 30876594 DOI: 10.1016/j.talanta.2019.01.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 11/21/2022]
Abstract
The performances of five Diffusive Gradients in Thin Films (DGT) binding gels, namely 3-mercapto-functionalized silica (3MP), ferrihydrite (Fh), Metsorb®, zinc ferrite (ZnFe2O4), and Zirconium oxide (ZrO2), were evaluated for in situ determination of As speciation in water and sediments. A combination of batch experiments at various pH (without addition of buffers) and in the presence of reduced species (Mn2+, Fe2+ and HS-),time-series experiments in oxic waters, and in situ deployment in anoxic river sediments has permitted to evaluate the potential interferences among the binding gels. Firstly, the efficiency of each DGT binding gel dedicated to total As (i.e., Fh, Metsorb®, ZnFe2O4 and ZrO2) or As(III) (i.e., 3MP) determination confirms that the determination of As species is possible in oxic freshwater and seawater over 96 h for a wide range of pH (5-9). Secondly, concerning the deployment in river sediment, high HCO3- concentrations have a little negative effect only on the DGT performances of the iron(III)-binding gels (i.e, Fh and ZnFe2O4). Thirdly, the presence of sulfides does not show any effect on the DGT uptake of As, but strongly affects the elution factor parameter. Discrepancies in elution between the different binding gels potentially result in precipitation of orpiment, especially in 1 mol L-1 HNO3. A correction of the classical elution factor derived from batch experiments was applied to provide more representative results. Finally, this study shows the difficulties to determine As speciation in anoxic sediments, and suggests that corrections of the elution factor may be required as a function of the species present in the deployment matrices.
Collapse
|
12
|
Díez S, Giaggio R. Do biofilms affect the measurement of mercury by the DGT technique? Microcosm and field tests to prevent biofilm growth. CHEMOSPHERE 2018; 210:692-698. [PMID: 30031999 DOI: 10.1016/j.chemosphere.2018.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
The diffusive gradients in thin films (DGT) technique has been used routinely for monitoring the dissolved, bioavailable fraction of trace metals in freshwater during field campaigns. Nevertheless, for long deployment times, the biofilm formed on the filter of the DGT devices restricts trace metal uptake and hence interferes with the DGT measurements. In this work, we design different experiments to evaluate the potential of silver nanoparticles (AgNPs) in preventing the formation of biofilms on in-house manufactured mercury-specific DGTs. Laboratory tests were carried out by a microcosm system in independent glass containers, where biofilms obtained from field inocula were grown for weeks. Afterward, several experiments were performed with Hg-spiked river water, biofilms and DGTs treated and untreated with AgNPs to better understand biofilm colonization, inhibition and Hg uptake. The results showed that the treatment is very useful, since the mass of the biofilm accumulated at the surface of the treated DGT is significantly (p < 0.05) lower than in control (untreated) devices. Tests in colonized environments and Hg-spiked river water showed that the Hg uptake by the treated DGT matched the theoretical values and prevented biofilm formation up to 24 days post-deployment. Conversely, in deployments longer than two weeks using the untreated DGT, measurements could be underestimated by 35%. The results in the field reveal that in sampling stations with high levels of suspended matter, the filter becomes clogged despite there being no biofilm, thereby explaining its low efficiency for the uptake of Hg. In summary, the use of AgNPs inhibits biofilm formation and their use is especially recommended in eutrophic freshwaters with low amounts of suspended particulate matter.
Collapse
Affiliation(s)
- Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| | - Riccardo Giaggio
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| |
Collapse
|
13
|
Turull M, Komarova T, Noller B, Fontàs C, Díez S. Evaluation of mercury in a freshwater environment impacted by an organomercury fungicide using diffusive gradient in thin films. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1475-1484. [PMID: 29107373 DOI: 10.1016/j.scitotenv.2017.10.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
The use of pesticides to manage pest problems for crop protection is common practice around the world, and their accumulation in soils and contamination of water bodies is a global environmental problem. In Australia, an organomercury (Hg)-based fungicide is the most popular for control of pineapple disease of sugarcane. However, the presence of Hg is of great concern because of potential adverse effects in the environment. The purpose of this work was to evaluate the residual levels of Hg in soils of sugarcane cultivation from a catchment in North Queensland (Australia). Mercury was surveyed in soils close to the Tully River at 3 different depths (100, 200 and 300mm). Additionally, total Hg (THg) and the labile fraction of Hg in water (measured by the diffusive gradient in thin film technique) were determined in the Tully River. A pristine site, the Tully Gorge National Park upstream of sugarcane fields, was selected for background Hg concentration estimation. In soils, Hg levels ranged from 18 to 264μgkg-1, with one of the soil samples being almost 10 times higher than at other sites at the surface level (199μgkg-1). Total and labile concentrations of Hg in water increased from the Hg-elevated soil sampling sites (0.085μgL-1 and 0.061μgL-1) to downstream sites (0.082μgL-1 and 0.066μgL-1), which is likely due to agricultural runoff. Indeed, except for the upstream control site, the THg concentration in water is over the limit permitted by the Australian freshwater quality guideline for protection of 99% species (0.06μgL-1). These findings point to the need to perform further research to reveal the mechanisms for release of Hg from soil and whether this might be causing important adverse effects to the Great Barrier Reef located in front of this river catchment.
Collapse
Affiliation(s)
- Marta Turull
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA -CSIC), E-08034, Barcelona, Spain
| | - Tatiana Komarova
- Queensland Health Forensic and Scientific Services (QHFSS), QLD 4108, Australia
| | - Barry Noller
- University of Queensland, Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, QLD 4072, Australia
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA -CSIC), E-08034, Barcelona, Spain.
| |
Collapse
|
14
|
Cole RF, Mills GA, Hale MS, Parker R, Bolam T, Teasdale PR, Bennett WW, Fones GR. Development and evaluation of a new diffusive gradients in thin-films technique for measuring organotin compounds in coastal sediment pore water. Talanta 2018; 178:670-678. [DOI: 10.1016/j.talanta.2017.09.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/23/2017] [Accepted: 09/28/2017] [Indexed: 11/28/2022]
|
15
|
Ren M, Wang Y, Ding S, Yang L, Sun Q, Zhang L. Development of a new diffusive gradient in the thin film (DGT) method for the simultaneous measurement of CH3Hg+ and Hg2+. NEW J CHEM 2018. [DOI: 10.1039/c8nj00211h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This technique has a high DGT capacity, wide tolerance of pH and ionic strength and good performance as an in situ monitoring tool.
Collapse
Affiliation(s)
- Mingyi Ren
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- China
- State Key Laboratory of Lake Science and Environment
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment
- Nanjing Institute of Geography and Limnology
- Chinese Academy of Sciences
- Nanjing 210008
- China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment
- Nanjing Institute of Geography and Limnology
- Chinese Academy of Sciences
- Nanjing 210008
- China
| | - Liyuan Yang
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- China
| | - Qin Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
| | - Liping Zhang
- Nanjing Easysensor Environmental Technology Co., Ltd
- Nanjing 210018
- China
| |
Collapse
|
16
|
Turull M, Grmanova G, Dago À, Ariño C, Díez S, Díaz-Cruz JM, Esteban M. Phytochelatin synthesis in response to Hg uptake in aquatic plants near a chlor-alkali factory. CHEMOSPHERE 2017; 176:74-80. [PMID: 28259081 DOI: 10.1016/j.chemosphere.2017.02.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
The effects of mercury (Hg) released from a chlor-alkali factory in aquatic plants along the Ebro River basin (NE Spain) were analysed considering the phytochelatins (PCn) and their isoforms content in these plants. These compounds were analyzed using HPLC with amperometric detection, and the macrophytes species Ceratophyllum demersum and Myriopyllum spicatum were collected in two sampling campaigns, autumn and spring, respectively. To correlate the PCn content in macrophytes with the Hg contamination, analysis of total Hg (THg) content in plants and suspended particulate matter, as well as the dissolved-bioavailable fraction of Hg in water measured by the diffusive gradient in thin film (DGT) technique were done. The results confirm the presence of PC2-Ala in extracts of C. demersum and PC2-desGly in M. spicatum, and the concentration of these thiol compounds depends clearly on the distance between the hot spot and the downstream sites: the higher the levels are, the closer the hot spot is. Since most of the Hg is hypothesized to be associated with SPM and transported downstream, our results of the DGT suggest that trace amounts of Hg in water can be released as free metal ions yielding a certain accumulation in plants (reaching the ppb level) that are enough for activation of induction of PCs. A few PCs species have been determined, at different seasons, indicating that they can be used as good indicators of the presence of bioavailable Hg in aquatic media throughout the year.
Collapse
Affiliation(s)
- Marta Turull
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - Gabriela Grmanova
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Àngela Dago
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Cristina Ariño
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034, Barcelona, Spain
| | - José Manuel Díaz-Cruz
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Miquel Esteban
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| |
Collapse
|
17
|
Turull M, Elias G, Fontàs C, Díez S. Exploring new DGT samplers containing a polymer inclusion membrane for mercury monitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10919-10928. [PMID: 27189449 DOI: 10.1007/s11356-016-6813-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
A polymer inclusion membrane (PIM) made of cellulose triacetate as a polymer and the task specific ionic liquid (IL) trioctylmethylammonium thiosalicylate (TOMATS) was assembled as a new Diffusive Gradients in Thin film (DGT) device to test its efficiency as a binding phase for mercury (Hg) monitoring. The effect of IL content was assessed, showing that higher TOMATS percentage is better for short deployment studies (up to hours), whereas for long-term exposure (up to days), a lower content can be more suitable. Different configurations of PIM-DGT samplers have been tested under controlled conditions and compared with in-house DGT conventional ones, manufactured with thiol groups as resin layer, for the determination of labile Hg. According to our results, a nonlinear accumulation profile of Hg with deployment time for the different designs of PIM-DGT was observed, limiting the range of applicability of the DGT technique. Promising results for the efficient removal of Hg from aqueous solutions and/or environmental monitoring studies were obtained with TOMATS.
Collapse
Affiliation(s)
- Marta Turull
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain
| | - Gemma Elias
- Department of Chemistry, University of Girona, Campus Montilivi s/n, 17071, Girona, Spain
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, Campus Montilivi s/n, 17071, Girona, Spain
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain.
| |
Collapse
|
18
|
Diviš P, Kadlecová M, Ouddane B. Mercury Distribution in the Deûle River (Northern France) Measured by the Diffusive Gradients in Thin Films Technique and Conventional Methods. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:700-709. [PMID: 26428003 DOI: 10.1007/s00244-015-0231-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
The distribution of mercury in surface water and in sediment from Deûle River in Northern France was studied by application of conventional sampling methods and by diffusive gradients in thin films technique (DGT). Concentration of total dissolved mercury in surface water was 20.8 ± 0.8 ng l(-1). The particulate mercury concentration was 6.2 ± 0.6 µg g(-1). The particulate mercury was accumulated in sediment (9.9 ± 2.3 mg kg(-1)), and it was transformed by methylating bacteria to methylmercury, mainly in the first 2-cm layer of the sediment. Total dissolved concentration of mercury in sediment pore water obtained by application of centrifugation extraction was 17.6 ± 4.1 ng l(-1), and it was comparable with total dissolved pore water mercury concentration measured by DGT probe containing Duolite GT-73 resin gel (18.2 ± 4.3 ng l(-1)), taking the sediment heterogeneity and different principles of the applied methods into account. By application of two DGT probes with different resin gels specific for mercury, it was found that approximately 30% of total dissolved mercury in sediment pore water was present in labile forms easy available for biota. The resolution of mercury DGT depth profiles was 0.5 cm, which allows, unlike conventional techniques, to study the connection of the geochemical cycle of mercury with geochemical cycles of iron and manganese.
Collapse
Affiliation(s)
- Pavel Diviš
- Centre for Materials Research, Faculty of Chemistry, Brno University of Technology, CZ.1.05/2.1.00/01.0012 Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Milada Kadlecová
- LASIR UMR CNRS 8516, Equipe Physico-Chimie de l'Environnement, Université de Lille, 1, Bât. C8 2° étage, 59655, Villeneuve d'Ascq Cedex, France
| | - Baghdad Ouddane
- LASIR UMR CNRS 8516, Equipe Physico-Chimie de l'Environnement, Université de Lille, 1, Bât. C8 2° étage, 59655, Villeneuve d'Ascq Cedex, France
| |
Collapse
|
19
|
Noh S, Hong YS, Han S. Application of diffusive gradients in thin films and core centrifugation methods to determine inorganic mercury and monomethylmercury profiles in sediment porewater. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:348-356. [PMID: 26250361 DOI: 10.1002/etc.3193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/29/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
A diffusive gradient in thin films (DGT) is an in situ sampling technique for the quantitative analysis of contaminant concentrations that is based on the diffusion and adsorption of contaminants on to resin gels. In the present study, a DGT technique was applied to measure total mercury (Hg) and monomethylmercury (MMHg) concentrations in lake and coastal sediment porewaters and compare them with those from ex situ sediment centrifugation. To calculate the total Hg and MMHg concentrations in porewater using the DGT method, the diffusion coefficients of Hg species in a diffusive gel medium was first determined, and then total Hg and MMHg depth profiles were measured using the experimentally determined diffusion coefficients. Using the diffusion coefficients for artificial lake and estuarine waters containing inorganic salts, rather than those for lake and estuarine waters containing Suwannee River humic acid (∼5 mg C L(-1) ), the DGT method demonstrated similar Hg and MMHg profiles to those using the centrifugation method. Based on the need for fine vertical resolution and high metal concentrations to be collected, DGT is suggested to be a reliable method for determining Hg(II) and MMHg depth profiles in sediment porewater.
Collapse
Affiliation(s)
- Seam Noh
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yong Seok Hong
- Department of Environmental Engineering, Daegu University, Daegu, Republic of Korea
| | - Seunghee Han
- Department of Environmental Engineering, Daegu University, Daegu, Republic of Korea
| |
Collapse
|
20
|
Tafurt-Cardona M, Eismann CE, Suárez CA, Menegário AA, Silva Luko K, Sargentini Junior É. In situ selective determination of methylmercury in river water by diffusive gradient in thin films technique (DGT) using baker's yeast ( Saccharomyces cerevisiae ) immobilized in agarose gel as binding phase. Anal Chim Acta 2015; 887:38-44. [DOI: 10.1016/j.aca.2015.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022]
|
21
|
Fernández-Gómez C, Bayona JM, Díez S. Diffusive gradients in thin films for predicting methylmercury bioavailability in freshwaters after photodegradation. CHEMOSPHERE 2015; 131:184-191. [PMID: 25863162 DOI: 10.1016/j.chemosphere.2015.02.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/12/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
Determination of the dissolved-bioavailable fraction of methylmercury (MeHg) and its degradation pathways in freshwaters deserve attention, to further our understanding of the potential risk and toxicity of MeHg. Since the photodegradation of MeHg is the most important known abiotic process able to demethylate MeHg, this study investigated the role of sunlight on MeHg bioavailability in freshwater environments. Experiments to calculate photodegradation rate constants of MeHg in different types of freshwater in combination with experiments to distinguish the labile fraction of MeHg after being exposed to sunlight were performed. The ability of diffusive gradients in thin films based on polyacrylamide (P-DGT) to assess DGT-labile MeHg during photodegradation was successfully tested. First order photodegradation rate constants (kpd) of bioavailable MeHg determined in five different types of waters with different amount of dissolved organic matter (DOM), were in the range 0.073-0.254 h(-1), confirming previous findings that once there is DOM in solution, which would favour the photodegradation process, the kpd is mainly affected by light attenuation. Simulated sunlight seems not to alter the lability of MeHg, although photodegradation processes may decrease the concentrations of MeHg, contributing to reduce the amount of bioavailable MeHg (i.e. MeHg uptake by DGT). However, the quality of DOM, rather than the quantity, plays an important role in the bioavailability of MeHg in freshwater.
Collapse
Affiliation(s)
- C Fernández-Gómez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034 Barcelona, Spain
| | - J M Bayona
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034 Barcelona, Spain
| | - S Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDÆA-CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|
22
|
Pelcová P, Dočekalová H, Kleckerová A. Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography – atomic fluorescence spectrometry after microwave extraction. Anal Chim Acta 2015; 866:21-26. [DOI: 10.1016/j.aca.2015.01.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 11/29/2022]
|