1
|
Liu Y, Zhao X, Wang X, Ding A, Zhang D. Application of whole-cell bioreporters for ecological risk assessment and bioremediation potential evaluation after a benzene exceedance accident in groundwater in Lanzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167846. [PMID: 37844638 DOI: 10.1016/j.scitotenv.2023.167846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Oil spill events challenge human health and ecosystem safety, which are priority concerned issues for sustainable development. There is then an increasing demand of tools for ecological risks assessment at contaminated sites. In this study, we introduced two whole-cell bioreporters, ADPWH_alk and ADPWH_recA, to measure the available n-alkanes and the genotoxicities of total petroleum hydrocarbons in soils and groundwater which were contaminated by the Benzene Exceedance Accident in Lanzhou, China. Comparing to traditional chemical analysis methods, the whole-cell bioreporter method could provide risk assessment on cell level within a shorter time and a less cost, which is economical and environment friendly. The highest contents of available alkanes in soil and groundwater were 18,737 mg/kg and 308.4 mg/L, respectively. In addition, the available n-alkanes significantly (p < 0.01) correlated to chemical analysis of total n-alkanes. The highest genotoxicity level was found in soil and groundwater samples with lower TPHs concentration (4338.0 mg/kg and 1.4 mg/L Mitomycin C equivalent), suggesting the significant impacts of geochemical variables and alkane availability on the ecological risks of petroleum contamination. Combining chemical analysis and whole-cell bioreporter results, bioremediation strategies were suggested for groundwater and soils with higher n-alkane availability and lower ecological risks, whereas chemical oxidation were suggested for other contaminated sites. For the first time, we mapped the distribution of available n-alkanes and petroleum toxicities in a large scale soil-groundwater system using whole-cell bioreporters, showing their huge potential for rapid contaminant detection and fast risk assessment.
Collapse
Affiliation(s)
- Yueqiao Liu
- Experiment and Practice Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Xiaohui Zhao
- China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
2
|
Harpaz D, Veltman B, Katz D, Eltzov E. Whole-cell bacterial biosensor with the capability to detect red palm weevil, Rhynchophorus ferrugineus, in date palm trees, Phoenix dactylifera: a proof of concept study. J Biotechnol 2022; 357:47-55. [PMID: 35963593 DOI: 10.1016/j.jbiotec.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus, is considered a severe pest of palms. Usually, the early stages of infection are without visible signs. An attractive early sensing approach of non-visible infections is based on volatile organic compounds (VOCs). In this study, a whole-cell bacterial biosensor was used for the identification of RPW in date palm (Phoenix dactylifera). The cells are genetically modified to produce light in the presence of general stresses. The bioluminescent bacterial panel is based on three genetically engineered Escherichia coli strains that are sensitive to cytotoxicity (TV1061), genotoxicity (DPD2794), or quorum-sensing (K802NR). The bioluminescent bacterial panel detects the presence of VOCs and a change in the light signal is then generated, reflecting the health status of the date palm tree. The bioreporter bacteria cells are immobilized in calcium alginate tablets and placed in a sealed jar without direct contact with the tested sample, thereby exposing them only to the VOCs in the surrounding air. The immobilized bacteria cells were exposed to the air near infected by RPW or uninfected sugar canes, date palm tree pieces, and on date palm trees. Commercial plate reader was used for signal measurement. The findings show that quorum-sensing was induced by all the tested samples of infected sugar canes, date palm tree pieces, and date palm trees. While, cytotoxicity was induced only by infected date palm tree pieces, and genotoxicity was induced only by infected date palm trees. The bacterial monitoring results enable the identification of specific signatures that will allow a quick and accurate diagnosis.
Collapse
Affiliation(s)
- Dorin Harpaz
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Boris Veltman
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Daniel Katz
- Eden Farm, Agricultural R&D center, Emek HaMa'ayanot Regional Council, Beit Shean Valley 171000, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel.
| |
Collapse
|
3
|
Recent advances of three-dimensional micro-environmental constructions on cell-based biosensors and perspectives in food safety. Biosens Bioelectron 2022; 216:114601. [DOI: 10.1016/j.bios.2022.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
|
4
|
Modeling of Nitrification Kinetics in a Respirometric Biosensor under Suboptimal Conditions. WATER 2022. [DOI: 10.3390/w14132031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sensitive detection with cell biosensors requires optimization of their working conditions and standardization of the response in variable physicochemical conditions. The introduction of an analyte to a sensor, which contributes to this variability, may account for the modeling of microbial metabolism. We constructed a multiparameter model of a water toxicity sensor of Automatic Biodetector for Water Toxicity (ABTOW), developed by our group and based on nitrifying bacteria. The model describes the kinetics of nitrification as a function of four orthogonal parameters: temperature, pH, oxygen and ammonium concentration. Furthermore, we characterized the signal-to-noise ratio (SNR) of the ABTOW readout as a function of these parameters. Thus, a region of parameter space corresponding to optimal ABTOW operation is identified and its sensitivity quantified. We applied the model to describe the ABTOW performance in non-equilibrium conditions produced by rapid changes in pH and temperature. In sum, the model based on four physicochemical parameters describes changes in the biosensor’s activity, the biological element of which are nitrifying bacteria characterized by simple chemolithoautotrophic metabolism. The description of reaction kinetics through multiparameter modeling in combination with stability analysis can find application in process control in biotechnology, biodetection and environmental research.
Collapse
|
5
|
Manivannan B, Massalha N, Halahlih F, Eltzov E, Nguyen TH, Sabbah I, Borisover M. Water toxicity evaluations: Comparing genetically modified bioluminescent bacteria and CHO cells as biomonitoring tools. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110984. [PMID: 32888605 DOI: 10.1016/j.ecoenv.2020.110984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The use of water for drinking and agriculture requires knowledge of its toxicity. In this study, we compared the use of genetically modified bioluminescent (GMB) bacteria whose luminescence increases in the presence of toxicants and Chinese Hamster Ovary (CHO) cells for the characterization of the toxicity of water samples collected from a lake and streams, hydroponic and aquaponic farms, and a wastewater treatment plant. GMB bacteria were used to probe genotoxicity, cytotoxicity and reactive oxygen species-induced effects in the whole water samples. Unlike GMB bacteria, the use of CHO cells requires XAD resin-based pre-concentration of toxic material present in water samples for the subsequent cytotoxicity assay. In addition to the examination of the toxicity of the water from the different sources, the GMB bacteria were also used to test the XAD extracts diluted to the concentrations causing 50% growth inhibition of the CHO cells. The two biomonitoring tools provided different results when they were used to test the above-mentioned diluted XAD extracts. A pre-concentration procedure based on adsorption by XAD resins with subsequent elution was not sufficient to represent the material responsible for the toxicity of the whole water samples toward the GMB bacteria. Therefore, the use of XAD resin extracts may lead to major underestimates of the toxicity of water samples. Although the toxicity findings obtained using the GMB bacteria and CHO cells may not correlate with each another, the GMB bacteria assay did provide a mechanism-specific biomonitoring tool to probe the toxicity of water samples without a need for the pre-concentration step.
Collapse
Affiliation(s)
- Bhuvaneshwari Manivannan
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Israel.
| | - Nedal Massalha
- The Institute of Applied Research, The Galilee Society, P.O. Box 437, Shefa-Amr, Israel; Department of Natural Resources & Environmental Management, Faculty of Management, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 3498838, Israel.
| | - Fares Halahlih
- The Institute of Applied Research, The Galilee Society, P.O. Box 437, Shefa-Amr, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Israel.
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, Safe Global Water Institute, University of Illinois at Urbana-Champaign, USA.
| | - Isam Sabbah
- The Institute of Applied Research, The Galilee Society, P.O. Box 437, Shefa-Amr, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College, Karmiel, Israel.
| | - Mikhail Borisover
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Israel.
| |
Collapse
|
6
|
Ma J, Veltman B, Tietel Z, Tsror L, Liu Y, Eltzov E. Monitoring of infection volatile markers using CMOS-based luminescent bioreporters. Talanta 2020; 219:121333. [PMID: 32887066 DOI: 10.1016/j.talanta.2020.121333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 11/28/2022]
Abstract
Over the past two decades, whole-cell biosensors (WCBs) have been widely used in the environmental field, with only few applications proposed for use in agricultural. This study describes the development and optimization of a WCB for the detection of volatile organic compounds (VOCs) that is produced specifically by infected potato tubers. First, the effect of calcium-alginate matrix formation (beads vs. tablets) on the membrane uniformity and sensing efficiency was evaluated. Then, important parameters in the immobilization process were examined for their effect on the sensitivity to the presence of VOCs. The highest sensitivity to the target VOC was obtained by 20 min polymerization of bacterial suspension with optical density of 0.2 at 600 nm, dissolved in low-viscosity sodium alginate (1.5% w/v) and exposure to VOC at 4 °C. After optimization, the lowest limit of detection for three infection-sourced VOCs (nonanal, 3-methyl-1-butanol, and 1-octen-3-ol) was 0.17-, 2.03-, and 2.09-mg/L, respectively, and the sensor sensitivity was improved by 8.9-, 3.1- and 2-fold, respectively. Then, the new optimized immobilization protocol was implemented for the CMOS-based application, which increased the sensor sensitivity to VOC by 3-fold during real-time measurement. This is the first step in creating a sensor for real-time monitoring of crop quality by identifying changes in VOC patterns.
Collapse
Affiliation(s)
- Junning Ma
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel; Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boris Veltman
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Zipora Tietel
- Food Quality and Safety, Agricultural Research Organization, Gilat Research Center, MP Negev, Israel
| | - Leah Tsror
- Department of Plant Pathology, Institute of Plant Protection, Agricultural Research Organization, Gilat Research Center, Negev, Israel
| | - Yang Liu
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel; Agro-Nanotechnology Research Center, Agriculture Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
7
|
Hossain SMZ, Mansour N. Biosensors for on-line water quality monitoring – a review. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1080/25765299.2019.1691434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- S. M. Zakir Hossain
- Department of Chemical Engineering, University of Bahrain, Isa Town, Kingdom of Bahrain
| | - Noureddine Mansour
- Department of Chemical Engineering, University of Bahrain, Isa Town, Kingdom of Bahrain
| |
Collapse
|
8
|
Bhuvaneshwari M, Eltzov E, Veltman B, Shapiro O, Sadhasivam G, Borisover M. Toxicity of chlorinated and ozonated wastewater effluents probed by genetically modified bioluminescent bacteria and cyanobacteria Spirulina sp. WATER RESEARCH 2019; 164:114910. [PMID: 31382150 DOI: 10.1016/j.watres.2019.114910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Chlorination and ozonation of various waters may be associated with the formation of toxic disinfection byproducts (DBPs) and cause health risks to humans. Monitoring the toxicity of chlorinated and ozonated water and identification of different toxicity mechanisms are therefore required. This study is one of its kind to examine the toxic effects of chlorinated and ozonated wastewater effluents on three genetically modified bioluminescent bacteria, in comparison to the naturally isolated cyanobacteria, Spirulina strains as test systems. Three different secondary wastewater effluents were collected from treatment plants, chlorinated using sodium hypochlorite (at 1 and 10 mg L-1 of chlorine) or treated using 3-4 mg L-1 of ozone at different contact times. As compared to cyanobacterial Spirulina sp., the genetically modified bacteria enhancing bioluminescence at the presence of stress agents demonstrated greater sensitivity to the toxicity induction and have also provided mechanism-specific responses associated with genotoxicity, cytotoxicity and reactive oxygen species (ROS) generation in wastewater effluents. Effects of effluent chlorination time and chlorine concentration revealed by means of bioluminescent bacteria suggest the formation of genotoxic and cytotoxic DBPs followed with their possible disappearance at longer times. Ozonation could degrade genotoxic compounds in some effluents, but the cytotoxic potential of wastewater effluents may certainly increase with ozonation time. No induction of ROS-related toxicity was detected in either chlorinated or ozonated wastewater effluents. UV absorbance- and fluorescence emission-based spectroscopic characteristics may be variously correlated with changes in genotoxicity in ozonated effluents, however, no associations were obtained in chlorinated wastewater effluents. The bacterial response to the developed mechanism-specific toxicity differs among wastewater effluents, reflecting variability in effluent compositions.
Collapse
Affiliation(s)
- M Bhuvaneshwari
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Israel.
| | - Boris Veltman
- Institute of Postharvest and Food Science, Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Israel.
| | - Orr Shapiro
- Institute of Postharvest and Food Science, Department of Food Quality and Safety, Agricultural Research Organization, The Volcani Center, Israel.
| | - Giji Sadhasivam
- Institute of Postharvest and Food Science, Department of Food Quality and Safety, Agricultural Research Organization, The Volcani Center, Israel.
| | - Mikhail Borisover
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Israel.
| |
Collapse
|
9
|
JIN XW, LI ZY, XU PP, ZHANG XY, REN NQ, Kurilenko VV, SUN K. Advances in Microfluidic Biosensors Based on Luminescent Bacteria. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Mokhtar-Ahmadabadi R, Madadi Z, Akbari-Birgani S, Grillon C, Hasani L, Hosseinkhani S, Zareian S. Developing a circularly permuted variant of Renilla luciferase as a bioluminescent sensor for measuring Caspase-9 activity in the cell-free and cell-based systems. Biochem Biophys Res Commun 2018; 506:1032-1039. [PMID: 30409426 DOI: 10.1016/j.bbrc.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 11/29/2022]
Abstract
Biosensors and whole cell biosensors consisting of biological molecules and living cells can sense a special stimulus on a living system and convert it to a measurable signal. A major group of them are the bioluminescent sensors derived from luciferases. This type of biosensors has a broad application in molecular biology and imaging systems. In this project, a luciferase-based biosensor for detecting and measuring caspase-9 activity is designed and constructed using the circular permutation strategy. The spectroscopic method results reveal changes in the biosensor structure. Additionally, its activity is examined in a cell-free coupled assay system. Afterward, the biosensor is utilized for measuring the cellular caspase-9 activity upon apoptosis induction in a cancer cell line. In following the gene of biosensor is sub-cloned into a eukaryotic vector and transfected to HEK293T cell line and then its activity is measured upon apoptosis induction in the presence and absence of a caspase-9 inhibitor. The obtained results show that the designed biosensor detects the caspase-9 activity in the cell-free and cell-based systems.
Collapse
Affiliation(s)
- Roya Mokhtar-Ahmadabadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Zahra Madadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Catherine Grillon
- Centre de Biophysique Moléculaire, UPR CNRS 4301, 45071, Orléans, France
| | - Leila Hasani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shekufeh Zareian
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
11
|
Measuring Artificial Sweeteners Toxicity Using a Bioluminescent Bacterial Panel. Molecules 2018; 23:molecules23102454. [PMID: 30257473 PMCID: PMC6222326 DOI: 10.3390/molecules23102454] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/16/2022] Open
Abstract
Artificial sweeteners have become increasingly controversial due to their questionable influence on consumers' health. They are introduced in most foods and many consume this added ingredient without their knowledge. Currently, there is still no consensus regarding the health consequences of artificial sweeteners intake as they have not been fully investigated. Consumption of artificial sweeteners has been linked with adverse effects such as cancer, weight gain, metabolic disorders, type-2 diabetes and alteration of gut microbiota activity. Moreover, artificial sweeteners have been identified as emerging environmental pollutants, and can be found in receiving waters, i.e., surface waters, groundwater aquifers and drinking waters. In this study, the relative toxicity of six FDA-approved artificial sweeteners (aspartame, sucralose, saccharine, neotame, advantame and acesulfame potassium-k (ace-k)) and that of ten sport supplements containing these artificial sweeteners, were tested using genetically modified bioluminescent bacteria from E. coli. The bioluminescent bacteria, which luminesce when they detect toxicants, act as a sensing model representative of the complex microbial system. Both induced luminescent signals and bacterial growth were measured. Toxic effects were found when the bacteria were exposed to certain concentrations of the artificial sweeteners. In the bioluminescence activity assay, two toxicity response patterns were observed, namely, the induction and inhibition of the bioluminescent signal. An inhibition response pattern may be observed in the response of sucralose in all the tested strains: TV1061 (MLIC = 1 mg/mL), DPD2544 (MLIC = 50 mg/mL) and DPD2794 (MLIC = 100 mg/mL). It is also observed in neotame in the DPD2544 (MLIC = 2 mg/mL) strain. On the other hand, the induction response pattern may be observed in its response in saccharin in TV1061 (MLIndC = 5 mg/mL) and DPD2794 (MLIndC = 5 mg/mL) strains, aspartame in DPD2794 (MLIndC = 4 mg/mL) strain, and ace-k in DPD2794 (MLIndC = 10 mg/mL) strain. The results of this study may help in understanding the relative toxicity of artificial sweeteners on E. coli, a sensing model representative of the gut bacteria. Furthermore, the tested bioluminescent bacterial panel can potentially be used for detecting artificial sweeteners in the environment, using a specific mode-of-action pattern.
Collapse
|
12
|
Zulkifli SN, Rahim HA, Lau WJ. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2657-2689. [PMID: 32288249 PMCID: PMC7126548 DOI: 10.1016/j.snb.2017.09.078] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 05/12/2023]
Abstract
Water monitoring technologies are widely used for contaminants detection in wide variety of water ecology applications such as water treatment plant and water distribution system. A tremendous amount of research has been conducted over the past decades to develop robust and efficient techniques of contaminants detection with minimum operating cost and energy. Recent developments in spectroscopic techniques and biosensor approach have improved the detection sensitivities, quantitatively and qualitatively. The availability of in-situ measurements and multiple detection analyses has expanded the water monitoring applications in various advanced techniques including successful establishment in hand-held sensing devices which improves portability in real-time basis for the detection of contaminant, such as microorganisms, pesticides, heavy metal ions, inorganic and organic components. This paper intends to review the developments in water quality monitoring technologies for the detection of biological and chemical contaminants in accordance with instrumental limitations. Particularly, this review focuses on the most recently developed techniques for water contaminant detection applications. Several recommendations and prospective views on the developments in water quality assessments will also be included.
Collapse
Affiliation(s)
| | - Herlina Abdul Rahim
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Woei-Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
13
|
Reporter Gene Assays in Ecotoxicology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 157:135-157. [PMID: 27928578 DOI: 10.1007/10_2016_47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The need for simple and rapid means for evaluating the potential toxic effects of environmental samples has prompted the development of reporter gene assays, based on tester cells (bioreporters) genetically engineered to report on sample toxicity by producing a readily quantifiable signal. Bacteria are especially suitable to serve as bioreporters owing to their fast responses, low cost, convenient preservation, ease of handling, and amenability to genetic manipulations. Various bacterial bioreporters have been introduced for general toxicity and genotoxicity assessment, and the monitoring of endocrine disrupting and dioxin-like compounds has been mostly covered by similarly engineered eukaryotic cells. Some reporter gene assays have been validated, standardized, and accredited, and many others are under constant development. Efforts are aimed at broadening detection spectra, lowering detection thresholds, and combining toxicity identification capabilities with characterization of the toxic effects. Taking advantage of bacterial robustness, attempts are also being made to incorporate bacterial bioreporters into field instrumentation for online continuous monitoring or on-site spot checks. However, key hurdles concerning test validation, cell preservation, and regulatory issues related to the use of genetically modified organisms still remain to be overcome.
Collapse
|
14
|
Shinozaki Y, Igarashi T, Harada Y. Development of a Filtration-Based Bioluminescence Assay for Detection of Microorganisms in Tea Beverages. J Food Prot 2016; 79:488-92. [PMID: 26939661 DOI: 10.4315/0362-028x.jfp-15-385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The market for tea drinks as healthy beverages has been steadily expanding, and ready-to-drink beverages in polyethylene terephthalate bottles have been popular. To more rapidly and accurately test tea beverages bottled in polyethylene terephthalate for microbial contamination, a newly developed filtration device and a washing method with a commercial bioluminescence assay were combined to detect low numbers of bacterial spores, fungal conidia, and ascospores. Washing buffers were formulated with nonionic detergents from the Tween series. Commercially available tea beverages were used to evaluate the filtration capacity of the filtration device, the effect of washing buffers, and the performance of the assay. The assay was tested with serially diluted suspensions of colonies of two bacterial strains, spores of three Bacillus strains, conidia of five fungal strains, and ascospores of four fungal strains. The filtration device enabled filtration of a large sample volume (100 to 500 ml), and the washing buffer significantly decreased the background bioluminescence intensity of tea samples when compared with the no-washing method. Low numbers (1 to 10 CFU/100 ml) of the tested strains of bacteria were detected within 8 to 18 h of cultivation, and fungi were detected within 24 to 48 h. Furthermore, a whole bottle (500 ml) of mixed tea was filtered through the filtration device and microbes were detected. This method could be used for quality control of bottled beverages without preincubation.
Collapse
Affiliation(s)
- Yohei Shinozaki
- Research and Development Division, Kikkoman Corporation, 399 Noda, Noda, Chiba 278-0037, Japan.
| | - Toshinori Igarashi
- Research and Development Division, Kikkoman Corporation, 399 Noda, Noda, Chiba 278-0037, Japan
| | - Yasuhiro Harada
- Research and Development Division, Kikkoman Corporation, 399 Noda, Noda, Chiba 278-0037, Japan
| |
Collapse
|
15
|
Axelrod T, Eltzov E, Marks RS. Bioluminescent bioreporter pad biosensor for monitoring water toxicity. Talanta 2015; 149:290-297. [PMID: 26717844 DOI: 10.1016/j.talanta.2015.11.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/22/2015] [Accepted: 11/25/2015] [Indexed: 01/26/2023]
Abstract
Toxicants in water sources are of concern. We developed a tool that is affordable and easy-to-use for monitoring toxicity in water. It is a biosensor composed of disposable bioreporter pads (calcium alginate matrix with immobilized bacteria) and a non-disposable CMOS photodetector. Various parameters to enhance the sensor's signal have been tested, including the effect of alginate and bacterium concentrations. The effect of various toxicants, as well as, environmental samples were tested by evaluating their effect on bacterial luminescence. This is the first step in the creation of a sensitive and simple operative tool that may be used in different environments.
Collapse
Affiliation(s)
- Tim Axelrod
- Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Evgeni Eltzov
- Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel; School of Material Science and Engineering, Nanyang Technology University, Nanyang Avenue, 639798 Singapore
| | - Robert S Marks
- Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel; School of Material Science and Engineering, Nanyang Technology University, Nanyang Avenue, 639798 Singapore; National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|